US 7843382 B2 Abstract The present solution provides methods and systems for realizing hardware efficient mismatched filters for pulse compression codes. For pulse compression codes with sufficiently small sidelobe structures, such as in the cases of odd length Barker codes, the proposed filters require a small number of adders and multipliers per output. This translates to significantly reduced chip-area and lower power consumption when implemented on a chip. In one aspect, the present application features a method for suppressing an undesired part of a waveform. The method includes filtering a signal via a filter. In one embodiment, the signal includes an expected waveform that can be represented as a sum of the desired part and the undesired part. The impulse response of the filter can be represented a sum of the desired part and a negative of the undesired part.
Claims(19) 1. A method for filtering a first signal, the method comprising:
filtering the first signal, by a first discrete filter, to produce a second signal, wherein an impulse response of the first discrete filter is such that a convolution of the impulse response of the first discrete filter with a first discrete waveform produces an autocorrelation of the first discrete waveform, the autocorrelation comprising a first mainlobe and a first set of sidelobes at a first set of positions relative to the first mainlobe; and
filtering, via a second discrete filter, the second signal, wherein an impulse response of the second discrete filter comprises a first coefficient substantially equal in value to the first mainlobe amplitude of the autocorrelation and a second set of coefficients at the first set of positions relative to the first coefficient, each of the second set of coefficients substantially equal in value to a negative of a sidelobe at a corresponding position in the autocorrelation,
wherein a convolution of the impulse response of the second discrete filter with the autocorrelation produces a second discrete waveform with a second mainlobe and a second set of sidelobes at a second set of positions relative to the second mainlobe.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
filtering an output of the second discrete filter by a third discrete filter, the third discrete filter having an impulse response comprising a third coefficient substantially equal in value to the second mainlobe amplitude and a fourth set of coefficients at the second set of positions relative to the third coefficient, each of the fourth set of coefficients substantially equal in value to a negative of a sidelobe at the corresponding position in the second discrete waveform.
7. A system for filtering a signal, the system comprising:
a first discrete filter having an impulse response such that a convolution of the impulse response of the first discrete filter with a first discrete waveform produces an autocorrelation of the first discrete waveform, the autocorrelation comprising a first mainlobe and a first set of sidelobes at a first set of positions relative to the first mainlobe; and
a second discrete filter, coupled to the output of the first discrete filter, the second discrete filter having an impulse response comprising a first coefficient substantially equal in value to the first mainlobe amplitude and a second set of coefficients at the first set of positions relative to the first coefficient, each of the second set of coefficients substantially equal in value to a negative of a sidelobe at a corresponding position in the autocorrelation,
wherein a convolution of the impulse response of the second discrete filter with the autocorrelation produces a second discrete waveform with a second mainlobe and a second set of sidelobes at a second set of positions relative to the second mainlobe.
