Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS8100012 B2
Publication typeGrant
Application numberUS 12/013,208
Publication dateJan 24, 2012
Filing dateJan 11, 2008
Priority dateJan 11, 2007
Also published asUS20080168838, US20080237823, WO2008086530A2, WO2008086530A3, WO2008086537A2, WO2008086537A3
Publication number013208, 12013208, US 8100012 B2, US 8100012B2, US-B2-8100012, US8100012 B2, US8100012B2
InventorsJohn R. Martin, Xin Zhang
Original AssigneeAnalog Devices, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
MEMS sensor with cap electrode
US 8100012 B2
Abstract
A MEMS sensor includes a substrate having a MEMS structure movably attached to the substrate, a cap attached to the substrate and encapsulating the MEMS structure, and an electrode formed on the cap that senses movement of the MEMS structure.
Images(5)
Previous page
Next page
Claims(9)
1. A MEMS sensor comprising:
a substrate having a MEMS structure movably attached to the substrate;
a cap attached to the substrate, the cap encapsulating the MEMS structure;
an electrode formed on the cap that senses movement of the MEMS structure;
a reference electrode formed coplanar with the MEMS structure and non-movably attached to the substrate for increasing accuracy of movement measurements of the MEMS structure; and
a second electrode formed on the substrate beneath the MEMS structure.
2. The MEMS sensor of claim 1, wherein the substrate comprises an SOI wafer.
3. The MEMS sensor of claim 1, wherein the substrate comprises a silicon wafer.
4. The MEMS sensor of claim 1, wherein the electrode is formed from aluminum or an aluminum alloy.
5. The MEMS sensor of claim 1, wherein the electrode is formed from copper, a copper alloy, gold or a gold alloy.
6. The MEMS sensor of claim 1, wherein the cap includes a conductive seal ring formed from aluminum or an aluminum alloy.
7. The MEMS sensor of claim 1, wherein the MEMS sensor is an inertial sensor.
8. The MEMS sensor of claim 1, wherein the MEMS sensor is a pressure sensor, a fluid sensor, or a microphone.
9. The MEMS sensor of claim 1, wherein the substrate further includes electronic circuitry formed on or in the substrate.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application claims priority to U.S. Provisional Patent Application No. 60/879,903 filed Jan. 11, 2007, entitled MEMS DEVICE WITH ALUMINUM BASED OR SIMILAR CAP BONDING OR ELECTRODE, the disclosure of which is incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

The invention generally relates to an electrode for MEMS sensors and, more particularly, the invention relates to a cap electrode for measuring z-axis movement in MEMS sensors.

BACKGROUND OF THE INVENTION

A variety of different applications use sensor systems to detect the movement of an underlying object or the presence of a substance or condition in a particular environment, such as sensors that detect motion, light, pressure, humidity, sound and gases. Sensors employing microelectromechanical systems (MEMS) devices are increasingly used in such applications due to their relatively small size and their capability to detect relatively small amounts or changes in the measured item.

MEMS devices typically employ a movable, inertial mass or flexible membrane formed with one or more fixed, non-moving structures or fingers. For example, in a MEMS accelerometer, the inertial mass may be suspended in a plane above a substrate and movable with respect to the substrate. The movable structure and the fixed structures form a capacitor having a capacitance that changes when the movable structure moves relative to the fixed structures in response to applied forces, such as along a predetermined axis of the device, e.g., x- and y-axes. For example, commercial MEMS accelerometers that sense linear motion in the x-, y- and z-axes may have electrodes positioned above, below and/or on opposing sides of the inertial mass to allow measurement of differential capacitance in each axis. This type of design generally offers high sensitivity to linear acceleration with minimal temperature or stress sensitivity. Because of the mechanical moving structures involved and the typical required device sensitivities, MEMS devices are commonly covered with a cap structure to protect the MEMS structures from hazards that may impact the functioning of the device, e.g., from gases, particles, moisture, etc.

