Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7835152 B2
Publication typeGrant
Application numberUS 12/401,098
Publication dateNov 16, 2010
Filing dateMar 10, 2009
Priority dateNov 20, 2008
Fee statusPaid
Also published asCN101742875A, CN101742875B, US20100124026
Publication number12401098, 401098, US 7835152 B2, US 7835152B2, US-B2-7835152, US7835152 B2, US7835152B2
InventorsShaw-Fuu Wang, Ting-Chiang Huang, Sheng-Jie Syu, Chiun-Peng Chen, Chih-Kuang Chung, Li-Ting Wang
Original AssigneeInventec Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Heat dissipating module
US 7835152 B2
Abstract
A heat dissipating module includes a heat dissipating unit, a heat collecting plate with a position limiting hole, a heat conducting member connected between the heat dissipating element and the heat collecting plate, and a fixing structure. The fixing structure includes two end portions, an arcuate elastic portion, and a position limiting portion connected to the arcuate elastic portion and extending through the position limiting hole. Each end portion is slidably disposed on the heat collecting plate. The arcuate elastic portion is connected between the two end portions and adapted to be fastened to the heat collecting plate and a base, such that an electrical component is sandwiched in between the heat collecting plate and the base.
Images(5)
Previous page
Next page
Claims(9)
1. A heat dissipating module adapted to cooperate with a base, wherein, an electronic component is sandwiched in between the heat dissipating module and the base, the heat dissipating module comprising:
a heat dissipating unit;
a heat collecting plate, having a position limiting hole;
a heat conducting member, connected between the heat dissipating unit and the heat collecting plate;
a fixing structure, disposed with respect to the heat collecting plate such that the heat collecting plate is disposed between the fixing structure and the base, the fixing structure comprising:
two end portions, each end portion slidably disposed on the heat collecting plate;
an arcuate elastic portion, connected between the two end portions and spaced a distance from the heat collecting plate, wherein the arcuate elastic portion is adapted to be fastened to the heat collecting plate and the base, wherein the electronic component is sandwiched in between the heat collecting plate and the base; and
a position limiting portion, connected to the arcuate elastic portion and adapted to extend through the position limiting hole.
2. The heat dissipating module according to claim 1, wherein the heat collecting plate further includes two latches, and each of the end portions has a latch hole, wherein the latch holes are adapted to engagingly receive the corresponding latches respectively, and the width of each latch hole is larger than the width of a corresponding one of the latches.
3. The heat dissipating module according to claim 1, wherein each of the end portions further includes a protruding point adapted to contact with the heat collecting plate.
4. The heat dissipating module according to claim 3, wherein the heat collecting plate further has two first positioning holes, and the protruding points are adapted to engage into the corresponding first positioning holes respectively.
5. The heat dissipating module according to claim 1, wherein the arcuate elastic portion has a first fastening hole.
6. The heat dissipating module according to claim 5, wherein the heat collecting plate has a second fastening hole corresponding to the first fastening hole.
7. The heat dissipating module according to claim 6, further comprising a rigid structure mounted to the base such that the base is disposed between the rigid structure and the heat dissipating plate.
8. The heat dissipating module according to claim 7, wherein the base has a second positioning hole, and the rigid structure has an internally threaded post, wherein the internally threaded post is adapted to extend through the second positioning hole, and a screw extending through the first fastening hole and through the second fastening hole is adapted to thread into the internally threaded post to thereby fasten the fixing structure, the heat collecting plate, the base and the rigid structure together.
9. The heat dissipating module according to claim 8, wherein the diameter of the second positioning hole is larger than or substantially equal to the outer diameter of the internally threaded post.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the priority benefit of China application serial no. 200810176692.X, filed Nov. 20, 2008. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of specification.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a heat dissipating module, and more particularly, to a heat dissipating module that is adapted to cooperate with a base to sandwich an electronic component therebetween.

2. Description of Related Art

Following the rapid advancing of electronic technology, various electronic products have been widely utilized in our work and lives. Taking the notebook computer as an example, its interior electronic components, such as a central processing unit, generate a considerable amount of heat during operation. To ensure normal operation of the electronic components, a heat dissipating module is typically disposed in the notebook computer and used to enhance a heat dissipating efficiency of the computer system. The heat dissipating module includes a heat dissipating unit such as a heat dissipating fan. The heat dissipating unit may be connected to a heat dissipating plate which in turn is in contact with the electronic component. As such, the heat generated by the electronic component can be conducted to the heat dissipating unit.

