Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS8044085 B2
Publication typeGrant
Application numberUS 12/507,285
Publication dateOct 25, 2011
Filing dateJul 22, 2009
Priority dateNov 10, 2000
Also published asCA2428101A1, CN1486136A, DE10055941A1, DE50108263D1, EP1335648A1, EP1335648B1, US7585887, US20040023959, US20090286788, US20120010076, WO2002037963A1
Publication number12507285, 507285, US 8044085 B2, US 8044085B2, US-B2-8044085, US8044085 B2, US8044085B2
InventorsReiner Fischer, Christoph Erdelen
Original AssigneeBayer Cropscience Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Active agent combinations with insecticidal and acaricidal properties
US 8044085 B2
Abstract
The invention relates to novel active compound combinations of certain having very good insecticidal and acaricidal properties and containing
  • (a) cyclic ketoenols having the formula
    • in which the groups W, X, Y, Z, A, B, D, and G have the meanings given in the disclosure, and
  • (b) the active compounds (1) to (29) listed in the disclosure.
Images(16)
Previous page
Next page
Claims(4)
1. A composition comprising a mixture of synergistically effective amounts of
(1) a compound of the formula (Ia)
in which W is H, X is CH3, Y is 5-CH3, Z is H, R is OCH3, and G is CO2—C2H5, and
(2) at least one compound selected from the group consisting of
(i) abamectin at a ratio of the compound of formula (Ia) to abamectin of from 50:1 to 1:5, and
(ii) spinosad at a ratio of the compound of formula (Ia) to spinosad of from 5:1 to 1:5.
2. A composition according to claim 1 comprising a mixture of synergistically effective amounts of
(1) a compound of the formula (Ia)
in which W is H, X is CH3, Y is 5-CH3, Z is H, R is OCH3, and G is CO2—C2H5, and
(2) at least one compound selected from the group consisting of
(i) abamectin at a ratio of the compound of formula (Ia) to abamectin of from 10:1 to 1:1, and
(ii) spinosad at a ratio of the compound of formula (Ia) to spinosad of from 5:1 to 1:5.
3. A method for controlling insects and/or acarids comprising an effective amount of a composition according to claim 1 on said insects and/or acarids and/or their habitat.
4. A process for preparing an insecticidal and acaricidal composition comprising mixing a composition according to claim 1 with extenders and/or surfactants.
Description

This application is a continuation of U.S. application Ser. No. 10/415,790, filed May 5, 2003 now U.S. Pat. No. 7,585,887, which was filed under 35 U.S.C. 371 as a national stage application of International Application PCT/EP01/12474, filed Oct. 29, 2001, which was published in German as International Patent Publication WO 02/37963 on May 16, 2002, and is entitled to the right of priority of German Patent Application 100 55 941.7, filed Nov. 10, 2000.

The present invention relates to novel active compound combinations comprising known cyclic ketoenoles on the one hand and other known insecticidally active compounds on the other hand and which are highly suitable for controlling animal pests such as insects and undesired acarids.

It is already known that certain cyclic ketoenoles have herbicidal, insecticidal and acaricidal properties. The activity of these substances is good; however, at low application rates it is sometimes unsatisfactory.

Unsubstituted bicyclic 3-aryl-pyrrolidine-2,4-dione derivatives (EP-A-355 599 and EP-A-415 211) and substituted monocyclic 3-aryl-pyrrolidine-2,4-dione derivatives (EP-A-377 893 and EP-A-442 077) are known to have herbicidal, insecticidal or acaridical activity.

Also known are polycyclic 3-arylpyrrolidine-2,4-dione derivatives (EP-A-442 073) and 1H-arylpyrrolidine-dione derivatives (EP-A-456 063, EP-A-521 334, EP-A-596 298, EP-A-613 884, EP-A-613 885, WO 94/01 997, WO 95/26 954, WO 95/20 572, EP-A-0 668 267, WO 96/25 395, WO 96/35 664, WO 97/01 535, WO 97/02 243, WO 97/36 868, WO 97/43 275, WO 98/05 638, WO 98/06 721, WO 98/25 928, WO 99/16 748, WO 99/24 437, WO 99/43 649, WO 99/48 869 and WO 99/55 673).

Furthermore, it is already known that numerous heterocycles, organotin compounds, benzoylureas and pyrethroids have insecticidal and acaricidal properties (cf. WO 93/22 297, WO 93/10 083, DE-A 2 641 343, EP-A-347 488, EP-A-210 487, U.S. Pat. No. 3,264,177 and EP-A-234 045). However, the activity of these substances is not always satisfactory.

It has now been found that compounds of the formula (I)


in which

  • X represents halogen, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy or cyano,
  • W, Y and Z independently of one another each represent hydrogen, halogen, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy or cyano,
  • A represents hydrogen, in each case optionally halogen-substituted alkyl, alkoxyalkyl, saturated, optionally substituted cycloalkyl in which optionally at least one ring atom is replaced by a heteroatom,
  • B represents hydrogen or alkyl,
  • A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle which optionally contains at least one heteroatom,
  • D represents hydrogen or an optionally substituted radical from the group consisting of alkyl, alkenyl, alkoxyalkyl, saturated cycloalkyl in which optionally one or more ring members are replaced by heteroatoms,
  • A and D together with the atoms to which they are attached represent a saturated or unsaturated cycle which is unsubstituted or substituted in the A,D moiety and optionally contains at least one heteroatom,
  • G represents hydrogen (a) or represents one of the groups

    • in which
    • E represents a metal ion or an ammonium ion,
    • L represents oxygen or sulphur,
    • M represents oxygen or sulphur,
    • R1 represents in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, polyalkoxyalkyl or optionally halogen-, alkyl- or alkoxy-substituted cycloalkyl which may be interrupted by at least one heteroatom, in each case optionally substituted phenyl, phenylalkyl, hetaryl, phenoxyalkyl or hetaryloxyalkyl,
    • R2 represents in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, polyalkoxyalkyl or represents in each case optionally substituted cycloalkyl, phenyl or benzyl,
    • R3 represents optionally halogen-substituted alkyl or optionally substituted phenyl,
    • R4 and R5 independently of one another each represent in each case optionally halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, cycloalkylthio or represent in each case optionally substituted phenyl, benzyl, phenoxy or phenylthio and
    • R6 and R7 independently of one another each represent hydrogen, in each case optionally halogen-substituted alkyl, cycloalkyl, alkenyl, alkoxy, alkoxyalkyl, represent optionally substituted phenyl, represent optionally substituted benzyl or together with the N atom to which they are attached represent an optionally substituted ring which is optionally interrupted by oxygen or sulphur
      and acaricidally active compounds, preferably
      (1) the phenylhydrazine derivative of the formula

    • (bifenazate)

known from WO 93/10 083

and/or

(2) the macrolide with the common name
abamectin (III)

known from DE-A-27 17 040

and/or

(3) the naphthalinedione derivative of the formula

    • (acequinocyl)

known from DE-A-26 41 343

and/or

(4) the pyrrole derivative of the formula

known from EP-A-347 488

and/or

(5) the thiourea derivative of the formula

known from EP-A-210 487

and/or

(6) the oxazoline derivative of the formula

known from WO 93/22 297

and/or

(7) an organotin derivative of the formula

in which

    • R represents

      • known from The Pesticide Manual, 9th edition, p. 48
    • or
    • R represents —OH
      • (VIIIb=cyhexatin),
      • known from U.S. Pat. No. 3,264,177
        and/or
        (8) the pyrazole derivative of the formula

known from EP-A-289 879

and/or

(9) the pyrazole derivative of the formula

known from EP-A-234 045

and/or

(10) the pyridazinone derivative of the formula

known from EP-A-134 439

and/or

(11) the benzoylurea of the formula

known from EP-A-161 019

and/or

(12) the pyrethroid of the formula

known from EP-A-049 977

and/or

(13) the tetrazine derivative of the formula

known from EP-A-005 912

and/or

(14) the organotin derivative of the formula

known from DE-A-2 115 666

and/or

(15) the sulphenamide of the formula

known from The Pesticide Manual, 11th edition, 1997, page 1208

(16) and/or the pyrimidyl phenol ethers

    • R═Cl (XVII); (4-[(4-chloro-α,α,α-trifluoro-3-tolyl)oxy]-6-[(α,α,α-4-tetrafluoro-3-tolyl)oxy]-pyrimidine)
    • R═NO2 (XVIII); 4-[(4-chloro-α,α,α-trifluoro-3-tolyl)oxy]-6-[(α,α,α-trifluoro-4-nitro-3-tolyl)oxy]-pyrimidine
    • R═Br (XIX); 4-[(4-chloro-α,α,α-trifluoro-3-tolyl)oxy]-6-[(α,α,α-trifluoro-4-bromo-3-tolyl)oxy]-pyrimidine