MEMS devices are commonly made by a sequence of thin film depositions and etches performed on a substrate. Typically, the substrate is formed from a single crystal silicon wafer or a silicon-on-insulator (“SOI”) wafer. As known by those in the art, an SOI wafer has an insulator layer between two single crystal silicon layers with the inertial mass and fixed fingers typically formed in the top silicon layer. Designs based on SOI wafers may measure in-plane (x- and y-axes) acceleration, but are generally less satisfactory for measuring out-of-plane or z-axis movement. This is because it is difficult to form an electrode under the inertial mass. Solutions such as the widely known “teeter-totter” do exist. One can also use the handle/bottom silicon layer as the ground and drive the inertial mass to sense z-axis motion capacitively. This approach, however, is susceptible to various drift mechanisms.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention, a MEMS sensor includes a substrate having a MEMS structure movably attached to the substrate, a cap attached to the substrate and encapsulating the MEMS structure, and an electrode formed on the cap that senses movement of the MEMS structure.

In accordance with related embodiments, the MEMS sensor may include a reference electrode formed coplanar with the MEMS structure and attached to the substrate. The substrate may be an SOI wafer or a silicon wafer. The MEMS sensor may include a second electrode formed on the substrate beneath the MEMS structure. The electrode may be formed from aluminum, copper, gold or their alloys. The cap may include a conductive seal ring formed from aluminum or an aluminum alloy. The MEMS sensor may be an inertial sensor, a pressure sensor, a fluid sensor or a microphone. The substrate may further include electronic circuitry formed on or in the substrate.

In accordance with another embodiment of the invention, a method of producing a MEMS sensor that senses motion in the z-axis is disclosed. The method includes providing a substrate having a MEMS structure movably attached to the substrate, forming an electrode on a cap, and attaching the cap to the substrate so that the cap encapsulates the MEMS structure and the electrode senses movement of the MEMS structure.

In accordance with related embodiments, the method may further include forming a reference electrode coplanar with the MEMS structure, wherein the cap encapsulates the MEMS structure and the reference electrode. The method may further include forming a seal ring on the cap, wherein the seal ring is used to attach the cap to the substrate. Forming the electrode and forming the seal ring may be performed during the same processing step. The electrode and the seal ring may be formed from aluminum or an aluminum alloy. Attaching the cap may include thermocompression bonding the seal ring on the cap to a corresponding aluminum-based ring on the substrate. Forming an electrode on the cap may include depositing a layer of aluminum or aluminum alloy on the cap and etching the layer to leave a seal ring and the electrode surrounded by the seal ring. The substrate may be an SOI wafer or a silicon wafer. The method may include forming a second electrode on the substrate beneath the MEMS structure. The substrate may further include electronic circuitry formed on or in the substrate. The electrode may be formed from copper, gold or their alloys.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and advantages of the invention will be appreciated more fully from the following further description thereof with reference to the accompanying drawings wherein:

FIG. 1 shows a process of producing a MEMS sensor with a cap electrode according to embodiments of the present invention;

FIG. 2 schematically shows a cross-sectional view of a MEMS device according to embodiments of the present invention;

FIG. 3 schematically shows a plan view of a cap with an electrode according to embodiments of the present invention;

FIG. 4 schematically shows a cross-sectional view of the cap with an electrode along line A-A′ of FIG. 3;

FIG. 5 schematically shows a cross-sectional view of a cap with an electrode attached to a MEMS device according to embodiments of the present invention;

FIG. 6 schematically shows a cross-sectional view of a cap with an electrode attached to a MEMS device having an electrode according to embodiments of the present invention; and

FIG. 7 schematically shows a cross-sectional view of a cap with an electrode attached to a MEMS device having an electrode according to embodiments of the present invention.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Embodiments of the present invention provide a cap with an electrode for measuring z-axis movement of a MEMS device in a MEMS sensor. The cap electrode is positioned above the movable MEMS structure with a well-controlled gap, allowing the electrode to sense changes in capacitance as the movable structure moves in the z-axis. The cap electrode may be used with MEMS devices formed on single crystal silicon wafers or SOI wafers. Details of illustrative embodiments are discussed below.

