Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7867914 B2
Publication typeGrant
Application numberUS 11/770,735
Publication dateJan 11, 2011
Filing dateJun 29, 2007
Priority dateApr 16, 2002
Also published asUS7279432, US20030232497, US20080014352, US20110100295
Publication number11770735, 770735, US 7867914 B2, US 7867914B2, US-B2-7867914, US7867914 B2, US7867914B2
InventorsMing Xi, Michael Yang, Hui Zhang
Original AssigneeApplied Materials, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
System and method for forming an integrated barrier layer
US 7867914 B2
Abstract
An apparatus and method for forming an integrated barrier layer on a substrate is described. The integrated barrier layer comprises at least a first refractory metal layer and a second refractory metal layer. The integrated barrier layer is formed using a dual-mode deposition process comprising a chemical vapor deposition (CVD) step and a cyclical deposition step. The dual-mode deposition process may be performed in a single process chamber.
Images(13)
Previous page
Next page
Claims(3)
1. A method for forming an integrated barrier material on a substrate, comprising:
positioning a substrate within a process chamber;
forming an integrated barrier layer on the substrate by a cyclical deposition process and a chemical vapor deposition process, wherein the integrated barrier layer comprises tungsten nitride deposited by the cyclical deposition process; and
depositing a tungsten metallization layer over the integrated barrier layer during a thermal chemical vapor deposition process, wherein the substrate is sequentially exposed to tungsten hexafluoride and ammonia during the cyclical deposition process.
2. A method for forming an integrated barrier material on a substrate, comprising:
positioning a substrate within a process chamber;
forming an integrated barrier layer on the substrate by a cyclical deposition process and a chemical vapor deposition process, wherein the integrated barrier layer comprises metallic tungsten deposited by the cyclical deposition process; and
depositing a tungsten metallization layer over the integrated barrier layer during a thermal chemical vapor deposition process, wherein the substrate is sequentially exposed to tungsten hexafluoride and a reducing gas during the cyclical deposition process.
3. The method of claim 2, wherein the reducing gas comprises a reducing agent selected from the group consisting of silane, disilane, and diborane.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 10/414,271, entitled “System and Method for Forming an Integrated Barrier Layer”, filed Apr. 15, 2003 now U.S. Pat. No. 7,279,432, which claims the benefit of U.S. Provisional Application No. 60/386,221 filed Apr. 16, 2002, which are herein incorporated by references.

BACKGROUND OF THE DISCLOSURE

1. Field of the Invention

Embodiments of the present invention generally relate to a method of barrier layer formation and, more particularly to a method of integrated barrier layer formation using both cyclical deposition techniques and chemical vapor deposition techniques.

2. Description of the Background Art

In the manufacture of integrated circuits, contact level metallization schemes are often used to provide low resistance contacts to an underlying semiconductor material. Typically, contact level metallization schemes combine an integrated barrier layer with a contact level metal layer.

For example, when a gate electrode of a transistor is fabricated, an integrated barrier layer (e.g., titanium nitride/tungsten (TiN/W)) is formed between the gate material (e.g., polysilicon) and the contact level metal layer (e.g., aluminum (Al) or copper (Cu)) of the gate electrode. The integrated barrier layer inhibits the diffusion of the aluminum (Al) or copper (Cu) into the polysilicon gate material. Such aluminum (Al) or copper (Cu) diffusion is undesirable because it potentially changes the characteristics of the transistor, rendering the transistor inoperable.

The integrated barrier layer typically comprises two different material layers. Each of the material layers is typically formed using a separate process chamber. For example, separate deposition chambers may be used for depositing the titanium nitride (TiN) layer and the tungsten (W) layer comprising a titanium nitride/tungsten (TiN/W) integrated barrier layer. The separate deposition chambers may include, for example, physical vapor deposition (PVD) chambers and/or chemical vapor deposition (CVD) chambers. However, the use of separate deposition chambers to form each material layer comprising the integrated barrier layer is costly.

Additionally, as circuit densities increase, the widths of integrated circuit features such as, for example, gate electrodes, may decrease to sub-micron dimensions (e. g., less than 0.25 micrometers), whereas the thickness of material layers between such features typically remains substantially constant, increasing the aspect ratios therefor. The term aspect ratio as used herein refers to the ratio of the feature height divided by the feature width. Many traditional deposition processes have difficulty filling sub-micron features where the aspect ratio exceeds 8:1, and especially where the aspect ratio exceeds 10:1.

FIG. 1 illustrates the possible consequences of material layer deposition in a high aspect ratio feature 6 formed on a substrate 1. The high aspect ratio feature 6 may be any opening such as a space formed between adjacent features 2, a contact, a via, or a trench defined in a material layer. As shown in FIG. 1, a material layer 11 that is formed using conventional deposition techniques (e.g., chemical vapor deposition (CVD) and/or physical vapor deposition (PVD)) tends to be deposited on the top edges 6T of the feature 6 at a higher rate than at the bottom 6B or sides 6S thereof creating an overhang. This overhang or excess deposition of material is sometimes referred to as crowning. Such excess material continues to build up on the top edges 6T of the feature 6, until the opening is closed off by the deposited material 11, forming a void 4 therein. The presence of voids may result in unreliable integrated circuit performance.

Therefore, a need exists for a system and method for forming integrated barrier layer structures.

SUMMARY OF THE INVENTION

An apparatus and method for forming an integrated barrier layer on a substrate is described. The integrated barrier layer comprises at least a first refractory metal layer and a second refractory metal layer. The integrated barrier layer is formed using a dual-mode deposition process comprising a chemical vapor deposition (CVD) step and a cyclical deposition step. The dual-mode deposition process may be performed in a single process chamber.

In one embodiment, the apparatus includes a process chamber having a gas distribution plate therein. The gas distribution plate is configured to include two distribution zones for providing process gases to the chamber for both the chemical vapor deposition (CVD) process and the cyclical deposition process. A first distribution zone comprises a center opening through which process gases for the cyclical deposition process are provided to the process chamber. A second distribution zone comprises a plurality of openings radially dispersed around the center opening. The first distribution zone and the second distribution zone are isolated from one another to inhibit mixing of the process gases.

In operation, a substrate is provided to the process chamber. A first refractory metal layer may be formed on the substrate using a chemical vapor deposition (CVD) process. Thereafter, a second refractory metal layer may be formed on the first refractory metal layer using a cyclical deposition process. Each of the first and second refractory metal layers may comprise a different refractory metal. For example, the integrated barrier layer may comprise a titanium nitride (TiN) layer formed using a chemical vapor deposition (CVD) process and a tungsten (W) layer formed on the titanium nitride (TiN) layer using a cyclical deposition process.

The integrated barrier layer is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, the integrated barrier layer may be used in a copper (Cu) interconnect structure. For a copper (Cu) interconnect fabrication process, a preferred process sequence includes providing a substrate having an interconnect pattern defined in a dielectric material layer. An integrated barrier layer comprising a first refractory metal layer formed with a chemical vapor deposition (CVD) process and a second refractory metal layer formed with a cyclical deposition process is deposited on the interconnect pattern defined in the dielectric material using a single process chamber. Thereafter, the interconnect structure is completed by filling the interconnect pattern defined in the dielectric material with copper (Cu).

In another integrated circuit fabrication process, the integrated barrier layer may be used as a diffusion barrier for gate electrodes. For a gate electrode fabrication process, a preferred process sequence includes providing a substrate having gate regions formed on the surface thereof. The gate regions are surrounded by a dielectric material. An integrated barrier layer comprising a first refractory metal layer formed with a chemical vapor deposition (CVD) process and a second refractory metal layer formed with a cyclical deposition process is deposited on the gate regions using a single process chamber. Thereafter, the gate electrodes are completed by depositing a gate metal layer on the integrated barrier layer.

The integrated barrier layer may also be used as a diffusion barrier for one or more electrodes of three-dimensional capacitor structures such as for example, trench capacitors and crown capacitors. For a trench capacitor structure, a preferred process sequence includes providing a substrate having trenches defined therein. The trenches include a first electrode and a dielectric material conformably formed along the sidewalls of the trenches. An integrated barrier layer comprising a first refractory metal layer formed with a chemical vapor deposition (CVD) process and a second refractory metal layer formed with a cyclical deposition process is deposited on the dielectric material in the trenches using a single process chamber. Thereafter, the trench capacitor structure is completed by depositing a second electrode on the integrated barrier layer.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention are attained and can readily be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.

It is to be noted, however, that the appended drawings illustrate only typical embodiments of the invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.