known from WO 94/02 470, EP-A-883 991

and/or

(17) the macrolide of the formula

(spinosad) a mixture preferably comprising

85% of spinosyn A R═H
15% of spinosyn D R═CH3

known from EP-A-375 316

and/or

(18) ivermectin (XXI)

known from EP-A-001 689

and/or

(19) milbemectin (XXII)

known from The Pesticide Manual, 11th edition, 1997, p. 846

and/or

(20) endosulfan (XXIII)

known from DE-A-1 015 797

and/or

(21) fenazaquin (XXIV)

known from EP-A-326 329

and/or

(22) pyrimidifen (XXV)

known from EP-A-196 524

and/or

(23) triarathen (XXVI)

known from DE-A-2 724 494

and/or

(24) tetradifon (XXVII)

known from U.S. Pat. No. 2,812,281

and/or

(25) propargit (XXVIII)

known from U.S. Pat. No. 3,272,854

and/or

(26) hexythiazox (XXIX)

known from DE-A-3 037 105

and/or

(27) bromopropylate (XXX)

known from U.S. Pat. No. 3,784,696

and/or

(28) dicofol (XXXI)

known from U.S. Pat. No. 2,812,280

and/or

(29) chinomethionat (XXXII)

known from DE-A-1 100 372

have very good insecticidal and acaricidal properties.

Surprisingly, the insecticidal and acaricidal action of the active compound combinations according to the invention considerably exceeds the total of the actions of the individual active compounds. A true synergistic effect which could not have been predicted therefore exists, not just a complementation of action.

The active compound combinations according to the invention comprise, in addition to at least one active compound of the formula (I), at least one active compound of compounds 1 to 29.

Preference is given to active compound combinations comprising compounds of the formula (I) in which the radicals are as defined below:

  • W preferably represents hydrogen, C1-C4-alkyl, C1-C4-alkoxy, chlorine, bromine or fluorine,
  • X preferably represents C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenoalkyl, fluorine, chlorine or bromine,
  • Y and Z independently of one another each preferably represent hydrogen, C1-C4-alkyl, halogen, C1-C4-alkoxy or C1-C4-halogenoalkyl,
  • A preferably represents hydrogen or in each case optionally halogen-substituted C1-C6-alkyl or C3-C8-cycloalkyl,
  • B preferably represents hydrogen, methyl or ethyl,
  • A, B and the carbon atom to which they are attached preferably represent saturated C3-C6-cycloalkyl in which optionally one ring member is replaced by oxygen or sulphur and which is optionally mono- or disubstituted by C1-C4-alkyl, trifluoromethyl or C1-C4-alkoxy,
  • D preferably represents hydrogen, in each case optionally fluorine- or chlorine-substituted C1-C6-alkyl, C3-C4-alkenyl or C3-C6-cycloalkyl,
  • A and D together preferably represent optionally methyl-substituted C3-C4-alkanediyl in which optionally one methylene group is replaced by sulphur,
  • G preferably represents hydrogen (a) or represents one of the groups

  •  in particular (a), (b), (c) or (g)
    • in which
    • E represents a metal ion or an ammonium ion,
    • L represents oxygen or sulphur and
    • M represents oxygen or sulphur,
  • R1 preferably represents in each case optionally halogen-substituted C1-C10-alkyl, C2-C10-alkenyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkyl or optionally fluorine-, chlorine-, C1-C4-alkyl- or C1-C2-alkoxy-substituted C3-C6-cycloalkyl,
    • represents optionally fluorine-, chlorine-, bromine-, cyano-, nitro-, C1-C4-alkyl-, C1-C4-alkoxy-, trifluoromethyl- or trifluoromethoxy-substituted phenyl,
    • represents in each case optionally chlorine- or methyl-substituted pyridyl or thienyl,
  • R2 preferably represents in each case optionally fluorine- or chlorine-substituted C1-C10-alkyl, C2-C10-alkenyl, C1-C4-alkoxy-C2-C4-alkyl,
    • represents optionally methyl or methoxy-substituted C5-C6-cycloalkyl or
    • represents in each case optionally fluorine-, chlorine-, bromine-, cyano-, nitro-, C1-C4-alkyl-, C1-C4-alkoxy-, trifluoromethyl- or trifluoromethoxy-substituted phenyl or benzyl,
  • R3 preferably represents optionally fluorine-substituted C1-C4-alkyl or represents optionally fluorine-, chlorine-, bromine-, C1-C4-alkyl-, C1-C4-alkoxy-, trifluoromethyl-, trifluoromethoxy-, cyano- or nitro-substituted phenyl,
  • R4 preferably represents in each case optionally fluorine- or chlorine-substituted C1-C4-alkyl, C1-C4-alkoxy, C1-C4-alkylamino, C1-C4-alkylthio or represents in each case optionally fluorine-, chlorine-, bromine-, nitro-, cyano-, C1-C4-alkoxy-, trifluoromethoxy-, C1-C4-alkylthio-, C1-C4-halogenoalkylthio-, C1-C4-alkyl- or trifluoromethyl-substituted phenyl, phenoxy or phenylthio,
  • R5 preferably represents C1-C4-alkoxy or C1-C4-thioalkyl,
  • R6 preferably represents C1-C6-alkyl, C3-C6-cycloalkyl, C1-C6-alkoxy, C3-C6-alkenyl, C1-C4-alkoxy-C1-C4-alkyl,
  • R7 preferably represents C1-C6-alkyl, C3-C6-alkenyl or C1-C4-alkoxy-C1-C4-alkyl,
  • R6 and R7 together preferably represent an optionally methyl- or ethyl-substituted C3-C6-alkylene radical in which optionally one carbon atom is replaced by oxygen or sulphur,
  • W particularly preferably represents hydrogen, methyl, ethyl, chlorine, bromine or methoxy,
  • X particularly preferably represents chlorine, bromine, methyl, ethyl, propyl, i-propyl, methoxy, ethoxy or trifluoromethyl,
  • Y and Z independently of one another each particularly preferably represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl, propyl, i-propyl, trifluoromethyl or methoxy,
  • A particularly preferably represents methyl, ethyl, propyl, i-propyl, butyl, i-butyl, sec-butyl, tert-butyl, cyclopropyl, cyclopentyl or cyclohexyl,
  • B particularly preferably represents hydrogen, methyl or ethyl,
  • A, B and the carbon atom to which they are attached particularly preferably represent saturated C6-cycloalkyl in which optionally one ring member is replaced by oxygen and which is optionally monosubstituted by methyl, ethyl, methoxy, ethoxy, propoxy or butoxy,
  • D particularly preferably represents hydrogen, represents methyl, ethyl, propyl, i-propyl, butyl, i-butyl, allyl, cyclopropyl, cyclopentyl or cyclohexyl,
  • A and D together particularly preferably represent optionally methyl-substituted C3-C4-alkanediyl,
  • G particularly preferably represents hydrogen (a) or represents one of the groups

    • in which
    • M represents oxygen or sulphur,
  • R1 particularly preferably represents C1-C8-alkyl, C2-C4-alkenyl, methoxymethyl, ethoxymethyl, ethylthiomethyl, cyclopropyl, cyclopentyl or cyclohexyl,
    • represents optionally fluorine-, chlorine-, bromine-, cyano-, nitro-, methyl-, ethyl-, methoxy-, trifluoromethyl- or trifluoromethoxy-substituted phenyl,
    • represents in each case optionally chlorine- or methyl-substituted pyridyl or thienyl,
  • R2 particularly preferably represents C1-C8-alkyl, C2-C4-alkenyl, methoxyethyl, ethoxyethyl or represents phenyl or benzyl,
  • R6 and R7 independently of one another particularly preferably represent methyl, ethyl or together represent a C5-alkylene radical in which the C3-methylene group is replaced by oxygen,
  • W very particularly preferably represents hydrogen or methyl,
  • X very particularly preferably represents chlorine, bromine or methyl,
  • Y and Z independently of one another each very particularly preferably represent hydrogen, chlorine, bromine or methyl,
  • A, B and the carbon atom to which they are attached very particularly preferably represent saturated C6-cycloalkyl in which optionally one ring member is replaced by oxygen and which is optionally monosubstituted by methyl, methoxy, ethoxy, propoxy or butoxy,
  • D very particularly preferably represents hydrogen,
  • G very particularly preferably represents hydrogen (a) or represents one of the groups

