Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS8142481 B2
Publication typeGrant
Application numberUS 12/690,953
Publication dateMar 27, 2012
Filing dateJan 21, 2010
Priority dateOct 25, 2004
Also published asCA2585447A1, EP1814473A2, EP1814473A4, EP1814473B1, US7662172, US8012185, US8092504, US20060155278, US20080071277, US20080097457, US20100179603, WO2006047711A2, WO2006047711A3
Publication number12690953, 690953, US 8142481 B2, US 8142481B2, US-B2-8142481, US8142481 B2, US8142481B2
InventorsDavid R. Warnick
Original AssigneeX-Spine Systems, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Pedicle screw systems and methods of assembling/installing the same
US 8142481 B2
Abstract
The pedicle screw system may be used for fixation of spinal segments and may be advantageous when minimally invasive surgery (MIS) techniques are employed. The pedicle screw system includes a tulip assembly comprising of a tulip body, an inner member, and an expansion member. Installation of the pedicle screw system into pedicles of the spine, for example, includes inserting the pedicle screw into a portion of the spine and then coupling the tulip assembly to the pedicle screw. The tulip assembly may be locked onto the pedicle screw before a distraction rod is placed in the tulip assembly. After the rod is placed in the tulip assembly, the tulip body and the inner member can be rotated relative to one another to lock the rod into the tulip assembly. In addition, the relative rotation may also provide additional locking of the tulip assembly to the pedicle screw.
Images(8)
Previous page
Next page
Claims(18)
1. A pedicle screw system comprising:
a pedicle screw having a threaded portion and a head portion; and
a tulip assembly comprising a body having a tapered bore, a first device and a second device situated in said body, said first device being elastically expandable to receive the head portion of the pedicle screw, said second device received in the body and having an engagement portion, the engagement portion engageable with the first device to fix the tulip assembly to the head portion of the pedicle screw by moving said first device generally longitudinally in said tapered bore to cause said first device to compress about and lock onto said head portion in response to axial movement of said second device;
said at least one of said body or said second device comprising a first surface and a generally opposing second surface that defines a channel having a first channel portion and a second channel portion that is in communication with said first channel portion, said first channel portion defining a rod-receiving opening and extending in a first direction that is generally parallel to an axis of said tulip assembly and said second channel portion generally transverse to said first direction;
said first channel portion being adapted to receive a rod and guide said rod to said second channel portion so that said second channel portion can receive and lock said rod in said tulip assembly in response to a rotating of said at least one of said body or said second device;
said head portion of said pedicle screw, said first device and said second device are all inserted into said tapered bore of said body either upwardly or through a lower portion of said body.
2. The pedicle screw system of claim 1, further comprising: a third device coupled to the second device, said second and third devices working in cooperation to selectively fix at least a portion of a rod in the tulip assembly.
3. The pedicle screw system of claim 1 wherein the tulip assembly is rotationally maneuverable on the head portion of the pedicle screw before the second device engages the first device.
4. The pedicle screw system of claim 1 wherein the first device is a compressible ring that is expandable to be moved over the head portion of the pedicle screw.
5. The pedicle screw system of claim 4 wherein the compressible ring includes a split that permits a diameter of the compressible ring to vary from a first, larger diameter to a second, smaller diameter.
6. The pedicle screw system of claim 1 wherein the first device includes an inner surface to seat against the head portion of the pedicle screw.
7. The pedicle screw system of claim 1, wherein said inner component comprises said channel to permit said inner component to rotate within said body to lock said rod to said body.
8. The pedicle screw system of claim 1, wherein said body comprises said channel to permit said body to rotate about said second device to lock said rod to said body.
9. A pedicle screw comprising:
a screw having threads and a head;
a tulip comprising a body having a tapered bore, said tulip coupled to the screw;
a fastener internal to the tulip and positioned to couple the tulip to the screw; and
an inner component of the tulip, the inner component of the tulip being longitudinally moveable to engage the screw and to lock the tulip to the screw by moving said inner component generally longitudinally in said tapered bore to cause said fastener to compress about and lock onto said head in response to axial movement of said inner component;
at least one of said tulip or said inner component comprising a first surface and a generally opposing second surface that defines a channel having a first channel portion and a second channel portion that is in communication with said first channel portion, said first channel portion defining a rod-receiving opening and extending in a first direction that is generally parallel to an axis of said tulip and said second channel portion generally transverse to said first direction;
said first channel portion being adapted to receive a rod and guide said rod to said second channel portion so that said second channel portion can receive and lock said rod in said tulip in response to a rotating of said at least one of said body or said inner component;
a head portion of said pedicle screw, said fastener, and said inner component, are all inserted into said tapered bore of said body either upwardly or through a lower portion of said body.
10. The pedicle screw according to claim 9 wherein the inner component is rotatable to retain a rod placed in a recess in the tulip.
11. The pedicle screw according to claim 9 wherein the fastener includes at least one split that permits the diameter of the fastener to vary from a first, large diameter to a second, small diameter.
12. The pedicle screw according to claim 9 wherein the tulip further includes a lip for longitudinally retaining the inner component.
13. The pedicle screw system of claim 9, wherein said inner component comprises said channel to permit said inner component to rotate within said body to lock said rod to said body.
14. The pedicle screw system of claim 1, wherein said body comprises said channel to permit said body to rotate about said second device to lock said rod to said body.
15. A pedicle screw comprising:
a screw having threads and a head;
a tulip comprising a body having a tapered bore;
a fastener internal to the tulip and positioned to couple the tulip to the screw; and
an inner component of the tulip being longitudinally moveable to engage the screw to lock the tulip to the screw by moving said inner component generally longitudinally in said tapered bore to cause said fastener to compress about and lock onto said head in response to axial movement of said inner component;
wherein said tulip comprises a rod-receiving end for receiving a rod and an opposite end, said opposite end having an opening adapted to receive said fastener, said inner component and said head of said screw;
at least one of said tulip or said inner component comprising a first surface and a generally opposing second surface that defines a channel having a first channel portion and a second channel portion that is in communication with said first channel portion, said first channel portion defining a rod-receiving opening and extending in a first direction that is generally parallel to an axis of said tulip and said second channel portion generally transverse to said first direction;
said first channel portion being adapted to receive a rod and guide said rod to said second channel portion so that said second channel portion can receive and lock said rod in said tulip in response to a rotating of said at least one of said body or said inner component;
a head portion of said pedicle screw, said fastener, and said inner component, are all inserted into said tapered bore of said body either upwardly or through a lower portion of said body.
16. The pedicle screw according to claim 15 wherein the inner component is rotatable to retain a rod placed in a recess in the tulip.
17. The pedicle screw according to claim 15 wherein the fastener includes at least one split ring that permits the diameter of the fastener to vary from a first, large diameter to a second, small diameter.
18. The pedicle screw according to claim 15 wherein the tulip further includes a lip for longitudinally retaining the inner component.
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 11/258,831 filed Oct. 25, 2005, now issued as U.S. Pat. No. 7,662,172, and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Nos. 60/622,107 filed Oct. 25, 2004; 60/622,180 filed Oct. 25, 2004; 60/629,785 filed Nov. 19, 2004; 60/663,092 filed Mar. 18, 2005; and 60/684,697 filed May 25, 2005, where these provisional applications are incorporated herein by reference in their entireties.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to bone fixation devices, and in particular to a screw assembly for the internal fixation of vertebral bodies.

