Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS8030780 B2
Publication typeGrant
Application numberUS 12/253,121
Publication dateOct 4, 2011
Filing dateOct 16, 2008
Priority dateOct 16, 2008
Also published asCN102187452A, CN102187452B, EP2351074A1, US8629057, US20100096759, US20120009776, WO2010045187A1
Publication number12253121, 253121, US 8030780 B2, US 8030780B2, US-B2-8030780, US8030780 B2, US8030780B2
InventorsKyle K. Kirby, Kunal R. Parekh
Original AssigneeMicron Technology, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Semiconductor substrates with unitary vias and via terminals, and associated systems and methods
US 8030780 B2
Abstract
Semiconductor substrates with unitary vias and via terminals, and associated systems and methods are disclosed. A representative method in accordance with a particular embodiment includes forming a blind via in a semiconductor substrate, applying a protective layer to a sidewall surface of the via, and forming a terminal opening by selectively removing substrate material from an end surface of the via, while protecting from removal substrate material against which the protective coating is applied. The method can further include disposing a conductive material in both the via and the terminal opening to form an electrically conductive terminal that is unitary with conductive material in the via. Substrate material adjacent to the terminal can then be removed to expose the terminal, which can then be connected to a conductive structure external to the substrate.
Images(12)
Previous page
Next page
Claims(13)
1. A semiconductor assembly, comprising,
a semiconductor substrate including a substrate material having a first major surface, a second major surface, and an opening extending from the first major surface to the second major surface, the opening including a generally cylindrical portion extending generally normal to the first major surface, the cylindrical portion having a generally smooth, uniform surface, the opening further including a terminal portion extending transverse to the cylindrical portion and intersecting the second major surface, the terminal portion having a width generally parallel to the plane of the first major surface that is greater than a corresponding width of the cylindrical portion;
a single, uniform, homogeneous volume of conductive material disposed in both the cylindrical portion and the terminal portion of the opening, the conductive material forming a conductive path in the cylindrical portion and at least a portion of a conductive terminal in the terminal portion, the conductive terminal having a cross-section that is convexly rounded, wherein the cross-section is taken in a plane normal to the second major surface, wherein the convexly rounded conductive terminal projects away from the second major surface in a direction away from the first major surface, the conductive terminal having a first cross-sectional area and a second cross-sectional area greater than the first cross-sectional area, wherein the first cross-sectional area is in a first plane that is generally parallel to the second major surface and includes an outermost surface of the semiconductor substrate and the second cross-sectional area is in a second plane generally parallel to the first plane and positioned beyond the outermost surface; and
a microelectronic element formed in the substrate material and electrically coupled to the conductive material.
2. The assembly of claim 1:
wherein the conductive terminal includes a solderless material;
wherein an outer boundary of the conductive terminal tapers laterally outwardly in a direction away from the second major surface; and
wherein the assembly further comprises a solder ball attached to the conductive terminal, the solder ball being in contact with the tapered outer boundary of the conductive terminal.
3. The assembly of claim 1 wherein the conductive terminal has an outermost boundary at the terminal portion with a cross-sectional area greater than a cross-sectional area of the opening at the terminal portion.
4. The assembly of claim 1 wherein the conductive material is a solderless material.
5. The assembly of claim 1 wherein the cylindrical portion does not have a scalloped internal surface.
6. The assembly of claim 1 wherein the conductive material is at least 90% copper.
7. The assembly of claim 1 wherein an outer boundary of the conductive terminal projects laterally outwardly in a direction away from the outermost surface of the semiconductor substrate.
8. The assembly of claim 1 wherein the conductive material has a concave, cup-shaped void.
9. The assembly of claim 1 wherein the substrate material forms a portion of a first semiconductor die, and wherein the conductive material is at least 90% copper and wherein the semiconductor assembly further comprises a second semiconductor die having a conductive terminal electrically connected to the conductive terminal of the first semiconductor die.
10. The assembly of claim 1 wherein the conductive terminal has a generally spherical shape intersecting the second major surface of the substrate material and beyond the outermost surface of the semiconductor substrate.
11. The assembly of claim 1 wherein the terminal portion has generally flat walls aligned with crystal planes of the semiconductor substrate material.
12. The assembly of claim 1, further comprising:
a seed layer on an outer boundary of the conductive material at the terminal portion; and
a barrier layer on an outer boundary of the seed layer at the terminal portion, wherein the seed layer and the barrier layer project outward beyond the outermost surface of the semiconductor substrate, and wherein the conductive terminal comprises the seed layer, the barrier layer, and the conductive material.
13. A semiconductor assembly, comprising,
a semiconductor substrate including a substrate material having a first major surface, a second major surface, and an opening extending from the first major surface to the second major surface, the opening including a generally cylindrical portion extending generally normal to the first major surface, the cylindrical portion having a generally smooth, uniform surface, the opening further including a terminal portion extending transverse to the cylindrical portion and intersecting the second major surface, the terminal portion having a width generally parallel to the plane of the first major surface that is greater than a corresponding width of the cylindrical portion;
a single, uniform, homogeneous volume of conductive material disposed in both the cylindrical portion and the terminal portion of the opening, the conductive material forming a conductive path in the cylindrical portion and at least a portion of a conductive terminal at the terminal portion, wherein the conductive terminal has an outermost boundary that projects laterally outward beyond an outermost surface of the semiconductor substrate substantially parallel to the second major surface;
a microelectronic element formed in the substrate material and electrically coupled to the conductive material; a seed layer on an outer boundary of the conductive material at the terminal portion; and a barrier layer on an outer boundary of the seed layer at the terminal portion, wherein the seed layer and the barrier layer project outward beyond the outermost surface of the semiconductor substrate, and wherein the conductive terminal comprises the seed layer, the barrier layer, and the conductive material.
Description
TECHNICAL FIELD

The present disclosure is directed generally to semiconductor substrates with unitary vias and via terminals, and associated systems and methods.