FIG. 1 is a cross-sectional view of one possible deposition result for high aspect ratio features filled using conventional prior art deposition techniques;

FIGS. 2A-2B depicts a schematic cross-sectional view of a process chamber and a top view of a gas distribution plate that can be used for the practice of embodiments described herein;

FIG. 3 is a block diagram of a gas delivery system for the gas distribution plate shown in FIG. 2B;

FIG. 4 illustrates a process sequence for integrated barrier layer formation;

FIG. 5 illustrates a process sequence for material layer formation using cyclical deposition techniques according to one embodiment described herein;

FIG. 6 illustrates a process sequence for material layer formation using cyclical deposition techniques according to an alternate embodiment described herein;

FIGS. 7A-7C illustrate schematic cross-sectional views of a substrate at different stages of an interconnect fabrication sequence;

FIGS. 8A-8C illustrate schematic cross-sectional views of a substrate at different stages of a gate electrode fabrication sequence;

FIGS. 9A-9D illustrate schematic cross-sectional views of a substrate at different stages of a trench capacitor fabrication sequence; and

FIGS. 10A-10B depict cross-sectional views of a substrate at different stages of a crown capacitor fabrication sequence.

DETAILED DESCRIPTION

FIG. 2A depicts a schematic cross-sectional view of a process chamber 10 that can be used to perform deposition processes in accordance with embodiments described herein. The process chamber 10 generally houses a wafer support pedestal 48, which is used to support a substrate (not shown). The wafer support pedestal 48 is movable in a vertical direction inside the process chamber 10 using a displacement mechanism 48 a.

Depending on the specific deposition process, the substrate can be heated to some desired temperature prior to or during deposition. For example, the wafer support pedestal 48 may be heated using an embedded heater element 52 a. The wafer support pedestal 48 may be resistively heated by applying an electric current from an AC power supply 52 to the heater element 52 a. The substrate (not shown) is, in turn, heated by the pedestal 48. Alternatively, the wafer support pedestal 48 may be heated using radiant heaters such as, for example, lamps (not shown).

A temperature sensor 50 a, such as a thermocouple, is also embedded in the wafer support pedestal 48 to monitor the temperature of the pedestal 48 in a conventional manner. The measured temperature is used in a feedback loop to control the AC power supply 52 for the heating element 52 a, such that the substrate temperature can be maintained or controlled at a desired temperature which is suitable for the particular process application.

A vacuum pump 18 is used to evacuate the process chamber 10 and to maintain the pressure inside the process chamber 10. A gas manifold 34, through which process gases are introduced into the process chamber 10, is located above the wafer support pedestal 48. The gas manifold 34 is coupled to a gas panel 51, which controls and supplies various process gases to the process chamber 10.

Proper control and regulation of the gas flows to the gas manifold 34 are performed by mass flow controllers (not shown) and a microprocessor controller 70. Additionally, the gas manifold 34 may optionally be heated to prevent condensation of the reactive gases within the manifold.

The gas manifold 34 includes a gas distribution plate 35. Referring to FIG. 2B, the gas distribution plate 35 is configured to include two gas distribution zones 42, 45 for providing process gases to the process chamber for either a chemical vapor deposition (CVD) process or a cyclical deposition process. A first gas distribution zone 45 comprises a center opening 36 through which process gases for the cyclical deposition process are provided to the process chamber. A second gas distribution zone 42 comprises a plurality of openings 37 radially dispersed around the center opening 36.

The first gas distribution zone 45 and the second gas distribution zone 42 are isolated from one another using one or more seals 38, 47 which inhibit mixing of the process gases provided thereto. The one or more seals 38, 47 may comprise any suitable material that is non-reactive with the process gases provided to the process chamber, such as, for example, an o-ring.

FIG. 3 depicts a gas distribution system 50 that may be used to provide process gases to the gas distribution plate 35 (FIG. 2A). The gas distribution system 50 includes process gas supplies 53, 55, 57, 59, purge gas supplies 85, 86, electronic control valves 60, 61, mass flow controllers (MFC) 64, 65, gas splitters 81, 82, a three-position valve 75 and a premix chamber 80.

For the cyclical deposition mode, a process gas from supplies 57, 59 is provided to electronic control valves 60, 61, respectively. A purge gas from the purge gas supply 85 may be mixed with the process gases through gas splitters 81, 82. The electronic control valves 60, 61 as used herein refer to any control valve capable of providing rapid and precise gas flow to the process chamber 10 with valve open and close cycles of less than about 1-2 seconds, and more preferably less than about 0.1 second. The electronic control valves 60, 61 are coupled to the center opening 36 in the first gas distribution zone 45, via three-position valve 75 and gas line 88.

For the chemical vapor deposition (CVD) mode, process gases from gas supplies 53, 55 are coupled through mass flow controllers (MFC) 64, 65, respectively, to premix chamber 80. A purge gas from purge gas supply 86 may also be provided to the premix chamber 80. In the premix chamber 80, the process gases are caused to mix. Generally, these gases are reactants that will react when they are exposed to a heated substrate. The mixed gases are provided from the premix chamber 80 to the plurality of openings 37 in the second gas distribution zone 42 via gas line 87.

The microprocessor controller 70 may be one of any form of general purpose computer processor (CPU) 71 that can be used in an industrial setting for controlling various chambers and sub-processors. The computer may use any suitable memory 72, such as random access memory, read only memory, floppy disk drive, hard disk, or any other form of digital storage, local or remote. Various support circuits 73 may be coupled to the CPU for supporting the processor in a conventional manner. Software routines as required may be stored in the memory or executed by a second CPU that is remotely located.

The software routines are executed to initiate process recipes or sequences. The software routines, when executed, transform the general purpose computer into a specific process computer that controls the chamber operation so that a chamber process is performed. For example, software routines may be used to precisely control the activation of the electronic control valves for the execution of process sequences according to embodiments described herein. Alternatively, the software routines may be performed in hardware, as an application specific integrated circuit or other type of hardware implementation, or a combination of software and hardware.

Integrated Barrier Layer Formation

A dual-mode deposition process for forming an integrated barrier layer structure on a substrate is described. The dual-mode deposition process is performed in a single deposition chamber and comprises a chemical vapor deposition (CVD) step as well as a cyclical deposition step.

FIG. 4 illustrates an embodiment of the dual-mode deposition process sequence 100 detailing the various steps used for the formation of the integrated barrier layer structure. The integrated barrier layer comprises at least a first refractory metal layer and a second refractory metal layer. The dual-mode deposition process may be performed in a process chamber similar to that described above with respect to FIGS. 2-3.

As indicated in step 102, a substrate is provided to the process chamber. The substrate may be for example, a silicon substrate having gate regions formed thereon. Referring to step 104, a first refractory metal layer is formed on the substrate using a first deposition mode. The first deposition mode may comprise, for example, a chemical vapor deposition process wherein a refractory metal-containing precursor is thermally decomposed.

The first refractory metal layer may comprise for example titanium (Ti), titanium nitride (TiN), tantalum (Ta), or tantalum nitride (TaN), among others. Suitable titanium-containing precursors for a CVD process may include, for example, titanium tetrachloride (TiCl4), tetrakis(dimethylamido)titanium (TDMAT) and tetrakis(diethylamido)titanium (TDEAT), among others. Suitable tantalum-containing precursors for a CVD process may include, for example, pentakis(dimethylamido)tantalum (PDMAT), pentakis(ethylmethylamido)tantalum (PEMAT), tertbutylimidotris(diethylamido)tantalum (TBTDET), and pentakis(diethylamido)tantalum (PDEAT), among others.

One exemplary process of depositing a titanium nitride (TiN) layer using a chemical vapor deposition (CVD) process comprises thermally decomposing a titanium-containing precursor such as, for example, tetrakis(dimethylamido)titanium (TDMAT). The tetrakis(dimethylamido)titanium (TDMAT) may be provided to radially dispersed openings 37 (FIG. 2B) of the distribution plate 35 (FIG. 2B) in the process chamber at a flow rate between about 20 sccm to about 200 sccm, preferably between about 50 sccm to about 100 sccm. A carrier gas comprising helium (He) may be provided along with the tetrakis(dimethylamido)titanium (TDMAT) at a flow rate between about 500 sccm to about 2000 sccm, preferably between about 1000 sccm to about 1500 sccm. The substrate may be maintained at a temperature between about 200° C. to about 400° C., preferably between about 300° C. to about 350° C., at a chamber pressure between about 5 torr to about 15 torr, preferably about 10 torr.

Referring to step 106, after the first refractory metal layer is formed on the substrate using a first deposition mode, the process chamber is purged to remove any process gases remaining therein. Suitable purge gases may include argon (Ar), helium (He) and nitrogen (N2). Thereafter, a second refractory metal layer is formed on the first refractory metal layer using a second deposition mode, as indicated in step 108. The second refractory metal layer may be formed using a cyclical deposition process by alternately adsorbing a refractory metal-containing precursor and a reducing gas on the substrate.

FIG. 5 illustrates an embodiment of a cyclical deposition process sequence 200 according to the present invention detailing the various steps used for the deposition of the second refractory metal layer. As shown in step 202, the process chamber conditions such as, for example, the temperature and pressure are adjusted to enhance the adsorption of the process gases on the substrate.

In one embodiment where a constant carrier gas flow is desired, a carrier gas stream is established within the process chamber through the center opening 36 (FIG. 2B) in the gas distribution plate 35 (FIG. 2B), as indicated in step 204. Carrier gases may be selected so as to also act as a purge gas for removal of volatile reactants and/or by-products from the process chamber. Carrier gases such as, for example, helium (He), argon (Ar), nitrogen (N2) and hydrogen (H2), and combinations thereof, among others may be used.

