Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7786553 B1
Publication typeGrant
Application numberUS 09/362,808
Publication dateAug 31, 2010
Filing dateJul 28, 1999
Priority dateNov 27, 1995
Fee statusPaid
Also published asUS5940732, US7800235, US8283788, US20050287722, US20110001192, US20120168880
Publication number09362808, 362808, US 7786553 B1, US 7786553B1, US-B1-7786553, US7786553 B1, US7786553B1
InventorsHongyong Zhang
Original AssigneeSemiconductor Energy Laboratory Co., Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of fabricating semiconductor device
US 7786553 B1
Abstract
Method of fabricating thin-film transistors in which contact with connecting electrodes becomes reliable. When contact holes are formed, the bottom insulating layer is subjected to a wet etching process, thus producing undercuttings inside the contact holes. In order to remove the undercuttings, a light etching process is carried out to widen the contact holes. Thus, tapering section are obtained, and the covering of connection wiring is improved.
Images(7)
Previous page
Next page
Claims(78)
1. A semiconductor device comprising:
a semiconductor having at least channel, source and drain regions;
an insulating film formed on said semiconductor;
a gate electrode over the insulating film;
a first interlayer insulating film over said insulating film and the gate electrode;
a second interlayer insulating film on said first interlayer insulating film, said second interlayer insulating film comprising a different material from said insulating film;
a first opening in said insulating film for exposing a portion of said semiconductor;
a second opening in said first interlayer insulating film for exposing said portion of said semiconductor layer and a portion of said insulating film that surrounds said first opening; and
a third opening in said second interlayer insulating film for exposing said portion of said semiconductor, said portion of said insulating film and a portion of said first interlayer insulating film that surrounds said second opening,
wherein edges of at least said third opening are rounded off, and
wherein a thickness of the first interlayer insulating film is less than one third of a total thickness of the first and second interlayer insulating films.
2. A device according to claim 1 wherein a taper angle β of the second interlayer insulating film with respect to a major surface of said semiconductor in the third opening is larger than a taper angle α of the first interlayer insulating film with respect to the major surface of said semiconductor in the second opening.
3. A device according to claim 1, wherein said insulating film comprises silicon oxide.
4. A device according to claim 1, wherein said first and second interlayer insulating films comprise a material selected from the group consisting of silicon nitride and organic resin.
5. A device according to claim 1, wherein said second interlayer insulating film has a dry etching rate higher than said first interlayer insulating film.
6. A semiconductor device comprising:
a semiconductor layer formed over a substrate having an insulating surface, said semiconductor layer having at least channel, source and drain regions;
a gate insulating film over said semiconductor layer;
a gate electrode over the gate insulating film;
a first interlayer insulating film over said gate insulating layer and the gate electrode
a second interlayer insulating film on said first interlayer insulating film, said second interlayer insulating film comprising a different material from said gate insulating film;
a first opening in said gate insulating film for exposing a portion of said semiconductor layer;
a second opening in said first interlayer insulating film for exposing said portion of said semiconductor layer and a portion of said gate insulating film that surrounds said first opening; and
a third opening in said second interlayer insulating film for exposing said portion of said semiconductor layer, said portion of said gate insulating film and a portion of said first interlayer insulating film that surrounds said second opening,
wherein edges of at least said third opening are rounded off, and
wherein a taper angle β of the second interlayer insulating film with respect to a major surface of said semiconductor layer in the third opening is larger than a taper angle α of the first interlayer insulating film with respect to the major surface of said semiconductor layer in the second opening.
7. A device according to claim 6, wherein said gate insulating film comprises silicon oxide.
8. A device according to claim 6, wherein said first and second interlayer insulating film comprise a material selected from the group consisting of silicon nitride and organic resin.
9. A device according to claim 6, wherein said second interlayer insulating film has a dry etching rate higher than said first interlayer insulating film.
10. A semiconductor device comprising:
a semiconductor having at least channel, source and drain regions;
an insulating film on said semiconductor;
a gate electrode over the insulating film;
a first interlayer insulating film over said insulating film and the gate electrode;
a second interlayer insulating film on said first interlayer insulating film;
a first opening in said insulating film for exposing a portion of said semiconductor;
a second opening in said first interlayer insulating film for exposing said portion of said semiconductor and a portion of said insulating film that surrounds said first opening;
a third opening in said second interlayer insulating film for exposing said portion of said semiconductor, said portion of said insulating film and a portion of said first interlayer insulating film that surrounds said second opening; and
an electrode formed on said first, second, and third openings and connected with one of said source and drain regions through said first, second, and third openings,
wherein a taper angle β of the second interlayer insulating film with respect to a major surface of said semiconductor in the third opening is larger than a taper angle α of the first interlayer insulating film with respect to a major surface of said semiconductor in the second opening, and
wherein a thickness of the first interlayer insulating film is less than one third of a total thickness of the first and second interlayer insulating films.
11. A device according to claim 10, wherein said insulating film comprises silicon oxide.
12. A device according to claim 10, wherein said first and second interlayer insulating film comprise a material selected from the group consisting of silicon nitride and organic resin.
13. A device according to claim 10, wherein said second interlayer insulating film has a dry etching rate higher than said first interlayer insulating film.
14. A semiconductor device comprising:
a semiconductor layer formed over a substrate having an insulating surface and including at least channel, source and drain regions;
an insulating film on said semiconductor layer;
a gate electrode over the insulating film;
at least a first interlayer insulating film over the insulating film and over the gate electrode, and a second interlayer insulating film over the first interlayer insulating film;
at least one contact hole in said first and second interlayer insulating films and said insulating film, said contact hole having a tapered section; and
an electrode formed on said contact hole and connected with one of said source and drain regions through said contact hole,
wherein a taper angle β of an inner surface of the second interlayer insulating film in the contact hole with respect to a major surface of said semiconductor layer is larger than a taper angle α of an inner surface of the first interlayer insulating film in the contact hole with respect to said major surface of said semiconductor layer.
15. A device according to claim 14, wherein said insulating film comprises silicon oxide.
16. A device according to claim 14, wherein said first and second interlayer insulating film comprise a material selected from the group consisting of silicon nitride and organic resin.
17. A device according to claim 14, wherein said second interlayer insulating films has a dry etching rate higher than said first interlayer insulating layer.
18. A device according to claim 14, wherein angles of the tapered section of the contact hole decrease successively from the second interlayer insulating layer toward a first interlayer insulating layer.
19. A semiconductor device comprising:
a semiconductor having a channel region, at least one low doped impurity region, and at least one high doped impurity region said high doped impurity region being adjacent to said channel region with said low doped impurity region interposed therebetween;
an insulating film on said semiconductor;
a gate electrode over the insulating film;
at least a first interlayer insulating film over the insulating film and over the gate electrode, and a second interlayer insulating film over the first interlayer insulating film; and
a contact hole in said first and second interlayer insulating films and said insulating film for exposing a portion of said high doped impurity region, said contact hole including a first hole in the second interlayer insulating film, a second hole in the first interlayer insulating film, and a third hole in the insulating film, the contact hole having a tapered section such that the first hole has a larger cross section than the second hole, and the second hole has a larger cross section than the third hole,
wherein edges of said second interlayer insulating film in said contact hole are rounded off,
wherein angles of the tapered section of the contact hole decrease successively from the second interlayer insulating film toward the first interlayer insulating film, and
wherein a thickness of the first interlayer insulating film is less than one third of a total thickness of the first and second interlayer insulating films.
20. A device according to claim 19 wherein said insulating film comprises silicon oxide.