BACKGROUND

Packaged semiconductor dies, including memory chips, microprocessor chips, and imager chips, typically include a semiconductor die mounted to a substrate and encased in a plastic protective covering. The die includes functional features, such as memory cells, processor circuits, imager devices, and interconnecting circuitry. The die also typically includes bond pads electrically coupled to the functional features. The bond pads are electrically connected to pins or other types of terminals that extend outside the protective covering for connecting the die to busses, circuits, and/or other microelectronic assemblies.

Market pressures continually drive manufacturers to reduce the size of semiconductor die packages and to increase the functional capacity of such packages. One approach for achieving these results is to stack multiple semiconductor dies in a single package. The dies in such a package are typically interconnected by electrically coupling the bond pads of one die in the package with bond pads of other die(s) in the package.

A variety of approaches have been used to electrically interconnect the dies within a multi-die package. One existing approach is to use solder balls connected directly between the bond pads of neighboring dies. Another approach is to fuse “bumps” on the bond pads of neighboring dies. However, the foregoing processes can suffer from several drawbacks. For example, the foregoing structures typically require a multitude of steps to form the vias, the conductive material in the vias, and the bond pads or other connecting structures that form the connections between stacked dies. Each of the steps takes time and accordingly adds to the cost of manufacturing the packaged device. In addition, in at least some cases, each of the processes can elevate the temperature of the die, which can consume a significant portion of the total thermal budget allotted to the package for processing. As a result, there remains a need for improved techniques for interconnecting dies within a semiconductor package.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a partially schematic, side cross-sectional view of a package configured in accordance with an embodiment of the disclosure.

FIGS. 2A-2I are partially schematic, side cross-sectional views of semiconductor substrates undergoing processing in accordance with an embodiment of the disclosure.

FIG. 2J is a partially schematic, side cross-sectional view of two semiconductor substrates stacked in accordance with a particular embodiment of the disclosure.

FIG. 2K is a partially schematic, side cross-sectional view of two semiconductor substrates stacked in accordance with another embodiment of the disclosure.

FIGS. 3A-3F are partially schematic, side cross-sectional illustrations of representative methods for forming substrate terminals having shapes in accordance with further embodiments of the invention.

FIG. 4 is a partially schematic, side cross-sectional illustration of a process for disposing a protective layer on a semiconductor substrate in accordance with a particular embodiment of the disclosure.

FIG. 5 is a schematic illustration of a system that can include one or more packages configured in accordance-with several embodiments of the disclosure.

DETAILED DESCRIPTION

Several embodiments of the present disclosure are described below with reference to packaged semiconductor devices and assemblies, and methods for forming packaged semiconductor devices and assemblies. Many details of certain embodiments are described below with reference to semiconductor dies. The term “semiconductor die” is used throughout to include a variety of articles of manufacture, including, for example, individual integrated circuit dies, imager dies, sensor dies, and/or dies having other semiconductor features. Several of the processes described below may be used to connect an individual die to another individual die, or to connect an individual die to a wafer or portion of a wafer, or to bond a wafer or portion of a wafer to another wafer or portion of a wafer. The wafer or wafer portion (e.g., wafer form) can include an unsingulated wafer or wafer portion, or a repopulated carrier wafer. The repopulated carrier wafer can include an adhesive material (e.g., a flexible adhesive) surrounded by a generally rigid frame having a perimeter shape comparable to that of an unsingulated wafer, with singulated elements (e.g., dies) carried by the adhesive. The term “semiconductor substrate” is used throughout to include the foregoing articles of manufacture in any of the foregoing configurations.

Many specific details of certain embodiments are set forth in FIGS. 1-5 and the following text to provide a thorough understanding of these embodiments. Several other embodiments can have configurations, components, and/or processes different than those described in this disclosure. A person skilled in the relevant art, therefore, will appreciate that additional embodiments may be practiced without several of the details and/or features of the embodiments shown in FIGS. 1-5, and/or with additional details and/or features.

FIG. 1 is a partially schematic, side cross-sectional view of a semiconductor assembly 100 that includes a semiconductor package 106 configured in accordance with an embodiment of the disclosure. The package 106 can include a support member 102 that carries multiple semiconductor substrates (e.g., semiconductor dies 101) that are interconnected electrically and mechanically with each other. Accordingly, each of the semiconductor dies 101 can include die terminals 110 that are connected to corresponding die terminals 110 of the neighboring die 101. The support member 102 can include support member terminals 107 that are connected to the die terminals 110 of one or more of the semiconductor dies 101. The support member terminals 107 are connected via lines internal to the support member 102 to package terminals 104. The entire package 106 (or portions of the package 106) can be surrounded by an encapsulant 103 to protect the semiconductor dies 101 and the associated connections between the dies 101, while the package terminals 104 remain exposed for connecting the package 106 to external devices, such as printed circuit boards and/or other circuit elements. The following discussion describes additional features of the terminals 110 used to connect neighboring dies 101 to each other, and associated methods for forming such terminals.