    • in which
  • M represents oxygen or sulphur,
  • R1 very particularly preferably represents C1-C8-alkyl, C2-C4-alkenyl, methoxymethyl, ethoxymethyl, ethylmethylthio, cyclopropyl, cyclopentyl, cyclohexyl or
    • represents optionally fluorine-, chlorine-, bromine-, methyl-, methoxy-, trifluoromethyl-, trifluoromethoxy-, cyano- or nitro-substituted phenyl,
    • represents in each case optionally chlorine- or methyl-substituted pyridyl or thienyl,
  • R2 very particularly preferably represents C1-C8-alkyl, C2-C4-alkenyl, methoxyethyl, ethoxyethyl, phenyl or benzyl,
  • R6 and R7 independently of one another each very particularly preferably represent methyl, ethyl or together represent a C5-alkylene radical in which the C3-methylene group is replaced by oxygen.

Especial preference is given to active compound combinations comprising compounds of the formula (I)

(I)
Example
No. W X Y Z R G m.p. ° C.
I-1 H Br 5-CH3 H OCH3 CO-i-C3H7 122
I-2 H Br 5-CH3 H OCH3 CO2—C2H5 140-142
I-3 H CH3 5-CH3 H OCH3 H >220
I-4 H CH3 5-CH3 H OCH3 CO2—C2H5 128
I-5 CH3 CH3 3-Br H OCH3 H >220
I-6 CH3 CH3 3-Cl H OCH3 H 219
I-7 H Br 4-CH3 5-CH3 OCH3 CO-i-C3H7 217
I-8 H CH3 4-Cl 5-CH3 OCH3 CO2C2H5 162
I-9 H CH3 4-CH3 5-CH3 OCH3 oil
I-10 CH3 CH3 3-CH3 4-CH3 OCH3 H >220
I-11 H CH3 5-CH3 H OC2H5 oil
I-12 CH3 CH3 3-Br H OC2H5 CO-i-C3H7 212-214
I-13 H CH3 4-CH3 5-CH3 OC2H5 CO-n-Pr 134
I-14 H CH3 4-CH3 5-CH3 OC2H5 CO-i-Pr 108
I-15 H CH3 4-CH3 5-CH3 OC2H5 CO-c-Pr 163

and at least one active compound of compounds 1 to 29.

In addition, the active compound combinations may also comprise other fungicidally, acaricidally or insecticidally active components which may be admixed.

If the active compounds are present in the active compound combinations according to the invention in certain weight ratios, the synergistic effect is particularly pronounced. However, the weight ratios of the active compounds in the active compound combinations may be varied within a relatively wide range. In general, the combinations according to the invention comprise active compounds of the formula (I) and the co-components in the preferred and particularly preferred mixing ratios indicated in the table below:

    • the mixing ratios are based on weight ratios. The ratio is to be understood as meaning active compound of the formula (I): co-component

Particularly
Preferred mixing preferred mixing
Co-component ratio ratio
bifenazate 5:1 to 1:20 1:1 to 1:10
abamectin 50:1 to 1:5 10:1 to 1:1
acequinocyl 10:1 to 1:10 5:1 to 1:5
chlorfenapyr 10:1 to 1:10 5:1 to 1:5
diafenthiuron 10:1 to 1:10 5:1 to 1:5
etoxazole 20:1 to 1:5 10:1 to 1:2
azocyclotin 10:1 to 1:10 5:1 to 1:5
cyhexatin 10:1 to 1:10 5:1 to 1:5
tebufenpyrad 20:1 to 1:10 10:1 to 1:5
fenpyroximate 10:1 to 1:10 5:1 to 1:5
pyridaben 10:1 to 1:10 5:1 to 1:5
flufenoxuron 10:1 to 1:10 5:1 to 1:5
bifenthrin 10:1 to 1:10 5:1 to 1:5
clofentezine 10:1 to 1:10 5:1 to 1:5
fenbutatin oxide 10:1 to 1:10 5:1 to 1:5
tolylfluanid 5:1 to 1:50 1:1 to 1:5
pyrimidyl phenol 10:1 to 1:10 5:1 to 1:5
ethers (XVII-XIX)
spinosad 10:1 to 1:10 5:1 to 1:5
ivermectin 50:1 to 1:5 10:1 to 1:1
milbemectin 50:1 to 1:5 10:1 to 1:1
endosulfan 10:1 to 1:10 5:1 to 1:5
fenazaquin 10:1 to 1:10 5:1 to 1:5
pyrimidifen 50:1 to 1:5 10:1 to 1:1
triarathen 5:1 to 1:20 1:1 to 1:10
tetradifon 10:1 to 1:10 5:1 to 1:5
propargit 10.1 to 1:10 5:1 to 1:5
hexythiazox 20:1 to 1:5 10:1 to 1:2
bromopropylate 10:1 to 1:10 5:1 to 1:5
dicofol 10:1 to 1:10 5:1 to 1:5
chinomethionat 10:1 to 1:10 5:1 to 1:5

The active compound combinations according to the invention are suitable for controlling animal pests, preferably arthropods and nematodes, in particular insects and arachnids found in agriculture, in animal health, in forests, in the protection of stored products and materials and in the hygiene sector. They are active against normally sensitive and resistant species, and against all or individual developmental stages. The abovementioned pests include:

From the order of the Isopoda, for example, Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

From the order of the Diplopoda, for example, Blaniulus guttulatus.

From the order of the Chilopoda, for example, Geophilus carpophagus, Scutigera spp.

From the order of the Symphyla, for example, Scutigerella immaculata.

From the order of the Thysanura, for example, Lepisma saccharina.

From the order of the Collembola, for example, Onychiurus anmatus.

From the order of the Orthoptera, for example, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus spp., Schistocerca gregaria.

From the order of the Blattaria, for example, Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica.

From the order of the Denmaptera, for example, Forficula auricularia.

From the order of the Isoptera, for example, Reticulitermes spp.

From the order of the Phthiraptera, for example, Pediculus humanus corporis, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp.

From the order of the Thysanoptera, for example, Hercinothrips femoralis, Thrips tabaci, Thrips palmi, Frankliniella occidentalis.

From the order of the Heteroptera, for example, Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

From the order of the Homoptera, for example, Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.
From the order of the Lepidoptera, for example, Pectinophora gossypiella, Bupalus piniarius, Chematobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella xylostella, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Mamestra brassicae, Panolis flammea, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmaimophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana, Cnaphalocerus spp., Oulema oryzae.
From the order of the Coleoptera, for example, Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilaclma varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.
From the order of the Hymenoptera, for example, Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
From the order of the Diptera, for example, Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa, Hylemyia spp., Liriomyza spp.
From the order of the Siphonaptera, for example, Xenopsylla cheopis, Ceratophyllus spp.
From the class of the Arachnida, for example, Scorpio maurus, Latrodectus mactans, Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Hemitarsonemus spp., Brevipalpus spp.

The plant-parasitic nematodes include, for example, Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaphelenchus spp.

The active compound combinations can be converted into the customary formulations such as solutions, emulsions, wettable powders, suspensions, powders, dusts, pastes, soluble powders, granules, suspension-emulsion concentrates, natural and synthetic materials impregnated with active compound, and microencapsulations in polymeric materials.

These formulations are produced in a known manner, for example by mixing the active compounds with extenders, that is, liquid solvents and/or solid carriers, optionally with the use of surfactants, that is, emulsifiers and/or dispersants, and/or foam formers.

If the extender used is water, it is also possible, for example, to use organic solvents as cosolvents. The following are essentially suitable as liquid solvents: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes and methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example mineral oil fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, or else water.

Suitable solid carriers are:

for example ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic materials such as highly-disperse silica, alumina and silicates; suitable solid carriers for granules are: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, or else synthetic granules of inorganic and organic meals, and granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks; suitable emulsifiers and/or foam formers are: for example nonionic and anionic emulsifiers such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates, or else protein hydrolysates; suitable dispersants are: for example lignin-sulphite waste liquors and methylcellulose.