21. A device according to claim 19 wherein at least one of said first and second interlayer insulating films comprises a material selected from the group consisting of silicon nitride and organic resin.
22. A device according to claim 19 wherein said low doped impurity region includes phosphorus at a dose of 0.1 to 51014 atoms/cm2.
23. A device according to claim 19 wherein said high doped impurity region includes phosphorus at a dose of 0.2 to 51015 atoms/cm2.
24. A semiconductor device comprising:
a semiconductor layer formed over a substrate having an insulating surface and having a channel region, at least one low doped impurity region, and at least one high doped impurity region said high doped impurity region being adjacent to said channel region with said low doped impurity region interposed therebetween;
an insulating film on said semiconductor layer;
a gate electrode over the insulating film;
at least a first interlayer insulating film over the insulating film and over the gate electrode, and a second interlayer insulating film over the first interlayer insulating film;
a contact hole in said interlayer insulating films and said insulating film for exposing a portion of said high doped impurity region, said contact hole has a tapered section; and
an electrode formed on said contact hole and connected with one of said source and drain regions through said contact hole,
wherein edges of said interlayer insulating film in said contact hole are rounded off.
25. A device according to claim 24, wherein a taper angle β of an inner surface of the second interlayer insulating film in the contact hole with respect to a major surface of said semiconductor layer is larger than a taper angle α of an inner surface of first interlayer insulating film in the contact hole with respect to said major surface of said semiconductor layer.
26. A device according to claim 24, wherein angles of the taper shape of the contact hole decrease successively from the second interlayer insulating film toward the first interlayer insulating film.
27. A device according to claim 24 wherein said insulating film comprises silicon oxide.
28. A device according to claim 19 wherein at least one of said first and second interlayer insulating films comprises a material selected from the group consisting of silicon nitride and organic resin.
29. A device according to claim 24 wherein said low doped impurity region includes phosphorus at a dose of 0.1 to 51014 atoms/cm2.
30. A device according to claim 24 wherein said high doped impurity region includes phosphorus at a dose of 0.2 to 51015 atoms/cm2.
31. A device according to claim 1, wherein edges of said first opening are rounded off.
32. A device according to claim 1, further comprising an electrode connected with one of said source and drain regions through said first, second, and third openings.
33. A device according to claim 6, wherein edges of said first opening are rounded off.
34. A device according to claim 6, further comprising an electrode connected with one of said source and drain regions through said first, second, and third openings.
35. A device according to claim 19, wherein edges of said insulating film in said contact hole are rounded off.
36. A device according to claim 19, further comprising an electrode connected with one of said source and drain regions through said contact hole.
37. A device according to claim 24, wherein edges of said insulating film in said contact hole are rounded off.
38. A device according to claim 6, wherein a thickness of the first interlayer insulating film is less than one third of a total thickness of the first and second interlayer insulating films.
39. A device according to claim 14, wherein a thickness of the first interlayer insulating film is less than one third of a total thickness of the first and second interlayer insulating films.
40. A device according to claim 24, wherein a thickness of the first interlayer insulating film is less than one third of a total thickness of the first and second interlayer insulating films.
41. A device according to claim 14, wherein said first interlayer insulating film is formed on and in contact with the insulating film, and over the gate electrode, and said second interlayer insulating film is formed on and in contact with said first interlayer insulating film.
42. A device according to claim 19, wherein said first interlayer insulating film is formed on and in contact with the insulating film, and over the gate electrode, and said second interlayer insulating film is formed on and in contact with said first interlayer insulating film.
43. A device according to claim 24, wherein said first interlayer insulating film is formed on and in contact with the insulating film, and over the gate electrode, and said second interlayer insulating film is formed on and in contact with said first interlayer insulating film.
44. A semiconductor device comprising:
a metal layer formed over a glass substrate;
a first insulating film over the metal layer;
a second insulating film over the first insulating film;
a first opening in the first insulating film to expose a portion of the metal layer; and
a second opening in the second insulating film to expose a portion of the metal layer and a portion of the first insulating film,
wherein a first taper angle of the first insulating film in the first opening is smaller than a second taper angle of the second insulating film in the second opening.
45. The semiconductor device according to claim 44, wherein said first insulating film and said second insulating film are formed from a same material.
46. The semiconductor device according to claim 44, wherein at least any one of said first insulating film and said second insulating film are formed from silicon nitride.
47. A semiconductor device comprising:
a metal layer formed over a glass substrate;
a first insulating film over the metal layer;
a second insulating film over the first insulating film;
a first opening in the first insulating film to expose a portion of the metal layer; and
a second opening in the second insulating film to expose a portion of the metal layer and a portion of the first insulating film,
wherein a thickness of the first insulating film is less than one third of a total thickness of the first and second insulating films, and
wherein a first taper angle of the first insulating film in the first opening is smaller than a second taper angle of the second insulating film in the second opening.
48. The semiconductor device according to claim 47, wherein said first insulating film and said second insulating film are formed from a same material.
49. The semiconductor device according to claim 47, wherein at least any one of said first insulating film and said second insulating film are formed from silicon nitride.
50. A semiconductor device comprising:
a substrate having an insulating surface;
at least one thin film transistor formed over the substrate, the thin film transistor comprising a source region, a drain region, a channel formation region provided between the source region and the drain region, and a gate electrode provided adjacent to the channel formation region with a gate insulating film therebetween;
a multilayer insulating film provided over the thin film transistor and comprising at least two layers including a first insulating layer and a second insulating layer over the first insulating layer and comprising a different material from the first insulating layer;
a contact hole provided through the multilayer insulating film, the contact hole including a first opening through the first insulating layer and a second opening through the second insulating layer and concentric with the first opening; and
a wiring provided over the multilayer insulating film and electrically connected to one of the source region and the drain region through the contact hole,
wherein:
an edge of the second opening is rounded off;
a side surface of the multilayer insulating film in the contact hole is tapered such that the second opening exposes a portion of the first insulating film that surrounds the first opening; and
a thickness of the first insulating layer is less than one third of a total thickness of the multilayer insulating film.
51. A semiconductor device comprising:
a substrate having an insulating surface;
at least one thin film transistor formed over the substrate, the thin film transistor comprising a source region, a drain region, a channel formation region provided between the source region and the drain region, and a gate electrode provided adjacent to the channel formation region with a gate insulating film therebetween;
a multilayer insulating film provided over the thin film transistor and comprising at least two layers including a first insulating layer and a second insulating layer over the first insulating layer;
a contact hole provided through the multilayer insulating film, the contact hole including a first opening through the first insulating layer and a second opening through the second insulating layer and concentric with the first opening;
a pixel electrode provided over the multilayer insulating film and electrically connected to one of the source region and the drain region through the contact hole,
wherein:
an edge of the second opening is rounded off;
a side surface of the multilayer insulating film in the contact hole is tapered;
a thickness of the first insulating layer is less than one third of a total thickness of the multilayer insulating film; and
a side surface of the first insulating layer in the contact hole has a first taper angle and a side surface of the second insulating layer in the contact hole has a second taper angle, and the first taper angle and the second taper angle are different angles.
52. A semiconductor device comprising:
a substrate having an insulating surface;
at least one thin film transistor formed over the substrate, the thin film transistor comprising a source region, a drain region, a channel formation region provided between the source region and the drain region, and a gate electrode provided adjacent to the channel formation region with a gate insulating film therebetween;