In general, the heat collecting plate includes a spring plate disposed thereon. One end of the spring plate is fastened to the heat collecting plate, and the other end of the spring plate is fastened to the heat collecting plate and a base, such that the electronic component is sandwiched in between the heat collecting plate and the base. However, multidirectional and complicated forces are generated at each fastening area due to the structure being pulled, thus making the pressure applied to the electronic component non-uniform and difficult to calculate and hence affecting the process reliability and production yield.

SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to a heat dissipating module which can provide good process reliability and production yield.

The present invention provides a heat dissipating module adapted to cooperate with a base to sandwich an electronic component. The heat dissipating module includes a heat dissipating unit, a heat collecting plate, a heat conducting member, and a fixing structure. The heat collecting plate has a position limiting hole. The heat conducting member is connected between the heat dissipating unit and the heat collecting plate. The fixing structure is disposed with respect to the heat collecting plate such that the heat collecting plate is disposed between the fixing structure and the base. The fixing structure includes two end portions, an arcuate elastic portion, and a position limiting portion. Each end portion is slidably disposed on the heat collecting plate. The arcuate elastic portion is connected between the two end portions and spaced a distance from the heat collecting plate, wherein the arcuate elastic portion is adapted to be fastened to the heat collecting plate and the base, such that the electronic component is sandwiched in between the heat collecting plate and the base. The position limiting portion is connected to the arcuate elastic portion and adapted to extend through the position limiting hole.

According to one embodiment of the present invention, the heat collecting plate further has two latches, each of the end portions has a latch hole, the latch holes are adapted to engagingly receive the corresponding latches respectively, and the width of each latch hole is larger than the width of a corresponding one of the latches.

According to one embodiment of the present invention, each of the end portions further has a protruding point adapted to contact with the heat collecting plate.

According to one embodiment of the present invention, the heat collecting plate further has two first positioning holes, and the protruding points are adapted to engage into the corresponding first positioning holes respectively.

According to one embodiment of the present invention, the arcuate elastic portion has a first fastening hole.

According to one embodiment of the present invention, the heat collecting plate has a second fastening hole corresponding to the first fastening hole.

According to one embodiment of the present invention, the heat dissipating module further includes a rigid structure mounted to the base such that the base is disposed between the rigid structure and the heat dissipating plate.

According to one embodiment of the present invention, the base has a second positioning hole, the rigid structure has an internally threaded post adapted to extend through the second positioning hole, and a screw extending through the first fastening hole and through the second fastening hole is adapted to thread into the internally threaded post to thereby fasten the fixing structure, the heat collecting plate, the base and the rigid structure together.

According to one embodiment of the present invention, the diameter of the second positioning hole is larger than or substantially equal to the outer diameter of the internally threaded post.

In view of the foregoing, in the heat dissipating module of the present invention, the two end portions of the fixing structure are slidably disposed on the heat collecting plate. When the arcuate elastic portion connected between the two end portions is fastened to the heat collecting plate, the two end portions slide with respect to the heat collecting plate in response to the elastic deformation of the arcuate elastic portion. As such, only a normal force is generated between each end portion and the heat collecting plate, thus making the pressure applied on the electronic component relatively uniform and easy to calculate.

In order to make the aforementioned and other features and advantages of the present invention more comprehensible, embodiments accompanied with figures are described in detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a heat dissipating module according to one embodiment of the present invention.

FIG. 2 is a partial side view of the heat dissipating module of FIG. 1.

FIG. 3 is a partial perspective view of the heat dissipating module of FIG. 1.

FIG. 4 is a perspective view of the fixing structure of FIG. 1.

DESCRIPTION OF THE EMBODIMENTS

FIG. 1 is a perspective view of a heat dissipating module according to one embodiment of the present invention. FIG. 2 is a partial side view of the heat dissipating module of FIG. 1. Referring to FIGS. 1 and 2, the heat dissipating module of the present embodiment is adapted to cooperate with a base 70 to sandwich at least one electronic component 80 (two electronic components are illustrated) therebetween. The heat dissipating module 100 includes a heat dissipating unit 110, a heat collecting plate 120 for collecting heat from the electronic components 80, a heat conducting member 130, and a fixing structure 140. The heat conducting member 130 is connected between the heat dissipating unit 110 and the heat collecting plate 120 for conducting the heat of the heat collecting plate 120 to the heat dissipating unit 110. The fixing structure 140 is disposed with respect to the heat collecting plate 120 such that the heat collect plate 120 is located between the fixing structure 140 and the base 70.