Tackifiers such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, or else natural phospholipids such as cephalins and lecithins and synthetic phospholipids can be used in the formulations. Other additives can be mineral and vegetable oils.

It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic colorants such alizarin colorants, azo colorants and metal phthalocyanine colorants, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

The formulations generally comprise between 0.1 and 95% by weight of active compound, preferably between 0.5 and 90%.

The active compound combinations according to the invention can be present in their commercially available formulations and in the use forms, prepared from these formulations, as a mixture with other active compounds, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth-regulating substances or herbicides. The insecticides include, for example, phosphates, carbamates, carboxylates, chlorinated hydrocarbons, phenylureas and substances produced by microorganisms.

Mixtures with other known active compounds such as herbicides or with fertilizers and growth regulators are also possible.

When used as insecticides, the active compound combinations according to the invention can furthermore be present in their commercially available formulations and in the use forms, prepared from these formulations, as a mixture with synergists. Synergists are compounds which increase the action of the active compounds, without it being necessary for the synergist added to be active itself.

The active compound content of the use forms prepared from the commercially available formulations can vary within wide limits. The active compound concentration of the use forms can be from 0.0000001 to 95% by weight of active compound, preferably between 0.0001 and 1% by weight.

The compounds are employed in a customary manner appropriate for the use forms.

When used against hygiene pests and stored-product pests, the active compound combinations are distinguished by an excellent residual action on wood and clay as well as good stability to alkali on limed substrates.

The active compound combinations according to the invention are not only active against plant pests, hygiene pests and stored-product pests, but also, in the veterinary medicine sector, against animal parasites (ectoparasites) such as hard ticks, soft ticks, mange mites, harvest mites, flies (stinging and licking), parasitizing fly larvae, lice, hair lice, bird lice and fleas. These parasites include:

From the order of the Anoplurida, for example, Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp.

From the order of the Mallophagida and the suborders Amblycerina and Ischnocerina, for example, Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Wemeckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp.

From the order Diptera and the suborders Nematocerina and Brachycerina, for example, Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp.
From the order of the Siphonapterida, for example, Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp.
From the order of the Heteropterida, for example, Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.
From the order of the Blattarida, for example, Blatta orientalis, Periplaneta americana, Blattella germanica, Supella spp.
From the subclass of the Acaria (Acarida) and the order of the Meta- and Mesostigmata, for example, Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp.
From the order of the Actinedida (Prostigmata) and Acaridida (Astigmata), for example, Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp.

The active compound combinations according to the invention are also suitable for controlling arthropods which attack agricultural livestock such as, for example, cattle, sheep, goats, horses, pigs, donkeys, camels, buffaloes, rabbits, chickens, turkeys, ducks, geese, honey-bees, other domestic animals such as, for example, dogs, cats, caged birds, aquarium fish and so-called experimental animals such as, for example, hamsters, guinea pigs, rats and mice. By controlling these arthropods, cases of death and reductions in productivity (for meat, milk, wool, hides, eggs, honey and the like) should be diminished, so that more economical and simpler animal husbandry is possible by the use of the active compound combinations according to the invention.

The active compound combinations according to the invention are used in the veterinary sector in a known manner by enteral administration in the form of, for example, tablets, capsules, potions, drenches, granules, pastes, boluses, the feed-through method, suppositories, by parenteral administration such as, for example, by injections (intramuscularly, subcutaneously, intravenously, intraperitoneally and the like), implants, by nasal administration, by dermal administration in the form of, for example, immersing or dipping, spraying, pouring-on, spotting-on, washing, dusting, and with the aid of active-compound-comprising moulded articles such as collars, ear tags, tail tags, limb bands, halters, marking devices and the like.

When used for cattle, poultry, domestic animals and the like, the active compound combinations can be applied as formulations (for example powders, emulsions, flowables) comprising the active compounds in an amount of 1 to 80% by weight, either directly or after 100- to 10,000-fold dilution, or they may be used as a chemical dip.

Moreover, it has been found that the active compound combinations according to the invention show a potent insecticidal action against insects which destroy industrial materials.

The following insects may be mentioned by way of example and with preference, but not by way of limitation:

Beetles such as

Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticomis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec., Tryptodendron spec., Apate monachus, Bostrychus capucins, Heterobostrychus brtmneus, Sinoxylon spec., Dinodertis minutus.
Dermapterans such as
Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.
Termites such as
Kalotennes flavicollis, Cryptoteimes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.
Bristle-tails such as Lepisma saccharina.

Industrial materials in the present context are understood as meaning non-living materials such as, preferably, polymers, adhesives, glues, paper and board, leather, wood, timber products and paints.

The material which is to be protected from insect attack is very especially preferably wood and timber products.

Wood and timber products which can be protected by the composition according to the invention, or mixtures comprising it, are to be understood as meaning, for example:

Constriction timber, wooden beams, railway sleepers, bridge components, jetties, vehicles made of wood, boxes, pallets, containers, telephone poles, wood lagging, windows and doors made of wood, plywood, chipboard, joinery, or timber products which quite generally are used in house construction or building joinery.

The active compound combinations can be used as such, in the form of concentrates or generally customary formulations such as powders, granules, solutions, suspensions, emulsions or pastes.

The abovementioned formulations can be prepared in a manner known per se, for example by mixing the active compounds with at least one solvent or diluent, emulsifier, dispersant and/or binder or fixative, water repellant, if desired desiccants and UV stabilizers, and if desired colorants and pigments and other processing auxiliaries.

The insecticidal compositions or concentrates used for protecting wood and timber products comprise the active compound according to the invention in a concentration of 0.0001 to 95% by weight, in particular 0.001 to 60% by weight.

The amount of composition or concentrate employed depends on the species and the abundance of the insects and on the medium. The optimal quantity to be employed can be determined in each case by test series upon application. In general, however, it will suffice to employ 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, of the active compound, based on the material to be protected.

A suitable solvent and/or diluent is an organochemical solvent or solvent mixture and/or an oily or oil-type organochemical solvent or solvent mixture of low volatility and/or a polar organochemical solvent or solvent mixture and/or water and, if appropriate, an emulsifier and/or wetter.

Organochemical solvents which are preferably employed are oily or oil-type solvents with an evaporation number of above 35 and a flash point of above 30° C., preferably above 45° C. Such oily and oil-type solvents which are insoluble in water and of low volatility and which are used are suitable mineral oils or their aromatic fractions or mineral-oil-containing solvent mixtures, preferably white spirit, petroleum and/or alkylbenzene.

Mineral oils with a boiling range of 170 to 220° C., white spirit with a boiling range of 170 to 220° C., spindle oil with a boiling range of 250 to 350° C., petroleum and aromatics with a boiling range of 160 to 280° C., oil of turpentine, and the like are advantageously used.

In a preferred embodiment, liquid aliphatic hydrocarbons with a boiling range of 180 to 210° C. or high-boiling mixtures of aromatic and aliphatic hydrocarbons with a boiling range of 180 to 220° C. and/or spindle oil and/or monochloronaphthalene, preferably α-monochloronaphthalene are used.

The organic oily or oil-type solvents of low volatility and with an evaporation number of above 35 and a flash point of above 30° C., preferably above 45° C., can be replaced in part by organochemical solvents of high or medium volatility, with the proviso that the solvent mixture also has an evaporation number of above 35 and a flash point of above 30° C., preferably above 45° C., and that the mixture is soluble or emulsifiable in this solvent mixture.

In a preferred embodiment, some of the organochemical solvent or solvent mixture is replaced by an aliphatic polar organochemical solvent or solvent mixture. Aliphatic organochemical solvents which contain hydroxyl and/or ester and/or ether groups are preferably used, such as, for example, glycol ethers, esters or the like.

Organochemical binders used for the purposes of the present invention are the synthetic resins and/or binding drying oils which are known per se and which can be diluted in water and/or dissolved or dispersed or emulsified in the organochemical solvents employed, in particular binders composed of, or comprising, an acrylate resin, a vinyl resin, for example polyvinyl acetate, polyester resin, polycondensation or polyaddition resin, polyurethane resin, alkyd resin or modified alkyd resin, phenol resin, hydrocarbon resin such as indene/coumarone resin, silicone resin, drying vegetable and/or drying oils and/or physically drying binders based on a natural and/or synthetic resin.