Although the following discussion describes various relevant steps of forming a MEMS device and cap electrode, it does not describe all the required steps. Other processing steps may also be performed before, during, and/or after the discussed steps. Such steps, if performed, have been omitted for simplicity. The order of the processing steps may also be varied and/or combined. Accordingly, some steps are not described and shown. Similarly, although the following discussion involves inertial sensors, principles of illustrative embodiments may apply to other sensor devices, such as MEMS pressure sensors, MEMS microphones and MEMS fluid sensors. As known to those skilled in the art, fluid sensors may sense gases, liquids and/or multiphase compositions. Accordingly, discussion of inertial sensors is exemplary and is not intended to limit the scope of various embodiments of the invention.

FIG. 1 shows a process of producing a MEMS sensor with a cap electrode according to illustrative embodiments of the present invention. The process begins at step 100, which provides a substrate having a MEMS structure movably attached to the substrate. For example, FIG. 2 schematically shows a cross-sectional view of a substrate 10 having a MEMS structure 12 formed therein according to an embodiment of the present invention. The substrate 10 may be formed from a silicon wafer or an SOI wafer. As known by those in the art, one or more layers may be formed on the surface of the substrate and the MEMS structure 12 may be formed on top of the substrate (in the case of a silicon wafer) or in the top layer of the substrate (in the case of an SOI wafer). The layers may include one or more layers of materials typically used in the manufacture of a MEMS device, such as an oxide layer, a polysilicon layer, a nitride layer, etc., as is well known to those skilled in the art. The various layers may be masked off or patterned using processes well known to those skilled in the art, e.g., using photolithography and etching techniques.

For simplicity, FIG. 2 is further described using an SOI wafer, which has an insulator layer 14 (e.g., an oxide) between two silicon layers 16. The MEMS structure 12 includes a movable, inertial mass 18 formed in the top silicon layer 16 a and suspended above the bottom silicon layer 16 b. The MEMS structure 12 is movably attached to the substrate 10 (not shown) as is well known to those skilled in the art. The substrate 10 may also have a reference mass or electrode 20 formed in the top silicon layer 16 a, adjacent to, and coplanar with, the inertial mass 18 and partially suspended above the bottom silicon layer 16 b. As is well known to those skilled in the art, both the inertial mass 18 and the reference electrode 20 are suspended above the bottom silicon layer 16 b by an equal distance since the gap is caused by the removal of the dielectric layer 14 under both structures 18, 20 during the release step. The reference electrode 20 may be used when measuring the z-axis movement of the inertial mass 18 (e.g., up and down movement as shown in FIG. 2) to increase the accuracy of the measurement, as will be described in further detail below. The reference electrode 20 may also be used when measuring the x-axis movement of the inertial mass 18 (e.g., right and left as shown in FIG. 2) and a similar reference electrode (not shown) may be used for measuring the y-axis movement (e.g., in and out of the page as shown in FIG. 2). In some embodiments, a dielectric layer 22 may be formed on the top silicon layer 16 a to electrically isolate the MEMS device from subsequent layers or structures attached to the substrate 10.