As shown in FIGS. 1 and 2, the fixing structure 140 includes two end portions 142, an arcuate elastic portion 144, and a position limiting portion 146. Each end portion 142 is slidably disposed on the heat collecting plate 120. The arcuate elastic portion 144 is connected between the two end portions 142 and spaced from the heat collecting plate 120 by a distance D. The arcuate elastic portion 144 is adapted to be fastened to the heat collecting plate 120 and the base 70, such that the electronic components 80 is sandwiched in between the heat collecting plate 120 and the base 70.

It should be noted that when the arcuate elastic portion 144 is fastened to the heat collecting plate 120 and the base 70, the distance D provides a space for elastic deformation of the arcuate elastic portion 144. In addition, each end portion 142 slides with respect to the heat collecting plate 120 in response to the elastic deformation of the arcuate elastic portion 144. In other words, a z-direction force is generated between each end portion 142 and the heat collecting plate 120 but no force is generated in x and y directions.

FIG. 3 is a partial perspective view of the heat dissipating module of FIG. 1. Referring to FIG. 3, the heat collecting plate 120 has a position limiting hole 122. As shown in FIG. 1, the position limiting portion 146 is connected to the arcuate elastic portion 144 and is adapted to pass through the position limiting hole 122 (shown in FIG. 3) to thereby limit movement of the fixing structure 140 in x and y directions.

FIG. 4 is a perspective view of the fixing structure of FIG. 1. Referring to FIG. 4, in the present embodiment, the arcuate elastic portion 144 has a first fastening hole H1. Referring to FIG. 3, the heat collecting plate 120 has a second fastening hole H2 corresponding to the first fastening hole H1. Referring to FIGS. 2, 3 and 4, both the arcuate elastic portion 144 and the heat collecting plate 120 can be fastened to the base 70 by means of a screw 90, the first fastening hole H1 and the second fastening hole H2.

In addition, referring to FIG. 4, each end portion 142 further has a protruding point 142 a adapted to contact with the heat collecting plate 120 (shown in FIG. 1), for facilitating identifying a contact point between the end portion 142 and the heat collecting portion 120 and hence facilitating calculation of the force.

As shown in FIG. 3, in the present embodiment, the heat collecting plate 120 further has two first positioning holes 126. The two protruding points 142 a are adapted to engage into the first positioning holes 126, respectively. It should be noted that the location of the first positioning holes 126 aligns with the location of the protrusions 142 a after the end portions 142 slide with respect to the heat collecting plate 120 in response to the elastic deformation of the arcuate elastic portion 144 that is caused by fastening the arcuate elastic portion 144 to the heat collecting plate 120. By such positioning through the first positioning holes 126, the contact points between the protrusions 142 a and the heat collecting plate 120 are made more confirmative, thereby facilitating calculation of the force and torque of the structure.

In an unillustrated alternative embodiment, two position limiting blocks respectively connected to the two end portions 142 and two corresponding limiting blocks connected to the heat collecting plate 120 can be used in lieu of the protruding points 142 a and the first positioning holes 126 to achieve the same positioning result.

In addition, in another unillustrated alternative embodiment, the first positioning holes 126 may be slots and the protrusions 142 a are adapted to slide within the slots to increase the freedom of sliding of each end portion 142 after the arcuate elastic portion 144 is fastened. The first position hole 126 of the present invention is not intended to be limited to any particular form and therefore can be varied based on actual requirements.

Referring to FIG. 1, in the present embodiment, each end portion 142 can be connected to the heat collecting plate 120 in a latching manner to make the end portion 142 slidable. Specifically, as shown in FIGS. 3 and 4, the heat collecting plate 120 has two latches 124 and each end portion 142 of the fixing structure 140 has a latch hole 142 b. The two latch holes 142 b are adapted to engagingly receive the two latches 124 respectively, and the width d1 of each latch hole 142 b is larger than the width d2 of a corresponding latch 124 to thereby provide a space for each end portion 142 to slide with respect to the heat collecting plate 120.

Rather than coupling each end portion 142 to the heat collecting plate 120 in a latching manner as above, in another unillustrated embodiment, the end portion can be fastened with a screw with the screw being not fully tightened such that each end portion is slidable with respect to the heat collecting plate.

Referring to FIG. 2, in the present embodiment, the base 70 is, for example, a motherboard of a notebook computer and the heat dissipating module 100 may further include a rigid structure 150 with good rigidity. The rigid structure 150 is mounted to the base 70 such that the base 70 is positioned between the rigid structure 150 and the heat collecting plate 120 to increase a structural strength and avoid deformation of the base 70.