Referring to step 206, after the carrier gas stream is established within the process chamber, a pulse of a refractory metal-containing precursor is added to the carrier gas stream. The term pulse as used herein refers to a dose of material injected into the process chamber or into the carrier gas stream. The pulse of the refractory metal-containing precursor lasts for a predetermined time interval.

The second refractory metal layer may comprise for example, tungsten (W), tungsten nitride (WN), or tungsten boride (W2B), among others. Suitable tungsten-containing precursors may include, for example, tungsten hexafluoride (WF6) and tungsten carbonyl (W(CO)6), among others

The time interval for the pulse of the refractory metal-containing precursor is variable depending on a number of factors such as, for example, the volume capacity of the process chamber employed, the vacuum system coupled thereto and the volatility/reactivity of the reactants used. For example, (1) a large-volume process chamber may lead to a longer time to stabilize the process conditions such as, for example, carrier purge gas flow and temperature, requiring a longer pulse time; and (2) a lower flow rate for the process gas may also lead to a longer time to stabilize the process conditions requiring a longer pulse time. In general, the process conditions are advantageously selected so that a pulse of the refractory metal-containing precursor provides a sufficient amount of precursor, such that at least a monolayer of the refractory metal-containing precursor is adsorbed on the substrate. Thereafter, excess refractory metal-containing precursor remaining in the chamber may be removed from the process chamber by the carrier gas stream in combination with the vacuum system.

In step 208, after the excess refractory metal-containing precursor has been sufficiently removed from the process chamber by the carrier gas stream to prevent co-reaction or particle formation with a subsequently provided process gas, a pulse of a reducing gas is added to the carrier gas stream. Suitable reducing gases may include for example, silane (SiH4), disilane (Si2H6), dichlorosilane (SiCl2H2), ammonia (NH3), hydrazine (N2H4), monomethyl hydrazine (CH3N2H3), dimethyl hydrazine (C2H6N2H2), t-butyl hydrazine (C4H9N2H3), phenyl hydrazine (C6H5N2H3), 2,2′-azoisobutane ((CH3)6C2N2), ethylazide (C2H5N3), borane (BH3), diborane (B2H6), triborane (B3H9), tetraborane (B4H12), pentaborane (B5H15), hexaborane (B6H18), heptaborane (B7H21), octaborane (B8H24), nanoborane (B9H27) and decaborane (B10H30), among others.

The pulse of the reducing gas also lasts for a predetermined time interval. In general, the time interval for the pulse of the reducing gas should be long enough to provide a sufficient amount of the reducing gas for reaction with the refractory metal-containing precursor that is already adsorbed on the substrate. Thereafter, excess reducing gas is flushed from the process chamber by the carrier gas stream in combination with the vacuum system.

Steps 204 through 208 comprise one embodiment of a deposition cycle for the second refractory metal-containing layer. For such an embodiment, a constant flow of the carrier gas is provided to the process chamber modulated by alternating periods of pulsing and non-pulsing where the periods of pulsing alternate between the refractory metal-containing precursor and the reducing gas along with the carrier gas stream, while the periods of non-pulsing include only the carrier gas stream.

The time interval for each of the pulses of the refractory metal-containing precursor and the reducing gas may have the same duration. That is the duration of the pulse of the refractory metal-containing precursor may be identical to the duration of the pulse of the reducing gas. For such an embodiment, a time interval (T1) for the pulse of the refractory metal-containing precursor equals a time interval (T2) for the pulse of the reducing gas.

Alternatively, the time interval for each of the pulses of the refractory metal-containing precursor and the reducing gas may have different durations. That is the duration of the pulse of the refractory metal-containing precursor may be shorter or longer than the duration of the pulse of the reducing gas. For such an embodiment, a time interval (T1) for the pulse of the refractory metal-containing precursor is different than a time interval (T2) for the pulse of the reducing gas.

In addition, the periods of non-pulsing between each of the pulses of the refractory metal-containing precursor and the reducing gas may have the same duration. That is, the duration of the period of non-pulsing between each pulse of the refractory metal-containing precursor and each pulse of the reducing gas is identical. For such an embodiment, a time interval (T3) of non-pulsing between the pulse of the refractory metal-containing precursor and the pulse of the reducing gas equals a time interval (T4) of non-pulsing between the pulse of the reducing gas and the pulse of the refractory metal-containing precursor. During the time periods of non-pulsing only the constant carrier gas stream is provided to the process chamber.

Alternatively, the periods of non-pulsing between each of the pulses of the refractory metal-containing precursor and the reducing gas may have different durations. That is, the duration of the period of non-pulsing between each pulse of the refractory metal-containing precursor and each pulse of the reducing gas may be shorter or longer than the duration of the period of non-pulsing between each pulse of the reducing gas and the pulse of the refractory metal-containing precursor. For such an embodiment, a time interval (T3) of non-pulsing between the pulse of the refractory metal-containing precursor and the pulse of the reducing gas is different from a time interval (T4) of non-pulsing between the pulse of the reducing gas and the pulse of the refractory metal-containing precursor. During the time periods of non-pulsing only the constant carrier gas stream is provided to the process chamber.

Additionally, the time intervals for each pulse of the refractory metal-containing precursor, the reducing gas and the periods of non-pulsing therebetween for each deposition cycle may have the same duration. For such an embodiment, a time interval (T1) for the pulse of the refractory metal-containing precursor, a time interval (T2) for the pulse of the reducing gas, a time interval (T3) of non-pulsing between the pulse of the refractory metal-containing precursor and the pulse of the reducing gas and a time interval (T4) of non-pulsing between the pulse of the reducing gas and the pulse of the refractory metal-containing precursor, each have the same value for each subsequent deposition cycle. For example, in a first deposition cycle (C1), a time interval (T1) for the pulse of the refractory metal-containing precursor has the same duration as the time interval (T1) for the pulse of the refractory metal-containing precursor in subsequent deposition cycles (C2 . . . CN). Similarly, the duration of each pulse of the reducing gas as well as the periods of non-pulsing between the pulse of the refractory metal-containing precursor and the reducing gas in the first deposition cycle (C1) is the same as the duration of each pulse of the reducing gas and the periods of non-pulsing between the pulse of the refractory metal-containing precursor and the reducing gas in subsequent deposition cycles (C2 . . . CN), respectively.

Alternatively, the time intervals for at least one pulse of the refractory metal-containing precursor, the reducing gas and the periods of non-pulsing therebetween for one or more of the deposition cycles of the second refractory metal layer may have different durations. For such an embodiment, one or more of the time intervals (T1) for the refractory metal-containing precursor, the time intervals (T2) for the reducing gas, the time intervals (T3) of non-pulsing between the pulse of the refractory metal-containing precursor and the pulse of the reducing gas and the time interval (T4) of non-pulsing between the pulse of the reducing gas and the pulse of the refractory metal-containing precursor may have different values for one or more subsequent deposition cycles of the cyclical deposition process. For example, in a first deposition cycle (C1), the time interval (T1) for the pulse of the refractory metal-containing precursor may be longer or shorter than the time interval (T1) for the pulse of the refractory metal-containing precursor in subsequent deposition cycles (C2 . . . CN). Similarly, the duration of each pulse of the reducing gas and the periods of non-pulsing between the pulse of the refractory metal-containing precursor and the reducing gas in deposition cycle (C1) may be the same or different than the duration of corresponding pulses of the reducing gas and the periods of non-pulsing between the pulse of the refractory metal-containing precursor and the reducing gas in subsequent deposition cycles (C2 . . . CN), respectively.

Referring to step 210, after each deposition cycle (steps 204 through 208) a total thickness of the second refractory metal will be formed on the substrate. Depending on specific device requirements, subsequent deposition cycles may be needed to achieve a desired thickness. As such, steps 204 through 208 are repeated until the desired thickness for the second refractory metal layer is achieved. Thereafter, when the desired thickness for the second refractory metal layer is achieved the process is stopped as indicated by step 212.

In an alternate process sequence described with respect to FIG. 6, the second refractory metal layer deposition cycle comprises separate pulses for each of the refractory metal-containing precursor, the reducing gas and a purge gas. For such an embodiment, a refractory metal layer deposition sequence 300 includes adjusting the process chamber conditions (step 302), providing a first pulse of a purge gas to the process chamber (step 304), providing a pulse of a refractory metal-containing precursor to the process chamber (step 306), providing a second pulse of a purge gas to the process chamber (step 308), providing a pulse of the reducing gas to the process chamber (step 310), and then repeating steps 304 through 308, or stopping the deposition process (step 314) depending on whether a desired thickness for the refractory metal layer has been achieved (step 312).

The time intervals for each of the pulses of the refractory metal-containing precursor, the reducing gas and the purge gas may have the same or different durations as discussed above with respect to FIG. 5. Alternatively, corresponding time intervals for one or more pulses of the refractory metal-containing precursor, the reducing gas and the purge gas in one or more of the deposition cycles of the refractory metal layer deposition process may have different durations.