a multilayer insulating film provided over the thin film transistor and comprising at least two layers including a first insulating layer and a second insulating layer over the first insulating layer;
a contact hole provided through the multilayer insulating film, the contact hole including a first opening through the first insulating layer and a second opening through the second insulating layer and concentric with the first opening;
a wiring provided over the multilayer insulating film and electrically connected to one of the source region and the drain region through the contact hole,
wherein:
an edge of the second opening is rounded off;
a diameter of contact hole is larger at a lowermost surface of the second insulating layer than at a lowermost surface of the first insulating layer;
a thickness of the first insulating layer is less than one third of a total thickness of the multilayer insulating film; and
a side surface of the first insulating layer in the contact hole has a first taper angle and a side surface of the second insulating layer in the contact hole has a second taper angle, and the first taper angle and the second taper angle are different angles.
53. A semiconductor device comprising:
a substrate;
an underlying insulating film formed over the substrate;
at least one thin film transistor formed over the substrate and the underlying insulating film, the thin film transistor comprising a source region, a drain region, a channel formation region provided between the source region and the drain region, and a gate electrode provided adjacent to the channel formation region with a gate insulating film therebetween;
a multilayer insulating film provided over the thin film transistor and comprising at least two layers including a first insulating layer and a second insulating layer over the first insulating layer;
a contact hole provided through the multilayer insulating film, the contact hole including a first opening through the first insulating layer and a second opening through the second insulating layer and concentric with the first opening;
a wiring provided over the multilayer insulating film and electrically connected to one of the source region and the drain region through the contact hole,
wherein:
an edge of the second opening is rounded off;
a side surface of the multilayer insulating film in the contact hole is tapered; and
a thickness of the first insulating layer is less than one third of a total thickness of the multilayer insulating film.
54. A semiconductor device comprising:
a substrate;
an underlying insulating film formed over the substrate;
at least one thin film transistor formed over the substrate and the underlying insulating film, the thin film transistor comprising a source region, a drain region, a channel formation region provided between the source region and the drain region, and a gate electrode provided adjacent to the channel formation region with a gate insulating film therebetween;
a multilayer insulating film provided over the thin film transistor and comprising at least two layers including a first insulating layer and a second insulating layer over the first insulating layer;
a contact hole provided through the multilayer insulating film, the contact hole including a first opening through the first insulating layer and a second opening through the second insulating layer and concentric with the first opening;
a pixel electrode provided over the multilayer insulating film and electrically connected to one of the source region and the drain region through the contact hole,
wherein:
an edge of the second opening is rounded off;
a diameter of contact hole is larger at a lowermost surface of the second insulating layer than at a lowermost surface of the first insulating layer;
a thickness of the first insulating layer is less than one third of a total thickness of the multilayer insulating film; and
a side surface of the first insulating layer in the contact hole has a first taper angle and a side surface of the second insulating layer in the contact hole has a second taper angle, and the first taper angle and the second taper angle are different angles.
55. The semiconductor device of claim 50, wherein the first insulating layer is made of silicon nitride.
56. The semiconductor device of claim 51, wherein the first insulating layer is made of silicon nitride.
57. The semiconductor device of claim 52, wherein the first insulating layer is made of silicon nitride.
58. The semiconductor device of claim 53, wherein the first insulating layer is made of silicon nitride.
59. The semiconductor device of claim 54, wherein the first insulating layer is made of silicon nitride.
60. The semiconductor device of claim 51, wherein the first taper angle is smaller than the second taper angle.
61. The semiconductor device of claim 52, wherein the first taper angle is smaller than the second taper angle.
62. The semiconductor device of claim 53, wherein the underlying insulating film comprises one of silicon oxide and silicon nitride.
63. The semiconductor device of claim 54, wherein the underlying insulating film comprises one of silicon oxide and silicon nitride.
64. The semiconductor device of claim 50, wherein the semiconductor device comprises an active matrix liquid crystal display.
65. The semiconductor device of claim 51, wherein the semiconductor device comprises an active matrix liquid crystal display.
66. The semiconductor device of claim 52, wherein the semiconductor device comprises an active matrix liquid crystal display.
67. The semiconductor device of claim 53, wherein the semiconductor device comprises an active matrix liquid crystal display.
68. The semiconductor device of claim 54, wherein the semiconductor device comprises an active matrix liquid crystal display.
69. A semiconductor display device comprising:
a semiconductor having at least channel, source and drain regions, with the source and drain regions being arranged on opposite sides of the channel region;
an insulating film over said semiconductor over the source and drain regions, the insulating film comprising a lower portion formed on the semiconductor and an upper portion over the lower portion; and
an opening in said insulating film for exposing a portion of said semiconductor, the opening including a first portion through the lower portion of the insulating film and a second portion through the upper portion of the insulating film;
wherein a first taper angle of the upper portion of the insulating film with respect to a major surface of said semiconductor in the second portion of the opening is larger than a second taper angle of the lower portion of the insulating film with respect to the major surface of said semiconductor in the first portion of the opening, and
wherein a thickness of the lower portion of the insulating film is less than one third of a total thickness of the insulating film.
70. The semiconductor display device of claim 69, wherein the insulating film comprise a material selected from the group consisting of silicon nitride and organic resin.
71. The semiconductor display device of claim 69, wherein:
the device comprises multiple openings in the insulating film for exposing portions of the semiconductor, each of the openings including a first portion through the lower portion of the insulating film and a second portion through the upper portion of the insulating film; and
for each opening, a first taper angle of the upper portion of the insulating film with respect to a major surface of the semiconductor in the second portion of the opening is larger than a second taper angle of the lower portion of the insulating film with respect to the major surface of the semiconductor in the first portion of the opening.
72. The semiconductor display device of claim 69, wherein one of the opening exposes the source region and another one of the openings exposes the drain region.
73. The semiconductor display device of claim 69, further comprising an electrode formed so as to connected with one of the source and drain regions through the opening.
74. The semiconductor display device of claim 69, wherein the insulating film comprises a first insulating film that defines the lower portion of the insulating film and a second insulating film that defines the upper portion of the insulating film.
75. The semiconductor display device of claim 74, further comprising a gate electrode formed between the first insulating film and the second insulating film.
76. The semiconductor display device of claim 69, wherein the opening exposes one of the source and drain regions.
77. A method for fabricating a semiconductor device, the method comprising:
forming a semiconductor film on an insulating surface;
forming an insulating film over the semiconductor film, the insulating film comprising a lower portion formed on the semiconductor film and an upper portion over the lower portion; and
forming an opening in the insulating film for exposing a portion of the semiconductor film, the opening including a first portion through the lower portion of the insulating film and a second portion through the upper portion of the insulating film;
wherein a first taper angle of the upper portion of the insulating film with respect to a major surface of said semiconductor film in the second portion of the opening is larger than a second taper angle of the lower portion of the insulating film with respect to the major surface of the semiconductor film in the first portion of the opening, and
wherein a thickness of the lower portion of the insulating film is less than one third of a total thickness of the insulating film.
78. The method for fabricating a semiconductor device according to claim 77, wherein:
forming the semiconductor film further comprises processing the semiconductor film to include at least channel, source and drain regions, with the source and drain regions being arranged on opposite sides of the channel region, and
forming the opening comprises forming the opening to expose the source or drain region.
Description