2. Description of the Related Art

Various devices for internal fixation of bone segments in the human or animal body are known in the art. One type of system is a pedicle screw system, which is sometimes used as an adjunct to spinal fusion surgery, and which provides a means of gripping a spinal segment. A conventional pedicle screw system comprises a pedicle screw and a rod-receiving device. The pedicle screw includes an externally threaded stem and a head portion. The rod-receiving device couples to the head portion of the pedicle screw and receives a rod (commonly referred to as a distraction rod). Two such systems are inserted into respective vertebrae and adjusted to distract and/or stabilize a spinal column, for instance during an operation to correct a herniated disk. The pedicle screw does not, by itself, fixate the spinal segment, but instead operates as an anchor point to receive the rod-receiving device, which in turn receives the rod. One goal of such a system is to substantially reduce and/or prevent relative motion between the spinal segments that are being fused.

Although conventional prior art pedicle screw systems exist, they lack features that enhance and/or benefit newer, minimally invasive surgery (MIS) techniques that are more commonly being used for spinal surgeries. It has been suggested that one possible advantage of an MIS approach is that it can decrease a patient's recovery time.

Conventional pedicle screw systems and even more recently designed pedicle screw systems have several drawbacks. Some of these pedicle screw systems are rather large and bulky, which may result in more tissue damage in and around the surgical site when the pedicle screw system is installed during surgery. The prior art pedicle screw systems have a rod-receiving device that is pre-operatively coupled or attached to the pedicle screw. In addition, some of the prior art pedicle screw systems include numerous components that must all be carefully assembled together. For example, one type of pedicle screw system that may require up to nine (9) different components is disclosed in U.S. Published Patent Application Nos. 2005/0203516 and 2005/0216003 to Biedermann et al.

One drawback that is common among many prior art pedicle screw systems is that a threaded component is used to lock down the rod in the rod-receiving device. Examples of these types of systems can be found in U.S. Published Patent Application Nos. 2005/0192571 to Abdelgany; 2005/0192573 to Abdelgany et al.; the Biedermann et al. applications; 2005/0187548 to Butler et al.; 2005/0203515 to Doherty et al.; and 2004/0172022 to Landry et al. Each of these pedicle screw systems have an externally threaded fastening element either directly or indirectly coupled to the vertically extending walls of the rod-receiving device (e.g., referred to as a bone fixator, a receiving part, a coupling construct, etc.).

One problem associated with the above-identified pedicle screw systems is that cross-threading may occur when the fastening element is installed. Cross-threading may cause the fastening element to jam and/or may result in an improper construct where some components may not be in the correct position. Due to the dynamic nature of spinal movement, a cross-threaded pedicle screw system may be more prone to post-operative failure.

Another problem with the above-identified pedicle screw systems is that the coupling between the fastening element and the rod-receiving device when subjected to dynamic, post-operative loading may result in the walls of the rod-receiving device splaying apart. In the above-identified pedicle screw systems, the walls of the rod-receiving device are unsupported. Post-operative tulip splaying, as it is commonly called, may result in the dislodgment of the fastening element and the rod. In short, the pedicle screw system may become post-operatively disassembled and no longer function according to its intended purpose.

Other prior art pedicle screw systems have attempted to address some of the aforementioned drawbacks. For example, U.S. Pat. Nos. 5,609,593, 5,647,873, 5,667,508, 5,669,911, and 5,690,630, all to Errico et al., disclose a threaded, outer cap that extends over and couples to the walls of the rod-receiving device. However, the risk and/or potential for cross-threading is still present when the threaded, outer cap is coupled with the rod-receiving device.

Other pedicle screw systems such as U.S. Pat. No. 5,882,350 to Ralph et al.; U.S. Pat. No. 6,132,432 to Richelsoph; U.S. Pat. No. 4,950,269 to Gaines, Jr.; U.S. Pat. No. 6,626,908 to Cooper et al.; U.S. Pat. No. 6,402,752 to Schaffler-Wachter et al.; and U.S. Pat. No. 6,843,791 to Serhan may address some of the aforementioned drawbacks, but each of these pedicle screw systems are pre-operatively assembled, which makes these systems more difficult to install and maneuver in a spinal operation where MIS techniques are used.

BRIEF SUMMARY OF THE INVENTION

The invention is related to a bone fixation assembly, such as a pedicle screw system for the internal fixation of vertebral bodies. The pedicle screw system may be used for fixation of spinal segments and may be advantageous when minimally invasive surgery (MIS) techniques are employed. The pedicle screw system includes a tulip assembly comprising a tulip body, an inner member, and an expansion member. Installation of the pedicle screw system into pedicles of the spine, for example, includes inserting the pedicle screw into a portion of the spine and then coupling the tulip assembly to the pedicle screw. The tulip assembly may be locked onto the pedicle screw before a distraction rod is placed in the tulip assembly, after the distraction rod has been placed in the tulip assembly, but not yet locked therewith, or after the distraction rod has been placed in the tulip assembly and locked therewith. The tulip body and the inner member can be rotated relative to one another to lock the rod into the tulip assembly. In addition, the relative rotation may also provide additional locking of the tulip assembly to the pedicle screw.

In one aspect, a tulip assembly is coupled to a pedicle screw that has a threaded portion and a head portion. The tulip assembly includes a first device elastically expandable to receive the head portion of the pedicle screw; and a second device having a rod-receiving portion and an engagement portion, the engagement portion engageable with the first device to fix the tulip assembly to the head portion of the pedicle screw.