In FIGS. 5-6, the refractory metal layer deposition cycle is depicted as beginning with a pulse of the refractory metal-containing precursor followed by a pulse of the reducing gas. Alternatively, the refractory metal layer deposition cycle may start with a pulse of the reducing gas followed by a pulse of the refractory metal-containing precursor.

One exemplary process of depositing a tungsten layer comprises sequentially providing pulses of tungsten hexafluoride (WF6) and pulses of diborane (B2H6). The tungsten hexafluoride (WF6) may be provided to an appropriate flow control valve, for example, an electronic control valve, at a flow rate of between about 10 sccm (standard cubic centimeters per minute) and about 400 sccm, preferably between about 20 sccm and about 100 sccm, and thereafter pulsed for about 1 second or less, preferably about 0.2 seconds or less. A carrier gas comprising argon (Ar) is provided along with the tungsten hexaflouride (WF6) at a flow rate between about 250 sccm to about 1000 sccm, preferably between about 500 sccm to about 750 sccm. The diborane (B2H6) may be provided to an appropriate flow control valve, for example, an electronic control valve, at a flow rate of between about 5 sccm and about 150 sccm, preferably between about 5 sccm and about 25 sccm, and thereafter pulsed for about 1 second or less, preferably about 0.2 seconds or less. A carrier gas comprising argon (Ar) is provided along with the diborane (B2H6) at a flow rate between about 250 sccm to about 1000 sccm, preferably between about 500 sccm to about 750 sccm. The substrate may be maintained at a temperature between about 250° C. and about 350° C., preferably about 300° C. at a chamber pressure between about 1 torr to about 10 torr, preferably about 5 torr.

Another exemplary process of depositing a tungsten layer comprises sequentially providing pulses of tungsten hexaflouride (WF6) and pulses of silane (SiH4). The tungsten hexafluoride (WF6) may be provided to an appropriate flow control valve, for example, an electronic control valve, at a flow rate of between about 10 sccm (standard cubic centimeters per minute) and about 400 sccm, preferably between about 20 sccm and about 100 sccm, and thereafter pulsed for about 1 second or less, preferably about 0.2 seconds or less. A carrier gas comprising argon (Ar) is provided to along with the tungsten hexaflouride (WF6) at a flow rate between about 250 sccm to about 1000 sccm, preferably between about 300 sccm to about 500 sccm. The silane (SiH4) may be provided to an appropriate flow control valve, for example, an electronic control valve, at a flow rate between about 10 sccm to about 500 sccm, preferably between about 50 sccm to about 200 sccm, and thereafter pulsed for about 1 second or less, preferably about 0.2 seconds or less. A carrier gas comprising argon (Ar) is provided along with the silane (SiH4) at a flow rate between about 250 sccm to about 1000 sccm, preferably between about 300 scorn to about 500 sccm. A pulse of a purge gas comprising agron (Ar) at a flow rate between about 300 sccm to about 1000 sccm, preferably between about 500 sccm to about 750 sccm, in pulses of about 1 second or less, preferably about 0.3 seconds or less is provided between the pulses of the tungsten hexafluoride (WF6) and the pulses of silane (SiH4). The substrate may be maintained at a temperature between about 300° C. to about 400° C., preferably about 350° C., at a chamber pressure between about 1 torr to about 10 torr.

Referring to FIG. 4, the dual-mode deposition process is depicted as forming the first refractory metal layer using a chemical vapor deposition (CVD) process followed by formation of the second refractory metal layer using a cyclical deposition process. Alternatively, the dual-mode deposition process may start with a first refractory metal layer deposited using a cyclical deposition process followed by a second refractory metal layer deposited using a chemical vapor deposition (CVD) process.

Integrated Circuit Fabrication Processes

1. Copper Interconnects

FIGS. 7A-7C illustrate cross-sectional views of a substrate at different stages of a copper interconnect fabrication sequence incorporating the integrated barrier layer of the present invention. FIG. 7A, for example, illustrates a cross-sectional view of a substrate 400 having metal contacts 404 and a dielectric layer 402 formed thereon. The substrate 400 may comprise a semiconductor material such as, for example, silicon (Si), germanium (Ge), or gallium arsenide (GaAs). The dielectric layer 402 may comprise an insulating material such as, for example, silicon oxide or silicon nitride. The metal contacts 404 may comprise for example, copper (Cu). Apertures 404H may be defined in the dielectric layer 402 to provide openings over the metal contacts 404. The apertures 404H may be defined in the dielectric layer 402 using conventional lithography and etching techniques.

Referring to FIG. 7B, an integrated barrier layer 406 is formed in the apertures 404H defined in the dielectric layer 402. The integrated barrier layer 406 comprises a titanium nitride (TiN) layer formed with a chemical vapor deposition (CVD) process and a tungsten (W) layer formed with a cyclical deposition process. The integrated barrier layer 406 is formed using the deposition techniques described above with respect to FIGS. 4-6. The thickness of the integrated barrier layer 406 is typically about 20 Å to about 500 Å.

Thereafter, the apertures 404H are filled with copper (Cu) metallization 408 using a suitable deposition process as shown in FIG. 7C. For example, copper (Cu) may be deposited with a chemical vapor deposition (CVD) process using copper-containing precursors such as Cu+2(hfac)2 (copper hexafluoro acetylacetonate), Cu+2(fod)2 (copper heptafluoro dimethyl octanediene), Cu+1hfac TMVS (copper hexafluoro acetylacetonate trimethylvinylsilane), among others.

2. Gate Electrodes

FIGS. 8A-8C illustrate cross-sectional views of a substrate at different stages of a gate electrode fabrication sequence incorporating the integrated barrier layer of the present invention. FIG. 8A, for example, illustrates a cross-sectional view of a substrate 500 having gate regions 504 formed on the surface thereof. The gate regions 504 are surrounded by a dielectric material 502. The substrate 500 may comprise a semiconductor material such as, for example, silicon (Si), germanium (Ge), or gallium arsenide (GaAs). The dielectric material 502 may comprise an insulating material such as, for example, silicon oxide or silicon nitride.

Referring to FIG. 8B, an integrated barrier layer 506 is formed on the gate regions 504. The integrated barrier layer 506 comprises a titanium nitride (TiN) layer formed with a chemical vapor deposition (CVD) process and a tungsten (W) layer formed with a cyclical deposition process. The integrated barrier layer 506 is formed using the deposition techniques described above with respect to FIGS. 4-6. The thickness of the integrated barrier layer 506 is typically about 20 Å to about 500 Å.

Thereafter, the gate electrodes are completed by depositing gate metallization 508 on the integrated barrier layer 506 as shown in FIG. 8C. The gate metallization may comprise tungsten (W), aluminum (Al) or copper (Cu), among others. For example, tungsten (W) may be deposited with a chemical vapor deposition (CVD) process from the thermal decomposition of tungsten hexafluoride (WF6) or tungsten carbonyl (W(CO)6); aluminum may be deposited with a chemical vapor deposition (CVD) process using dimethyl aluminum hydride (DMAH); or copper (Cu) may be deposited with a chemical vapor deposition (CVD) process using copper-containing precursors such as Cu+2(hfac)2 (copper hexafluoro acetylacetonate), Cu+2(fod)2 (copper heptafluoro dimethyl octanediene), or Cu+1hfac TMVS (copper hexafluoro acetylacetonate trimethylvinylsilane), among others.

3. Trench Capacitors

FIGS. 9A-9D are illustrative of a metal-insulator-metal (MIM) trench capacitor fabrication sequence incorporating the integrated barrier layer of the present invention. FIG. 9A, for example, illustrates a cross-sectional view of a substrate 655 having a dielectric material layer 657 formed thereon. The substrate 655 may comprise a semiconductor material such as, for example, silicon (Si), germanium (Ge), or gallium arsenide (GaAs). The dielectric material layer 657 may comprise an insulator such as, for example, silicon oxide or silicon nitride. At least one trench 659 is defined in the dielectric material layer 657. The trench may be formed using conventional lithography and etching techniques.

Referring to FIG. 9B, a first integrated barrier layer 660 is formed on the trench 659. The first integrated barrier layer 660 comprises a titanium nitride (TiN) layer formed with a chemical vapor deposition (CVD) process and a tungsten (W) layer formed with a cyclical deposition process. The first integrated barrier layer 660 is formed using the deposition techniques described above with respect to FIGS. 4-6. The thickness of the integrated barrier layer 660 is typically about 20 Å to about 500 Å.

A first metal layer 661 is formed over the first integrated barrier layer 660. The first metal layer 661 comprises the first electrode of the metal-insulator-metal (MIM) trench capacitor. A suitable metal for the first metal layer 661 includes, for example, tungsten (W). The thickness of the first metal layer 661 is typically about 100 Å to about 1000 Å.

The trench capacitor further includes an insulating layer 663 formed over the metal layer 661, as shown in FIG. 9C. The insulating layer 663 preferably comprises a high dielectric constant material (dielectric constant greater then about 10). High dielectric constant materials advantageously permit higher charge storage capacities for the capacitor structures. Suitable dielectric materials may include for example, tantalum pentoxide (Ta2O5), silicon oxide/silicon nitride/oxynitride (ONO), aluminum oxide (Al2O3), barium strontium titanate (BST), barium titanate, lead zirconate titanate (PZT), lead lanthanium titanate, strontium titanate and strontium bismuth titanate, among others.