In step 110, an electrode is formed on a cap according to embodiments of the present invention. The cap may be formed from a wafer and include one or more layers formed on the wafer. The various layers may be masked off or patterned using processes well known to those skilled in the art, e.g., using photolithography and etching techniques. The wafer may be formed from single crystal silicon, although other materials may be used. For example, FIG. 3 schematically shows a plan view of a cap 30 with an electrode 32 and FIG. 4 shows a cross-sectional view of the cap along line A-A′ of FIG. 3 according to an embodiment of the present invention. As shown, the cap 30 includes a conductive cap wafer 34 and a dielectric layer 36 (e.g., oxide, nitride) formed on the cap wafer 34. The dielectric layer 36 may be formed in an area in the center of the cap 30 and may also be formed around its perimeter. The electrode 32 may then be formed in the center of the cap 30 on the dielectric layer 36. The electrode 32 is electrically isolated from the cap 30, to allow the electrode 32 to be used for sensing the z-axis movement as opposed to using the cap 30 itself for the sensing. The electrode 32 may be made from any conductive material, (e.g., aluminum, copper, gold, polysilicon, germanium, and their alloys) and formed by any deposition process, e.g., sputtering, chemical vapor deposition. The electrode 32 may be approximately one or two microns in thickness, although other thicknesses may be used. An electrode contact 38 may be formed on the electrode 32 or in the same plane as the electrode 32 using the same or different materials as the electrode 32. The electrode contact 38 may connect the electrode 32 to the substrate 10 or layers on the substrate 10, e.g., bond pads.

The cap 30 may also have a seal ring 40 formed on the dielectric layer 36 at the perimeter of the cap 30 to be used for attaching the cap 30 to the substrate 10. The seal ring 40 may be formed from any material that provides an appropriate seal or attachment to the substrate 10. The seal ring 40 may be formed during the same deposition process as the electrode 32 and made from the same material as the electrode 32. For example, the seal ring 40 and electrode 32 may be made from aluminum or an aluminum alloy. A particular aluminum alloy considered particularly suitable for use as a seal ring in embodiments of the present invention is aluminum with 1% copper formed using a sputter deposition process. To form the seal ring 40 and the electrode 32, the material may be etched to leave the seal ring 40 and the electrode 32 surrounded by the seal ring 40. The seal ring 40 may have a seal ring contact 42 to the cap wafer 34, which may ground the cap wafer 34 to the substrate to provide an EMI shield in some embodiments.

In step 120, the cap 30 is attached to the substrate 10 according to embodiments of the present invention. For example, FIG. 5 schematically shows a cross-sectional view of a cap 30 with an electrode 32 attached to a MEMS device according to an embodiment. The cap 30 is positioned so that the electrode 32 is above the inertial mass 18. The cap 30 may be positioned on the substrate 10 such that the portion of the cap 30 (e.g., the seal ring 40) that contacts the substrate 10 surrounds or circumscribes one or more MEMS structures formed on or in the substrate 10. The cap 30 may also be positioned to surround circuitry formed on or in the substrate 10 and coupled to the MEMS structure. The substrate 10 may include one or more layers formed around the MEMS structure(s) for attaching the cap 30 to the substrate 10. These layers may be formed from conductive or non-conductive materials which may allow the cap 30 to be electrically connected or isolated from the substrate 10. For example, as shown in FIG. 5, the seal ring 40 may attach to a dielectric layer 22 so that the cap 30 may be electrically isolated from the substrate 10. When the seal ring 40 is formed from an aluminum or aluminum alloy layer as mentioned above, the same or similar aluminum-based material may be formed on the substrate 10 to provide a conductive connection. Similar to the seal ring 40, the aluminum-based layer may be approximately one or two microns in thickness, although other thicknesses may be used. For example, the substrate 10 may have a conductive aluminum-based layer (not shown) that is thermocompression bonded to a conductive aluminum-based seal ring 40 under the proper processing conditions (e.g., pressure, temperature, etc.). Details of a bonding process using an aluminum or aluminum alloy are discussed in co-pending U.S. patent application entitled, “ALUMINUM BASED BONDING OF SEMICONDUCTOR WAFERS,” filed on Jan. 11, 2008, also naming John R. Martin as an inventor, the disclosure of which is incorporated herein by reference in its entirety.

Although an aluminum seal ring and bonding method are described, other ways of attaching the cap and other materials may be used as known to those skilled in the art. For example, the caps on MEMS sensors often are bonded to the substrate with a glass frit material. Also, polymers and other metal or alloys may be used for the bonding material, although polymers do not provide a hermetic seal.