In another aspect, a pedicle screw system includes a pedicle screw having a threaded portion and a head portion; and a tulip assembly comprising a first device and a second device, the first device elastically expandable to receive the head portion of the pedicle screw, and the second device having a rod-receiving portion and an engagement portion, the engagement portion engageable with the first device to fix the tulip assembly to the head portion of the pedicle screw.

In yet another aspect, a method of fixing a tulip assembly to a pedicle screw includes inserting the pedicle screw into bone, where the pedicle screw includes a head portion with a maximum diameter section; expanding a first device over and past the maximum diameter section of the pedicle screw after the pedicle screw is inserted into the bone; seating an inner surface of the first device against the head portion of the pedicle screw; and urging a portion of a second device into contact with a portion of the first device to fix the tulip assembly to the pedicle screw.

In still yet another aspect, a method of fixing a rod to a pedicle screw system, Where the system includes a tulip assembly and a pedicle screw, includes inserting the pedicle screw into bone, the pedicle screw having a head portion that includes a maximum diameter section; coupling the tulip assembly to the pedicle screw by expanding a first device over and past the maximum diameter section of the pedicle screw, seating an inner surface of the first device against the head portion of the pedicle screw, and then urging a portion of a second device into contact with a portion of the first device to fix the tulip assembly to the pedicle screw; inserting a rod into the tulip assembly; and positioning a third device relative to the second device to fix at least a portion of the rod in the tulip assembly.

In still yet another aspect, a pedicle screw system includes a pedicle screw having a threaded portion and a spherical head portion; a poly-axial tulip assembly having a bore for accommodating the passage of the spherical head portion of the screw therethrough, the tulip assembly having an inner component, an outer component and a fastener assembly, the tulip assembly positioned on the head portion of the screw; wherein the fastener assembly is tapered along a top and a bottom edge, wherein an inner bore of the inner component is reciprocally tapered such that the fastener assembly mates with the inner component to allow the tulip assembly to be locked onto the head portion of the screw while allowing the tulip assembly to move poly-axially in relation to the screw; and wherein the outer component includes a retaining member along a top edge for receivably retaining the inner component in an engaged position, wherein the inner component lowered into a retained position locks an orientation of the tulip assembly relative to the screw.

In yet another aspect, a pedicle screw system includes a pedicle screw having a threaded portion and a spherical head portion; a poly-axial housing positioned on the head portion of the screw, the housing having an inner component, an outer component and a fastener assembly; wherein the fastener assembly is tapered along a top and a bottom edge and wherein an inner bore of the inner component is reciprocally tapered such that the fastener assembly mates with the inner component to allow the housing to be locked onto the head portion of the screw while allowing the housing to move poly-axially in relation to the screw; and wherein the fastener assembly includes pockets along an edge adjacent to the inner component, an edge of the inner component adjacent to the fastener assembly having reciprocal inclined planes for receivably retaining the inner component in an engaged position, wherein partially rotating the inner component provides a provisional rotational lock of the housing to the screw.

In another aspect, a pedicle screw includes a screw having threads and a head; a tulip coupled to the screw; a fastener internal to the tulip and positioned to couple the tulip to the screw; and an inner component of the tulip, the inner component of the tulip longitudinally moveable to engage the screw to provide a poly-axial lock between the tulip and the screw.

In yet another aspect, a method of connecting a rod to a pedicle screw system includes threading a screw having a head into bone of a patient; attaching a tulip assembly to the head of the screw; depressing a tulip inner component to lock the tulip to the screw; placing a rod into a channel of the tulip; and rotating the tulip inner component to capture the rod.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings. In addition, identical reference numbers identify similar elements or acts.

FIG. 1 is an isometric view of a pedicle screw system, according to one illustrated embodiment.

FIG. 2 is a side elevational view of a pedicle screw having a variable minor diameter, according to one illustrated embodiment.

FIG. 3 is an isometric view of a tulip assembly of the pedicle screw system of FIG. 1.

FIG. 4 is an isometric, exploded view of the tulip assembly of FIG. 3.

FIG. 5 is partial, cross-sectional view of a split ring and tulip body of the tulip assembly of FIG. 3.

FIG. 6 is an isometric view of an inner member of the tulip assembly of FIG. 3.

FIGS. 7A-7D are isometric views of a method of installing a pedicle screw system into bone, according to the illustrated embodiments.

FIG. 8 is a side elevational view of a pedicle screw system, according to another illustrated embodiment.

FIG. 9 is an isometric, exploded view of a tulip assembly of the pedicle screw system FIG. 8.

FIG. 10 is a side elevational view of a pedicle screw system, according to another illustrated embodiment.

FIG. 11 is an isometric, exploded view of a tulip assembly and a pedicle screw of the pedicle screw system FIG. 10.

DETAILED DESCRIPTION OF THE INVENTION

By way of example, pedicle screw systems may be fixed in the spine in a posterior lumbar fusion process via minimally invasive surgery (MIS) techniques. The systems are inserted into the pedicles of the spine and then interconnected with rods to manipulate (e.g., correct the curvature, compress or expand, and/or structurally reinforce) at least portions of the spine. Using the MIS approach to spinal fixation and/or correction surgery has been shown to decrease a patient's recovery time and reduce the risks of follow-up surgeries.

The ability to efficiently perform spinal fixation and/or correction surgeries using MIS techniques is enhanced by the use of pedicle screw systems provided in accordance with the present invention, which systems provide many advantages over conventional systems. For example, a pedicle screw system in accordance with one embodiment provides the advantage that the pedicle screw may be inserted into the bone without being pre-operatively coupled with the rod-coupling assembly (hereinafter referred to as a tulip assembly). This is advantageous because the surgeon often needs to do other inter-body work after inserting the pedicle screw, but before attaching the larger and bulkier tulip assembly. Such an advantageous pedicle screw system may be even more crucial when using MIS techniques because the inter-body spatial boundaries in which the surgeon must work may be quite limited.

In addition, pedicle screw systems in accordance with the present invention advantageously allow a user to initially fix (e.g., lock) the tulip assembly to the pedicle screw at a desired angle before inserting and/or capturing the rod. Initially locking the tulip assembly to the pedicle screw means that at least one of the components of the tulip assembly is manipulated to grip and/or clamp onto the pedicle screw to reduce, if not prevent any translational and/or rotational movement of the tulip assembly relative to the pedicle screw. The ability to initially lock the tulip assembly to the pedicle screw may facilitate the surgeon in performing compression and/or distraction of various spinal and/or bone sections.