FIG. 2A is a partially schematic, side cross-sectional illustration of a semiconductor substrate 120 (e.g., a wafer, wafer portion, die, or other substrate) that includes a substrate material 121 having a first major surface 123 and an oppositely-facing second major surface 124. As shown in FIG. 2A, multiple vias 140 have been formed so as to extend into the first surface 123 along corresponding via axes V. A bond pad can be added to the semiconductor substrate 120 after the vias 140 are formed (as described later with reference to FIG. 2J), or the vias 140 can penetrate through pre-formed bond pads at the first surface 123. Individual vias 140 can be axisymmetric with respect to the corresponding via axis V (e.g., each via 140 can have a circular cross-sectional shape), or the vias 140 can have other cross-sectional shapes that closely surround the via axis V (e.g., a low aspect ratio elliptical shape). The vias 140 can be formed using techniques such as aniosotropic etching techniques. Each via 140 can include one or more sidewall surfaces 141 and an end surface 142. In some embodiments, the sidewall surfaces 141 can be scalloped, e.g., by using as stepwise Bosch etching process. In such cases, the vias 140 can be post-processed (e.g., using SF6 or another isotropic etchant) to smooth the scallops. However, in particular embodiments, the etching process used to form the vias 140 can be a generally continuous process that produces generally smooth, unscalloped sidewall surfaces 141. The sidewall surfaces 141 can accordingly have a generally smooth, cylindrical shape. Suitable processes for forming the via 140 include a wet etch process, a steady state dry etch process, laser drilling, micro-electrodischarge machining, microbead blasting, and others.

The vias 140 are used to house conductive structures that are connected to semiconductor features (not shown in FIG. 2A) within the substrate material 121, and terminals used to electrically connect the semiconductor substrate 120 to other semiconductor substrates and/or support members. The following Figures describe further details of the formation of these terminals.

As shown in FIG. 2B, a protective layer 122 has been disposed on the semiconductor substrate 120 so as to cover the sidewall surfaces 141 and end surfaces 142 of the vias 140. The protective layer 122 can include a C4F8 passivation layer, CVD-deposited oxides or nitrides, or other suitable materials. In FIG. 2C, the portions of the protective layer 122 covering the end surfaces 142 of the individual vias 140 have been removed, so as to re-expose the end surfaces 142. The portions of the protective layer 122 over the end surfaces 142 can be selectively removed, e.g., without removing the portions of the protective layer 122 adjacent to the sidewall surfaces 141. For example, an anisotropic removal process can be used to selectively remove this material. A representative removal process includes a spacer etch, or other etch process that selectively removes horizontally-oriented materials.

In FIG. 2D, terminal openings 111 have been formed at the ends of individual vias 140. In general, the terminal openings 111 are formed without affecting the shapes of the vias 140 above, due to the protective function performed by the protective layer 122 that covers the sidewall surfaces 141. The terminal openings 111 can have shapes different than those of the via 140. For example, while the vias 140 may have a generally cylindrical shape, the terminal openings 111 can have a generally spherical shape. The terminal openings 111 can also extend laterally beyond the width of the via 140, for example, by using an isotropic removal process as opposed to an anisotropic removal process. Further representative techniques for forming such structures are included in an article titled “Micromachining of Buried Micro Channels in Silicon” (de Boer, et al., Journal of Micro Electromechanical Systems, Vol. 9, No. 1, March 2000), incorporated herein by reference. After the terminal openings 111 are formed, the portions of the protective layer 122 extending into and between the vias 140 are removed prior to subsequent steps for applying conductive material in both the via 140 and the terminal opening 111, as described below.

FIG. 2E illustrates the semiconductor substrate 120 after additional materials have been disposed thereon. For example, as shown in FIG. 2E, a dielectric layer 125 has been disposed on the first surface 123 of the substrate material 121, as well as in the vias 140 and the terminal openings 111. A barrier layer 126 has been disposed on the dielectric layer 125, and an optional seed layer 127 has been disposed on the barrier layer 126. Suitable dielectric materials include TEOS, parylene, nitrides, oxides and/or other suitable materials. Suitable barrier layer materials include tungsten, titanium nitride, tantalum, compounds of the foregoing materials and/or other suitable materials. In some embodiments, the seed layer 127 is used to facilitate the process of filling the vias 140 and the terminal openings 111. In other embodiments, a direct on barrier plating process can be used to achieve the same result.

FIG. 2F illustrates the semiconductor substrate 120 after a conductive material 112 has been disposed in the vias 140 and the terminal openings 111. The conductive material 112 can be disposed in both the vias 140 and the terminal openings 111 using a bottom-up deposition process or other suitable process to form a unitary conductive structure 119 that fills both the vias 140 and the terminal openings 111. This single-step process can be performed without realigning the semiconductor substrate 120 between the operation of forming the conductive material 112 in the via 140 and the operation of forming the conductive material 112 in the terminal opening 111. This operation can also be performed without the need to form a vent hole at the end of the via 140, which further reduces processing time.

Suitable techniques for introducing the conductive material 112 into the via 140 and terminal opening 111 include but are not limited to pulsed chemical vapor deposition (pCVD), ionic physical vapor deposition (iPVD), atomic layer deposition (ALD), electro-grafting, bottom-up ECD plating, and electroless plating. Suitable conductive materials include copper, aluminum, tungsten, gold and/or alloys of the foregoing constituents. In particular embodiments, the conductive material 112 is selected to be electrolytic copper, which has enhanced purity when compared to electrolessly disposed materials, and when compared to solder. For example, the conductive material can be at least 90% copper and in some cases, 99% copper.

In still further particular embodiments, the conductive material 112 is solder free, e.g., it includes no solder or no more than a trace amount of solder. It is expected that such a material selection can produce conductive structures with enhanced conductivity and/or structural characteristics.

In still further embodiments, the conductive material 112 can be preformed (at least in part) before being disposed in the via 140 and the terminal opening 111. For example, the conductive material 112 can include a pre-formed wire that is inserted into the via 140 using a wire-bonding process. In this case, the process described below for removing material from the second surface 124 of the substrate 120 can be performed before rather than after the conductive material 112 is disposed in the via 140.

When the conductive material 112 has been introduced into the via 140 and the terminal opening 111 using a build-up technique (e.g., plating), the process can next include removing material from the second surface 124 to expose the conductive material 112 in the terminal opening 111. For example, in a particular embodiment, the substrate material 121 can be removed (e.g., in a backgrinding or other removal process) up to the dashed line L shown in FIG. 2F.