In some embodiments, the cap 30 may be attached to the substrate 10 to form a hermetic seal. In some embodiments, the cap 30 may include a hole or opening (not shown) through which the ambient or surrounding atmosphere may enter into the MEMS device, allowing the MEMS structure to be exposed to the surrounding atmosphere. Once the cap 30 is attached or bonded to the substrate 10, the cap 30 encapsulates or surrounds the MEMS structure protecting it from hazards such as particles, gases, etc. that might impact the functioning of the MEMS device.

In use, the cap electrode 32 measures the movement of the inertial mass 18 in the z-axis (e.g., toward the electrode 32 and away from the bottom silicon layer 16 b) by the change in capacitance. The fixed reference mass 20 provides a reference for the electrode 32 in order to increase the accuracy of its measurement. For example, if operating conditions (e.g., temperature, pressure, humidity) cause the inertial mass 18 to change in any way (e.g., expand, contract), then the reference mass 20 should experience a similar type of change and may be used as a comparison to offset the change from the cap electrode's 32 measurement.

Although the substrate 10 has been shown and described in FIGS. 1 and 5 having a certain configuration, other layers and structures may be formed in and/or on the substrate. For example, in a single crystal silicon wafer, the substrate 10 may have additional layers formed on the substrate underneath the MEMS structure, such as shown in FIGS. 6 and 7. FIG. 6 schematically shows a cross-sectional view of a cap with an electrode attached to a MEMS device having an electrode according to embodiments of the present invention. The substrate 10 may include a conductive layer 44 (e.g., polysilicon, germanium, silicon-germanium) formed on the substrate 10 or on top of a dielectric layer formed on the substrate 10. The conductive layer 44 may be patterned and may be used as a second electrode for measuring the z-axis movement of the inertial mass 18. Differential capacitance measurements may then be made of the z-axis movement when both the electrode 32 and the second electrode (conductive layer 44) are used to measure the change in capacitance between the inertial mass 18 and each electrode 32, 44.

For example, when the inertial mass 18 moves up closer to the cap electrode 32 it also moves further away from the second electrode (conductive layer 44). A fixed reference mass 20 may be used, as described above, as a reference for the electrode 32 and/or the second electrode (conductive layer 44) in order to increase the accuracy of the z-axis movement measurements.

FIG. 7 schematically shows a cross-sectional view of a cap with an electrode attached to a MEMS device according to another embodiment of the present invention. As shown, the reference electrode 20 has been eliminated from FIG. 6, potentially reducing the size of the cap 30 and the MEMS device. The z-axis movement of the inertial mass 18 is measured by the change in differential capacitance between the inertial mass 18 and each electrode 32, 44, as described in FIG. 6. Although not shown, a MEMS device for measuring z-axis movement may also be formed by eliminating the cap electrode 32 from FIG. 6 or 7.

To complete the process of producing the MEMS sensor discussed in FIG. 1, other processing steps may be used. For example, if done in a batch process, the wafer(s) may be diced to form a plurality of individual dies. As used herein, the terms “wafer” and “die” may be used interchangeably, although a wafer may form a plurality of individual dies. Some embodiments may implement post-processing methods for integrating the MEMS device with circuitry on the same die or another die. In addition, other processing steps may be performed on the cap wafer to integrate it with packages or other components and/or devices.