The thickness of the insulating layer 663 is variable depending on the dielectric constant of the material used and the geometry of the device being fabricated. Typically, the insulating layer 663 has a thickness of about 100 Å to about 1000 Å.

A second integrated barrier layer 664 is formed on the insulating layer 663. The second integrated barrier layer 664 comprises a titanium nitride (TiN) layer formed with a chemical vapor deposition (CVD) process and a tungsten (W) layer formed with a cyclical deposition process. The second integrated barrier layer 664 is formed using the deposition techniques described above with respect to FIGS. 4-6. The thickness of the integrated barrier layer 664 is typically about 20 Å to about 500 Å.

A second metal layer 665 is formed over the second integrated barrier layer 664. The second metal layer 665 comprises the second electrode of the metal-insulator-metal (MIM) trench capacitor. A suitable metal for the second metal layer 665 includes, for example, tungsten (W). The thickness of the second metal layer 665 is typically about 100 Å to about 1000 Å.

After the second metal layer 665 is formed, the metal-insulator-metal (MIM) trench capacitor is completed by filling the trench 659 with, for example, a polysilicon layer 667, as shown in FIG. 9D. The polysilicon layer 667 may be formed using conventional deposition techniques. For example, the polysilicon layer 667 may be deposited using a chemical vapor deposition (CVD) process in which silane (SiH4) is thermally decomposed to form polysilicon at a temperature between about 550° C. and 700° C.

4. Crown Capacitors

FIGS. 10A-10B illustrate cross-sectional views of a substrate at different stages of a crown capacitor fabrication sequence incorporating the integrated barrier layer of the present invention. The term crown capacitor as used herein refers to a capacitor structure having a three-dimensional shape formed above the surface of the substrate. The three-dimensional shape increases the capacitance of the device by increasing the surface area thereof.

FIG. 10A, for example, illustrates a cross-sectional view of a substrate 712 having a dielectric layer 714 formed thereon. The substrate 712 may comprise a semiconductor material such as, for example, silicon (Si), germanium (Ge), or gallium arsenide (GaAs). The dielectric 714 may comprise an oxide such as, for example, a silicon oxide. The dielectric layer 714 has at least one aperture 716 formed therein.

A first polysilicon layer 718 is formed over the dielectric layer 714 and the at least one aperture 716. The first polysilicon layer 718 may be doped with a suitable dopant such as, for example, arsenic (As), antimony (Sb), phosphorous (P) and boron (B), among others.

A hemispherical silicon grain layer (HSG) 720 or a rough polysilicon layer may optionally be formed over the first polysilicon layer 718 to increase the surface area thereof. The hemispherical silicon grain layer 720 may be formed, for example, by depositing an amorphous silicon layer and than annealing it to form a rough surface thereon. The hemispherical silicon grain layer 720 may optionally by doped.

The first polysilicon layer 718 and the hemispherical silicon grain layer (HSG) 720 are patterned and etched to form a crown structure 730. Both the first polysilicon layer 718 and the hemispherical silicon grain layer (HSG) act as a first electrode for the crown capacitor.

The crown capacitor further includes an insulating layer 732 formed over the hemispherical silicon grain layer 718 of the crown structure 730. The insulating layer 732 preferably comprises a high dielectric constant material (dielectric constant greater then about 10). High dielectric constant materials advantageously permit higher charge storage capacities for the capacitor structures. Suitable dielectric materials may include for example, tantalum pentoxide (Ta2O5), silicon oxide/silicon nitride/oxynitride (ONO), aluminum oxide (Al2O3), barium strontium titanate (BST), barium titanate, lead zirconate titanate (PZT), lead lanthanium titanate, strontium titanate and strontium bismuth titanate, among others.

Referring to FIG. 10B, an integrated barrier layer 734 is formed on the insulating layer 732. The integrated barrier layer 734 comprises a titanium nitride (TiN) layer formed with a chemical vapor deposition (CVD) process and a tungsten (W) layer formed with a cyclical deposition process. The integrated barrier layer 734 is formed using the deposition techniques described above with respect to FIGS. 4-6. The thickness of the integrated barrier layer 734 is typically about 20 Å to about 500 Å.

A metal layer 742 is formed over the integrated barrier layer 734. The metal layer 742 comprises the second electrode of the crown capacitor. A suitable metal for the metal layer 742 includes, for example, tungsten (W). The thickness of the metal layer 742 is typically about 100 Å to about 1000 Å.

After the metal layer 742 is formed, the crown capacitor is completed by depositing, for example, a second polysilicon layer 752 thereover, as shown in FIG. 10B. The second polysilicon layer 752 may be formed using conventional deposition techniques. For example, the second polysilicon layer 752 may be deposited using a chemical vapor deposition (CVD) process in which silane (SiH4) is thermally decomposed to form polysilicon at a temperature between about 550° C. and 700° C.