FIG. 2G illustrates a portion of the substrate 120 shown in FIG. 2F, including a single via 140 after the substrate material 121 has been removed from the second surface 124. As shown in FIG. 2G, removing the substrate material 121 can expose the conductive material 112 to form a first terminal 110 a. The resulting first terminal 110 a can have a width W2 that is greater than a corresponding width W1 of the via 140. Accordingly, the first terminal 110 a can include additional exposed surface area for connecting to adjacent structures. A passivation layer 128 can then be disposed on the second surface 124 to protect the second surface 124 after the foregoing backgrinding operation.

The dimensions of the via 140 and the first terminal 110 a can be selected depending upon characteristics of the substrate 120 to form highly conductive, compact electrical paths. For example, for an initially 800p-thick substrate 120, the via 140 can be selected to have a depth D1 of less than 100μ (e.g., 50μ or 25μ). The remaining substrate material 121 can be background, as described above. The width W1 can be 20μ or less (e.g., 10μ or 5μ).

In a particular aspect of an embodiment shown in FIG. 2G, the first terminal 110 a can have an exposed conductive surface 118 that is generally flush with the second surface 124 of the substrate material 121. Accordingly, the resulting conductive structure 119 in the via 140 and the terminal opening 111 extends through the substrate material 121 from the first surface 123 to the second surface 124. In other embodiments, additional substrate material 121 can be removed so as to further expose the surfaces of the first terminal 110 a, e.g., to form a “bump.” For example, FIG. 2H illustrates a second terminal 110 b that is formed by removing additional material from the second surface 124 of the substrate 120 in the regions surrounding the second terminal 110 b. The substrate material 121 can be removed using a wet etch process, or a plasma dry etch process (e.g., with an SF6O2 chemistry). The dielectric material 125 in this region can also be removed. This process can produce electrically conductive, outwardly facing surfaces 113 that face laterally outwardly from the via axis V, and project axially away from the second surface 124 in a tapered fashion. Accordingly, the outwardly facing surfaces 113 can increase the exposed surface area of the second terminal 110 b (relative to the cross-sectional area of the second terminal 110 b available for establishing connections with adjacent devices. In other embodiments, the outwardly facing surfaces 113 can project or otherwise extend axially into or against the structures of adjacent devices to establish electrical and physical connections.

The second terminal 110 b can include conductive materials in addition to the conductive material 112 that fills the via 140. For example, the second terminal 110 b can include a flash coating 114 that is applied to the exposed surface 118. The flash coating 114 can facilitate electrical connections with adjacent devices. In a particular embodiment, the flash coating can include tin, gold, indium or other suitable electrically conductive materials. In general, the flash coating 114 can be applied using an electroless processing which does not require the use of a mask.

FIG. 2I illustrates a representative third terminal 110 c that also includes conductive materials in addition to the conductive fill material 112. In this particular embodiment, the additional material can include a solder ball 115. The solder ball 115 can contact the downwardly facing exposed surface 118 of the conductive material 112, as well as the outwardly facing surfaces 113. This arrangement can give the terminal 110 c increased surface area for connecting to adjacent structures. Because the solder ball 115 extends around the outwardly facing surfaces 113, it can provide both increased physical and electrical continuity with the conductive material 112.

FIG. 2J schematically illustrates a portion of a semiconductor assembly 100 that includes a first die 101 a electrically connected to a second die 101 b in a stacked arrangement. The dies 101 a, 101 b can include buried microelectronic elements 130 (e.g., capacitors or transistors) connected to bond pads 132 with lines 131. The bond pads 132 are in turn electrically connected to the conductive structures 119 in the vias 140. The first die 101 a can include first terminals 110 a generally similar in configuration to those described above with reference to FIG. 2G. The second die 101 b can include second terminals 110 b generally similar in configuration to those described above with reference to FIG. 2H. The two dies 101 a, 101 b can be brought together with the first terminals 110 a contacting the second terminals 110 b. In one embodiment, the exposed surfaces 118 of individual first terminals 110 a can contact the exposed surfaces 118 of corresponding individual second terminals 110 b. In another embodiment, one or both of the first and second terminals 110 a, 110 b can include a flash coating 114 (FIG. 2H) that contacts the other terminal. The terminals 110 a, 110 b can be connected using heat, pressure, and/or other forms of energy (e.g., ultrasonic energy) to fuse corresponding first and second terminals 110 a, 110 b to each other. For example, the terminals 110 a, 110 b can be attached without reflowing the terminal constituents (e.g., by applying pressure, or pressure in combination with ultrasonic energy). Suitable representative processes include ultrasonic, thermal-sonic and/or thermal-compression processes. In one embodiment, the second terminals 110 b can project axially beyond the corresponding second surface 124 of the second die 101 b to engage with the corresponding first terminals 110 a of the first die 101 a. In some cases, a gap 105 may remain between the dies 101 a, 101 b in the interstices among the terminals 110 a, 110 b after the attachment process is complete. The gap 105 can be filled with an underfill material or other suitable material, e.g., prior to encapsulating the stacked structure. In particular embodiments, the completed assembly can have a configuration generally similar to that shown in FIG. 1.

In FIG. 2J, the first and second dies 101 a, 101 b are stacked so that the exposed surfaces 118 of the first terminals 110 a contact the exposed terminals 118 of the second terminals 110 b. In other embodiments, the relative orientations of one or both dies 101 a, 101 b can be inverted. For example, in one embodiment, both dies 101 a, 101 b can be inverted (compared to the orientation shown in FIG. 3J) so that the bond pads 132 of the first die 101 a contact corresponding bond pads 132 of the second die 101 b, and the exposed surfaces 118 of each die 101 a, 101 b face outwardly (e.g., upwardly and downwardly in FIG. 2J).