The synthetic resin employed as binder can be employed in the form of an emulsion, dispersion or solution. Bitumen or bituminous substances may also be used as binders, in amounts of up to 10% by weight. In addition, colorants, pigments, water repellants, odour-masking agents, and inhibitors or anticorrosive agents and the like, all of which are known per se, can be employed.

In accordance with the invention, the composition or the concentrate preferably comprises, as organochemical binders, at least one alkyd resin or modified alkyd resin and/or a drying vegetable oil. Alkyd resins which are preferably used in accordance with the invention are those with an oil content of over 45% by weight, preferably 50 to 68% by weight.

Some or all of the abovementioned binder can be replaced by a fixative (mixture) or plasticizer (mixture). These additives are intended to prevent volatilization of the active compounds, and also crystallization or precipitation. They preferably replace 0.01 to 30% of the binder (based on 100% of binder employed).

The plasticizers are from the chemical classes of the phthalic esters, such as dibutyl phthalate, dioctyl phthalate or benzyl butyl phthalate, phosphoric esters such as tributyl phosphate, adipic esters such as di-(2-ethylhexyl)-adipate, stearates such as butyl stearate or amyl stearate, oleates such as butyl oleate, glycerol ethers or higher-molecular-weight glycol ethers, glycerol esters and p-toluenesulphonic esters.

Fixatives are based chemically on polyvinyl alkyl ethers such as, for example, polyvinyl methyl ether, or ketones such as benzophenone and ethylenebenzophenone.

Other suitable solvents or diluents are, in particular, water, if appropriate as a mixture with one or more of the abovementioned organochemical solvents or diluents, emulsifiers and dispersants.

Particularly effective timber protection is achieved by industrial-scale impregnating processes, for example the vacuum, double-vacuum or pressure processes.

The active compound combinations according to the invention can at the same time be employed for protecting objects which come into contact with saltwater or brackish water, such as hulls, screens, nets, buildings, moorings and signalling systems, against fouling.

Fouling by sessile Oligochaeta, such as Serpulidae, and by shells and species from the Ledamorpha group (goose barnacles), such as various Lepas and Scalpellum species, or by species from the Balanomorpha group (acorn barnacles), such as Balanus or Pollicipes species, increases the frictional drag of ships and, as a consequence, leads to a marked increase in operation costs owing to higher energy consumption and additionally frequent residence in the dry dock.

Apart from fouling by algae, for example Ectocarpus sp. and Ceramium sp., fouling by sessile Entomostraka groups, which come under the generic term Cirripedia (cirriped crustaceans), is of particular importance.

Surprisingly, it has now been found that the active compound combinations according to the invention have an outstanding antifouling action.

Using the active compound combinations according to the invention, allows the use of heavy metals such as, for example, in bis(trialkyltin) sulphides, tri-n-butyltin laurate, tri-n-butyltin chloride, copper(I) oxide, triethyltin chloride, tri-n-butyl(2-phenyl-4-chlorophenoxy)tin, tributyltin oxide, molybdenum disulphide, antimony oxide, polymeric butyl titanate, phenyl-(bispyridine)-bismuth chloride, tri-n-butyltin fluoride, manganese ethylenebisthiocarbamate, zinc dimethyldithiocarbamate, zinc ethylenebisthiocarbamate, zinc salts and copper salts of 2-pyridinethiol 1-oxide, bisdimethyldithiocarbamoylzinc ethylene-bisthiocarbamate, zinc oxide, copper(I) ethylene-bisdithiocarbamate, copper thiocyanate, copper naphthenate and tributyltin halides to be dispensed with, or the concentration of these compounds to be substantially reduced.

If appropriate, the ready-to-use antifouling paints can additionally comprise other active compounds, preferably algicides, fungicides, herbicides, molluscicides, or other antifouling active compounds.

Preferably suitable components in combinations with the antifouling compositions according to the invention are:

algicides such as

2-tert-butylamino-4-cyclopropylamino-6-methylthio-1,3,5-triazine, dichlorophen, diuron, endothal, fentin acetate, isoproturon, methabenzthiazuron, oxyfluorfen, quinoclamine and terbutryn;

fungicides such as

benzo[b]thiophenecarboxylic acid cyclohexylamide S,S-dioxide, dichlofluanid, fluorfolpet, 3-iodo-2-propinyl butylcarbamate, tolylfluanid and azoles such as azaconazole, cyproconazole, epoxyconazole, hexaconazole, metconazole, propiconazole and tebuconazole;
molluscicides such as
fentin acetate, metaldehyde, methiocarb, niclosamid, thiodicarb and trimethacarb;
or conventional antifouling active compounds such as 4,5-dichloro-2-octyl-4-isothiazolin-3-one, diiodomethylparatryl sulphone, 2-(N,N-dimethylthiocarbamoylthio)-5-nitrothiazyl, potassium, copper, sodium and zinc salts of 2-pyridinethiol 1-oxide, pyridine-triphenylborane, tetrabutyldistannoxane, 2,3,5,6-tetrachloro-4-(methylsulphonyl)-pyridine, 2,4,5,6-tetrachloroisophthalonitrile, tetramethylthiuram disulphide and 2,4,6-trichlorophenylmaleiimide.

The antifouling compositions used comprise the active compound combinations according to the invention in a concentration of 0.001 to 50% by weight, in particular 0.01 to 20% by weight.

Moreover, the antifouling compositions according to the invention comprise the customary components such as, for example, those described in Ungerer, Chem. Ind. 1985, 37, 730-732 and Williams, Antifouling Marine Coatings, Noyes, Park Ridge, 1973.

Besides the algicidal, fungicidal, molluscicidal active compounds and insecticidal active compounds according to the invention, antifouling paints comprise, in particular, binders.

Examples of recognized binders are polyvinyl chloride in a solvent system, chlorinated rubber in a solvent system, acrylic resins in a solvent system, in particular in an aqueous system, vinyl chloride/vinyl acetate copolymer systems in the form of aqueous dispersions or in the form of organic solvent systems, butadiene/styrene/acrylonitrile rubbers, drying oils such as linseed oil, resin esters or modified hardened resins in combination with tar or bitumens, asphalt and epoxy compounds, small amounts of chlorine rubber, chlorinated polypropylene and vinyl resins.

If appropriate, paints also comprise inorganic pigments, organic pigments or colorants which are preferably insoluble in saltwater. Paints may furthermore comprise materials such as colophonium to allow controlled release of the active compounds. Furthermore, the paints may comprise plasticizers, modifiers which affect the rheological properties and other conventional constituents. The compounds according to the invention or the abovementioned mixtures may also be incorporated into self-polishing antifouling systems.

The active compound combinations are also suitable for controlling animal pests, in particular insects, arachnids and mites, which are found in enclosed spaces such as, for example, dwellings, factory halls, offices, vehicle cabins and the like. They can be employed in domestic insecticide products for controlling these pests. They are active against sensitive and resistant species and against all developmental stages. These pests include:

From the order of the Scorpionidea, for example, Buthus occitanus.

From the order of the Acarina, for example, Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Deimatophagoides pteronissimus, Dennatophagoides forinae.
From the order of the Araneae, for example, Aviculariidae, Araneidae.
From the order of the Opiliones, for example, Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium.
From the order of the Isopoda, for example, Oniscus asellus, Porcellio scaber.
From the order of the Diplopoda, for example, Blaniulus guttulatus, Polydesmus spp.
From the order of the Chilopoda, for example, Geophilus spp.
From the order of the Zygentoma, for example, Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus.
From the order of the Blattaria, for example, Blatta orientalies, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa, Supella longipalpa.
From the order of the Saltatoria, for example, Acheta domesticus.
From the order of the Dermaptera, for example, Forficula auricularia.
From the order of the Isoptera, for example, Kalotermes spp., Reticulitermes spp.
From the order of the Psocoptera, for example, Lepinatus spp., Liposcelis spp.
From the order of the Coleptera, for example, Anthrenus spp., Attagenus spp., Dermestes spp., Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum.
From the order of the Diptera, for example, Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, Anopheles spp., Calliphora erythrocephala, Chrysozona pluvialis, Culex quinquefasciatus, Culex pipiens, Culex tarsalis, Drosophila spp., Farnia canicularis, Musca domestica, Phlebotomus spp., Sarcophaga carnaria, Simulium spp., Stomoxys calcitrans, Tipula paludosa.
From the order of the Lepidoptera, for example, Acliroia grisella, Galleria mellonella, Plodia interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
From the order of the Siphonaptera, for example, Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis.
From the order of the Hymenoptera, for example, Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.
From the order of the Anoplura, for example, Pediculus humanus capitis, Pediculus humanus corporis, Phthirus pubis.
From the order of the Heteroptera, for example, Cimex hemipterus, Cimex lectularius, Rhodinus prolixus, Triatoma infestans.
They are used as aerosols, pressure-free spray products, for example pump and atomizer sprays, automatic fogging systems, foggers, foams, gels, evaporator products with evaporator tablets made of cellulose or polymer, liquid evaporators, gel and membrane evaporators, propeller-driven evaporators, energy-free, or passive, evaporation systems, moth papers, moth bags and moth gels, as granules or dusts, in baits for spreading or in bait stations.