This is a divisional of U.S. application Ser. No. 08/753,428, filed Nov. 25, 1996, now U.S. Pat. No. 5,940,732.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method of fabricating a semiconductor device, using a crystalline thin-film semiconductor and, more particularly, to a method of fabricating planar type thin-film transistors.

2. Description of Related Art

In recent years, techniques for fabricating thin-film transistors (TFTs) on cheap glass substrates have evolved rapidly, because there is an increasing demand for active matrix liquid crystal displays.

An active matrix liquid crystal display has millions of pixels arranged in rows and columns. TFTs are arranged at these pixels. Electric charge going in and out of each electrode at the pixels is controlled by the switching action of the TFTs.

Therefore, if one TFT fails to operate, then pixel electrodes connected with the faulty TFT do not act as display elements. This gives rise to a so-called point defect. For example, in the case of a normally black liquid crystal display, when white color is displayed, the point defect appears as a black point, which is deeply harmful to the appearance. Furthermore, it has been required that a circuit (known as a peripheral driver circuit) for driving TFTs for displaying these pixel electrodes be formed out of TFTs integrated with the former TFTs on the same glass substrate.

In this case, if one driving TFT fails to operate, all TFTs applied with a driving voltage from the faulty TFT do not act as switching elements. This results in a so-called line defect. This is a fatal hindrance to the liquid crystal display.

Accordingly, in an active matrix liquid crystal display, millions of TFTs must operate normally and stably over a long term. However, the present situation is that it is difficult to eliminate point defects and line defects perfectly. One of the causes is poor contact. Poor contact is that an interconnect electrode is poorly electrically connected with an associated TFT at a contact location, thus a defective operation is occurred. Especially, in the case of a planar TFT, poor contact presents serious problems, because an interconnect electrode is electrically connected with an associated TFT through a thin contact hole.

The poor contact is a main cause of premature deterioration of semiconductor device characteristics. Especially, where large currents flow or the device is operated at high temperatures, the deterioration coursed by the poor contact is promoted. Therefore, it is said that the reliability of contacts determines the reliability of the semiconductor device.

Generally, in the case of pixel display regions of an active matrix liquid crystal display, the gate electrodes are brought out of the pixel display regions directly and so no contacts exist. That is, contact with the pixel electrodes is very important for the reliability of the liquid crystal display.

In the case of a peripheral driver circuit, very many (from tens of thousands to millions) contacts exist. Especially, because there exist gate electrode contacts, and because the temperature is elevated by large-current operation, the contacts must have higher reliability than the pixel display regions.

SUMMARY OF THE INVENTION

The causes of poor contact are classified into three major categories.

The first category is that a conductive film forming interconnect electrodes is not in ohmic contact with a semiconductor film forming the source/drain regions of TFTs. This is caused by formation of an insulating coating such as a metal oxide at the junction plane. Also, the states of the vicinities of the semiconductor film surface (doping concentration, defect level density, cleanliness, and so on) greatly affect the performance of the contacts.

The second category is that the conductive film forming the interconnect electrodes has poor coverage and thus the interconnect line breaks within a contact hole. In this case, it is necessary to improve the situation by the method of forming the interconnect electrodes or changing the film growth conditions better.

The third category is that an interconnect electrode breaks due to the cross-sectional shape of the contact hole. The cross-sectional shape of the contact hole depends heavily on the conditions under which the insulators (SiN, SiO2, etc.) covered with the contact portions are etched.

In order to form contacts with good coverage, it is desired to have a continuously mildly changing cross-sectional shape, or a tapering shape. Overetch of the underlying films (wedge-shape recess) which is often encountered with insulating films between plural layers severely deteriorates the coverage.

It is an object of the present invention to provide a semiconductor device having contact holes through which interconnect electrodes are electrically connected with TFTs, the device being characterized in that the contact holes have improved cross-sectional shape, whereby reducing malfunctions of the TFTs which would normally be caused by poor contact.

It is a more specific object of the invention to provide a liquid crystal display having contacts of improved reliability, whereby the liquid crystal display has improved long-term reliability.

It is another object of the invention to provide a method of fabricating semiconductor devices with an improved yield by eliminating point defects and line defects.

One aspect of the invention lies in a method of fabricating a thin-film transistor comprising a gate region having a gate electrode made of a material capable of being anodized and source/drain regions made of a semiconductor. This method comprises the steps of: forming a multilayer insulating film comprises at least two layers which have a common constituent over said gate region and over said source/drain regions; and forming holes in said multilayer insulating film by dry etching techniques so as to form tapered sections having tilt angles which decrease successively from said top insulating layer toward said bottom insulating layer.

In one feature of the invention, the dry etch rates of the interlayer insulating films are controlled so as to form tapered sections. As a result, the tilt angles of the cross-sectional shape of the contact holes decrease successively from the top layer toward the bottom layer. The tilt angles of the bottom layer and the top layer are indicated by α and βB, respectively, in FIG. 3.

It is only necessary that the insulating films act only as interlayer insulating films and so they can be made from various materials such as silicon oxide, silicon nitride, and organic resins.

Preferably, the used material permits easy control of the dry etch rates, because desired taper can be readily accomplished by making the etch rate of the upper layer higher than that of the lower layer.

Generally, where contact holes are formed by dry etching techniques, reactive ion etching (RIE) is used. However, RIE has the disadvantage that if the instant (known as endpoint) at which the etching process ends is not clear, then a conductive thin film to which contact should be made is also etched away.

In the case of RIE, it is conventional to detect light emission due to a plasma in order to detect the endpoint. Specifically, certain radicals or ions produced during etching are monitored.

In this case, an interlayer insulating film consisting of silicon oxide which is formed on a gate-insulating film made of silicon oxide, for example, is etched. Light-emitting species to be monitored are mixed. This makes it difficult to confirm the endpoint.

Where the foregoing is taken into consideration, it is necessary that a insulating film used as an interlayer insulating film be selected, taking full account of the structure of the fabricated TFTs.

Another aspect of the invention lies in a method of fabricating a thin-film transistor comprising a gate region having a gate electrode made of a material capable of being anodized and source/drain regions made of a semiconductor. This method comprises the steps of: forming a thin film; forming a insulating film having a bottom surface over said gate region and over said source/drain regions such that said thin film is in contact with the bottom surface of said insulating film; forming holes in said insulating film by dry etching techniques; etching said thin film in contact with the bottom surface of said insulating film; and subjecting said holes to a light etching process.

In another feature of the invention, the contact holes are widened by the light etching process. Tapered section are formed around the tops of the contact holes.

If the thin film in contact with the bottom surface of the insulating film is etched by dry etching techniques, the insulating film is undercut because of isotropic etching. Hence, holes are formed. The undercutting will give rise to overetch, which in turn permits the interconnect electrodes to break later.