In another example, shown in FIG. 2K, the orientation of the second die 101 b is inverted relative to the orientation shown in FIG. 2J, while the first die 101 a retains its orientation. Accordingly, the exposed surfaces 118 of the first die 101 a contact the bond pads 132 of the second die 101 b. This orientation can be used to stack more than two dies in particular embodiments. In other embodiments, the foregoing orientations described above with reference to FIGS. 2J-2K can be combined, e.g., when the assembly includes more than two stacked dies. For example, a third die can be stacked on top of the second die 101 b shown in FIG. 2J, with exposed surfaces of the third die terminals in contact with the bond pads 132 of the second die 101 b.

One feature of at least some of the foregoing embodiments described above with reference to FIGS. 1-2K is that the conductive path through the via 140 can be formed concurrently with forming the terminal 110 at the end of the via 140. As a result, the overall conductive structure 119 within the via 140 and at the terminal 110 can be generally unitary and homogeneous. In particular, the same conductive material can fill the via 140 and the terminal opening 111, without forming a material boundary within the overall structure 119. This process can accordingly produce an overall conductive structure 119 having an increased continuity when compared with existing structures that have boundaries between vias and corresponding bond pads. As a result, these structures can have increased reliability when compared to existing structures.

In addition, the via 140 and the terminal 110 can be formed without the need for using a mask/lithography process at the second surface 124, which is typically used to form a bond pad or bump at the end of a via. Instead, the structure can be formed using less time-consuming and less expensive deposition and selective etch processes. This in turn can reduce the amount of time needed to form the conductive structure 119 and therefore the cost of the die or other product in which the via is formed.

Another feature of at least some embodiments of the foregoing processes is that the semiconductor substrates 120 need not be realigned between the operation of filling the via 140 and the operation of forming the terminal 110. Instead, as discussed above, both structures can be formed as part of the same operation. Still further, as discussed above, the via 140 can be formed using processes that produce non-scalloped, generally uniform, flat, cylindrical walls. For example, a continuous, anisotropic etch process can be used to produce the via 140. As a result, the via 140 can be less time consuming to form than vias that use alternating etch processes, and can use the limited volume available in the substrate 120 more efficiently than processes that produce contoured and/or non-uniform walls.

FIGS. 3A-3F illustrate representative processes for forming conductive terminals having shapes in accordance with further embodiments of the disclosure. Referring first to FIG. 3A, a via 140 is formed in a substrate 120 using processes generally similar to those described above. A terminal opening 311 can then be formed at the bottom of the via 140, using processes that may form shapes other than the generally spherical shape described above. For example, an anisotropic etch process can be used to remove substrate material 121 in a manner that is aligned with crystal planes of the substrate material 121, producing a terminal opening 311 having generally flat sidewalls. Representative processes for forming such openings are discussed in de Boer et al. (March 2000), previously incorporated by reference.

In FIG. 3B, a dielectric layer 125, a barrier layer 126, and an optional seed layer 127 have been disposed in the via 140 and the terminal opening 311. The via 140 and the terminal opening 311 have then been filled with a conductive material 112 using any of the foregoing processes described above with reference to FIG. 2F. Material from the second surface 124 of the substrate 120 is then removed to form a first terminal 310 a having an exposed surface 318.

FIG. 3C illustrates a second terminal 310 b formed by removing additional substrate material 121 in a manner generally similar to that described above with reference to FIG. 2H. Accordingly, the second terminal 310 b can include outwardly facing surfaces 313 that project beyond the second surface 124. The second terminal 310 b can include an additional conductive material, for example, a flash coating (as discussed above with reference to FIG. 2H) or a solder ball (as discussed above with reference to FIG. 2I).

FIG. 3D illustrates a third terminal 310 c configured in accordance with another embodiment of the disclosure. In this embodiment, the backgrinding process has been halted prior to removing any of the conductive material 112 within the terminal opening 311. The substrate material 121 has been selectively removed from around the conductive material 112 in the terminal opening 311 to form the illustrated structure. For example, the substrate 120 can be exposed to an etchant that preferentially removes the substrate material 121 (and possibly the dielectric material 125 and the barrier layer 126) while not removing the conductive material 112 and optionally the seed layer 127. This arrangement can produce a third terminal 310 c that projects beyond the second surface 124 by an additional amount and provides an additional volume of conductive material 112 at the third terminal 310 c for connecting the substrate 120 to adjacent structures.

FIGS. 3E and 3F illustrate another process for forming a terminal in accordance with another embodiment of the disclosure. As shown in FIG. 3E, in some cases, the conductive material 112 applied to the surfaces of the terminal opening 311 and the via 140 may leave a void 316, e.g., in the terminal opening 311. While voids are generally undesirable in most semiconductor processing operations, the void 316 shown in FIG. 3E may be readily accommodated and/or accounted for. For example, as shown in FIG. 3F, when the substrate material 121 is removed from the second surface 124 to uncover the exposed surface 318, the void 316 is also exposed. Optionally, the void 316 can then be filled with a second conductive material 317. For example, the void 316 can be filled or partially filled with a flash coating, and the shape and additional surface area of the void 316 can facilitate a strong physical and electrical connection with the coating. In another embodiment, the void 316 can be left intact and can be used to receive conductive material from a corresponding terminal structure of a neighboring (e.g., stacked) substrate. For example, the void 316 can receive and connect with a solder ball or other terminal (e.g., the second terminal 110 b or the third terminal 110 c shown in FIGS. 2H, 2I respectively) from a neighboring substrate.

FIG. 4 illustrates another embodiment for forming the vias 140 in the substrate 120. In this embodiment, a protective layer 422 is applied to the first surface 123 of the substrate 120, and to the sidewall surfaces 141 of the vias 140. In some cases, the via 140 may have a high aspect ratio (e.g., a relatively long length and/or relatively small width), which can cause the protective layer 422 to more readily attach to the sidewall surfaces 141 than to the end surface 142. As a result, the end surface 142 may receive little or no protective material 422. This arrangement can eliminate the need to remove the protective layer 422 from the end surface 142 and instead, a terminal opening can be formed directly after applying the protective layer 422. As a result, embodiments of this process are expected to reduce the amount of time required to form the conductive terminals, and can thereby reduce the cost of forming the dies or other end products from the substrate 120.