Although the above discussion discloses various exemplary embodiments of the invention, it should be apparent that those skilled in the art can make various modifications that will achieve some of the advantages of the invention without departing from the true scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4499655Nov 29, 1982Feb 19, 1985General Electric CompanyMethod for making alignment-enhancing feed-through conductors for stackable silicon-on-sapphire
US5089880Jun 7, 1989Feb 18, 1992Amdahl CorporationPressurized interconnection system for semiconductor chips
US5229647Sep 21, 1992Jul 20, 1993Micron Technology, Inc.High density data storage using stacked wafers
US5326726Jun 21, 1993Jul 5, 1994Analog Devices, Inc.Forming chips and transistors with oxide layers, passivation, etching polysilicon for multilayer element
US5355022Aug 28, 1992Oct 11, 1994Mitsubishi Denki Kabushiki KaishaStacked-type semiconductor device
US5388460 *Mar 18, 1992Feb 14, 1995Toyoda Koki Kabushiki KaishaCapacitive sensor for detecting a physical value such as acceleration
US5392651 *Dec 6, 1993Feb 28, 1995Hitachi, Ltd.Capacitance type accelerometer
US5417111Jun 10, 1993May 23, 1995Analog Devices, Inc.Monolithic chip containing integrated circuitry and suspended microstructure
US5511428Jun 10, 1994Apr 30, 1996Massachusetts Institute Of TechnologyBackside contact of sensor microstructures
US5610431May 12, 1995Mar 11, 1997The Charles Stark Draper Laboratory, Inc.Covers for micromechanical sensors and other semiconductor devices
US5620931Jun 6, 1995Apr 15, 1997Analog Devices, Inc.Methods for fabricating monolithic device containing circuitry and suspended microstructure
US5719336 *May 15, 1996Feb 17, 1998Aisin Seiki Kabushiki KaishaCapacitive acceleration sensor
US6158280Dec 22, 1998Dec 12, 2000Kabushiki Kaisha Toyota Chuo KenkyushoDetector for detecting angular velocities about perpendicular axes
US6196067 *May 5, 1998Mar 6, 2001California Institute Of TechnologySilicon micromachined accelerometer/seismometer and method of making the same
US6236115Jul 29, 1999May 22, 2001International Business Machines CorporationHigh density integrated circuit packaging with chip stacking and via interconnections
US6263735 *Sep 7, 1998Jul 24, 2001Matsushita Electric Industrial Co., Ltd.Acceleration sensor
US6294400 *Aug 9, 2000Sep 25, 2001Litton Systems, Inc.Method for making micro-mechanical semiconductor accelerometer
US6297072Apr 16, 1999Oct 2, 2001Interuniversitair Micro-Elktronica Centrum (Imec Vzw)Method of fabrication of a microstructure having an internal cavity
US6307169Feb 1, 2000Oct 23, 2001Motorola Inc.Micro-electromechanical switch
US6323550Jun 6, 1995Nov 27, 2001Analog Devices, Inc.Package for sealing an integrated circuit die
US6335224May 16, 2000Jan 1, 2002Sandia CorporationProtection of microelectronic devices during packaging
US6384353Feb 1, 2000May 7, 2002Motorola, Inc.Micro-electromechanical system device
US6405592 *Jun 19, 1998Jun 18, 2002Stmicrlelectronics S.R.L.Hermetically-sealed sensor with a movable microstructure
US6429511Oct 1, 2001Aug 6, 2002Agilent Technologies, Inc.Microcap wafer-level package
US6433411May 22, 2000Aug 13, 2002Agere Systems Guardian Corp.Packaging micromechanical devices
US6436853Feb 27, 2001Aug 20, 2002University Of MichiganMicrostructures
US6448622Jul 17, 2000Sep 10, 2002The Regents Of The University Of CaliforniaGermanium silicides and transistor layers
US6504253Apr 27, 2001Jan 7, 2003Stmicroelectronics S.R.L.Structure for electrically connecting a first body of semiconductor material overlaid by a second body of semiconductor material composite structure using electric connection structure