While the foregoing is directed to the preferred embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4058430Nov 25, 1975Nov 15, 1977Tuomo SuntolaMethod for producing compound thin films
US4389973Dec 11, 1981Jun 28, 1983Oy Lohja AbApparatus for performing growth of compound thin films
US4413022Jun 21, 1979Nov 1, 1983Canon Kabushiki KaishaVapor reactions
US4486487Apr 25, 1983Dec 4, 1984Oy Lohja AbCombination film, in particular for thin film electroluminescent structures
US4767494Sep 19, 1986Aug 30, 1988Nippon Telegraph & Telephone CorporationReacting organometallic compound and hydride over heated substrate to decompose
US4806321Jul 25, 1985Feb 21, 1989Research Development Corporation Of JapanUse of infrared radiation and an ellipsoidal reflection mirror
US4813846Apr 29, 1987Mar 21, 1989Leybold-Heraeus GmbhInserting device for vacuum apparatus
US4829022Dec 9, 1986May 9, 1989Nippon Telegraph And Telephone CorporationMethod for forming thin films of compound semiconductors by flow rate modulation epitaxy
US4834831Sep 4, 1987May 30, 1989Research Development Corporation Of JapanMethod for growing single crystal thin films of element semiconductor
US4838983Mar 18, 1988Jun 13, 1989Emcore, Inc.Advancing semiconductor substrate along circular path
US4838993Dec 3, 1987Jun 13, 1989Seiko Instruments Inc.Method of fabricating MOS field effect transistor
US4840921Jun 30, 1988Jun 20, 1989Nec CorporationProcess for the growth of III-V group compound semiconductor crystal on a Si substrate
US4845049Mar 28, 1988Jul 4, 1989Nec CorporationDoping III-V compound semiconductor devices with group VI monolayers using ALE
US4859307Sep 2, 1987Aug 22, 1989Ngk Insulators, Ltd.Electrochemical gas sensor, and method for manufacturing the same
US4859627Jul 1, 1988Aug 22, 1989Nec CorporationGroup VI doping of III-V semiconductors during ALE
US4861417Mar 24, 1988Aug 29, 1989Fujitsu LimitedMethod of growing group III-V compound semiconductor epitaxial layer
US4876218Sep 26, 1988Oct 24, 1989Oy Nokia AbMethod of growing GaAs films on Si or GaAs substrates using ale
US4892751Dec 14, 1987Jan 9, 1990Hitachi, Ltd.Method of and apparatus for forming a thin film
US4917556May 26, 1989Apr 17, 1990Varian Associates, Inc.Modular wafer transport and processing system
US4927670Jun 22, 1988May 22, 1990Georgia Tech Research CorporationChemical vapor deposition of mixed metal oxide coatings
US4931132Oct 7, 1988Jun 5, 1990Bell Communications Research, Inc.Optical control of deposition of crystal monolayers
US4951601Jun 23, 1989Aug 28, 1990Applied Materials, Inc.Multi-chamber integrated process system
US4960720Aug 24, 1987Oct 2, 1990Masafumi ShimboMethod of growing compound semiconductor thin film using multichamber smoothing process
US4975252May 26, 1989Dec 4, 1990Junichi NishizawaSemiconductor crystal growth apparatus
US4976839Jul 24, 1989Dec 11, 1990Fujitsu LimitedReactive sputtering in mixed gas including oxygen
US4976996Feb 17, 1987Dec 11, 1990Lam Research CorporationChemical vapor deposition reactor and method of use thereof
US4993357Dec 21, 1988Feb 19, 1991Cs Halbleiter -Und Solartechnologie GmbhApparatus for atomic layer epitaxial growth
US5000113Dec 19, 1986Mar 19, 1991Applied Materials, Inc.Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process
US5013683Jan 23, 1989May 7, 1991The Regents Of The University Of CaliforniaMethod for growing tilted superlattices
US5028565Aug 25, 1989Jul 2, 1991Applied Materials, Inc.Process for CVD deposition of tungsten layer on semiconductor wafer
US5082798Sep 27, 1990Jan 21, 1992Mitsubishi Denki Kabushiki KaishaCrystal growth method
US5085885Sep 10, 1990Feb 4, 1992University Of DelawarePlasma-induced, in-situ generation, transport and use or collection of reactive precursors
US5091320Jun 15, 1990Feb 25, 1992Bell Communications Research, Inc.Optical method for controlling thickness of semiconductor
US5130269Apr 25, 1989Jul 14, 1992Fujitsu LimitedAtomic layer epitaxy, aluminum arsenide, gallium arsenide
US5166092Oct 30, 1990Nov 24, 1992Fujitsu LimitedMethod of growing compound semiconductor epitaxial layer by atomic layer epitaxy
US5173474Mar 11, 1991Dec 22, 1992Xerox CorporationSilicon substrate having an epitaxial superconducting layer thereon and method of making same
US5186718Apr 15, 1991Feb 16, 1993Applied Materials, Inc.Staged-vacuum wafer processing system and method
US5205077Aug 28, 1991Apr 27, 1993Peter Wolters AgApparatus for controlling operation of a lapping, honing or polishing machine
US5225366Jun 22, 1990Jul 6, 1993The United States Of America As Represented By The Secretary Of The NavyModified atomic layer epitaxial growth technique
US5227335Apr 30, 1990Jul 13, 1993At&T Bell LaboratoriesVapor depositing an overcoatings to cover the nitrides glue thin film of etched dielectric layer and substrates
US5234561Aug 25, 1988Aug 10, 1993Hauzer Industries BvEvacuating chamber with substrate, coating by cathodic arc plasma deposition and magnetron sputtering without breaking vacuum
US5246536Mar 10, 1989Sep 21, 1993Research Development Corporation Of JapanMethod for growing single crystal thin films of element semiconductor
US5250148Nov 12, 1991Oct 5, 1993Research Development CorporationProcess for growing GaAs monocrystal film
US5254207Nov 30, 1992Oct 19, 1993Research Development Corporation Of JapanMethod of epitaxially growing semiconductor crystal using light as a detector
US5256244Feb 10, 1992Oct 26, 1993General Electric CompanyPulsation of hydrolyzable metal chloride and water under pressure
US5259881May 17, 1991Nov 9, 1993Materials Research CorporationWafer processing cluster tool batch preheating and degassing apparatus
US5270247Jul 8, 1992Dec 14, 1993Fujitsu LimitedAtomic layer epitaxy of compound semiconductor
US5278435Jun 8, 1992Jan 11, 1994Apa Optics, Inc.Single crystal aluminum gallium nitride
US5281274Feb 4, 1993Jan 25, 1994The United States Of America As Represented By The Secretary Of The NavyVapor deposition of silicon, germanium, tin, lead and diamond films, chemical reactors
US5286296Jan 9, 1992Feb 15, 1994Sony CorporationMulti-chamber wafer process equipment having plural, physically communicating transfer means
US5290748Jul 16, 1992Mar 1, 1994Neste OyPolymerization catalyst for olefines
US5294286Jan 12, 1993Mar 15, 1994Research Development Corporation Of JapanAlternating supply of dichlorosilane and evacuating; counting cycles; semiconductors
US5296403Oct 23, 1992Mar 22, 1994Research Development Corp. Of JapanMethod of manufacturing a static induction field-effect transistor
US5300186Apr 7, 1992Apr 5, 1994Fujitsu LimitedHetero-epitaxially grown compound semiconductor substrate and a method of growing the same
US5306666Jul 21, 1993Apr 26, 1994Nippon Steel CorporationAlternately and discontinuously introducing raw material gas and reducing gas; surface flatness
US5311055Nov 22, 1991May 10, 1994The United States Of America As Represented By The Secretary Of The NavyTrenched bipolar transistor structures
US5316615Mar 9, 1993May 31, 1994International Business Machines CorporationSurfactant-enhanced epitaxy
US5316793Jul 27, 1992May 31, 1994Texas Instruments IncorporatedMultilayer element formed by vapor deposition of coatings by injection of precursor gas
US5330610May 28, 1993Jul 19, 1994Martin Marietta Energy Systems, Inc.Forming thin films
US5336324Dec 4, 1991Aug 9, 1994Emcore CorporationApparatus for depositing a coating on a substrate
US5338389Apr 21, 1993Aug 16, 1994Research Development Corporation Of JapanHeating substrate crystal in vacuum, forming monlayer, evacuating, introducing reaction gas, evacuating and introducing second crystal component gases
US5348911Apr 26, 1993Sep 20, 1994Aixtron GmbhMaterial-saving process for fabricating mixed crystals
US5374570Aug 19, 1993Dec 20, 1994Fujitsu LimitedAtomic layer epitaxy
US5395791Oct 20, 1993Mar 7, 1995Minnesota Mining And Manufacturing CompanyGrowth of II VI laser diodes with quantum wells by atomic layer epitaxy and migration enhanced epitaxy
US5438952Jan 31, 1994Aug 8, 1995Fujitsu LimitedMethod of growing a semiconductor layer and a fabrication method of a semiconductor device using such a semiconductor layer
US5439876Aug 16, 1993Aug 8, 1995International Business Machines CorporationMethod of making artificial layered high Tc superconductors
US5441703Mar 29, 1994Aug 15, 1995Aixtron GmbhHaving conicoidal interior contour which homogeneously widens flow of reactant gases
US5443033Mar 11, 1994Aug 22, 1995Research Development Corporation Of JapanSemiconductor crystal growth method
US5443647Jul 11, 1994Aug 22, 1995The United States Of America As Represented By The Secretary Of The ArmyMethod and apparatus for depositing a refractory thin film by chemical vapor deposition
US5455072Nov 18, 1992Oct 3, 1995Bension; Rouvain M.Initiation and bonding of diamond and other thin films
US5458084Dec 9, 1993Oct 17, 1995Moxtek, Inc.X-ray wave diffraction optics constructed by atomic layer epitaxy