The term “distraction,” when used in a medical sense, generally relates to joint surfaces and suggests that the joint surfaces move perpendicular to one another. However when “traction” and/or “distraction” is performed, for example on spinal sections, the spinal sections may move relative to one another through a combination of distraction and gliding, and/or other degrees of freedom.

Another advantageous feature of at least one embodiment of a pedicle screw system is to have an all-inclusive tulip assembly that can be coupled to the head portion of the pedicle screw intra-operatively. This advantageous tulip assembly may include the aspects or features that enable the tulip assembly to be initially locked onto the head portion of the pedicle screw and then to further receive, capture, and finally lock the rod into the tulip assembly. In one embodiment, the tulip assembly is initially locked onto the head portion of the pedicle screw after the rod has been received in the tulip assembly. This advantageous tulip assembly may decrease the complexity of the pedicle screw system installation by reducing the installation to essentially a three-step process, which is inserting the pedicle screw into bone, initially locking the tulip assembly onto the pedicle screw, which may be accomplished with or without the rod in the tulip assembly, and then capturing and locking the rod into the tulip assembly.

In addition to accommodating the new MIS approach to spinal correction and/or fusion, at least one pedicle screw system described herein may include features to prevent, or at least reduce, the problems of cross-threading and/or post-operative tulip splaying, which is when the amount of stress/strain in rod, which may be caused by post-operative back flexion, forces open the tulip assembly and eventually leads to the disassembly and/or the failure of the pedicle screw system.

Pedicle Screw System

FIG. 1 generally shows a pedicle screw system 100 comprising a pedicle screw 102, a rod 104, and a coupling assembly or tulip assembly 106, hereinafter referred to as a tulip assembly 106. The placement and/or number of pedicle screw systems 100 for a patient may be pre-operatively determined based on a pre-operative examination of the patient's spinal system using non-invasive imaging techniques known in the art, such as x-ray imaging, magnetic resonance imaging (MRI), and/or fluoroscopy imaging, for example. The tulip assembly 106 may be intra-operatively (i.e., during surgery) coupled to the pedicle screw 102 and maneuverable to achieve a desired placement, orientation, and/or angular position of the tulip assembly 106 relative to the pedicle screw 102. Once the tulip assembly 106 is at the desired position relative to the pedicle screw 102, the tulip assembly 106 can be fixed or locked onto the pedicle screw 102. In one embodiment, the tulip assembly 106 is fixed onto the pedicle screw 102 before the rod is fixed or locked into the tulip assembly 106. In another embodiment, the tulip assembly 106 is fixed onto the pedicle screw 102 contemporaneously as the rod is fixed or locked into the tulip assembly 106.

It is understood that the relative, angular position 107 of a first tulip assembly 106 to a first pedicle screw 102 may be different from other pedicle screw systems 100 located elsewhere on a patient's spine. In general, the relative, angular position 107 of the tulip assembly 106 to the pedicle screw 102 allows the surgeon to selectively and independently orient and manipulate the tulip assemblies 106 of each pedicle screw system 100 installed into the patient to achieve and/or optimize the goals of the surgical procedure, which may involve compressing, expanding, distracting, rotating, reinforcing, and/or otherwise correcting an alignment of at least a portion of a patient's spine.

FIG. 2 shows the pedicle screw 102 having an elongated, threaded portion 108 and a head portion 110. Although pedicle screws 102 are generally known in the art, the head portions 110 may be of varying configurations depending on what type of tulip assembly 106 is to be coupled to the pedicle screw 102. The head portion 110 of the pedicle screw 102 includes a driving feature 124 and a maximum diameter portion 126. The driving feature 124 permits the pedicle screw 102 to be inserted into a pedicle bone and/or other bone. The pedicle bone is a part of a vertebra that connects the lamina with a vertebral body. The driving feature 124 can be used to adjust the pedicle screw 102 even after the tulip assembly 106 is coupled to the pedicle screw 102. In the illustrated embodiment, the head portion 110 of the pedicle screw 102 is coupled to the threaded portion 108 and includes a generally spherical surface 127 with a truncated or flat top surface 128.

In one embodiment, the pedicle screw 102 is cannulated, which means a channel 130 (shown in dashed lines and extending axially through the pedicle screw 102) extends through the entire length of the pedicle screw 102. The channel 130 allows the pedicle screw 102 to be maneuvered over and receive a Kirschner wire, commonly referred to as a K-wire. The K-wire is typically pre-positioned using imaging techniques, for example, fluoroscopy imaging.

FIGS. 3 and 4 show the tulip assembly 106 that includes a first member or tulip body 132, an inner member or inner member 134, and an expansion/contraction member or split ring 136, according to one illustrated embodiment. The tulip body 132 includes a bore 138, an upper portion 140, a lower portion 142, and an internal lip 143. In one embodiment, the tulip body 132, the inner member 134, and the split ring 136 are pre-operatively assembled before being placed onto the head portion 110 of the pedicle screw 102. Both the inner member 134 and the split ring 136 may be inserted into the tulip body 132 through the bore 138 upward or through the lower portion 142 of the tulip body 132.

FIG. 5 shows the split ring 136 inserted in the lower portion 142 of the tulip body 132. For purposes of clarity, the upper portion 140 of the tulip body, the pedicle screw 102, and the inner member 134 are not shown. An inner surface 144 of the bore 138 through the lower portion 142 of the tulip body 132 is sized to allow the split ring 136 to float and/or translate upwards so that the split ring 136 can expand to receive the head portion 110 of the pedicle screw 102. The split ring 136 includes an outer surface 146 and an inner surface 148. The outer surface 146 of the split ring 136 frictionally contacts the inner surface 144 of the bore 138 of the tulip body 132. The inner surface 148 of the split ring 136 frictionally engages the head portion 110 of the pedicle screw 102, as will be described in more detail below. In one embodiment, the split ring 136 is fabricated to be elastically expandable and contractible within the range of operations described herein.

FIG. 6 shows the inner member 134 having an outer diameter 150, a contoured channel 152 formed by extending arms 154, which includes a rod-support surface or channel wall 156, and a bottom surface 158. The outer inner diameter 150 is sized to be received in the bore 138 of the tulip body 132 and then be rotatable within the tulip body 132, as will be described in more detail below. The contoured channel 152, along with the rod-support surface 156, operates in cooperation with the tulip body 132 to receive, capture, and eventually lock the rod 104 into the tulip assembly. The bottom surface 158 operates to engage the split ring 136 and force the split ring 136 down in the bore 138 of the tulip body 132, which results in contraction of the split ring 136 around the head portion 110 of the pedicle screw 102. It is understood that the forced contraction of the split ring 136 along with the radial constraint provided by the inner surface 144 of the tulip body 132 generates sufficient radial pressure on the head portion 110 of the pedicle screw 102 to lock the tulip body 132 onto the pedicle screw 102.