Specifically, the base 70 has a second positioning hole 72 and the rigid structure 150 has an internally threaded post 152. The internally threaded post 152 extends through the second positioning hole 72 to position the rigid structure 150 in a specific location relative to the base 70. A screw 90 extending through the first fastening hole H1 and through the second fastening hole H2 can be screwed into the internally threaded post 152 extending through the second positioning hole 72 to thereby fasten the fixing structure 140, the heat collecting plate 120, the base 70 and the rigid structure 150 together, with the electronic components 80 being sandwiched between the heat collecting plate 120 and the base 70. The diameter L1 of the second positioning hole 72 is larger than or substantially equal to the outer diameter L2 of the internally threaded post 152 such that the internally threaded post 152 can extend through the second positioning hole 72.

In addition, referring to FIGS. 1 and 2, in the present embodiment, the heat dissipating module 100 may further include a plurality of spring plates 160 disposed on the heat collecting plate 120. The spring plates 160 is adapted to be fastened to the heat collecting plate 120 and the base 70 such that the electronic components 80 can be more stably sandwiched. In the present embodiment, the electronic component 80 may be a central processing unit.

In view of the foregoing, in the heat dissipating module of the present invention, the two end portions of the fixing structure are slidably disposed on the heat collecting plate. When the arcuate elastic portion connected between the two end portions is fastened to the heat collecting plate, the two end portions slide with respect to the heat collecting plate in response to the elastic deformation of the arcuate elastic portion. Only a normal force is generated between each end portion and the heat collecting plate such that the pressure applied on the electronic component is relatively uniform and easy to calculate, thereby increasing the process reliability and production yield.