In the present invention, the light etching process can widen the contact holes by removing the undercutting inside the contact holes.

The light etching process is carried out with a higher O2 content than during the step of forming the contact holes.

This eliminates overetch and, at the same time, causes resist mask for forming the contact holes to be recessed. The corners at the edges (the outer frames around the entrances to the contact holes) are rounded off.

That is, this light etching process results in contact holes having a cross-sectional shape which falls along a mild curve. Consequently, the coverage of the interconnect electrodes is quite good.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(A)-1(D) and 2(A)-2(D) are cross-sectional views of a semiconductor device, illustrating a process sequence for fabricating the device by a method according to the present invention;

FIG. 3 is a cross-sectional view of a contact hole formed by the process sequence shown in FIGS. 1(A)-1(D) and 2(A)-2(B);

FIG. 4 is a cross-sectional view of a contact hole as shown in FIG. 2 (C) in which corners have been rounded off by a method according to the present invention;

FIG. 5 is a graph illustrating the endpoint of a dry etching process;

FIGS. 6(A)-6(C), 7(A)-7(B), and 8(A)-8(B) are cross-sectional views illustrating IC fabrication processes according to the invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS Embodiment 1

A process sequence for fabricating TFTs in accordance with the present invention is illustrated in FIGS. 1(A)-1(D) and FIG. 2(A)-2(D).

First, a glass substrate 101 having an insulating film such as a silicon oxide film on its surface is prepared. An amorphous silicon film (not shown) having a thickness of 500 Å is formed on the substrate by plasma CVD or LP thermal chemical vapor deposition. The amorphous film is crystallized by an appropriate crystallization method, which may be either heating or laser illumination.

Then, the crystalline silicon film obtained by crystallizing the amorphous silicon film is patterned into islands of a semiconductor layer 102 forming an active layer.

A silicon oxide film 103 which will act as a gate-insulating film later is formed on the semiconductor layer to a thickness of 1200 Å by plasma CVD or LP thermal chemical vapor deposition.

Then, a film 104 consisting only or mainly of aluminum is formed to a thickness of 4000 Å. This film 104 will act as a gate electrode later. Of course, other materials capable of being anodized such as tantalum and niobium may also be used.

Thereafter, anodization is carried out within an electrolytic solution, using the aluminum film 104 as an anode. The electrolytic solution is neutralizing 3% ethylene glycol solution of tartaric acid with aqueous ammonia and adjusting it to a pH of 6.92. Using a platinum cathode, the liquid is processed with an electric current of 5 mA. The voltage is increased up to 10 V.

A dense anodic oxide film 105 formed in this way acts to improve the adhesion to photoresist later. The thickness of the anodic oxide film 105 can be controlled by controlling the voltage application time (FIG. 1(A)).

Then the aluminum film 104 is patterned to formed a gate electrode (not shown).

Then, a second anodic oxidation process is carried out to form a porous anodic oxide film 106. As an electrolytic solution, 3% aqueous solution of oxalic acid is used. A platinum cathode is employed. It is processed with an electric current of 2 to 3 mA. The voltage is increased up to 8 V.

At this time, the anodic oxidation progresses parallel to the substrate. The width of the porous anodic oxide film 106 can be controlled by the voltage application time.

After removing the photoresist with appropriate peeling liquid, a third anodic oxidation process is performed, thus obtaining a state shown in FIG. 1(B).

At this time, the electrolytic solution is neutralizing 3% ethylene glycol solution of tartaric acid with aqueous ammonia and adjusted to a pH of 6.92. Using a platinum cathode, the anodic oxidation is performed with an electric current of 5 to 6 mA. The voltage is increased up to 100 V.

The resulting anodic oxide film 107 is very dense and firm. Therefore, this protects the gate electrode 108 from damage in later steps such as implantation step.

The firm anodic oxide film 107 is not readily etched and so the etching time is prolonged when contact holes are formed. Therefore, it is desired to suppress the thickness of the film below 1000 Å.

Then, a dopant is implanted into the islands of semiconductor layer 102 by the ion implantation process. For example, when an N-channel TFT is manufactured, phosphorus (P) may be used as the dopant.

First, under the condition of FIG. 1(B), a first ion implantation process is carried out. Phosphorus (P) is implanted at an accelerating voltage of 60 to 90 kV at a dose of 0.2 to 51015 atoms/cm2. In the present example, the accelerating voltage is 80 kV, and the dose is 11015 atoms/cm2.

Using the gate electrode 108 and the porous anodic oxide film 106 as masks. Regions 109 and 110 which will become source/drain regions are formed by self-aligned technology.

Then, as shown in FIG. 1(C), the porous anodic oxide film 106 is removed, and a second implantation process is performed. The second incorporation of phosphorus (P) is carried out at an accelerating voltage of 60 to 90 kV at a dose of 0.1 to 51014 atoms/cm2. In the present example, the accelerating voltage is 80 kV, and the dose is 11014 atoms/cm2.

The gate electrode 108 serves as a mask. Regions 111 and 112 more lightly doped than the source drain 109 and drain region 110 are formed by self-aligned technology.

At the same time, a region 113 acting as a channel for the TFT is formed by self-aligned technology, because no dopant is implanted at all right under the gate electrode 108.

The lightly doped drain (LDD) regions 112 formed in this way suppress generation of a high electric field between the channel region 113 and the drain region 110.

Then, irradiating with KrF excimer laser light and thermally annealing are performed. In the present example, the energy density of the laser light is 250 to 300 mJ/cm2. The thermal annealing is carried out at 300 to 450 C. for 1 hour.

This step can heal the damage to the crystallinity of the islands of semiconductor layer 102 sustained by the ion implantation process.

Then, as shown in FIG. 1(D), two interlayer insulating films 114 and 115 are formed by plasma CVD. In the present example, the interlayer insulating films 114 and 115 are made of silicon nitride films of different composition ratio.

At this time, the composition ratio of the silicon nitride film forming the second interlayer insulating film 115 gives a higher dry etch rate than that of the first interlayer insulating film 114. For example, the film of higher etch rate can be formed by increasing the pressure of the film-forming gas or the growth temperature or by lowering the RF power.

More specifically, where the first and second films are grown at 250 C. and 350 C., respectively, the dry etch rate of the second layer is approximately twice as high as the rate of the first layer.

The pressures of the gases for forming the first and second layers, respectively, are set to 0.3 and 0.7 torr, respectively. In this case, the dry etch rate of the second layer is about 1.5 times as high as the rate of the first layer.

This is a requirement which must be satisfied in order that the tilt angle β of the second interlayer insulating film 115 be smaller than the tilt angle α of the first interlayer insulating film 114 in the shape of the contact hole shown in FIG. 3.

The total thickness of the first and second interlayer insulating films is 1 to 3 times as large as the thickness of the gate electrode 108 to improve the coverage of the interlayer insulating films. Thus, current leaking via the interlayer insulating films is prevented.

Preferably, the thickness of the first interlayer insulating film 114 is less than one third of the total thickness. If the thickness of the first interlayer insulating film is greater than this, the tilt angle α increases, thus resulting in difficulties in a light etching step carried out later.

A resist mask indicated by 201 in FIG. 2(A) is formed, and a contact hole is formed by dry etching techniques. The composition of the etchant gas is so set that CF4:O2=40:60.