8. The system of
9. The system of
10. The system of
11. The system of
12. The system of
13. The system of
14. The system of
15. The system of
16. The system of
17. The system of
18. The system of
19. The system of
Description This application incorporates by reference in its entirety: “Multiplicative Mismatched Filters for Optimum Range Sidelobe Suppression in Barker Code Reception,” U.S. application Ser. No. 11/559,776, filed Nov. 14, 2006. The present application is generally directed to methods and systems for sidelobe suppression in pulse compression codes. Pulse compression codes are designed such that the transmitted energy is uniformly spread in time while the autocorrelation function (ACF) has most of its energy in the mainlobe. Upon matched filtering of such codes, the output is their ACF. The peak sidelobe level (PSL) in the ACF of any good code is required to be as low as possible. Barker codes have the least PSL (of unity magnitude) among all biphase codes. In most applications, it is desirable to reduce the sidelobes further. This is achieved via mismatched filters. Mismatched filters for sidelobe suppression can be based on both Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) filters. FIR mismatched filters can either be designed directly or as sidelobe suppression (SLS) filters in cascade with a matched filter. Length-optimal filters for sidelobe suppression produce the best possible sidelobe suppression for a given filter length. Since all their coefficients are optimized, length optimal filters are not hardware efficient. The present solution provides methods and systems for realizing hardware efficient mismatched filters for pulse compression codes. For pulse compression codes with sufficiently small sidelobe structures, such as in the cases of odd length Barker codes, the proposed filters require a small number of adders and multipliers per output. This translates to significantly reduced chip-area and lower power consumption when implemented on a chip. In one aspect, the present application features a method for suppressing an undesired part of a waveform. The method includes filtering a signal via a filter. In one embodiment, the signal includes an expected waveform that can be represented as a sum of the desired part and the undesired part. The impulse response of the filter can be represented a sum of the desired part and a negative of the undesired part. In one embodiment, the signal is an output of a matched filter. In another embodiment, a mainlobe and a plurality of sidelobes at the output of the matched filter forms the desired and the undesired part, respectively. In yet another embodiment, the expected waveform is an autocorrelation function of a pulse compression code. In one embodiment, the desired part of the autocorrelation function is a mainlobe and the undesired part is a plurality of sidelobes. In one embodiment, the pulse compression code is a biphase code. In another embodiment, the pulse compression code is a polyphase code. The pulse compression code may include a Barker code, a Huffman sequence or a compound Barker code. Huffman sequences may also be referred to as Huffman codes. Huffman sequences are examples of variable magnitude codes that are characterized by sidelobes of unity magnitude only at two extremes of its autocorrelation function. In one embodiment, the method further includes realizing a set of discrete coefficients of the filter from the impulse response. In another embodiment, the filter includes a finite impulse response (FIR) filter. In another embodiment, the filter includes an infinite impulse response (IIR) filter. In still another embodiment, the filter may be a combination of an FIR and an IIR filter. In another aspect, the present application features a system for suppressing an undesired part of an expected waveform. The system includes a filter whose impulse response can be represented as a sum of a desired part and a negative of an undesired part of an expected waveform. The expected waveform can be represented as a sum of the desired part and the undesired part. In one embodiment, the system further includes a second filter that processes the output of the filter. In one embodiment, the second filter has an impulse response that can be represented as a sum of a second desired part and a negative of a second undesired part of a second expected waveform. In another embodiment, the second expected waveform can be represented as a sum of the second desired part and the second undesired part. In still another embodiment, the second expected waveform is the expected waveform processed by the filter. In one embodiment, the filter is connected to an output of a matched filter. In another embodiment, the expected waveform is an autocorrelation function of a pulse compression code. In still another embodiment, the pulse compression code is a biphase code. In yet another embodiment, the pulse compression code is a polyphase code. In some embodiments, the pulse compression code is a Barker code, a Huffman sequence or a compound Barker code. In one embodiment, one or more external multipliers are connected across the filter. In some embodiments, the filter includes one or more of a multiplier, a delay unit and an adder. The multiplier, delay unit and adders are hardware units used for fabricating electronic circuits including integrated circuits as apparent to one skilled in the art. In still another aspect, the present application features a method of realizing a filter in a device. In one embodiment, the method includes representing a waveform expected at an input of a filter as a sum of a desired part and an undesired part. The method further includes defining an impulse response of the filter as a sum of the desired part and a negative of the undesired part and realizing a filter represented by the impulse response. In some embodiments, the method may include identifying a discrete set of filter coefficients