It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5339214 *Feb 12, 1993Aug 16, 1994Intel CorporationMultiple-fan microprocessor cooling through a finned heat pipe
US5398748 *Oct 26, 1993Mar 21, 1995Fujitsu LimitedHeat pipe connector and electronic apparatus and radiating fins having such connector
US5549155 *Apr 18, 1995Aug 27, 1996Thermacore, Inc.Integrated circuit cooling apparatus
US6140571 *Jul 24, 1996Oct 31, 2000Pfu LimitedHeat-generating element cooling device
US6226178 *Oct 12, 1999May 1, 2001Dell Usa, L.P.Apparatus for cooling a heat generating component in a computer
US6347036 *Mar 29, 2000Feb 12, 2002Dell Products L.P.Apparatus and method for mounting a heat generating component in a computer system
US6373700 *Jun 18, 2001Apr 16, 2002Inventec CorporationHeat sink modular structure inside an electronic product
US6469894 *Sep 19, 2001Oct 22, 2002Kabushiki Kaisha ToshibaApparatus for cooling an electronic component and electronic device comprising the apparatus
US6625021 *Jul 22, 2002Sep 23, 2003Intel CorporationHeat sink with heat pipes and fan
US6650540 *Sep 5, 2002Nov 18, 2003Kabushiki Kaisha ToshibaCooling unit having a heat-receiving section and a cooling fan, and electronic apparatus incorporating the cooling unit
US6781835 *Apr 25, 2003Aug 24, 2004Kabushiki Kaisha ToshibaAir-applying device having a case with an air inlet port, a cooling unit having the air-applying device, and an electronic apparatus having the air-applying device
US6883594 *Aug 26, 2003Apr 26, 2005Thermal Corp.Cooling system for electronics with improved thermal interface
US6900990 *Aug 15, 2003May 31, 2005Kabushiki Kaisha ToshibaElectronic apparatus provided with liquid cooling type cooling unit cooling heat generating component
US6966363 *Oct 10, 2002Nov 22, 2005Aavid Thermolloy, LlcHeat collector with mounting plate
US7215548 *Mar 20, 2006May 8, 2007Foxconn Technology Co., Ltd.Heat dissipating device having a fin also functioning as a fan duct
US7327574 *Feb 15, 2005Feb 5, 2008Inventec CorporationHeatsink module for electronic device
US7397667 *Mar 14, 2007Jul 8, 2008Compal Electronics, Inc.Cooler module and its fastening structure
US7400507 *Oct 19, 2005Jul 15, 2008Inventec CorporationFastening structure
US7405933 *Nov 4, 2005Jul 29, 2008Fujitsu LimitedCooling device, substrate, and electronic equipment
US7426112 *Feb 13, 2007Sep 16, 2008Compal Electronics, IncHeat dissipating module
US7477515 *Apr 20, 2006Jan 13, 2009Via Technologies, Inc.Electronic apparatus and thermal dissipating module thereof
US7489510 *Dec 27, 2007Feb 10, 2009Foxconn Technology Co., Ltd.Fastening device for mounting thermal module to electronic component
US7508669 *Jun 28, 2004Mar 24, 2009Liebert CorporationCooling device for an electronic component, especially for a microprocessor
US7515418 *Sep 26, 2006Apr 7, 2009Curtiss-Wright Controls, Inc.Adjustable height liquid cooler in liquid flow through plate
US7542293 *Apr 10, 2006Jun 2, 2009Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Thermal module
US7639503 *Mar 4, 2008Dec 29, 2009Kabushiki Kaisha ToshibaPrinted circuit board and electronic apparatus
US7701708 *Sep 26, 2007Apr 20, 2010Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd.Heat dissipation assembly
US20020126453 *Sep 19, 2001Sep 12, 2002Hiroshi UbukataApparatus for cooling an electronic component and electronic device comprising the apparatus
US20030024688 *Jul 31, 2001Feb 6, 2003Dowdy James GlennRemovable mounting clip attaches a motorized fan to an active heat sink and then the entire assembly to a part to be cooled
US20030183373 *Mar 28, 2002Oct 2, 2003David SarrafVideo game console cooler
US20040037045 *Jul 28, 2003Feb 26, 2004Phillips Alfred L.Thermal bus for electronics systems
US20040042184 *Aug 15, 2003Mar 4, 2004Kabushiki Kaisha ToshibaElectronic apparatus provided with liquid cooling type cooling unit cooling heat generating component
US20040109301 *Aug 7, 2003Jun 10, 2004Chen Shih-TsungCooling device for an integrated circuit
US20040123978 *Apr 25, 2003Jul 1, 2004Kabushiki Kaisha ToshibaAir-applying device having a case with an air inlet port, a cooling unit having the air-applying device, and an electronic apparatus having the air-applying device
US20040165350 *Jul 1, 2003Aug 26, 2004Datech Technology Co., Ltd.Heat sink assembly with heat pipe
US20040188080 *Oct 10, 2002Sep 30, 2004Gailus David WHeat collector with mounting plate
US20040201958 *Apr 14, 2003Oct 14, 2004Lev Jeffrey A.System and method for cooling an electronic device
US20040257770 *Jun 16, 2004Dec 23, 2004Jun-Liang HuClamping structure and heat dissipating module using same
US20050099776 *Nov 12, 2003May 12, 2005Xue Liang A.Passive thermal switch
US20050141202 *Nov 16, 2004Jun 30, 2005Hon Hai Precision Industry Co., Ltd.Heat sink retention device
US20050180110 *Feb 18, 2004Aug 18, 2005Lin I-YungHeat dissipation structure
US20050259405 *Sep 30, 2004Nov 24, 2005Hon Hai Precision Industry Co., Ltd.Heat dissipation device assembly
US20060181850 *Feb 15, 2005Aug 17, 2006Wang FrankHeatsink module for electronic device
US20060232934 *Mar 29, 2006Oct 19, 2006Kabushiki Kaisha ToshibaElectronic apparatus
GB2293446A * Title not available
JPH09191440A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8403279 *Apr 8, 2010Mar 26, 2013Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Fastening device and heat dissipation apparatus using the same
US8493737 *Jul 23, 2010Jul 23, 2013Kabushiki Kaisha ToshibaPressing member, pressing structure for heat receiving block of substrate, and electronic device
US20110075370 *Jul 23, 2010Mar 31, 2011Kabushiki Kaisha ToshibaPressing member, pressing structure for heat receiving block of substrate, and electronic device
US20110108234 *Apr 8, 2010May 12, 2011Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Fastening device and heat dissipation apparatus using the same
US20110232877 *Mar 23, 2010Sep 29, 2011Celsia Technologies Taiwan, Inc.Compact vapor chamber and heat-dissipating module having the same
US20140185240 *Dec 28, 2012Jul 3, 2014Mark MacDonaldHeat exchanger assembly for electronic device
Classifications
U.S. Classification361/710, 361/702, 361/679.54, 361/711, 361/709, 361/719, 165/80.3, 361/679.52, 361/700, 165/80.2
International ClassificationH05K7/20, F28D5/00
Cooperative ClassificationG06F1/203
European ClassificationG06F1/20P
Legal Events
DateCodeEventDescription
Apr 16, 2014FPAYFee payment
Year of fee payment: 4
Mar 10, 2009ASAssignment
Owner name: INVENTEC CORPORATION,TAIWAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, SHAW-FUU;HUANG, TING-CHIANG;SYU, SHENG-JIE AND OTHERS;US-ASSIGNMENT DATABASE UPDATED:20100520;REEL/FRAME:22376/941
Effective date: 20090309
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, SHAW-FUU;HUANG, TING-CHIANG;SYU, SHENG-JIE;AND OTHERS;REEL/FRAME:022376/0941
Owner name: INVENTEC CORPORATION, TAIWAN