The etching ends when a period of 150 seconds passes since the endpoint has been confirmed. The endpoint is detected as shown in FIG. 5. The signal intensity of nitrogen ions from the first layer is greater, because the first layer is denser than the second layer.

At this time, in the source/drain contact regions 202 and 203, the gate-insulating film 103 acts as a film that stops the dry etching process.

In the gate electrode region 204, the anodic oxide film 107 acts as a film that stops the dry etching process.

Since the second interlayer insulating film 115 is higher in etch rate than the first interlayer insulating film 114, tapered sections are formed as shown in FIG. 2(A).

Then, the gate-insulating film 103 at the bottom surface of the contact hole is etched with buffeted hydrofluoric acid, thus completing the contact holes in the source/drain regions.

Thereafter, chromium mixed acid solution consisting of mixture of chromic acid, acetic acid, phosphoric acid, and nitric acid is used to etch the anodic oxide film 107, thus completing the contact hole in the gate electrode region.

Where the gate-insulating film 103 is etched first in this way, the gate electrode 108 can be protected, since the anodic oxide film 107 has excellent resistance to buffered hydrofluoric acid. The chromium mixed acid solution hardly attacks the source region 109 or drain region 110.

In this way, the state shown in FIG. 2(B) is obtained. Wet etching using buffered hydrofluoric acid or chromium mixed acid progresses isotropically and so overetched portions as shown in the circles of FIG. 2(B) are formed.

The interlayer insulating films are recessed by light etching, thus eliminating overetched portions, as shown in FIG. 2(C). At this time, as the tilt angle α of the first interlayer insulating film 114 decreases, the film can be more easily recessed.

This light etching process is carried out by dry etching techniques. The composition of the etchant gas is so set that CF4:O2=25:75. With this composition, the selectivity of silicon nitride with respect to silicon is more than 10. Hence, the surfaces of the source region 109 and drain region 110 are hardly etched.

This light etching is carried out by the gas with a high O2 content. Therefore, the resist mask 201 is recessed simultaneously. Consequently, the corners of the cross-sectional shape at the edges of the contact hole are etched away and rounded off, as shown in the circle of FIG. 4.

After the completion of the contact hole, interconnect electrodes 205, 206, and 207 are formed. Then annealing is performed in hydrogen ambient at 350 C. for 2 hours.

A thin-film transistor as shown in FIG. 2(D) is fabricated by performing the steps described above.

Embodiment 2

The present example is an example of application of the present invention to an IC fabrication process using single-crystal silicon wafer. More specifically, this is an example of fabrication of a MOS transistor, using the silicon wafer.

The process sequence of the present invention is shown in FIGS. 6(A)-6(C), 7(A)-7(B), and 8(A)-8(B). First, as shown in FIG. 6(A), a thermal oxide film and a silicon nitride film are laminated over an N-type single-crystal silicon wafer 601 and patterned to create a patterned lamination of the thermal oxide film 602 and silicon nitride film 603.

Then, field oxide films 604 and 605 are formed by a selective thermal oxidization method. Thus, a state shown in FIG. 6(A) is obtained.

Then, the thermal oxide film 602 and the silicon nitride film 603 are removed. A thermal oxide film 606 is formed again by thermal oxidation. This thermal oxide film 606 forms a gate-insulating film.

Thereafter, a gate electrode 607 is fabricated from an appropriate metal material, silicide material, or semiconductor material.

Subsequently, dopants are implanted to form source/drain regions.

In this example, boron (B) ions are introduced through ion implantation to fabricate a P-channel MOS transistor. If an N-channel MOS transistor is fabricated, phosphorus (P) ions may be introduced.

After the ion implantation described above, a heat-treatment is made to activate the introduced dopants and to anneal out damage to the semiconductor layer caused by the ion implantation.

In this way, a P-type source region 608 and a drain region 609 are formed by self-aligned technology, as shown in FIG. 6(B).

Then, silicon nitride films 610 and 611 are formed as interlayer insulating films. In the same way as in Example 1, the silicon nitride films 610 and 611 have such film properties that the film 611 has a higher etch rate than the below film 610.

A state shown in FIG. 6(C) is obtained in this manner. Then, as shown in FIG. 7(A), a resist mask 612 is placed. Contact holes 613 and 614 are formed by dry etching techniques.

A state shown in FIG. 7(A) is obtained in this way. At this time, the gate-insulating film 606 consisting of a thermal oxide film acts as an etch stopper.

Contact holes 615 and 616 are then formed by wet etching techniques.

In this manner, a state shown in FIG. 7(B) is obtained. At this time, wet etching proceeds isotropically and so the contact holes 615 and 616 widen the bottoms of the contact holes 613 and 614, respectively.

Then, the interlayer insulating films and resist mask are recessed by light dry etching, using mixture of CF4 and O2. The oxygen is added, because the resist mask should be recessed.

In this way, contacts having a mild cross-sectional shape as shown in FIG. 8(A) can be obtained. After obtaining the state shown in FIG. 8(A), a source electrode 619 and a drain electrode 620 are formed as shown in FIG. 8(B), thus completing a MOS transistor.

In the present invention, the interlayer insulating film is made of a multilayer structure consisting of two or more layers. The etch rate of an upper layer is made higher than that of a lower layer. Therefore, tapered section can be formed in such a way that the tilt angle decreases successively from the top layer of the interlayer insulating film toward the bottom layer.

Furthermore, undercutting of the gate-insulating film 103 and of the anodic oxide film 107 as shown in the circles of FIG. 2(B) can be prevented. In addition, the cross-sectional shape around the top of each contact hole can be improved as shown in FIGS. 2(C) and 3.