Any of the semiconductor packages resulting from joining the substrates in accordance with the methods described above with reference to FIGS. 1-4 can be incorporated into a myriad of larger and/or more complex systems, a representative example of which is a system 500 shown schematically in FIG. 5. The system 500 can include a processor 552, a memory 554 (e.g., SRAM, DRAM, flash memory and/or other memory device), input/output devices 556 (e.g., a sensor and/or transmitter), and/or other subsystems or components 558. Semiconductor packages having any one or a combination of the features described above with reference to FIGS. 1-4 may be included in any of the devices shown in FIG. 5. The resulting system 500 can perform any of a wide variety of computing, processing, storage, sensing, imaging, and/or other functions. Accordingly, the representative system 500 can include without limitation, computers and/or other data processors, for example, desktop computers, laptop computers, Internet appliances, hand-held device (palm-top computers, wearable computers, cellular or mobile phones, personal digital systems, music players, cameras, etc.), multi-processor systems, processor-based or programmable consumer electronics, network computers and mini-computers. Other representative systems 500 may be housed in a single unit or distributed over multiple interconnected units (e.g., through a communication network). The components of the system 500 can accordingly include local and/or remote storage devices, and any of a wide variety of computer-readable media.

From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described for purposes of illustration, but that the foregoing systems and methods may have other embodiments as well. For example, while certain of the embodiments described above were described in the context of semiconductor packages having two or three stacked dies, in other embodiments, the packages can include other numbers of stacked dies. In some cases, the via 140 may not extend completely through the substrate, e.g., if the substrate forms the topmost die shown in FIG. 1. In such cases, the via 140 may still be used for thermal purposes, e.g., to act as a heat conduit or heat sink. The same processes described above can be used to form the via and terminal, but the terminal is not exposed at the second surface of the substrate. Such substrates can also be used for planar (unstacked) dies. In other embodiments, the terminal can be exposed to connect the planar (unstacked) die to PCBs or other support members or substrates. Many of the processes for forming the foregoing connected structures and connecting the mating structures of different semiconductor substrates can be carried out at the die level (e.g., after singulating the dies), the wafer level (e.g., before singulating the dies) and/or other processing stages.