from the impulse response. The foregoing and other objects, aspects, features, and advantages of the present application will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which: Referring to The system The device The device An incoming signal The incoming signal may include a waveform X(z) related to a pulse compression code. In The incoming signal The matched filter transfer function, matched to the pulse compressed waveform X(z), is X(z It should be appreciated that in the presence of noise or other spurious signals, R(z) will also include components attributable to the noise and other spurious signals. However, in this example, R(z) can be considered to be an expected waveform at the input of the filter. The waveform R(z) can be represented as a sum of a part representing the mainlobe and a part representing the plurality of sidelobes. In some embodiments, the part associated with the mainlobe is a desired part of the response while the part representing the plurality of sidelobes is the undesired part of the waveform. In such embodiments, it is of interest to suppress the undesired part associated with the sidelobes and enhance the desired part, i.e. the mainlobe. The system In some embodiments, the transfer function may also be referred to as an impulse response. In one embodiment, the first stage Although In the example where R(z) is the expected waveform at the input of the filter Referring now to If further sidelobe suppression is desired, output of the first stage Referring now to In one embodiment, the output of the second stage In some embodiments, the expected waveform needs to satisfy certain conditions in order for the filter Favorable Conditions Consider the output of the first stage In some embodiments, in order for the first stage For Barker codes, since the peak sidelobe magnitude is unity, the condition for the first stage becomes: Therefore, for Barker codes, the MSR is improved at the output of the first stage
Filters for Barker Codes An example implementation of the filter In one embodiment, the first stage In another embodiment, the first stage
In one embodiment, the first stage In some embodiments, a filter structure of the first stage Referring now to
It should be noted that the (−1) term associated with the series of sidelobes in equation (14) is adjusted as a part of the mainlobe in equation (15). In some embodiments, this is avoided second stage onwards, in order to preserve the computational advantage of the filter. In some embodiments, the second stage In some embodiments, the multipliers used in one or more of the stages
In one embodiment, the filter In some embodiments, performance of the filter Referring now to
Therefore the second stage Following a substantially similar method as described with respect to Performance of the filter In one embodiment, the filter In one embodiment, one adder in the first stage
The performance of the filter
The performance of the filter Comparison with Optimal Filters Optimal or length-optimal filters for sidelobe suppression are defined to be filters of a given length that achieve the best sidelobe suppression in either a peak sidelobe level (PSL) sense or an integrated sidelobe level (ISL) sense. Performance of the filter
From table 5, it can be seen that the length-optimal filters are superior to the filters Table 6 presents the savings in area achieved by the filters
Extension to Compound Codes If a code C where C The filter In some embodiments, one or more of the individual mismatched filters M Extension to Polyphase Codes In some embodiments, the methods and systems herein may be used for polyphase pulse compression codes. Examples of polyphase pulse compression codes include but are not limited to Generalized Barker codes, Frank codes, P1, P2, P3, P4 codes and Chu codes. As an example, filters Aperiodic Frank codes have good main to peak sidelobe ratio (MSR). They are generated by concatenating of the rows of the Discrete Fourier Transform (DFT) matrix of size N×N. In the following example w=exp(j2πp/N) and N and p are relatively prime. This aperiodic code, which is just one period of a periodic code, is of length N The matched filter for periodic and aperiodic Frank codes may be implemented using the following equation which is combined with appropriate delay elements to render it causal:
In one embodiment, N is the size of the DFT matrix. This efficient structure is in IIR form, and its marginally stable poles are canceled by some of its zeros. In some embodiments, due to finite word length effect the cancellation might be inexact. In such a case, two copies of each block should be used with a switching and resetting technique to in effect stabilize pole-zero cancellation. In one embodiment, if a Frank code is used to produce a pulse compressed waveform, the expected waveform at the input of the filter In some embodiments, M=N Referring now to
Referring now to
The optimal value of μ
In one embodiment, further sidelobe suppression can be achieved by using a second filter stages
The methods and systems described herein have been described for waveforms and filters related to signals in one dimension. It should be understood that the concepts presented herein may be extended to two or more dimensions without deviating from the scope of the current application. In view of the structure and functions of the systems and methods described herein, the present solution provides a simple and computationally efficient mismatched filter for suppressing undesired parts in a waveform. Having described certain embodiments of methods and systems for such a filter, it will now become apparent to one of skill in the art that other embodiments incorporating the concepts of the invention may be used. Therefore, the invention should not be limited to certain embodiments, but rather should be limited only by the spirit and scope of the following claims: Patent Citations
Referenced by
Classifications
Rotate |