The cross-sectional shape of the contact hole can be improved greatly by the effects described above. The yield at which TFTs are fabricated and the reliability of interconnect contacts are enhanced. Concomitantly, the long-term reliability of the devices and display system can be enhanced.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4040083Nov 22, 1974Aug 2, 1977Hitachi, Ltd.Aluminum oxide layer bonding polymer resin layer to semiconductor device
US4103297Dec 20, 1976Jul 25, 1978Hughes Aircraft CompanyLight-insensitive matrix addressed liquid crystal display system
US4334349Jun 3, 1980Jun 15, 1982Tokyo Shibaura Denki Kabushiki KaishaMethod of producing semiconductor device
US4342617Feb 23, 1981Aug 3, 1982Intel CorporationProcess for forming opening having tapered sides in a plasma nitride layer
US4365264May 19, 1981Dec 21, 1982Hitachi, Ltd.Semiconductor device with high density low temperature deposited Siw Nx Hy Oz passivating layer
US4371423Sep 3, 1980Feb 1, 1983Vlsi Technology Research AssociationMethod of manufacturing semiconductor device utilizing a lift-off technique
US4404733 *Jan 27, 1982Sep 20, 1983Fujitsu LimitedMethod of producing semiconductor devices
US4495220Oct 7, 1983Jan 22, 1985Trw Inc.Polyimide inter-metal dielectric process
US4814041Sep 22, 1987Mar 21, 1989International Business Machines CorporationMethod of forming a via-hole having a desired slope in a photoresist masked composite insulating layer
US5003356Apr 2, 1990Mar 26, 1991Casio Computer Co., Ltd.Thin film transistor array
US5032883Sep 7, 1988Jul 16, 1991Casio Computer Co., Ltd.Thin film transistor and method of manufacturing the same
US5055906Feb 12, 1991Oct 8, 1991Kabushiki Kaisha ToshibaSemiconductor device having a composite insulating interlayer
US5056895May 21, 1990Oct 15, 1991Greyhawk Systems, Inc.Active matrix liquid crystal liquid crystal light valve including a dielectric mirror upon a leveling layer and having fringing fields
US5084905Oct 2, 1989Jan 28, 1992Casio Computer Co., Ltd.Thin film transistor panel and manufacturing method thereof
US5117278Jun 6, 1991May 26, 1992U.S. Philips CorporationSemiconductor device having a semiconductor body embedded in an envelope made of synthetic material
US5132386May 2, 1989Jul 21, 1992Hitachi Chemical Co., Ltd.Insulating resin composition and semiconductor device using the same
US5155053May 28, 1991Oct 13, 1992Hughes Aircraft CompanyMethod of forming t-gate structure on microelectronic device substrate
US5200846Feb 18, 1992Apr 6, 1993Semiconductor Energy Laboratory Co., Ltd.Electro-optical device having a ratio controlling means for providing gradated display levels
US5231054Dec 3, 1990Jul 27, 1993Fujitsu LimitedMethod of forming conductive material selectively
US5235195Oct 19, 1992Aug 10, 1993Minnesota Mining And Manufacturing CompanySolid state electromagnetic radiation detector with planarization layer
US5264077Nov 2, 1992Nov 23, 1993Semiconductor Energy Laboratory Co., Ltd.Method for producing a conductive oxide pattern
US5264731Aug 5, 1992Nov 23, 1993Matsushita Electric Industrial Co., Ltd.Method for fabricating semiconductor device
US5287205Mar 25, 1992Feb 15, 1994Semiconductor Energy Laboratory Co., Ltd.Gradation method for driving liquid crystal device with ramp and select signal
US5308998Aug 24, 1992May 3, 1994Semiconductor Energy Laboratory Co., Ltd.Insulated gate field effect semiconductor devices having a LDD region and an anodic oxide film of a gate electrode
US5320981Aug 10, 1993Jun 14, 1994Micron Semiconductor, Inc.High accuracy via formation for semiconductor devices
US5327001Apr 1, 1993Jul 5, 1994Casio Computer Co., Ltd.Thin film transistor array having single light shield layer over transistors and gate and drain lines
US5414442Jun 12, 1992May 9, 1995Semiconductor Energy Laboratory Co., Ltd.Electro-optical device and method of driving the same
US5453403Oct 24, 1994Sep 26, 1995Chartered Semiconductor Manufacturing Pte, Ltd.Method of beveled contact opening formation
US5453858Feb 3, 1995Sep 26, 1995Semiconductor Energy Laboratory Co., Ltd.Electro-optical device constructed with thin film transistors
US5492843Jul 29, 1994Feb 20, 1996Semiconductor Energy Laboratory Co., Ltd.Method of fabricating semiconductor device and method of processing substrate
US5495353Apr 8, 1994Feb 27, 1996Semiconductor Energy Laboratory Co., Ltd.Electro-optical device and driving having an improved electrode and driving arrangement
US5529937Jul 20, 1994Jun 25, 1996Semiconductor Energy Laboratory Co., Ltd.Process for fabricating thin film transistor
US5550405Dec 21, 1994Aug 27, 1996Advanced Micro Devices, IncorporatedProcessing techniques for achieving production-worthy, low dielectric, low interconnect resistance and high performance ICS
US5552343Oct 19, 1995Sep 3, 1996Taiwan Semiconductor Manufacturing CompanyMethod for tapered contact formation
US5568288Nov 16, 1993Oct 22, 1996Semiconductor Energy Laboratory Co., Ltd.Method for forming thin film transistors with anodic oxide on sides of gate line
US5585951Dec 23, 1993Dec 17, 1996Sony CorporationActive-matrix substrate
US5604380Mar 10, 1995Feb 18, 1997Mitsubishi Denki Kabushiki KaishaSemiconductor device having a multilayer interconnection structure
US5612799Oct 13, 1995Mar 18, 1997Semiconductor Energy Laboratory Co., Inc.Active matrix type electro-optical device
US5614732Aug 19, 1994Mar 25, 1997Semiconductor Energy Laboratory Co., Ltd.Gate insulated field effect transistors and method of manufacturing the same
US5620905Mar 29, 1995Apr 15, 1997Semiconductor Energy Laboratory Co., Ltd.Method of fabricating thin film semiconductor integrated circuit
US5620910Jun 22, 1995Apr 15, 1997Semiconductor Energy Laboratory Co., Ltd.Method for producing semiconductor device with a gate insulating film consisting of silicon oxynitride
US5683938Oct 24, 1994Nov 4, 1997Hyundai Electronics Industries Co., Ltd.Method for filling contact holes with metal by two-step deposition
US5717224Sep 6, 1996Feb 10, 1998Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having an insulated gate field effect thin film transistor
US5719065Sep 28, 1994Feb 17, 1998Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device with removable spacers
US5721601Sep 22, 1995Feb 24, 1998Sanyo Electric Co., Ltd.Display units having two insolating films and a planarizing film and process for producing the same
US5753952Sep 22, 1995May 19, 1998Texas Instruments IncorporatedNonvolatile memory cell with P-N junction formed in polysilicon floating gate
US5784073Feb 13, 1995Jul 21, 1998Semiconductor Energy Laboratory Co., Ltd.Electro-optical device and method of driving the same
US5837619Nov 3, 1995Nov 17, 1998Semiconductor Energy Laboratory Co., Ltd.Method of fabricating semiconductor device and method of processing substrate
US5841195 *May 24, 1995Nov 24, 1998Stmicroelectronics, Inc.Semiconductor contact via structure
US5847410Nov 25, 1996Dec 8, 1998Semiconductor Energy Laboratory Co.Semiconductor electro-optical device
US5849611May 31, 1995Dec 15, 1998Semiconductor Energy Laboratory Co., Ltd.Method for forming a taper shaped contact hole by oxidizing a wiring
US5859683Sep 27, 1996Jan 12, 1999Sharp Kabushiki KaishaTransmissive liquid crystal display apparatus and method for producing the same
US5879974Aug 1, 1996Mar 9, 1999Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing a semiconductor device
US5880038Mar 7, 1996Mar 9, 1999Semiconductor Energy Laboratory Co., Ltd.Method for producing semiconductor device