Certain features described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, the process of coating the sidewall surfaces described above with reference to FIG. 4 can be applied to vias formed in association with the conductive structures shown in any of the other Figures. The process of removing substrate material from around the entire terminal opening, as shown in FIGS. 3C and 3D, can be applied to the terminal openings shown in FIGS. 2E or 2H. Further, while features and results associated with certain embodiments have been described in the context of those embodiments, other embodiments may also exhibit such features and results, and not all embodiments need necessarily exhibit such features and results. Accordingly, the disclosure can include other embodiments not expressly shown or described above.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5646057Sep 1, 1995Jul 8, 1997Taiwan Semiconductor Manufacturing CompanyMethod for a MOS device manufacturing
US5682062Jun 5, 1995Oct 28, 1997Harris CorporationSystem for interconnecting stacked integrated circuits
US5786238Feb 13, 1997Jul 28, 1998Generyal Dynamics Information Systems, Inc.Laminated multilayer substrates
US5870823Nov 27, 1996Feb 16, 1999International Business Machines CorporationMethod of forming a multilayer electronic packaging substrate with integral cooling channels
US5998240May 4, 1998Dec 7, 1999Northrop Grumman CorporationMethod of extracting heat from a semiconductor body and forming microchannels therein
US6114240 *Feb 12, 1999Sep 5, 2000Micron Technology, Inc.Method for fabricating semiconductor components using focused laser beam
US6235554May 24, 1999May 22, 2001Micron Technology, Inc.Method for fabricating stackable chip scale semiconductor package
US6457515Aug 6, 1999Oct 1, 2002The Ohio State UniversityTwo-layered micro channel heat sink, devices and systems incorporating same
US6472293Nov 30, 2001Oct 29, 2002Oki Electric Industry Co., Ltd.Method for manufacturing an interconnect structure for stacked semiconductor device
US6521516Jun 29, 2001Feb 18, 2003Intel CorporationProcess for local on-chip cooling of semiconductor devices using buried microchannels
US6582987Dec 14, 2001Jun 24, 2003Electronics And Telecommunications Research InstituteMethod of fabricating microchannel array structure embedded in silicon substrate
US6599436Dec 6, 2001Jul 29, 2003Sandia CorporationFormation of interconnections to microfluidic devices
US6606251Feb 7, 2002Aug 12, 2003Cooligy Inc.Power conditioning module
US6608371 *Jul 11, 2001Aug 19, 2003Seiko Epson CorporationSimple electrical connection of miniature, stacked chips
US6699787 *Jun 6, 2002Mar 2, 2004Shinko Electric Industries Co., Ltd.Semiconductor device and method of production of same
US6768205 *Mar 1, 2002Jul 27, 2004Fujitsu LimitedThin-film circuit substrate
US6825557Dec 17, 2002Nov 30, 2004Intel CorporationLocalized backside chip cooling with integrated smart valves
US6828175Jun 10, 2003Dec 7, 2004Micron Technology, Inc.Semiconductor component with backside contacts and method of fabrication
US6873054Apr 17, 2003Mar 29, 2005Seiko Epson CorporationSemiconductor device and a method of manufacturing the same, a circuit board and an electronic apparatus
US6946325Aug 28, 2003Sep 20, 2005Micron Technology, Inc.Methods for packaging microelectronic devices
US7083425Aug 27, 2004Aug 1, 2006Micron Technology, Inc.Slanted vias for electrical circuits on circuit boards and other substrates
US7109068 *May 26, 2005Sep 19, 2006Micron Technology, Inc.Through-substrate interconnect fabrication methods
US7262495Oct 7, 2004Aug 28, 2007Hewlett-Packard Development Company, L.P.3D interconnect with protruding contacts
US7271086Sep 1, 2005Sep 18, 2007Micron Technology, Inc.Microfeature workpieces and methods of forming a redistribution layer on microfeature workpieces
US7317256Jun 1, 2005Jan 8, 2008Intel CorporationElectronic packaging including die with through silicon via
US7425499Aug 24, 2004Sep 16, 2008Micron Technology, Inc.Methods for forming interconnects in vias and microelectronic workpieces including such interconnects
US7485969Sep 1, 2005Feb 3, 2009Micron Technology, Inc.Stacked microelectronic devices and methods for manufacturing microelectronic devices
US7514298 *Feb 1, 2007Apr 7, 2009Japan Circuit Industrial Co., Ltd.Printed wiring board for mounting semiconductor
US7524753 *Jun 15, 2006Apr 28, 2009Shinko Electric Industries Co., Ltd.Semiconductor device having through electrode and method of manufacturing the same
US7553699Aug 31, 2006Jun 30, 2009Micron Technology, Inc.Method of fabricating microelectronic devices
US7602047 *Nov 6, 2007Oct 13, 2009Samsung Electronics Co., Ltd.Semiconductor device having through vias
US7759800 *May 9, 2006Jul 20, 2010Micron Technology, Inc.Microelectronics devices, having vias, and packaged microelectronic devices having vias
US7786008 *Dec 12, 2008Aug 31, 2010Stats Chippac Ltd.Integrated circuit packaging system having through silicon vias with partial depth metal fill regions and method of manufacture thereof
US20020190371Jun 6, 2002Dec 19, 2002Shinko Electric Industries Co., Ltd.Semiconductor device and method of production of same
US20030045085Mar 1, 2002Mar 6, 2003Fujitsu LimitedThin-film circuit substrate and manufacturing method thereof, and a via formed substrate and manufacturing method thereof
US20030119279Oct 15, 2002Jun 26, 2003ZiptronixThree dimensional device integration method and integrated device
US20030119308Dec 20, 2001Jun 26, 2003Geefay Frank S.Sloped via contacts
US20040016942 *Apr 17, 2003Jan 29, 2004Seiko Epson CorporationSemiconductor device and a method of manufacturing the same, a circuit board and an electronic apparatus
US20040048459 *Sep 8, 2003Mar 11, 2004Robert PattiInterlocking conductor method for bonding wafers to produce stacked integrated circuits
US20040141536Sep 24, 2003Jul 22, 2004Honeywell International Inc.Optoelectronic devices and methods of production
US20040214373Apr 22, 2003Oct 28, 2004Tongbi JiangPackaged microelectronic devices and methods for packaging microelectronic devices
US20040219765Dec 30, 2003Nov 4, 2004Rafael ReifMethod of forming a multi-layer semiconductor structure incorporating a processing handle member
US20050046002 *Jul 15, 2004Mar 3, 2005Kang-Wook LeeChip stack package and manufacturing method thereof
US20050067620Aug 9, 2004Mar 31, 2005International Business Machines CorporationThree dimensional CMOS integrated circuits having device layers built on different crystal oriented wafers
US20050136634Dec 17, 2003Jun 23, 2005Sergey SavastioukIntegrated circuits and packaging substrates with cavities, and attachment methods including insertion of protruding contact pads into cavities
US20050140921Oct 14, 2004Jun 30, 2005Lee Sang S.Manufacturing line of liquid crystal display device and fabricating method thereof