All plants and plant parts can be treated in accordance with the invention. Plants are to be understood as meaning in the present context all plants and plant populations such as desired and undesired wild plants or crop plants (inclusive of naturally occurring crop plants). Crop plants can be plants which can be obtained by conventional plant breeding and optimization methods or by biotechnological and genetic engineering or by combinations of these methods, inclusive of the transgenic plants and inclusive of the plant varieties protectable or not protectable by plant breeders' rights. Plant parts are to be understood as meaning all above-ground and below-ground parts and organs of plants, such as shoot, leaf, flower and root, examples which may be mentioned being leaves, needles, stalks, stems, flowers, fruit bodies, fruits, seeds, roots, tubers and rhizomes. The plant parts also include harvested material, and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offsets and seeds.

Treatment according to the invention of the plants and plant parts with the active compounds is carried out directly or by allowing the compounds to act on the surroundings, environment or storage space by the customary treatment methods, for example by immersion, spraying, evaporation, fogging, scattering, painting on and, in the case of propagation material, in particular in the case of seed, also by applying one or more coats.

As already mentioned above, it is possible to treat all plants and their parts according to the invention. In a preferred embodiment, wild plant species and plant cultivars, or those obtained by conventional biological breeding, such as crossing or protoplast fusion, and parts thereof, are treated. In a further preferred embodiment, transgenic plants and plant cultivars obtained by genetic engineering, if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated. The term “parts” or “parts of plants” or “plant parts” has been explained above.

Particularly preferably, plants of the plant cultivars which are in each case commercially available or in use are treated according to the invention.

Depending on the plant species or plant cultivars, their location and growth conditions (soils, climate, vegetation period, diet), the treatment according to the invention may also result in superadditive (“synergistic”) effects. Thus, for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the substances and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, better quality and/or a higher nutritional value of the harvested products, better storage stability and/or processability of the harvested products are possible which exceed the effects which were actually to be expected.

The transgenic plants or plant cultivars (i.e. those obtained by genetic engineering) which are preferred and to be treated according to the invention include all plants which, in the genetic modification, received genetic material which imparts particularly advantageous useful properties (“traits”) to these plants. Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, better quality and/or a higher nutritional value of the harvested products, better storage stability and/or processability of the harvested products. Further and particularly emphasized examples of such properties are a better defense of the plants against animal and microbial pests, such as against insects, mites, phytopathogenic fungi, bacteria and/or viruses, and also increased tolerance of the plants to certain herbicidally active compounds. Examples of transgenic plants which may be mentioned are the important crop plants, such as cereals (wheat, rice), maize, soya beans, potatoes, cotton, oilseed rape and also fruit plants (with the fruits apples, pears, citrus fruits and grapevines), and particular emphasis is given to maize, soya beans, potatoes, cotton and oilseed rape. Traits that are particularly emphasized are increased defense of the plants against insects by toxins formed in the plants, in particular those formed by the genetic material from Bacillus thuringiensis (for example by the genes CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CryIF and also combinations thereof) (hereinbelow referred to as “Bt plants”). Traits that are furthermore particularly emphasized are the increased tolerance of the plants to certain herbicidally active compounds, for example imidazolinones, sulphonylureas, glyphosate or phosphinotricin (for example the “PAT” gene). The genes which impart the desired traits in question can also be present in combination with one another in the transgenic plants. Examples of “Bt plants” which may be mentioned are maize cultivars, cotton cultivars, soya bean cultivars and potato cultivars which are sold under the trade names YIELD GARD® (for example maize, cotton, soya beans), KnockOut® (for example maize), StarLink® (for example maize), Bollgard® (cotton), Nucotn® (cotton) and NewLeaf® (potato). Examples of herbicide-tolerant plants which may be mentioned are maize cultivars, cotton cultivars and soya bean cultivars which are sold under the trade names Roundup Ready® (tolerance to glyphosate, for example maize, cotton, soya bean), Liberty Link® (tolerance to phosphinotricin, for example oilseed rape), IMI® (tolerance to imidazolinones) and STS® (tolerance to sulphonylurea, for example maize). Herbicide-resistant plants (plants bred in a conventional manner for herbicide tolerance) which may be mentioned include the cultivars sold under the name Clearfield® (for example maize). Of course, these statements also apply to plant cultivars having these or still to be developed genetic traits, which plants will be developed and/or marketed in the future.

The plants listed can be treated according to the invention in a particularly advantageous manner with the active compound mixtures according to the invention. The preferred ranges stated above for the mixtures also apply to the treatment of these plants. Particular emphasis is given to the treatment of plants with the mixtures specifically mentioned in the present text.

The good insecticidal and acaricidal action of the active compound combinations according to the invention can be seen from the examples which follow. While the individual active compounds show weaknesses in their action, the combinations show an action which exceeds a simple sum of actions.

A synergistic effect in insecticides and acaricides is always present when the action of the active compound combinations exceeds the total of the actions of the active compounds when applied individually.

The expected action for a given combination of two active compounds can be calculated as follows, using the formula of S. R. Colby, Weeds 15 (1967), 20-22:

If

  • X is the kill rate, expressed as % of the untreated control, when employing active compound A at an application rate of m g/ha or in a concentration of m ppm,
  • Y is the kill rate, expressed as % of the untreated control, when employing active compound B at an application rate of m g/ha or in a concentration of n ppm and
  • E is the kill rate, expressed as % of the untreated control, when employing active compounds A and B at application rates of m and n g/ha or in a concentration of m and n ppm,
    then

E = X + Y - X · Y 100

If the actual insecticidal kill rate exceeds the calculated value, the action of the combination is superadditive, i.e. a synergistic effect is present. In this case, the actually observed kill rate must exceed the value calculated using the above formula for the expected kill rate (E).

After the desired period of time, the kill in % is determined. 100% means that all animals have been killed; 0% means that none of the animals have been killed.

EXAMPLE A Critical Concentration Test/Soil Insects Treatment of Transgenic Plants

Test insect: Diabrotica balteata—larvae in soil

Solvent: 7 parts by weight of acetone

Emulsifier: 1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent, the stated amount of emulsifier is added and the concentrate is diluted with water to the desired concentration.

The preparation of active compound is poured onto the soil. Here, the concentration of the active compound in the preparation is virtually irrelevant, only the amount by weight of active compound per volume unit of soil, which is stated in ppm (mg/l), matters. The soil is filled into 0.25 l pots and these are allowed to stand at 20° C.

Immediately after preparation, 5 pre-germinated maize corns of the variety YIELD GUARD (trade mark of Monsanto Comp., USA) are placed into each pot. After 2 days, the test insects in question are placed into the treated soil. After a further 7 days, the efficacy of the active compound is determined by counting the maize plants that have emerged (1 plant=20% efficacy).

EXAMPLE B Heliothis virescens Test Treatment of Transgenic Plants

Solvent: 7 parts by weight of acetone

Emulsifier: 1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent and the stated amount of emulsifier, and the concentrate is diluted with water to the desired concentration.

Soya bean shoots (glycine max) of the variety Roundup Ready (trade mark of Monsanto Comp. USA) are treated by being dipped into the preparation of active compound of the desired concentration and are populated with the tobacco budworm Heliothis virescens while the leaves are still moist.