US5469806Aug 20, 1993Nov 28, 1995Nec CorporationChlorination of semiconductor surfaces, dechlorination by forming hydrogen chloride with hydrogen and epitaxial crystallization
US5480818Feb 9, 1993Jan 2, 1996Fujitsu LimitedMethod for forming a film and method for manufacturing a thin film transistor
US5483919Aug 17, 1994Jan 16, 1996Nippon Telegraph And Telephone CorporationAtomic layer epitaxy method and apparatus
US5484664Jan 21, 1994Jan 16, 1996Fujitsu LimitedHetero-epitaxially grown compound semiconductor substrate
US5503875Mar 17, 1994Apr 2, 1996Tokyo Electron LimitedFilm forming method wherein a partial pressure of a reaction byproduct in a processing container is reduced temporarily
US5521126Jun 22, 1994May 28, 1996Nec CorporationVapor deposition of silicones on whole chip surface, then plasma oxidation to silicon dioxide yields high density film with smooth surface
US5526044Dec 6, 1993Jun 11, 1996Canon Kabushiki KaishaImage processing device
US5526244May 24, 1993Jun 11, 1996Bishop; Vernon R.Overhead luminaire
US5527733Feb 18, 1994Jun 18, 1996Seiko Instruments Inc.Covering substrate with oxide film, removal of film by reduction and heat treatment, applying boron hydrogen gas to form adsorption layer
US5532511Mar 23, 1995Jul 2, 1996Research Development Corp. Of JapanSemiconductor device comprising a highspeed static induction transistor
US5540783May 26, 1994Jul 30, 1996Martin Marietta Energy Systems, Inc.Apparatus for externally controlled closed-loop feedback digital epitaxy
US5580380Jan 30, 1995Dec 3, 1996North Carolina State UniversityElectrically biasing projections; exposure to hydrocarbon plasma
US5601651Dec 14, 1994Feb 11, 1997Fujitsu LimitedFlow control valve for use in fabrication of semiconductor devices
US5609689Jun 3, 1996Mar 11, 1997Tokyo Electron LimitedVacuum process apparaus
US5616181Nov 21, 1995Apr 1, 1997Mitsubishi Denki Kabushiki KaishaMBE apparatus and gas branch piping apparatus
US5637530Jun 10, 1996Jun 10, 1997U.S. Philips CorporationII-VI compound semiconductor epitaxial layers having low defects, method for producing and devices utilizing same
US5641984Aug 19, 1994Jun 24, 1997General Electric CompanyHermetically sealed radiation imager
US5644128Aug 25, 1994Jul 1, 1997IonwerksFast timing position sensitive detector
US5667592Apr 16, 1996Sep 16, 1997Gasonics InternationalProcess chamber sleeve with ring seals for isolating individual process modules in a common cluster
US5674786Jun 5, 1995Oct 7, 1997Applied Materials, Inc.Method of heating and cooling large area glass substrates
US5693139Jun 15, 1993Dec 2, 1997Research Development Corporation Of JapanDoping compound semiconductor single crystal layer by alternate introduction of source gases while growth chamber is being evacuated continuously
US5695564Aug 3, 1995Dec 9, 1997Tokyo Electron LimitedMultichamber system wherein transfer units and desired number of process units each with separate inert gas supply and exhaust systems are connected via interconnection units
US5705224Jan 31, 1995Jan 6, 1998Kokusai Electric Co., Ltd.Mixing hydride gas, adsorption and applying pulsation of light from flash lamp and decomposition
US5707880Jan 17, 1997Jan 13, 1998General Electric CompanyHermetically sealed radiation imager
US5711811Nov 28, 1995Jan 27, 1998Mikrokemia OyMethod and equipment for growing thin films
US5730801Aug 23, 1994Mar 24, 1998Applied Materials, Inc.Compartnetalized substrate processing chamber
US5730802Dec 27, 1996Mar 24, 1998Sharp Kabushiki KaishaVapor growth apparatus and vapor growth method capable of growing good productivity
US5733816Dec 13, 1995Mar 31, 1998Micron Technology, Inc.Method for depositing a tungsten layer on silicon
US6162715 *Jul 14, 1998Dec 19, 2000Applied Materials, Inc.Method of forming gate electrode connection structure by in situ chemical vapor deposition of tungsten and tungsten nitride
US6451677 *Feb 23, 1999Sep 17, 2002Texas Instruments IncorporatedPlasma-enhanced chemical vapor deposition of a nucleation layer in a tungsten metallization process
US6827978 *Feb 11, 2002Dec 7, 2004Applied Materials, Inc.Deposition of tungsten films
US7279432 *Apr 15, 2003Oct 9, 2007Applied Materials, Inc.System and method for forming an integrated barrier layer
US20010002582 *Jan 24, 2001Jun 7, 2001Dunham Scott WilliamShowerhead diffuser with flexibility to adjust gas distribution flux in a number of different ways, allowing a diffuser to be dialed-in to account for many gas parameters such as reactivity
Non-Patent Citations
Reference
1Ashtiani, et al. "Pulsed Nucleation Layer of Tungsten Nitride Barrier Film and its Application in DRAM and Logic Manufacturing," SEMI Technical Symposium: Innovations in Semiconductor Manufacturing (STS: ISM), SEMICON Korea 2006, Semiconductor Equipment and Materials International, pp. 1-6.
2Bader, et al. "Integrated Processing Equipment," Solid State Technology, Cowan Pub., vol. 33, No. 5 (May 1, 1990), pp. 149-154.
3Bedair "Atomic Layer Epitaxy Deposition Processes," J. Vac. Sci. Techol. 12(1) (Jan./Feb. 1994).
4Buerke, et al. "PNL(TM) low Resistivity tungsten for contact fill," Conference Proceedings AMC XXI, 2006, Materials Research Society, pp. 221-226.
5Buerke, et al. "PNL™ low Resistivity tungsten for contact fill," Conference Proceedings AMC XXI, 2006, Materials Research Society, pp. 221-226.
6Cameron, et al. "Atomic Layer Deposition of SiO2 and TiO2 in Alumina Tubular Membranes," Langmuir, vol. 16, No. 19 American Chemical Society, 2000 pp. 7435-7444.
7Cheong, et al. "The Evaluation of ALD-WN/W Process for Sub-70nm Contact Plug Technology," ALD 2005 Conference.
8Choi, et al. "Stability of TiB2 as a Diffusion Barrier on Silicon," J. Electrochem. Soc. 138(10) (Oct. 1991), pp. 3062-3067.
9Choi, et al. "The Effect of Annealing on Resistivity of Low Pressure Chemical Vapor Deposited Titanium Diboride," J. Appl. Phys. 69(11) (Jun. 1, 1991) pp. 7853-7861.
10Clark-Phelps, et al. "Engineered Tantalum Aluminate and Hafnium Aluminate ALD Films for Ultrathin Dielectric Films with Improved Electrical and Thermal Properties," Mat. Res. Soc. Symp. Proc. vol. 670 (2001).
11Derbyshire "Applications of Integrated Processing," Solid State Technology, US, Cowan Pub., vol. 37, No. 12 (Dec. 1, 1994), pp. 45-47.
12Eisenbraum, et al. "Atomic Layer Deposition (ALD) of Tantalum-based materials for zero thickness copper barrier applications," Proceedings of the IEEE 2001 International Interconnect Technology Conference (Cat. No. 01EX461) 2001.
13Elam, et al. "Kinetics of the WF6 and Si2H6 surface reactions during tungsten atomic layer deposition," Surface Science, 479, 2001, pp. 121-135.
14Elam, et al. "Nucleation and Growth During Tungsten Atomic Layer Deposition on SiO2 Surfaces," Thin Solid Films, 386, (2001), pp. 41-52.
15Elers, et al. "NbCl5 As a Precursor in Atomic Layer Epitaxy," Appl. Surf. Sci., vol. 82/83 (1994), pp. 468-474.
16Fabreguette, et al. "Quartz crystal microbalance study of tungsten atomic layer deposition using WF6 and Si2H6," Thin Solid Films, 488, 2005, pp. 103-110.
17Fabreguette, et al. "Ultrahigh x-ray reflectivity from W/Al2O3 multilayers fabricated using atomic layer deposition," Applied Physics Letter, 88, 2006, pp. 013116-1-013116-3.
18Frohberg, et al. "Filling contacts using a pulsed nucleation later of tungsten nitride," Micro: TechEmergent, Mar. 27, 2006, pp. 1-10, http://www.micormagazine.com/archive/05/10/frohberg.html.
19George, et al. "Atomic Layer Controlled Deposition of SiO2 and Al2O3 Using ABAB . . . Binary Reaction Sequence Chemistry," Appl. Surf. Sci., vol. 82/83 (1994),pp. 460-467.
20George, et al. "Surface Chemistry for Atomic Layer Growth," J. Phys. Chem. 1996, 100, 13121-13131.
21Goswami, et al. Transition Metals Show Promise as Copper Barriers, Semiconductor International, ATMI, San Jose-May 1, 2004, Semiconductor International, pp. 1-7.
22Goswami, et al. Transition Metals Show Promise as Copper Barriers, Semiconductor International, ATMI, San Jose—May 1, 2004, Semiconductor International, pp. 1-7.
23Grubbs, et al. "Gas phase reaction products during tungsten atomic layer deposition using WF6 and Si2H6," J. Vac. Sci. Technol., B, vol. 22, No. 4, Jul./Aug. 2004, American Vacuum Society, pp. 1811-1821.
24Grubbs, et al. "Nucleation and growth during the atomic layer deposition of W on Al2O3 and Al2O3 on W," Thin Solid Films, 467, 2004 pp. 16-27.
25Hong, et al. "Characteristics of PAALD-TaN thin films derived from TAIMATA precursor for copper metallization," Interconnect Technology Conference, 2004. Proceedings of the IEEE 2004 International, Jun. 7-9, 2004, Abstract.
26Hultman, et al. "Review of the Thermal and Mechanical Stability of TiN-based Thin Films," Z. Metallkd. 90 (1999) 10, pp. 803-813.
27Hwang, et al. "Nanometer-Size alpha-PbO2-type TiO2 in Garnet: A Thermobarometer for Ultrahigh-Pressure Metamorphism," Science Vo. 288 (Apr. 14, 2000).