US6504385 *May 31, 2001Jan 7, 2003Hewlett-Pakcard CompanyThree-axis motion sensor
US6621168Dec 28, 2000Sep 16, 2003Intel CorporationInterconnected circuit board assembly and system
US6625367Aug 21, 2001Sep 23, 2003Triquint Technology Holding Co.Optoelectronic device having a P-contact and an N-contact located over a same side of a substrate and a method of manufacture therefor
US6753208Aug 19, 2002Jun 22, 2004Mcsp, LlcWafer scale method of packaging integrated circuit die
US6853067Feb 28, 2003Feb 8, 2005Microassembly Technologies, Inc.Microelectromechanical systems using thermocompression bonding
US6906395Aug 22, 2002Jun 14, 2005Honeywell International, Inc.Hermetically sealed silicon micro-machined electromechanical system (MEMS) device having diffused conductors
US6909146May 21, 1999Jun 21, 2005Intersil CorporationBonded wafer with metal silicidation
US6911727Sep 15, 2003Jun 28, 2005Analog Devices, Inc.Package for sealing an integrated circuit die
US6933163Sep 27, 2002Aug 23, 2005Analog Devices, Inc.Fabricating integrated micro-electromechanical systems using an intermediate electrode layer
US6962835Feb 7, 2003Nov 8, 2005Ziptronix, Inc.Method for room temperature metal direct bonding
US7034393Dec 15, 2003Apr 25, 2006Analog Devices, Inc.Semiconductor assembly with conductive rim and method of producing the same
US7204737 *Sep 23, 2004Apr 17, 2007Temic Automotive Of North America, Inc.Hermetically sealed microdevice with getter shield
US7220614Jun 9, 2003May 22, 2007Analog Devices, Inc.Process for wafer level treatment to reduce stiction and passivate micromachined surfaces and compounds used therefor
US7258011 *Nov 21, 2005Aug 21, 2007Invensense Inc.Multiple axis accelerometer
US7291561Jul 21, 2003Nov 6, 2007Intel CorporationMEMS device integrated chip package, and method of making same
US7334491Apr 19, 2002Feb 26, 2008Robert Bosch GmbhSensor arrangement, in particular a micro-mechanical sensor arrangement
US7578186 *Jun 12, 2007Aug 25, 2009Sony CorporationInertial sensor and fabrication method of inertial sensor
US20040232500Apr 19, 2002Nov 25, 2004Joachim RudhardSensor arrangement,in particular a micro-mechanical sensor arrangement
US20040259325 *Jun 17, 2004Dec 23, 2004Qing GanWafer level chip scale hermetic package
US20050003652Dec 24, 2003Jan 6, 2005Shriram RamanathanMethod and apparatus for low temperature copper to copper bonding
US20050170609Feb 3, 2005Aug 4, 2005Alie Susan A.Conductive bond for through-wafer interconnect
US20050229710 *Aug 10, 2004Oct 20, 2005O'dowd JohnCapacitive sensor
US20050269678Jun 28, 2005Dec 8, 2005Martin John RPackage for sealing an integrated circuit die
US20060118946Oct 11, 2005Jun 8, 2006Alie Susan ASemiconductor assembly with conductive rim and method of producing the same
US20060199297 *Mar 7, 2006Sep 7, 2006Samsung Electronics Co., Ltd.MEMS device package and method of manufacturing the same
US20070004080 *May 2, 2006Jan 4, 2007Ouyang Mike XHermetic seals for micro-electromechanical system devices
EP0786645A2Jan 17, 1997Jul 30, 1997Matsushita Electric Industrial Co., Ltd.Angular rate sensor and acceleration sensor
EP0794558A1Nov 12, 1996Sep 10, 1997Ford Motor CompanyHermetic seal for an electronic component having a secondary chamber
EP1219565A1Dec 29, 2000Jul 3, 2002SGS-THOMSON MICROELECTRONICS S.r.l.Process for manufacturing integrated devices having connections on separate wafers and stacking the same
EP1262781A1May 30, 2002Dec 4, 2002Hewlett-Packard CompanyMotion sensor