After the desired period of time, the kill of the insects is determined.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2812280Apr 20, 1954Nov 5, 1957Rohm & HaasPreparation of bis (halophenyl) trichloroethanol
US2812281Nov 15, 1954Nov 5, 1957Philips CorpPolychloro-diphenylsulfones and the use of such compounds for combatting the stages in the development of mites
US3264177Feb 17, 1964Aug 2, 1966Dow Chemical CoMethods for the control of arachnids
US3272854Jul 18, 1963Sep 13, 1966Us Rubber CoCycloaliphatic sulfite esters
US3657451Feb 8, 1971Apr 18, 1972Shell Oil CoOrgano-tin miticides and method of using the same
US3784696Jun 7, 1971Jan 8, 1974Ciba Geigy CorpControl of insects and acarinae with 4,4'-dibromo-and 4- chloro-4'-bromobenzilic acid esters
US4053634Sep 13, 1976Oct 11, 1977E. I. Du Pont De Nemours And CompanyMiticidal and aphicidal method utilizing 2-higher alkyl-3-hydroxy-1,4-naphthoquinone carboxylic acid esters
US4055661Sep 15, 1975Oct 25, 1977E. I. Du Pont De Nemours And CompanyMiticidal and aphicidal method utilizing 2-higher alkyl-3-hydroxy-1,4-naphthoquinone carboxylic acid esters
US4070481Mar 29, 1976Jan 24, 1978E. I. Du Pont De Nemours And CompanySubstituted 2-higher alkyl-3-hydroxy-1,4-naphthoquinone carboxylic acid esters and their use as miticides
US4082848Apr 29, 1976Apr 4, 1978E. I. Du Pont De Nemours And Company2-higher alkyl-3-hydroxy-1,4-naphthoquinone carboxylic acid esters
US4115584Oct 12, 1977Sep 19, 1978E. I. Du Pont De Nemours And CompanySubstituted 2-higher alkyl-3-hydroxy-1,4-naphthoquinone carboxylic acid esters and their use as miticides
US4143157May 9, 1978Mar 6, 1979E. I. Du Pont De Nemours And CompanyMiticidal and aphicidal method utilizing 2-higher alkyl-3-hydroxy-1'4-naphthoquinone carboxylic acid esters
US4148918Jul 31, 1978Apr 10, 1979E. I. Du Pont De Nemours And CompanyAphicides
US4174405Oct 11, 1977Nov 13, 1979Uniroyal, Inc.Miticides
US4199569Jul 31, 1978Apr 22, 1980Merck & Co., Inc.Anthelmintic macrolides
US4237127May 21, 1979Dec 2, 1980Fisons LimitedMiticides, larvicides, ovicides
US4310519Sep 8, 1978Jan 12, 1982Merck & Co., Inc.Novel substances and process for their production
US4329518Oct 2, 1980May 11, 1982Fmc CorporationInsecticides, acaricides, miticides
US4402973May 21, 1981Sep 6, 1983Fmc CorporationInsecticidal (1,1'-biphenyl)-3-ylmethyl esters
US4429042Dec 30, 1981Jan 31, 1984Merck & Co., Inc.Antibiotic c-076
US4431814Feb 16, 1982Feb 14, 1984Nippon Soda Company LimitedHerbicides, miticides, anticonvulsants
US4442116Feb 19, 1982Apr 10, 1984Nippon Soda Company, LimitedHeterocyclic compounds
US4536591Feb 7, 1983Aug 20, 1985Fmc CorporationInsecticidal [1,1'-biphenyl]-3-ylmethyl esters
US4623658Feb 3, 1986Nov 18, 1986Shell Oil CompanyPesticidal benzoylurea compounds
US4666942Jul 24, 1986May 19, 1987E. I. Du Pont De Nemours And CompanyPesticidal benzoylurea compounds
US4668792Dec 20, 1983May 26, 1987Fmc CorporationIntermediates to insecticidal [1,1'-biphenyl]-3-ylmethyl esters
US4672139Jul 21, 1986Jun 9, 1987E. I. Du Pont De Nemours And CompanyChemical intermediate for preparation of insecticide, acaricide
US4698365Nov 25, 1986Oct 6, 1987E. I. Du Pont De Nemours And CompanyPesticidal benzoylurea compounds
US4843068Dec 29, 1986Jun 27, 1989Nihon Nohyaku Co., Ltd.Insecticides, miticides, fungicides
US4845097Mar 14, 1986Jul 4, 1989Sankyo Company LimitedPhenoxyalkylaminopyrimidine derivatives and insecticidal and acaricidal compositions containing them
US4877787Mar 17, 1987Oct 31, 1989Nissan Chemical IndustriesBenzylthio pyridazinone derivatives, preparation thereof, and insecticidal acaricidal, fungicidal compositions
US4950668Apr 14, 1988Aug 21, 1990Mitsubishi Kasei CorporationPyrazole derivative, insecticidal or miticidal composition containing the same as the effective ingredient
US4962126Apr 28, 1989Oct 9, 1990Ciba-Geigy CorporationUse of N-(4-phenoxy-2,6-diisopropylphenyl)-N'-tertbutylthiourea for controlling white flies
US5010098Jun 23, 1988Apr 23, 1991American Cyanamid CompanyArylpyrrole insecticidal acaricidal and nematicidal agents and methods for the preparation thereof
US5026850Jun 6, 1989Jun 25, 1991Nissan Chemical Industries, Ltd.Pyridazinone derivatives, preparation thereof, and insecticidal, acaricidal, fungicidal compositions
US5045560Jan 2, 1990Sep 3, 1991Bayer AktiengesellschaftPesticidal tautomers of 3-aryl-pyrrolidine-2,4-diones and use thereas
US5091537Aug 8, 1990Feb 25, 1992Bayer AktiengesellschaftIntermediates for preparing 3-aryl-pyrrolidine-2,4-diones
US5116836Aug 15, 1990May 26, 1992Bayer AktiengesellschaftHerbicides, insecticides, miticides
US5186737Apr 1, 1991Feb 16, 1993Bayer AktiengesellschaftPesticidal 3-aryl-pyrrolidine-2,4-diones
US5225434Feb 6, 1991Jul 6, 1993Bayer AktiengesellschaftPesticidal and herbicidal polycyclic 3-aryl-pyrrolidine-2,4-dione derivatives
US5258527Apr 30, 1991Nov 2, 1993Bayer AktiengesellschaftInsecticidal, acaricidal and herbicidal 1-H-3-aryl-pyrrolidine-2,4-dione derivatives
US5310938Jul 13, 1993May 10, 1994American Cyanamid CompanySubstituted arylpyrrole compounds
US5362634Oct 10, 1991Nov 8, 1994DowelancoProcess for producing A83543 compounds
US5367093Nov 20, 1992Nov 22, 1994Uniroyal Chemical Company, Inc.Pesticides
US5411963Jul 19, 1993May 2, 1995DowelancoPlant fungicides, miticides, insecticides
US5438123Aug 5, 1994Aug 1, 1995Uniroyal Chemical Company, Inc.Miticides, nematocides
US5455263Jul 13, 1993Oct 3, 1995American Cyanamid CompanyAdministering substituted arylpyrrole compounds
US5462913Oct 21, 1993Oct 31, 1995Bayer AktiengesellschaftPesticides, insecticides, miticides, herbicides
US5478855Apr 28, 1992Dec 26, 1995Yashima Chemical Industry Co., Ltd.2-(2,6-difluorophenyl)-4-(2-ethoxy-4-tert-butylphenyl)-2-oxazoline
US5496931Mar 17, 1995Mar 5, 1996DowelancoInsecticide and miticide A83543 compounds and their method of production by fermentation
US5504057Feb 22, 1994Apr 2, 1996Bayer AktiengesellschaftHerbicides; pesticides
US5536746Mar 24, 1995Jul 16, 1996Uniroyal Chemical Company, Inc.Insecticidal phenylhydrazine derivatives
US5567671Feb 22, 1994Oct 22, 1996Bayer AktiengesellschaftSubstituted 1-H-3-phenyl-5-cycloalkylpyrrolidine-2,4-diones, their preparation and their use
US5571901Jun 7, 1995Nov 5, 1996DowelancoInsecticide and miticide compositions containing A83543 compounds
US5589469Jun 7, 1995Dec 31, 1996Bayer AktiengesellschaftSubstituted 1H-3-aryl-pyrrolidine-2,4-dione derivatives
US5602078Dec 4, 1995Feb 11, 1997Bayer AktiengesellschaftPossess herbicidal and pesticidal activity
US5616536Jun 3, 1996Apr 1, 1997Bayer AktiengesellschaftSubstituted 1H-3-aryl-pyrrolidine-2,4-dione derivatives