28Hwang, et al. "Nanometer-Size α-PbO2-type TiO2 in Garnet: A Thermobarometer for Ultrahigh-Pressure Metamorphism," Science Vo. 288 (Apr. 14, 2000).
29IBM Technical Disclosure Bulletin "Knowledge-Based Dynamic Scheduler in Distributed Computer Control," Jun. 1990, pp. 80-84.
30IBM Technical Disclosure Bulletin "Multiprocessor and Multitasking Architecture for Tool Control of the Advanced via Inspection Tools," May 1992, pp. 190-191.
31Kang "Applications and challenges of atomic layer deposition for semiconductor process," AVS 5th International Conference on Atomic Layer Deposition 2005, Aug. 8-10, 2005, San Jose, CA.
32Kim, et al. "Atomic layer deposited tungsten nitride thin film as contact barrier layer for sub-80 nm dynamic random access memory," Conference Proceedings AMC XXI, 2006 Materials Research Society.
33Kim, et al. "Atomic Layer Deposition of Low Resistivity and High-Density Tungsten Nitride Thin Film Using B2H6, WF6 and NH3," Electrochem. Solid-State Lett., vol. 9, Issue 3, (2006), pp. C54-C57.
34Kitagawa, et al. "Hydrogen-mediated low-temperature epitaxy of Si in plasma-enhanced chemical vapor deposition," Applied Surface Science 159-160 (2000), pp. 30-34.
35Klaus, et al. "Atomic Layer Deposition of SiO2 Using Catalyzed and Uncatalyzed Self-Limiting Surface Reactions," Surface Review and Letters, vol. 6, Nos. 3 & 4 (1999) 435-448.
36Klaus, et al. "Atomic Layer Deposition of Tungsten Nitride Films Using Sequential Surface Reactions," Journal of the Electrochemical Society, vol. 147, No. 3, 2000, pp. 1175-1181.
37Klaus, et al. "Atomic Layer Deposition of Tungsten Using Sequential Surface Chemistry with a Sacrificial Stripping Reaction," Thin Solid Films, 360, 2000, pp. 145-153.
38Klaus, et al. "Atomically Controlled Growth of Tungsten and Tungsten Nitride Using Sequential Surface Reactions," Applied Surface Science, 162-163 (2000) 479-491.
39Kukli, et al. "Atomic Layer Epitaxy Growth of Tantalum Oxide Thin Films from Ta(OC2H5)5 and H2O," Journal of the Electrochemical Society, vol. 142, No. 5, May 1995; p. 1670-5.
40Kukli, et al., "In situ Study of Atomic Layer Epitaxy Growth of Tantalum Oxide Thin Films From Ta(OC2H5)5 and H2O," Applied Surface Science, vol. 112, Mar. 1997, p. 236-242.
41Kukli, et al., "Properties of {Nb1-xTax}2O5 Solid Solutions and {Nb1-xTax}2O5-ZrO2 Nanolaminates Grown by Atomic Layer Epitaxy," 1997; p. 785-93.
42Kukli, et al., "Properties of Ta2O5-Based Dielectric Nanolaminates Deposited by Atomic Layer Epitaxy," Journal of the Electrochemical Society, vol. 144, No. 1, Jan. 1997; p. 300-6.
43Kukli, et al., "Tailoring the Dielectric Properties of HfO2-Ta2-O5 Nanolaminates," Applied Physics Letters, vol. 68, No. 26, Jun. 24, 1996; p. 3737-9.
44Lee "The Preparation of Titanium-Based Thin Film by CVD Using Titanium Chlorides as Precursors," Chemical Vapor Deposition, 5(2) Mar. 1999, pp. 69-73.
45Lee, et al. "Pulsed Nucleation for Ultra-High Aspect Ratio Tungsten Plugfill," Conference Proceedings ULSI XV111, Materials Research Society, 2002, pp. 649-654.
46Martensson, et al. "Atomic Layer Epitaxy of Copper on Tantalum," Chem. Vap. Deposition (1997) 3, No. 1, pp. 45-50.
47Martensson, et al. "Atomic Layer Epitaxy of Copper, Growth & Selectivity in the Cu (II)-2,2.6,6-Tetramethyl-3, 5-Heptanedion ATE/H2 Process," J. Electrochem. Soc.,145(8) (Aug. 1998), pp. 2926-2931.
48Martensson, et al. "Use of Atomic Layer Epitaxy for Fabrication of Si/TiN/Cu Structures," J. Vac. Sci. & Tech. B, vol. 17, No. 5, (Sep. 1999) pp. 2122-2128.
49Maydan "Cluster Tools for Fabrication of Advanced Devices," Jap. J. of Applied Physics, Extended Abstracts, 22nd Conference Solid State Devices and Materials (1990), pp. 849-852.
50McGeachin "Synthesis and Properties of Some beta-diketimines Derived From Acetylacetone, and Their Metal Complexes," Canadian J. of Chemistry, vol. 46 (1968), pp. 1903-1912.
51McGeachin "Synthesis and Properties of Some β-diketimines Derived From Acetylacetone, and Their Metal Complexes," Canadian J. of Chemistry, vol. 46 (1968), pp. 1903-1912.
52Min, et al. "Atomic Layer Deposition of TiN Thin Films by Sequential Introduction of Ti Precursor and NH3," Mat. Res. Soc. Symp. Proc. vol. 514 (1998).
53Min, et al. "Chemical Vapor Deposition of Ti-Si-N Films With Alternating Source Supply," Mat. Rec. Soc. Symp. Proc. vol. (1999).
54Min, et al. "Metal-organic Atomic-layer Deposition of Titanium-silicon-nitride films," Applied Physics Letters, vol. 75, No. 11 (Sep. 13, 1999).
55Niinisto, et al. "Synthesis of Oxide Thin Films and Overlayers by Atomic Layer Epitaxy for Advanced Applications," Materials Science and Engineering B41 (1996) 23-29.
56Ohba, et al. "Thermal Decomposition of Methylhydrazine and Deposition Properties of CVD TiN Thin Films," Conference Proceeding (1994) Mat. Res. Soc., pp. 143-149.
57Park, et al. "Performance improvement of MOSFET with HfO2-Al2O3 laminate gate dielectric and CVD-TaN metal gate deposited by TAIMATA", Electron Devices Meeting, 2003. IEDM '03 Techinical Digest. IEEE International Dec. 8-10, 2003.
58Proceedings of the ICEEE 1998 International Interconnect Technology Conference-San Francisco, California, Jun. 1-3, 1998.
59Proceedings of the ICEEE 1998 International Interconnect Technology Conference—San Francisco, California, Jun. 1-3, 1998.
60Ritala, et al. "Atomic Force Microscopy Study of Titanium Dioxide Thin Films Grown by Atomic Layer Epitaxy," Thin Solid Films, vol. 228, No. 1-2 (May 15, 1993), pp. 32-35.
61Ritala, et al. "Atomic Layer Epitaxy Growth of TiN Thin Films From TiI4 and NH3," J. Electrochem. Soc., vol. 145, No. 8 (Aug. 1998) pp. 2914-2920.
62Ritala, et al. "Atomic Layer Epitaxy Growth of TiN Thin Films," J. Electrochem. Soc., vol. 142, No. 8, Aug. 1995.
63Ritala, et al. "Effects of Intermediate Zinc Pulses on Properties of TiN and NbN Films by Atomic Layer Epitaxy," Applied Surface Science, vol. 120, No. 3-4, (Dec. 1997), pp. 199-212.
64Ritala, et al. "Growth of Titanium Dioxide Thin Films by Atomic Layer Epitaxy," Thin Solid Films, vol. 225, No. 1-2 (Mar. 25, 1993) pp. 288-295.
65Ritala, et al. "Perfectly Conformal TiN and AI2O3 Films Deposited by Atomic Layer Deposition," Chem. Vap. Deposition 1999, 5, No. 1.
66Ritala, et al. "Surface Roughness Reduction in Atomic Layer Epitaxy Growth of Titanium Dioxide Thin Films," Thin Solid-Films, vol. 249, No. 2 (Sep. 15, 1994), pp. 155-162.
67Ritala, M., et al., "Chemical Vapor Deposition," Jan. 1999, p. 6-9.
68Rossnagel, et al. "Plasma-enhanced Atomic Layer Deposition of Ta and Ti for Interconnect Diffusion Barriers," J. Vacuum Sci. & Tech. B., vol. 18, No. 4 (Jul. 2000), pp. 2016-2020.
69Scheper, et al. "Low-temperature deposition of titanium nitride films from dialkylhydrazine-based precursors," Materials Science in Semiconductor Processing 2 (1999), pp. 149-157.
70Sechrist, et al. "Optimization and Structural Characterization of W/Al2O3 Nanolaminates Grown Using Atomic Layer Deposition Techniques," Chem. Matter, 17, 2005, American Chemical Society, pp. 3475-3485.
71Shenai, et al. "Correlation of vapor pressure equation and film properties with trimethylindium purity for the MOVPE grown III-V compounds," Journal of Crystal Growth 248 (2003), pp. 91-98.
72Solanki, et al. "Atomic Layer Deposition of Copper Seed Layers," Electrochemical and Sold State Letters, vol. 3, No. 10 (2000), pp. 479-480.
73Suzuki, et al. "LPCVD-TiN Using Hydrazine and TiCl4," VMIC Conference (Jun. 8-9, 1993), pp. 418-423.
74Wise, et al. "Diethyldiethoxysilane as a New Precursor for SiO2 Growth on Silicon", Mat. Res. Soc. Symp. Proc., vol. 334 (1994), pp. 37-43.
75Yamaga, et al. "Atomic layer epitaxy of ZnS by a new gas supplying system in low-pressure metalorganic vapor phase epitaxy," J. of Crystal Growth 117 (1992), pp. 152-155.
76Yamaguchi, et al. "Atomic-layer Chemical-Vapor-Deposition of Silicon Dioxide Films With Extremely Low Hydrogen Content," Appl. Surf. Sci., vol. 130-132 (1998) pp. 202-207.
77Yang, et al. "Atomic Layer Deposition of Tungsten Film from WF6/B2H6: Nucleation Layer for Advanced Semiconductor Device," Conference Proceedings ULSI XVII (2002) Materials Research Society.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
WO2013148490A1 *Mar 22, 2013Oct 3, 2013Applied Materials, Inc.Method of enabling seamless cobalt gap-fill
Classifications
U.S. Classification438/763, 438/680, 438/685, 438/762, 257/E21.17
International ClassificationH01L21/285, H01L21/768, H01L21/469, H01L21/44, H01L21/02
Cooperative ClassificationH01L21/76846, H01L21/28562, H01L28/75, H01L28/84, H01L28/90
European ClassificationH01L21/285B4H2, H01L21/768C3B4, H01L28/75
Legal Events
DateCodeEventDescription
Apr 5, 2011CCCertificate of correction
Jun 29, 2007ASAssignment
Owner name: APPLIED MATERIALS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XI, MING;YANG, MICHAEL X.;ZHANG, HUI;REEL/FRAME:019495/0982
Effective date: 20030711