US5905555Dec 13, 1996May 18, 1999Semiconductor Energy Laboratory Co., Ltd.Active matrix type electro-optical device having leveling film
US5925421Oct 9, 1996Jul 20, 1999Semiconductor Energy Laboratory Co., Ltd.Laser irradiation method
US5933205Jun 26, 1998Aug 3, 1999Semiconductor Energy Laboratory Co., Ltd.Electro-optical device and method for driving the same
US5940732Nov 25, 1996Aug 17, 1999Semiconductor Energy Laboratory Co.,Method of fabricating semiconductor device
US5946059Nov 4, 1997Aug 31, 1999Semiconductor Energy Laboratory Co., Ltd.Electro-optical device and driving method for the same
US5946065Oct 31, 1996Aug 31, 1999Sharp Kabushiki KaishaTransmission type LCD with an organic interlayer insulating film having a plurality of microscopic hollows
US5952708Nov 18, 1996Sep 14, 1999Semiconductor Energy Laboratory Co., Ltd.Display device
US5953084Jul 6, 1998Sep 14, 1999Sharp Kabushiki KaishaTransmission type liquid crystal display device having capacitance ratio of 10% or less and charging rate difference of 0.6% or less
US5956105Dec 4, 1995Sep 21, 1999Semiconductor Energy Laboratory Co., Ltd.Electro-optical device and method of driving the same
US5963278Jul 31, 1997Oct 5, 1999Semiconductor Energy Laboratory Co., Ltd.Electro-optical device and method for driving the same
US5977562Nov 14, 1996Nov 2, 1999Semiconductor Energy Laboratory Co., Ltd.Electro-optical device
US5986738May 14, 1999Nov 16, 1999Sharp Kabushiki KaishaTransmission type liquid crystal display device and the method for fabricating the same
US5990491Dec 10, 1997Nov 23, 1999Semiconductor Energy Laboratory Co., Ltd.Active matrix device utilizing light shielding means for thin film transistors
US6015724Nov 4, 1996Jan 18, 2000Semiconductor Energy Laboratory Co.Manufacturing method of a semiconductor device
US6027960Oct 23, 1996Feb 22, 2000Semiconductor Energy Laboratory Co., Ltd.Laser annealing method and laser annealing device
US6051453Sep 5, 1996Apr 18, 2000Semiconductor Energy Laboratory Co., Ltd.Process for fabricating semiconductor device
US6052162Aug 12, 1996Apr 18, 2000Sharp Kabushiki KaishaTransmission type liquid crystal display device with connecting electrode and pixel electrode connected via contact hole through interlayer insulating film and method for fabricating
US6071764Jun 28, 1995Jun 6, 2000Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and process for fabricating the same
US6077758Dec 18, 1996Jun 20, 2000Semiconductor Energy Laboratory Co., Ltd.Method of crystallizing thin films when manufacturing semiconductor devices
US6096581 *May 2, 1996Aug 1, 2000Semiconductor Energy Laboratory Co., Ltd.Method for operating an active matrix display device with limited variation in threshold voltages
US6097452Jul 6, 1998Aug 1, 2000Sharp Kabushiki KaishiTransmission type liquid crystal display having an organic interlayer elements film between pixel electrodes and switching
US6147375Sep 11, 1998Nov 14, 2000Semiconductor Energy Laboratory Co., Ltd.Active matrix display device
US6195138Jun 12, 2000Feb 27, 2001Sharp Kabushiki KaishaTransmission type liquid crystal display having an organic interlayer elements film between pixel electrodes and switching
US6204907Aug 27, 1996Mar 20, 2001Sharp Kabushiki KaishaLiquid crystal display device and manufacturing method thereof
US6310362Oct 26, 1999Oct 30, 2001Semiconductor Energy LabElectro-optical device
US6433851Jan 11, 2001Aug 13, 2002Sharp Kabushiki KaishaTransmission type liquid crystal display having a transparent colorless organic interlayer insulating film between pixel electrodes and switching
US6455401May 23, 2000Sep 24, 2002Semiconductor Energy Laboratory Co., Ltd.Methodology for producing thin film semiconductor devices by crystallizing an amorphous film with crystallization promoting material, patterning the crystallized film, and then increasing the crystallinity with an irradiation
US6475903Dec 28, 1993Nov 5, 2002Intel CorporationCopper reflow process
US6534832Oct 26, 2001Mar 18, 2003Semiconductor Energy Laboratory Co., Ltd.Display device and glass member and substrate member having film comprising aluminum, nitrogen and oxygen
US6900462Oct 10, 2003May 31, 2005Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US6924213Sep 24, 2002Aug 2, 2005Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and process for fabricating the same
US6936847Apr 8, 2003Aug 30, 2005Hitachi, Ltd.Display device with an improved contact hole arrangement for contacting a semiconductor layer through an insulation film
US7056775Jul 5, 2005Jun 6, 2006Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and process for fabricating the same
US7190428Jul 25, 2005Mar 13, 2007Semiconductor Energy Laboratory Co., Ltd.Display device
US20030218215Feb 27, 2003Nov 27, 2003Semiconductor Energy Laboratory Co., Ltd.Process for fabricating semiconductor device
US20050287722Aug 26, 2005Dec 29, 2005Semiconductor Energy Laboratory Co., Ltd., A Japan CorporationMethod of fabricating semiconductor device
US20060060861Dec 2, 2005Mar 23, 2006Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of fabricating same
US20060113541Dec 21, 2005Jun 1, 2006Semiconductor Energy Laboratory Co., Ltd.Process for fabricating semiconductor device
EP0263220A1Oct 8, 1986Apr 13, 1988International Business Machines CorporationMethod of forming a via-having a desired slope in a photoresist masked composite insulating layer
EP0603866A1Dec 22, 1993Jun 29, 1994Sony CorporationActive matrix substrate
JPH0225024A Title not available
JPH0244769A Title not available
JPH01286443A Title not available
JPH02278749A Title not available
JPS6334928A Title not available
JPS6433971U Title not available
JPS63104338A Title not available
JPS63296353A Title not available
Non-Patent Citations
Reference
1"An Organic low dielectric constant film is going to be developed for 0.18-0.13 mum", Nikkei Microdevices, Nov. 1, 1995, pp. 140-141.
2"An Organic low dielectric constant film is going to be developed for 0.18-0.13 μm", Nikkei Microdevices, Nov. 1, 1995, pp. 140-141.
3Trial Decision (Japanese Application No. 2003-70819 ~ Laid Open on Oct. 10, 2003 as Patent Publication No. 2003-289081) dated Jan. 19, 2010 with English translation.
4Trial Decision (Japanese Application No. 2003-70819 Laid Open on Oct. 10, 2003 as Patent Publication No. 2003-289081) dated Jan. 19, 2010 with English translation.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7985992May 1, 2009Jul 26, 2011Samsung Mobile Display Co., Ltd.Semiconductor device and method of fabricating the same
US8168531 *May 1, 2009May 1, 2012Samsung Mobile Display Co., Ltd.Semiconductor device and method of fabricating the same
US8283788Sep 16, 2010Oct 9, 2012Semiconductor Energy Laboratory Co., Ltd.Method of fabricating semiconductor device
US8643021 *Feb 13, 2012Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including multiple insulating films
US20120205658 *Feb 13, 2012Aug 16, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor display device and method of manufacturing the same
Classifications
U.S. Classification257/640, 438/620, 438/368, 257/657, 257/658, 257/771, 438/618
International ClassificationH01L23/58, H01L21/311, H01L21/84, H01L21/336, H01L31/00, H01L21/33, H01L21/4763, H01L21/768
Cooperative ClassificationH01L21/76804, H01L21/31111, H01L29/66757
European ClassificationH01L29/66M6T6F15A2, H01L21/768B2B, H01L21/311B2
Legal Events
DateCodeEventDescription
Jan 29, 2014FPAYFee payment
Year of fee payment: 4
Apr 5, 2011CCCertificate of correction