EP1296374A1Sep 14, 2001Mar 26, 2003Hewlett Packard Company, a Delaware CorporationProcess for bonding and electrically connecting microsystems integrated in several distinct substrates
WO1996013062A1Oct 19, 1995May 2, 1996Ceram IncApparatus and method of manufacturing stacked wafer array
WO2001056921A2Feb 1, 2001Aug 9, 2001Raytheon CoVacuum package fabrication of microelectromechanical system devices with integrated circuit components
WO2002093122A2Apr 19, 2002Nov 21, 2002Bosch Gmbh RobertSensor arrangement, in particular micro-mechanical sensor arrangement
Non-Patent Citations
Reference
1Ando et al.; New Packaging Technology for SAW Device, Corporate Components Development Center, Doc. No. WA1-3, pp. 403-406, Dec. 1995.
2Boustedt et al.; Flip Chip as an Enabler for MEMS Packaging, 2002 Electronic Components and Technology Conference, pp. 124-128.
3Chavan et al.; A Monolithic Fully-Integrated Vacuum-Sealed CMOS Pressure Sensor, 2000 IEEE, Doc. No. 0-7803-5273-4/00, pp. 341-346.
4International Search Report dated Oct. 31, 2008.
5Martin; Wafer Capping of MEMS with Fab-Friendly Metals, Analog Devices Inc., Micromachined Products Division, SPIE presentation, Jan. 19, 2007.
6MEMS: Mainstream Process Integration, Ziptronix White Paper, 7 pages.
7Ok et al.; Generic, Direct-Chip-Attach MEMS Packaging Design with High Density and Aspect Ratio through-Wafer Electrical Interconnect, 2002 Electronic Components and Technology Conference, pp. 232-237.
8Ok et al.; High Density, High Aspect Ratio Through-Wafer Electrical Interconnect Vias for MEMS Packaging, 2003 IEEE Transactions on Advanced Packaging, vol. 26, No. 3, Doc. No. 1521-3323, Aug. 2003, pp. 302-309.
9Park et al.; A Novel Low-Loss Wafer-Level Packaging of the RF-MEMS Devices, 2002 IEEE, Doc. No. 0-7803-7185, Feb. 2002, pp. 681-684.
10Premachandran et al.; A Novel Electrically Conductive Wafer Through Hole Filled Vias Interconnect for 3D MEMS Packaging, 2003 Electronic Components and Technology Conference, pp. 627-630.
11Seeger et al.; Fabrication Challenges for Next-Generation Devices: Microelectromechanical Systems for Radio-Frequency Wireless Communications, J. Microlith., Microfab., Microsyst., vol. 2, No. 3, Jul. 2003, pp. 169-177.
12ShellBGA, www.shellcase.com/pages/products-shellbga.asp, printed Dec. 2, 2002, 2 pages.
13Teomim et al.; An Innovative Approach to Wafer-Level MEMS Packaging, Solid State Technology, printed Dec. 2, 2002, 3 pages.
14Wolffenbuttel; Low-Temperature Intermediate Au-Si Wafer Bonding; Eutectic or Silicide Bond, Sensors and Actuators A 62 (1997) pp. 680-686.
15Y. Tomita et al.; Advanced Packaging Technologies on 3D Stacked LSI Utilizing the Micro Interconnections and the Layered Microthin Encapsulation, IEEE, May 29, 2001, pp. 347-355.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US20120266673 *Jul 19, 2011Oct 25, 2012Samsung Electro-Mechanics Co., Ltd.Inertial sensor and method of manufacturing the same
US20130068023 *Jan 18, 2012Mar 21, 2013Taiwan Semiconductor Manufaturing Company, Ltd.Motion Sensor Device and Methods for Forming the Same
Classifications
U.S. Classification73/514.32, 73/493
International ClassificationG01P15/125, G01P1/02
Cooperative ClassificationB81B2203/053, B81C1/00269, B81B7/0077, B81C99/0045
European ClassificationB81B7/00P20, B81C1/00C14B, B81C99/00L4
Legal Events
DateCodeEventDescription
Feb 26, 2008ASAssignment
Owner name: ANALOG DEVICES, INC., MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARTIN, JOHN R.;ZHANG, XIN;REEL/FRAME:020564/0250;SIGNING DATES FROM 20080119 TO 20080215
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARTIN, JOHN R.;ZHANG, XIN;SIGNING DATES FROM 20080119 TO 20080215;REEL/FRAME:020564/0250