Pedicle Screw System Installation

FIGS. 7A-7C show various stages of assembly and/or installation of the tulip assembly 106 to the pedicle screw 102. In the illustrated embodiments, the pedicle screw 102 has already been inserted into bone material 160. In FIG. 7A, the tulip assembly 106 is snapped onto the head portion 110 of the pedicle screw 102. The inner surface 148 of the split ring 136 mates with the head portion 110 of the pedicle screw 102. As the tulip assembly 106 is pushed onto the head portion 110 of the pedicle screw 102, the split ring 136 expands and snaps onto the head portion 110. The split ring 136 is initially pushed up into the bore 138 of the tulip body 132, as described above. The bore 138 in the lower portion 142 of the tulip body 132 permits the split ring 136 to float in the bore 138. Alternatively stated, as the split ring 136 is pushed upwards inside of the tulip body 132 by the head portion 110 of the pedicle screw, sufficient clearance is present for the split ring 136 to expand and snap around the head portion 110 of the screw 102. At this point, the tulip assembly 106 is rotationally coupled to the head portion 110 of the pedicle screw 102. The tulip assembly 106 may be rotated to achieve a desired orientation with respect to the pedicle screw 102 and the initial coupling mechanisms just described reduce the likelihood that the tulip assembly 106 will be detached from the pedicle screw 102 during manipulation thereof.

Next, the mating tapered surfaces, which comprise the head portion 110 of the pedicle screw 102, the outer and inner surfaces 146, 148 of the split ring 136, and the inner surface 144 of the lower portion of the bore 138 of the tulip body 132, cooperate to lock the tulip assembly 106 onto the head portion 110 of the pedicle screw. An upward force applied to the tulip body 132 tends to cause further compression and/or contraction of the split ring 136 because the split ring 136 is forced down further along the inner surface 144 of the bore 138 of the tulip body 132. Such additional compression and/or contraction of the split ring 136 substantially locks or fixes the tulip assembly 106 onto the pedicle screw 102, thus preventing additionally rotation, manipulation, loosening, and/or removal of the tulip assembly 106 with respect to the pedicle screw 102. In short, when the tulip assembly 106 is initially placed onto the head portion 110 of the pedicle screw 102, the tulip assembly 106 is free to move poly-axially in relation to the pedicle screw 102. Thus, the tulip assembly 106 remains free to rotate on the pedicle screw 102 until it is locked onto the head portion 110 of the pedicle screw 102, where the locking will be described below. In addition, both the tulip body 132 and the inner member 134 are aligned to receive the rod 104. For purposes of clarity, however, the rod 104 is not shown so that the features of the tulip assembly 106 that capture and lock the rod 104 are more readily viewable.

FIG. 7B shows that the tulip body 132 and the inner member 134 are rotated, about a common axis, to begin capturing the rod 104. In one embodiment, the inner member 134 is held while the tulip body 132 is rotated. In another embodiment, the tulip body 132 is held while the inner member 134 is rotated. In yet another embodiment, the inner member 134 and the tulip body 132 are rotated relative to one another, with both components being rotated at the same time. The tulip body 132 includes extensions 162 that cooperate with the contoured channel 152 and arms 154 of the inner member 134 to begin the capture of the rod 104.

In addition, the inner member 134 may be rotated clockwise to retain the rod 104 and/or the tulip body 132 rotated counterclockwise. Alternatively the inner member 134 may be rotated counterclockwise and/or the tulip body 132 may be rotated clockwise. The rod 104 is initially retained on the contoured surface 156 of the inner member 134, which includes a rod-capturing portion 164 (best shown in FIG. 7D). The inner member 134 cooperates with the bore 138 of the tulip body 132 to capture the rod 104. In addition, the inner member 134, after being rotated relative to the tulip body 132 to capture the rod 104, provides structural reinforcement to the tulip body 132 to prevent the tulip body 132 from splaying open under post-operative dynamic and static loading, for example.

As shown in FIGS. 7A and 7B, the arms 154 of the inner member 134 are flexed inwards and protrude above the top surface of the tulip body 132. In FIG. 7C, the inner member 134 is forced or pushed down into the tulip body 132 so that the top portion of the inner member 134 is approximately flush with the top portion of the tulip body 132. An additional or continued downward force on the inner member 134 causes the inner member 134 to snap or engage under the lip 143 located in the upper portion 140 of the tulip body 132. Hence, the elasticity of the arms 154 of the inner member 134 permit the arms to flex inward when pushed down and then expand to become engaged under the lip 143 of the tulip body 132. This longitudinal engagement to retain the inner member 134 within the tulip body 132 may be accomplished either before or after the rod 104 is placed in the tulip assembly 106. In one embodiment, forcing the inner member 134 down into the tulip body 132 may provide additional locking capacity of the tulip assembly 106 onto the pedicle screw 102 because the bottom surface 158 of the inner member 134 pushes the split ring 136 even further down along the inner surface 144 of the bore 138 of the tulip body 132. As described above, this action clamps the tulip assembly 106 onto the head portion 110 of the pedicle screw.

In an alternate embodiment, forcing the inner member 134 down into the tulip body 132 may provide the initial locking of the tulip assembly 106 onto the pedicle screw 102. Depending on the configuration of the relative, interacting surfaces, and possibly other factors, the process of forcing the inner member 134 downward to be retained in tulip body 132 may, according to one embodiment, establish the initial lock of the tulip assembly 106 to the pedicle screw 102.

FIG. 7D shows the tulip assembly 106 in a locked or closed position where the rod 104 is locked into the tulip assembly 106. As shown in the illustrated embodiment, a slight overlap occurs between the extensions 162 of the tulip body 132 and the arms 154 of the inner member 134. The additional amount of relative rotation illustrated from FIGS. 7C to 7D completes the rod-locking process to securely lock the rod 104 in the tulip assembly 106, according to the illustrated embodiment.

FIGS. 8 through 14 show alternative embodiments of pedicle screw systems. These alternative embodiments, and other alternatives described herein, are substantially similar to previously described embodiments. Structural aspects and/or features and assembly/installation steps that are common to the previously described embodiments are identified by like reference numbers. Only significant differences in operation and structure are described below.

