Publication number | US8170203 B2 |
Publication type | Grant |
Application number | US 12/318,584 |
Publication date | May 1, 2012 |
Filing date | Dec 31, 2008 |
Priority date | Dec 31, 2008 |
Fee status | Paid |
Also published as | US20100169644 |
Publication number | 12318584, 318584, US 8170203 B2, US 8170203B2, US-B2-8170203, US8170203 B2, US8170203B2 |
Inventors | Lahouari Ghouti, Mohammad K. Ibrahim, Atef J. Al-Najjar |
Original Assignee | King Fahd University Of Petroleum & Minerals |
Export Citation | BiBTeX, EndNote, RefMan |
Patent Citations (33), Non-Patent Citations (3), Referenced by (3), Classifications (14), Legal Events (2) | |
External Links: USPTO, USPTO Assignment, Espacenet | |
The present invention relates to cryptographic systems and methods used for electronic communication of messages over a computer network, such as the Internet, and particularly to a message authentication code with elliptic polynomial hopping that provides greater security for electronic communications than conventional encryption techniques.
In recent years, the Internet community has experienced explosive and exponential growth. Given the vast and increasing magnitude of this community, both in terms of the number of individual users and web sites, and the sharply reduced costs associated with electronically communicating information, such as e-mail messages and electronic files, between one user and another, as well as between any individual client computer and a web server, electronic communication, rather than more traditional postal mail, is rapidly becoming a medium of choice for communicating information. The Internet, however, is a publicly accessible network, and is thus not secure. The Internet has been, and increasingly continues to be, a target of a wide variety of attacks from various individuals and organizations intent on eavesdropping, intercepting and/or otherwise compromising or even corrupting message traffic flowing on the Internet, or further illicitly penetrating sites connected to the Internet.
Encryption by itself provides no guarantee that an enciphered message cannot or has not been compromised during transmission or storage by a third party. Encryption does not assure integrity due to the fact that an encrypted message could be intercepted and changed, even though it may be, in any instance, practically impossible, to cryptanalyze. In this regard, the third party could intercept, or otherwise improperly access, a ciphertext message, then substitute a predefined illicit ciphertext block(s), which that party, or someone else acting in concert with that party, has specifically devised for a corresponding block(s) in the message. The intruding party could thereafter transmit the resulting message with the substituted ciphertext block(s) to the destination, all without the knowledge of the eventual recipient of the message.
The field of detecting altered communication is not confined to Internet messages. With the burgeoning use of stand-alone personal computers, individuals or businesses often store confidential information within the computer, with a desire to safeguard that information from illicit access and alteration by third parties. Password controlled access, which is commonly used to restrict access to a given computer and/or a specific file stored thereon, provides a certain, but rather rudimentary, form of file protection. Once password protection is circumvented, a third party can access a stored file and then change it, with the owner of the file then being completely oblivious to any such change.
In order to ensure message integrity, systems that depend on a shared secret key often rely upon message authentication codes (MACs). The MAC uses the secret key and the message text to produce a bit string unique to the key and the text of the message, the bit string being appended to the message. The MAC bit string is usually compressed to a fixed number of bits, so that it is much shorter than the message text. When a recipient is able to use his secret key and the text message to generate a MAC that is identical to the MAC appended to the message, the recipient can be confident in the integrity of the message, i.e., that the message has not been altered.
A number of encryption techniques have been used to generate MACs. Some MACs are generated using block ciphers, such as the MAC made with DES. Such MACs, however, are vulnerable to brute force attacks. Other MACs are generated using hash functions, such as MD5, RIPEMD-160, SHA-1, etc. One popular MAC is HMAC, which combines a secret key with a non-keyed hash function, such as SHA-1 or MD5. However, such MACs rely upon the invulnerability of the hash function for their security against various forms of attack. However, the security of such hash functions against attacks has come into question because of successful attacks and evidence of their vulnerability to collisions. None of the current MAC generation algorithms incorporate a hash function that is based upon a mathematically hard problem, and particularly not the elliptic curve discrete logarithm problem.
Thus, a message authentication code using elliptic polynomial hopping solving the aforementioned problems is desired.
The message authentication code with elliptic polynomial hopping provides methods for the generation of message authentication codes (MACs) utilizing elliptic curves, which are based on the elliptic curve discrete logarithm problem. The elliptic curve discrete logarithm problem is well known to be a computationally “difficult” or “hard” problem, thus providing enhanced security for the MACs. Different elliptic polynomials are used for different blocks of the same plaintext, each elliptic polynomial for each message block being selected at random using an initial secret key and a random number generator.
These and other features of the present invention will become readily apparent upon further review of the following specification.
The message authentication code (MACs) with elliptic polynomial hopping is based on the elliptic curve discrete logarithm problem, which is a computationally hard problem. The MACs rely upon a particular subset of elliptic polynomials, as described below.