US20050275048Jun 14, 2004Dec 15, 2005Farnworth Warren MMicroelectronic imagers and methods of packaging microelectronic imagers
US20060003566Jun 30, 2004Jan 5, 2006Ismail EmeshMethods and apparatuses for semiconductor fabrication utilizing through-wafer interconnects
US20060043599 *Sep 2, 2004Mar 2, 2006Salman AkramThrough-wafer interconnects for photoimager and memory wafers
US20060223301Dec 16, 2005Oct 5, 2006Serge VanhaelemeerschFormation of deep via airgaps for three dimensional wafer to wafer interconnect
US20060252254Feb 9, 2006Nov 9, 2006Basol Bulent MFilling deep and wide openings with defect-free conductor
US20060278979 *Jun 9, 2005Dec 14, 2006Intel CorporationDie stacking recessed pad wafer design
US20060289967Jun 22, 2005Dec 28, 2006John HeckThrough-wafer vias and surface metallization for coupling thereto
US20060289968Jun 28, 2005Dec 28, 2006Micron Technology, Inc.Conductive interconnect structures and formation methods using supercritical fluids
US20060290001 *Jun 28, 2005Dec 28, 2006Micron Technology, Inc.Interconnect vias and associated methods of formation
US20060292877 *Jun 28, 2005Dec 28, 2006Lake Rickie CSemiconductor substrates including vias of nonuniform cross section, methods of forming and associated structures
US20070007639 *Jun 22, 2006Jan 11, 2007Motohiko FukazawaSemiconductor device, manufacturing method for semiconductor device, and electronic equipment
US20070020805Sep 27, 2006Jan 25, 2007Kim Sarah EEtch stop layer for silicon (Si) via etch in three-dimensional (3-D) wafer-to-wafer vertical stack
US20070111386Nov 21, 2006May 17, 2007Kim Sarah EProcess of vertically stacking multiple wafers supporting different active integrated circuit (IC) devices
US20070222050Dec 29, 2006Sep 27, 2007Seung Hyun LeeStack package utilizing through vias and re-distribution lines
US20070267138Aug 3, 2007Nov 22, 2007White George EMethods for Fabricating Three-Dimensional All Organic Interconnect Structures
US20070293040Apr 30, 2007Dec 20, 2007Asm Nutool, Inc.Filling deep features with conductors in semiconductor manufacturing
US20080006850Jul 10, 2006Jan 10, 2008Innovative Micro TechnologySystem and method for forming through wafer vias using reverse pulse plating
US20080050904Aug 28, 2006Feb 28, 2008Micron Technology, Inc.Methods for attaching microfeature dies to external devices
US20080057620 *Aug 30, 2006Mar 6, 2008Micron Technology, Inc.Redistribution layers for microfeature workpieces, and associated systems and methods
US20080079120Oct 3, 2006Apr 3, 2008Innovative Micro TechnologyInterconnect structure using through wafer vias and method of fabrication
US20080079121Dec 29, 2006Apr 3, 2008Kwon Whan HanThrough-silicon via and method for forming the same
US20080081386Sep 29, 2006Apr 3, 2008Raravikar Nachiket RThrough-die metal vias with a dispersed phase of graphitic structures of carbon for reduced thermal expansion and increased electrical conductance
US20080081398Oct 2, 2007Apr 3, 2008Fionix Inc.Cap Wafer for Wafer Bonded Packaging and Method for Manufacturing the Same
US20080237881Mar 30, 2007Oct 2, 2008Tony DambrauskasRecessed solder socket in a semiconductor substrate
US20090305502Jun 2, 2009Dec 10, 2009Ho-Jin LeeMethods of Forming Integrated Circuit Chips Having Vertically Extended Through-Substrate Vias Therein and Chips Formed Thereby
EP1415950A2Oct 15, 2003May 6, 2004Institute of MicroelectronicsWafer-level package for micro-electro-mechanical systems
KR100733467B1 Title not available
WO2003065450A2Dec 18, 2002Aug 7, 2003Tru Si Technologies IncIntegrated circuits with backside contacts and methods for their fabrication
WO2004109770A2May 26, 2004Dec 16, 2004Oticon AsThrough wafer via process and amplifier with through wafer via
Non-Patent Citations
Reference
1De Boer, M.J. et al., "Micromachining of Buried Micro Channels in Silicon," Journal of Microelectromechanical Systems, vol. 9, No. 1, Mar. 2000, IEEE, ISSN: 1057-7157.
2International Search Report and Written Opinion issued Feb. 25, 2010 in International Application No. PCT/US2009/060434.
3Jang, D.M. et al., "Development and Evaluation of 3-D SiP with Vertically Interconnected Through Silicon Vias (TSV)," Proceedings of the 57th Electronic Components and Technology Conference, IEEE, May 29, 2007-Jun. 1, 2007, pp. 847-852, ISBN: 1-4244-0985-3.
4Kim, J.Y. et al., "S-RCAT (Sphere-shaped-Recess-Channel-Array Transistor) Technology for 70nm DRAM Feature Size and Beyond," 2005 Symposium on VLSI Technology, Digest of Technical Papers, Jun. 14-16, 2005, pp. 34-35, IEEE, ISBN: 4-900784-02-8.
5Morrow, P.R. et al., "Three-Dimensional Wafer Stacking Via Cu-Cu Bonding Integrated With 65-nm Strained-Si/ Low-k CMOS Technology," IEEE Electron Device Letters, vol. 27, No. 5, pp. 335-337, May 2006, ISBN: 0741-3106.
6Takahashi, K. et al., "Through Silicon Via and 3-D Wafer/Chip Stacking Technology," 2006 Symposium on VLSI Circuits, Digest of Technical Papers, pp. 89-92, IEEE, ISBN: 1-4244-006-6.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8299624 *Sep 8, 2010Oct 30, 2012Seiko Epson CorporationSemiconductor device, circuit substrate, and electronic device
US8669178 *Sep 24, 2012Mar 11, 2014Seiko Epson CorporationSemiconductor device, circuit substrate, and electronic device
US8680654 *Apr 26, 2013Mar 25, 2014Micron Technology, Inc.Interconnect structures for stacked dies, including penetrating structures for through-silicon vias, and associated systems and methods
US8742477 *Dec 6, 2010Jun 3, 2014Xilinx, Inc.Elliptical through silicon vias for active interposers
US20110089571 *Sep 8, 2010Apr 21, 2011Seiko Epson CorporationSemiconductor device, circuit substrate, and electronic device
US20110291153 *May 31, 2011Dec 1, 2011Yang ming-kunChip submount, chip package, and fabrication method thereof
US20120061843 *Sep 9, 2011Mar 15, 2012Hynix Semiconductor Inc.Semiconductor package and method for manufacturing the same
US20120187544 *Sep 8, 2011Jul 26, 2012Kabushiki Kaisha ToshibaSemiconductor apparatus having penetration electrode and method for manufacturing the same
US20130020722 *Sep 24, 2012Jan 24, 2013Seiko Epson CorporationSemiconductor device, circuit substrate, and electronic device
US20140103541 *Dec 18, 2013Apr 17, 2014Seiko Epson CorporationSemiconductor device, circuit substrate, and electronic device
Legal Events
DateCodeEventDescription
Oct 16, 2008ASAssignment
Owner name: MICRON TECHNOLOGY, INC.,IDAHO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIRBY, KYLE K.;PAREKH, KUNAL R.;SIGNED BETWEEN 20081013 AND 20081015;US-ASSIGNMENT DATABASE UPDATED:20100422;REEL/FRAME:21694/679
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIRBY, KYLE K.;PAREKH, KUNAL R.;SIGNING DATES FROM 20081013 TO 20081015;REEL/FRAME:021694/0679
Owner name: MICRON TECHNOLOGY, INC., IDAHO