FIGS. 8 and 9 show an alternative embodiment of a pedicle screw system 200, according to the illustrated embodiment. The pedicle screw system 200 includes the pedicle screw 102 with an alternative tulip assembly 202. The alternative tulip assembly 202 comprises a tulip body 204, an inner member 206, and an expansion member or split ring 208. In the illustrated embodiment, the inner member 206 includes inclined planes 210 to provide a different method and structure for initially locking the angle of the alternative tulip assembly 202 to the pedicle screw 102. The initial locking is achieved by rotating the inner member 206 partially through its allowable rotation. The inclined planes 210 of the inner member 206 engage with pockets 212 present in the expansion member 208. The inclined planes 210 operate as cam extensions on the inner member 206 to force the expansion member 208 downward and into a tight compression, thus locking the alternative tulip assembly 202 onto the head portion 110 of the pedicle screw 102.

FIGS. 10 and 11 show a pedicle screw system 300 in accordance with yet another embodiment. FIG. 11 is an exploded view of the pedicle screw system 300 of FIG. 10. The pedicle screw system 300 includes a pedicle screw 302 and a tulip assembly 304. The pedicle screw 302 includes a dual diameter head portion 306. The tulip assembly 304 includes a tulip body or body 308, an inner member or second device 310, and an expansion member, split ring or first device 312.

According to aspects of the illustrated embodiment, the rod (not shown) is captured and then subsequently locked by rotating the inner member 310. An initial lock is achieved between the tulip assembly 304 and the pedicle screw 302 by pushing the inner member 310 down into the tulip body 308. Barbed surfaces 314 on the inner member 310 engage barbed surfaces in the tulip body 308 to retain the inner member 310 inside the tulip body 308. The inner member 310, in turn, pushes on the split ring 312 to lock the tulip assembly 304 onto the pedicle screw 302. In addition, inclined planes (not shown) may be located on the arms 316 of the inner member 310 to force the rod tightly against a first rod slot or channel 318 in the inner member 310 and/or in a second rod slot or channel 320 in the tulip body 308. Thus, the rotation of the inner member 310 relative to the tulip body 308 locks the rod in the tulip assembly 304.

In operation, the pedicle screw systems as described, but not limited to the embodiments herein, are designed for fixation of bone material and/or bone segments during a surgical procedure, such as fusing spinal segments in which MIS techniques are employed. For example, the pedicle screw system is inserted into the pedicles of the spine and then interconnected with rods to provide support to the spine to allow for post-operative fusion of the spinal segments. While the pedicle screw can be inserted with the tulip assembly coupled with the pedicle screw, one embodiment for the installation of the pedicle screw system includes inserting the pedicle screw into the bone and subsequently coupling the tulip assembly to the pedicle screw, where such an approach has advantages over currently known pedicle screw system assemblies and/or installations.

In addition, various structural features of the pedicle screw systems as described, but not limited to the embodiments herein, may provide other advantages over existing pedicle screw systems. First, the pedicle screw may be inserted into the bone without the presence of the tulip assembly or rod, which permits the surgeon to place the screw and then perform subsequent inter-body work without having to work around the tulip assembly or the rod. Second, the tulip assembly includes a mechanism for capturing the rod that eliminates problems associated with conventional pedicle screws, such as cross-threading, because the pedicle screw systems disclosed herein do not use any threads to couple the tulip assembly to the pedicle screw or to capture and lock the rod into the tulip assembly. Third, the interface between the head portion of the pedicle screw and the tulip assembly provides an initial lock, which allows the angle of the tulip assembly to be set or fixed with respect to the pedicle screw before insertion of the rod and/or before the rod is captured in the tulip assembly. With this type of pedicle screw system, the surgeon has the ability to check and even double check the placement, angle, and/or orientation regarding aspects of the pedicle screw system to facilitate, and even optimize, the compression, distraction, and/or other manipulation of the spinal segments. Further, the pedicle screw systems accommodate the new MIS techniques being applied to spinal operations.

One possible post-operative advantage of the pedicle screw systems is that the cooperation and interaction of the inner member with the tulip body of the tulip assembly substantially reduces and most likely prevents the known problem of tulip splaying. Tulip splaying is generally regarded as a post-operative problem of when a stressed rod forces open portions of the tulip body, which eventually leads to the disassembly and likely failure of the pedicle screw system within the patient. Yet another post-operative advantage of the pedicle screw systems is that unlike existing rod-coupling members or constructs, the tulip assemblies described herein have a smaller size envelope (e.g., less bulky, lower profile, and/or more compact shape) and are easier to place onto the pedicle screw. The smaller size and ease of installation may reduce trauma to the soft-tissue regions in the vicinity of the surgical site, which in turn generally allows for a quicker recovery by the patient.

Yet another possible advantage of the pedicle screw systems over existing systems is that all of the parts needed to lock the tulip assembly to the pedicle screw and to capture and lock the rod into the tulip assembly are included within the tulip assembly. Accordingly, once the tulip assembly is snapped or otherwise coupled to the pedicle screw, no additional locking cap or threaded fastener is needed to complete the assembly/installation of the pedicle screw system. According to aspects described herein, and as appended by the claims, the inventive pedicle screw systems permit inserting the pedicle screw without the tulip assembly coupled thereto, locking the tulip assembly onto the pedicle screw, and subsequently capturing and locking the rod into the tulip assembly. The various embodiments described above can be combined to provide further embodiments. All of the above U.S. patents, patent applications, provisional patent applications and publications referred to in this specification, to include, but not limited to U.S. Provisional Patent Application Nos. 60/622,107 filed Oct. 25, 2004; 60/622,180 filed Oct. 25, 2004; 60/629,785 filed Nov. 19, 2004; 60/663,092 filed Mar. 18, 2005; and 60/684,697 filed May 25, 2005 are incorporated herein by reference in their entirety. Aspects of the invention can be modified, if necessary, to employ various systems, devices and concepts of the various patents, applications and publications to provide yet further embodiments of the invention.

These and other changes can be made to the invention in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims, but should be construed to include all bone fixation systems and methods that operate in accordance with the claims.

Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined entirely by the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US483342Jun 24, 1892Sep 27, 1892 bolte
US900717Sep 26, 1907Oct 13, 1908Edward B FeasterCable fastener or clamp.
US920188 *Apr 28, 1908May 4, 1909Friedrich SchumacherBaker's peel.
US1171380Apr 2, 1915Feb 8, 1916W D L HeldTrain-pipe coupling.
US1536559 *May 26, 1923May 5, 1925William Carroll EdwardPost construction
US2344381Jan 17, 1942Mar 14, 1944Leonard A YoungNut
US3019504Apr 29, 1959Feb 6, 1962Burroughs CorpTape and terminal fitting assembly
US3648691Feb 24, 1970Mar 14, 1972Univ Colorado State Res FoundMethod of applying vertebral appliance
US3752203Jul 28, 1971Aug 14, 1973Hill Fastener CorpLock-screw fasteners
US3851601Feb 9, 1973Dec 3, 1974Davis JDisplay case stand
US3875936Dec 18, 1972Apr 8, 1975Robert G VolzTrochantaric attachment assembly and method of using same
US4011602Oct 6, 1975Mar 15, 1977Battelle Memorial InstitutePorous expandable device for attachment to bone tissue
US4085744Jan 31, 1977Apr 25, 1978David Warren LewisSpinal column prostheses orthoses
US4269178Jun 4, 1979May 26, 1981Keene James SHook assembly for engaging a spinal column
US4289124Sep 18, 1978Sep 15, 1981Zickel Robert ESurgical appliance for the fixation of fractured bones
US4294300Jan 9, 1979Oct 13, 1981Nedschroef Octrooi Maatschappij N.V.Self-locking fastener
US4309139Mar 6, 1980Jan 5, 1982Kishu Neji Co., Ltd.Self-locking fastening device
US4411259Nov 24, 1981Oct 25, 1983Drummond Denis SApparatus for engaging a hook assembly to a spinal column
US4604995Mar 30, 1984Aug 12, 1986Stephens David CSurgical implant
US4611580Nov 23, 1983Sep 16, 1986Henry Ford HospitalIntervertebral body stabilization
US4611581Dec 16, 1983Sep 16, 1986Acromed CorporationApparatus for straightening spinal columns
US4641636Apr 12, 1984Feb 10, 1987Cotrel Yves P C ADevice for supporting the rachis
US4648388Nov 1, 1985Mar 10, 1987Acromed CorporationApparatus and method for maintaining vertebrae in a desired relationship
US4653481Jun 18, 1986Mar 31, 1987Howland Robert SAdvanced spine fixation system and method
US4655199Mar 29, 1985Apr 7, 1987Acromed CorporationSpinal column straightening apparatus
US4658809Feb 24, 1984Apr 21, 1987Firma Heinrich C. UlrichImplantable spinal distraction splint
US4696290Mar 31, 1986Sep 29, 1987Acromed CorporationApparatus for straightening spinal columns
US4719905Dec 1, 1986Jan 19, 1988Acromed CorporationApparatus and method for maintaining vertebrae in a desired relationship
US4763644Mar 25, 1986Aug 16, 1988Webb Peter JSpinal fixation
US4771767Feb 3, 1986Sep 20, 1988Acromed CorporationApparatus and method for maintaining vertebrae in a desired relationship
US4805602Nov 3, 1986Feb 21, 1989Danninger Medical TechnologyTranspedicular screw and rod system
US4815453Dec 5, 1986Mar 28, 1989Societe De Fabrication De Materiel Orthopedique (Sofamor)Device for supporting the rachis
US4887595Jul 29, 1987Dec 19, 1989Acromed CorporationSurgically implantable device for spinal columns
US4887596Mar 2, 1988Dec 19, 1989Synthes (U.S.A.)Open backed pedicle screw
US4913134Jul 29, 1988Apr 3, 1990Biotechnology, Inc.Spinal fixation system
US4946458Feb 28, 1989Aug 7, 1990Harms JuergenFor stabilizing spinal segments
US4950269Jun 13, 1988Aug 21, 1990Acromed CorporationSpinal column fixation device
US5005562Jun 21, 1989Apr 9, 1991Societe De Fabrication De Material OrthopediqueImplant for spinal osteosynthesis device, in particular in traumatology
US5024213Feb 8, 1989Jun 18, 1991Acromed CorporationConnector for a corrective device
US5042982Jul 8, 1988Aug 27, 1991Harms JuergenPositioning device
US5067955Apr 13, 1990Nov 26, 1991Societe De Fabrication De Material OrthopediqueVertebral implant for osteosynthesis device
US5084049Feb 8, 1989Jan 28, 1992Acromed CorporationTransverse connector for spinal column corrective devices
US5092867Jul 11, 1989Mar 3, 1992Harms JuergenCorrection and supporting apparatus, in particular for the spinal column
US5113685Jan 28, 1991May 19, 1992Acromed CorporationApparatus for contouring spine plates and/or rods
US5120171Nov 27, 1990Jun 9, 1992Stuart SurgicalBone screw with improved threads
US5127912Oct 5, 1990Jul 7, 1992R. Charles RaySacral implant system
US5129900Jul 24, 1990Jul 14, 1992Acromed CorporationSpinal column retaining method and apparatus
US5154719Feb 19, 1991Oct 13, 1992Societe De Fabrication De Materiel Orthopedique - SofamorImplant for a device for osteosynthesis, in particular of the spine
US5176680Feb 8, 1991Jan 5, 1993Vignaud Jean LouisDevice for the adjustable fixing of spinal osteosynthesis rods
US5183359May 12, 1992Feb 2, 1993Illinois Tool Works Inc.Rotary fastener with anti-strip-out nibs
US5190543Nov 25, 1991Mar 2, 1993Synthes (U.S.A.)Anchoring device
US5196013 *Nov 2, 1990Mar 23, 1993Harms JuergenPedicel screw and correcting and supporting apparatus comprising such screw
US5207678Jan 7, 1992May 4, 1993PruferFor stabilizing spinal column segments
US5246303Jun 25, 1990Sep 21, 1993Pujol Y Tarrago, S.A.Connector device for metal cables
US5257993Oct 4, 1991Nov 2, 1993Acromed CorporationTop-entry rod retainer
US5261913Aug 25, 1992Nov 16, 1993J.B.S. Limited CompanyDevice for straightening, securing, compressing and elongating the spinal column
US5312402Apr 16, 1992May 17, 1994Synthes (U.S.A.)Connection device
US5346493Jul 30, 1993Sep 13, 1994Acromed CorporationTop-entry rod retainer