The MACs to be described below use elliptic polynomial hopping in their generation, where different elliptic polynomials are used for different blocks of the same plaintext. Particularly, the MACs functions use an elliptic polynomial with more than one independent x-coordinate. More specifically, a set of elliptic polynomial points are used that satisfy an elliptic polynomial equation with more than one independent x-coordinate which is defined over a finite field F having the following properties: One of the variables (the y-coordinate) has a maximum degree of two, and appears on its own in only one of the monomials; the other variables (the x-coordinates) have a maximum degree of three, and each must appear in at least one of the monomials with a degree of three; and all monomials which contain x-coordinates must have a total degree of three.
The group of points of the elliptic polynomial with the above form is defined over additions in the extended dimensional space and, as will be described in detail below, the method makes use of elliptic polynomial hopping where different elliptic polynomials are used for different blocks of the same plaintext.
The particular advantage of using elliptic polynomial cryptography with more than one x-coordinate is that additional x-coordinates are used to embed extra message data bits in a single elliptic point that satisfies the elliptic polynomial equation. Given that nx additional x-coordinates are used, with nx being greater than or equal to one, a resulting elliptic point has (nx+1) x-coordinates, where all coordinates are elements of the finite field F. The number of points which satisfy an elliptic polynomial equation with nx additional x-coordinates defined over F and which can be used in the corresponding cryptosystem is increased by a factor of (#F)^{nx}, where # denotes the size of a field.
Through the use of this particular method, security is increased through the usage of different elliptic polynomials for different message blocks during the generation of a message authentication code. Further, each elliptic polynomial used for each message block is selected at random, preferably using an initial value and a random number generator.
Given the form of the elliptic polynomial equation described above, the elliptic polynomial and its twist are isomorphic with respect to one another. The method uses an embedding technique, to be described in greater detail below, which allows the embedding of a bit string into the x-coordinates of an elliptic polynomial point in a deterministic and non-iterative manner when the elliptic polynomial has the above described form. This embedding method overcomes the disadvantage of the time overhead of the iterative embedding methods used in existing elliptic polynomial.
The difficulty of using conventional elliptic polynomial cryptography to develop message authentication codes typically lies in the iterative and non-deterministic method needed to embed a bit string into an elliptic polynomial point, which has the drawback of the number of iterations needed being different for different bit strings which are being embedded. As a consequence, different MAC generation times are required for different blocks of bit strings. Such a data-dependant generation time is not suitable for generating MACs, which require data independent encryption time. Further, with regard to iterative and non-deterministic methods in conventional elliptic polynomial cryptography, given an elliptic polynomial defined over a finite field that needs N-bits for the representation of its elements, only ((nx+ny+1)N−L) bits of the message data bits can be embedded in any elliptic polynomial point.
The isomorphic relationship between an elliptic polynomial and its twist, which is obtained as a result of the given form of the elliptic polynomial equation, ensures that any bit string whose equivalent binary value is an element of the underlying finite field has a bijective relationship between the bit string and a point which is either on the elliptic polynomial or its twist. This bijective relationship allows for the development of the elliptic polynomial hopping based MACs to be described below.
In the conventional approach to elliptic polynomial cryptography, the security of the resulting cryptosystem relies on breaking the elliptic polynomial discrete logarithm problem, which can be summarized as: given the points k(x_{0,B}, x_{1,B}, . . . , x_{nx,B}, y_{B}) and (x_{0,B}, x_{1,B}, . . . , x_{nx,B}, y_{B}), find the scalar k.
As will be described below, different elliptic polynomials are used for each block of the message data, where each elliptic polynomial used for each message block is selected at random using an initial value and a random number generator. Since the elliptic polynomial used for each message block is not known, this makes the elliptic polynomial discrete logarithm problem far more difficult to solve, since the attacker does not know the elliptic polynomial coefficients that are needed in order to compute point additions and point doublings.
Further, projective coordinates are used at the sending and receiving entities in order to eliminate inversion or division during each point addition and doubling operation of the scalar multiplication. It should be noted that all of the elliptic polynomial cryptography-based MACs disclosed herein are scalable.
In the following, with regard to elliptic polynomials, the “degree” of a variable u^{i }is simply the exponent i. A polynomial is defined as the sum of several terms, which are herein referred to as “monomials”, and the total degree of a monomial u^{i}v^{j}w^{k }is given by (i+j+k). Further, in the following, the symbol∈denotes set membership.
One form of the subject elliptic polynomial equation with more than one x-coordinate and one or more y-coordinates is defined as follows: the elliptic polynomial is a polynomial with more than two independent variables such that the maximum total degree of any monomial in the polynomial is three; at least two or more of the variables, termed the x-coordinates, have a maximum degree of three, and each must appear in at least one of the monomials with a degree of three; and at least one or more variables, termed the y-coordinates, have a maximum degree of two, and each must appear in at least one of the monomials with a degree of two.