US5622917Jan 3, 1995Apr 22, 1997Bayer AktiengesellschaftSubstituted 1H--3-aryl-pyrrolidine-2,4-dione derivatives
US5677449Jun 5, 1995Oct 14, 1997Bayer AktiengesellschaftPesticides
US5707995Jul 15, 1993Jan 13, 1998American Cyanamid CompanyPesticidal pyrimidine compounds
US5830826Mar 23, 1995Nov 3, 1998Bayer AktiengesellschaftAlkoxy-alkyl-substituted 1H-3-aryl-pyrrolidine-2, 4-diones used as herbicicides and pesticides
US5847211Dec 3, 1996Dec 8, 1998Bayer AktiengesellschaftSubstituted 1H-3-Aryl-pyrrolidine-2,4-dione derivatives
US5883104Jun 12, 1997Mar 16, 1999American Cyanamid CompanyApplying to the foliage of plants an unsymmetrical 4,6-bis(aryloxy)pyrimidine compound
US5981567Jun 20, 1994Nov 9, 1999Bayer AktiengesellschaftSubstituted spiroheterocyclic 1h-3-aryl-pyrrolidine-2,4-dione derivatives and their use as pesticides
US5994274Jun 17, 1996Nov 30, 1999Bayer AktiengesellschaftDialkyl phenyl halide-substituted keto-enols for use as herbicides and pesticides
US6110872Jun 17, 1996Aug 29, 2000Bayer Aktiengesellschaft2,4,5-trisubstituted phenylketo-enols for use as pesticides and herbicides
US6114374Jul 23, 1997Sep 5, 2000Bayer Aktiengesellschaft2-and 2,5-substituted phenylketoenols
US6133296Apr 28, 1997Oct 17, 2000Bayer AktiengesellschaftSubstituted pyridyl keto enols
US6172255Jul 31, 1998Jan 9, 2001Bayer AktiengesellschaftAlkoxy-alkyl-substituted 1-H-3-aryl-pyrrolidine-2,4-diones used as herbicides and pesticides
US6200932Aug 5, 1997Mar 13, 2001Bayer AktiengesellschaftAs pesticide and herbicide
US6251830Jul 26, 1999Jun 26, 2001Bayer AktiengesellschaftPesticides and herbicides
US6255342Apr 12, 2000Jul 3, 2001Bayer AktiengesellschaftPesticides
US6288102Dec 1, 1997Sep 11, 2001Bayer AktiengesellschaftSubstituted phenylketoenols and their use as pesticides and herbicides
US6316486Apr 29, 1996Nov 13, 2001Bayer AktiengesellschaftAlkyl dihalogenated phenyl-substituted ketoenols useful as pesticides and herbicides
US6358887Jan 31, 1996Mar 19, 2002Bayer Aktiengesellschaft2-Phenyl-substituted heterocyclic 1,3-ketonols as herbicides and pesticides
US6359151Mar 15, 2001Mar 19, 2002Bayer AktiengesellschaftUse as pesticides.
US6380246Sep 23, 1999Apr 30, 2002Bayer AktiengesellschaftFor combating pests and weeds
US6391912Jun 29, 2001May 21, 2002Bayer AktiengesellschaftPesticides, herbicides
US6417370Feb 17, 1999Jul 9, 2002Bayer AktiengesellschaftArylphenyl-substituted cyclic keto-enols
US6458965Mar 18, 1999Oct 1, 2002Bayer AktiengesellschaftHerbicides, antigrowth agents and surfactants for wood preservatives
US6472419Nov 5, 1997Oct 29, 2002Bayer Aktiengesellschaft1-H-3-aryl-pyrrolidine-2, 4-dione derivatives as pest-control agents
US6479489Jun 3, 1999Nov 12, 2002Bayer AktiengesellschaftSubstituted spiroheterocyclic 1H-3-arylpyrrolidine-2,4-dione derivatives, methods of preparing them and their use as pest-control agents
US6504036Dec 10, 2001Jan 7, 2003Bayer Aktiengesellschaft2- and 2.5-substituted phenylketoenols
US6511942Feb 2, 2000Jan 28, 2003Bayer AktiengesellschaftAnimal husbandry, veterinary medicine
US6555567Jun 19, 2002Apr 29, 2003Bayer AktiengesellschaftSubstituted spiroheterocyclic 1H-3-aryl-pyrrolidine-2,4-dione derivatives, processes for their preparation, and their use as pesticides
US6589976Sep 12, 1998Jul 8, 2003Bayer AktiengesellschaftParticularly effective wood preservation is achieved by impregnation processes on a large industrial scale, for example vacuum, a double vacuum or pressure processes.
US6596873Oct 4, 2002Jul 22, 2003Bayer Aktiengesellschaft2-and 2,5-substituted phenylketoenols
US6608211Oct 29, 1998Aug 19, 2003Bayer AktiengesellschaftPesticides and herbicides; well tolerated by plants
US7084138Aug 23, 2001Aug 1, 2006Bayer Cropscience AgActive ingredient combinations with insecticidal and acaricidal properties
US20020010204Mar 15, 2001Jan 24, 2002Folker LiebUse as pesticides.
US20020022575Apr 20, 2001Feb 21, 2002Reiner FischerDialkyl-halogenophenyl-substituted ketoenols
US20020072617Jun 29, 2001Jun 13, 2002Hermann HagemannAs pesticides and herbicides
US20020161034Jan 28, 2002Oct 31, 2002Hermann HagemannSpiro-pyran compounds; use as pesticides and herbicides
US20030045432Dec 11, 2001Mar 6, 2003Reiner FischerPhenyl-substituted cyclic ketoenols
US20030073851May 9, 2002Apr 17, 2003Folker LiebArylphenyl-substituted cyclic ketoenols
US20030144504Jul 18, 2002Jul 31, 2003Reiner FischerDialkyl-halogenophenyl-substituted ketoenols
US20040038827Aug 23, 2001Feb 26, 2004Reiner FischerActive ingredient combinations with insecticidal and acaricidal properties
US20040102326Sep 26, 2001May 27, 2004Reiner FischerActive ingredient combinations with insecticidal, fungicidal and acaricidal properties
DE1015979BJun 16, 1954Sep 19, 1957Schubert & Salzer MaschinenVorrichtung zur Verringerung der Geschwindigkeit der Bremsschienen fuer den Antrieb der Fadenfuehrerschienen bei flachen Kulierwirkmaschinen
EP0375316A1 *Dec 18, 1989Jun 27, 1990DowElancoMacrolide compounds
WO1993010083A1 *Nov 17, 1992May 27, 1993Uniroyal Chem Co IncInsecticidal phenylhydrazine derivatives
WO1998005638A2 *Jul 23, 1997Feb 12, 1998Bayer Ag2- and 2,5-substituted phenylketoenols
Non-Patent Citations
Reference
1Chem. Ind., 37, (month unavailable) 1985, pp. 730-732, "Schiffsfarben-eine Spezialität der Seenahen Lackindustrie" by H. R. Ungerer.
2Chem. Ind., 37, (month unavailable) 1985, pp. 730-732, "Schiffsfarben—eine Spezialität der Seenahen Lackindustrie" by H. R. Ungerer.
3 *National Registration Authority for Agricultural and Veterinary Chemicals (NRA),"Public Release Summary on Evaluation of the new active SPINOSAD in the products Laser Naturalyte Insect Control Tracer Naturalyte Insect Control", NRA (Oct. 1998), pp. 2,3.
4The Pesticide Manual, 11 ed., (month unavailable) 1997, pp. 1208-1210, "715 tolylfluanid Fungicide".
5The Pesticide Manual, 11 ed., (month unavailable) 1997, pp. 846-847, "500 milbemectin Acaricide, insecticide".
6The Pesticide Manual, 9th ed., (date unavailable). p. 48, "580 Azocylotin", (1991).
7Weeds. 15, (month unavailable) 1967, pp. 20-22, "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations" by S. R. Colby.
Classifications
U.S. Classification514/409, 514/28
International ClassificationA01N43/84, A01N47/02, A01N43/10, A01N43/76, A01N43/54, A01N43/56, A01N43/38, A01N31/04, A01N43/713, A01N47/12, A01N47/30, A01N41/10, A01N37/02, A01N53/06, A01N63/02, A01N43/90, A01N43/24, A01N55/04, A01N43/78, A01N47/34, A01N43/36, A01N37/36, A01N43/58, A01N41/02, A01N43/22
Cooperative ClassificationA01N43/38
European ClassificationA01N43/38