US5360431Apr 26, 1990Nov 1, 1994Cross Medical ProductsTranspedicular screw system and method of use
US5380325Nov 5, 1993Jan 10, 1995BiomatOsteosynthesis device for spinal consolidation
US5443467 *Feb 18, 1994Aug 22, 1995Biedermann Motech GmbhBone screw
US5466237Nov 19, 1993Nov 14, 1995Cross Medical Products, Inc.Variable locking stabilizer anchor seat and screw
US5474555Aug 3, 1994Dec 12, 1995Cross Medical ProductsSpinal implant system
US5520689Mar 8, 1995May 28, 1996Synthes (U.S.A.)Osteosynthetic fastening device
US5534001May 11, 1993Jul 9, 1996Synthes (U.S.A.)Osteosynthetic fixation element and manipulation device
US5549608Jul 13, 1995Aug 27, 1996Fastenetix, L.L.C.For use with orthopedic rod implantation apparatus
US5562663Jun 7, 1995Oct 8, 1996Danek Medical, Inc.Osteosysthesis implant
US5603714Dec 12, 1994Feb 18, 1997Mizuho Ika Kogyo Kabushiki KaishaInstrument for anterior correction of scoliosis or the like
US5609593Oct 13, 1995Mar 11, 1997Fastenetix, LlcAdvanced polyaxial locking hook and coupling element device for use with top loading rod fixation devices
US5624442Oct 5, 1995Apr 29, 1997Cross Medical Products, Inc.Transverse link for use with a spinal implant system
US5647873Nov 13, 1995Jul 15, 1997Fastenetix, L.L.C.Bicentric polyaxial locking screw and coupling element
US5667508May 1, 1996Sep 16, 1997Fastenetix, LlcUnitary locking cap for use with a pedicle screw
US5669911Jun 13, 1996Sep 23, 1997Fastenetix, L.L.C.Polyaxial pedicle screw
US5690630Dec 23, 1996Nov 25, 1997Fastenetix, LlcFor use with orthopaedic implantation apparatus
US5733285Jun 18, 1996Mar 31, 1998Fastenetix, LlcPolyaxial locking mechanism
US5797911Sep 24, 1996Aug 25, 1998Sdgi Holdings, Inc.Multi-axial bone screw assembly
US5817094Jan 23, 1997Oct 6, 1998Fastenetix, LlcPolyaxial locking screw and coupling element
US5879350Sep 24, 1996Mar 9, 1999Sdgi Holdings, Inc.Multi-axial bone screw assembly
US5882350Jan 2, 1998Mar 16, 1999Fastenetix, LlcPolyaxial pedicle screw having a threaded and tapered compression locking mechanism
US5885286Feb 11, 1997Mar 23, 1999Sdgi Holdings, Inc.Multi-axial bone screw assembly
US5891145Jul 14, 1997Apr 6, 1999Sdgi Holdings, Inc.Multi-axial screw
US5954725Mar 17, 1998Sep 21, 1999Sdgi Holdings, Inc.Multi-angle bone screw assembly using shape memory technology
US6010503Apr 3, 1998Jan 4, 2000Spinal Innovations, LlcLocking mechanism
US6063090Dec 12, 1996May 16, 2000Synthes (U.S.A.)Device for connecting a longitudinal support to a pedicle screw
US6077262Feb 20, 1997Jun 20, 2000Synthes (U.S.A.)Posterior spinal implant
US6090111Jun 17, 1998Jul 18, 2000Surgical Dynamics, Inc.Device for securing spinal rods
US6113601Jun 12, 1998Sep 5, 2000Bones Consulting, LlcPolyaxial pedicle screw having a loosely coupled locking cap
US6132432Mar 29, 1999Oct 17, 2000Spinal Innovations LlcSpinal implant fixation assembly
US6235033Apr 19, 2000May 22, 2001Synthes (Usa)Bone fixation assembly
US6280442Sep 1, 1999Aug 28, 2001Sdgi Holdings, Inc.Multi-axial bone screw assembly
US6302888Mar 19, 1999Oct 16, 2001Interpore Cross InternationalLocking dovetail and self-limiting set screw assembly for a spinal stabilization member
US6371957Jan 22, 1997Apr 16, 2002Synthes (Usa)Device for connecting a longitudinal bar to a pedicle screw
US6402752Feb 7, 2001Jun 11, 2002Ulrich Gmbh & Co. KgPolyaxial pedicle-screw
US6451021Feb 15, 2001Sep 17, 2002Third Millennium Engineering, LlcPolyaxial pedicle screw having a rotating locking element
US6475218Jul 2, 2001Nov 5, 2002Sofamor, S.N.C.Spinal implant for an osteosynthesis device
US6488681Jan 5, 2001Dec 3, 2002Stryker Spine S.A.Pedicle screw assembly
US6520963Aug 13, 2001Feb 18, 2003Mckinley Lawrence M.Vertebral alignment and fixation assembly
US6623485Oct 17, 2001Sep 23, 2003Hammill Manufacturing CompanySplit ring bone screw for a spinal fixation system
US6626908Jun 29, 2001Sep 30, 2003Corin Spinal Systems LimitedPedicle attachment assembly
US6652526Oct 5, 2001Nov 25, 2003Ruben P. ArafilesSpinal stabilization rod fastener
US6660004Aug 28, 2001Dec 9, 2003Sdgi Holdings, Inc.Multi-axial bone screw assembly
US6716214Jun 18, 2003Apr 6, 2004Roger P. JacksonPolyaxial bone screw with spline capture connection
US7625394 *Aug 5, 2005Dec 1, 2009Warsaw Orthopedic, Inc.Coupling assemblies for spinal implants
US7682377 *May 1, 2006Mar 23, 2010Depuy Spine, Inc.Polyaxial bone screw
US8002806 *Oct 20, 2005Aug 23, 2011Warsaw Orthopedic, Inc.Bottom loading multi-axial screw assembly
US8021397 *Aug 20, 2004Sep 20, 2011Warsaw Orthopedic, Inc.Multi-axial orthopedic device and system
US20050240180 *Sep 3, 2002Oct 27, 2005Cecile VienneySpinal osteosynthesis system comprising a support pad
USRE37665Jan 30, 2001Apr 16, 2002Fastenetix, LlcPolyaxial pedicle screw having a threaded and tapered compression locking mechanism
WO2000036308A1 *Oct 14, 1999Jun 22, 2000Hilmar NiklausDetachable assembly of two elements
Non-Patent Citations
Reference
1Expedium Spine System, DePuy Spine, Raynham, MA 02767.
Classifications
U.S. Classification606/267, 606/265, 606/269
International ClassificationA61B17/70
Cooperative ClassificationA61B17/7032, A61B17/7037
European ClassificationA61B17/70B5B
Legal Events
DateCodeEventDescription
Jan 28, 2010ASAssignment
Owner name: X-SPINE SYSTEMS, INC., OHIO
Effective date: 20100107
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WARNICK, DAVID R.;REEL/FRAME:023862/0186