Letting S_{nx }represents the set of numbers from 0 to nx (i.e., S_{nx}={0, . . . , nx}), and letting S_{ny }represents the set of numbers from 0 to ny (i.e., S_{ny}={0, . . . , ny}), and further setting (nx+ny)≧1, then, given a finite field, F, the following equation defined over F is one example of the polynomial described above:
where a_{1l}, a_{2kl}, a_{3k}, c_{1lki}, c_{2kl}, c_{3kli}, b_{1l}, b_{2lk}, b_{3lk}, b_{4k }& b_{c}∈F.
Two possible examples of equation (1) are y_{0} ^{2}=x_{0} ^{3}+x_{1} ^{3}+x_{0}x_{1 }and y_{0} ^{2}+x_{0}x_{1}y_{0}+y_{0}=x_{0} ^{3}+x_{1} ^{3}+x_{0} ^{2}x_{1}+x_{0}x_{1} ^{2}+x_{0}x_{1}+x_{0}+x_{1}.
With regard to the use of the elliptic polynomial equation in the addition of points of an elliptic polynomial with more than one x-coordinate and one or more y-coordinates, we may examine specific coefficients a_{1k}, a_{2kl}, a_{3k}, c_{1lki}, c_{2kl}, c_{3kli}, b_{1l}, b_{2lk}, b_{3lk}, b_{4k }& b_{c}∈F for F, wherein a set of points EC^{nx+ny+2 }is defined as the (nx+ny+2)-tuple (x_{0}, x_{1}, . . . , x_{nx}, y_{0}, y_{1}, . . . , y_{ny}), where x_{i}, y_{k}∈F, i∈S_{nx }and k∈S_{ny}. This set of points are solutions of F, though excluding the point (0, 0, . . . , 0) and the point at infinity, (x_{0,l}, x_{1,l}, . . . , x_{nx,l}, y_{0,l}, y_{1,l}, . . . , y_{ny,l}).
The rules for conventional elliptic curve point addition may be adopted to define an additive binary operation, “+”, over EC^{nx+ny+2}, i.e., for all
(x _{0,1} ,x _{1,1} , . . . ,x _{nx,1} ,y _{0,1} ,y _{1,1} , . . . ,y _{ny,1})∈EC ^{nx+ny+2}
and
(x _{0,2} ,x _{1,2} , . . . ,x _{nx,2} ,y _{0,2} ,y _{1,2} , . . . ,y _{ny,2})∈EC ^{nx+ny+2},
the sum:
(x _{0,3} ,x _{1,3} , . . . ,x _{nx,3} ,y _{0,3} ,y _{1,3} , . . . ,y _{ny,3})=(x _{0,1} ,x _{1,1} , . . . ,x _{nx,1} ,y _{0,1} ,y _{1,1} , . . . ,y _{ny,1})+(x _{0,2} ,x _{1,2} , . . . ,x _{nx,2} ,y _{0,2} ,y _{1,2} , . . . ,y _{ny,2})
is also
(x _{0,3} ,x _{1,3} , . . . ,x _{nx,3} ,y _{0,3} ,y _{1,3} , . . . ,y _{ny,3})∈EC ^{nx+ny+2}.
As will be described in greater detail below, (EC^{nx+ny+2}, +) forms a pseudo-group (p-group) over addition that satisfies the following axioms:
Prior to a more detailed analysis of the above axioms, the concept of point equivalence must be further developed. Mappings can be used to indicate that an elliptic point represented using (nx+1) x-coordinates and (ny+1) y-coordinates, (x_{0}, x_{1}, . . . , x_{nx}, y_{0}, y_{1}, . . . , y_{ny}), is equivalent to one or more elliptic points that satisfy the same elliptic polynomial equation, including the equivalence of an elliptic point to itself.
Points that are equivalent to one another can be substituted for each other at random, or according to certain rules during point addition and/or point doubling operations. For example, the addition of two points (x_{0,1}, x_{1,1}, . . . , x_{nx,1}, y_{0,1}, y_{1,1}, . . . , y_{ny,1})) and (x_{0,2}, x_{1,2}, . . . , x_{nx,2}, y_{0,2}, y_{1,2}, . . . , y_{ny,2}) is given by:
(x _{0,3} ,x _{1,3} , . . . ,x _{nx,3} ,y _{0,3} ,y _{1,3} , . . . ,y _{ny,3})=(x _{0,1} ,x _{1,1} , . . . ,x _{nx,1} ,y _{0,1} ,y _{1,1} , . . . ,y _{ny,1})+(x _{0,2} ,x _{1,2} , . . . ,x _{nx,2} ,y _{0,2} ,y _{1,2} , . . . ,y _{ny,2})
If the point (x″_{0,1}, x″_{1,1}, . . . , x″_{nx,1}, y″_{0,1}, y″_{1,1}, . . . , y″_{ny,1}) is equivalent to the point (x_{0,1}, x_{1,1}, . . . , x_{nx,1}, y_{0,1}, y_{1,1}, . . . , y_{ny,1}), then the former can be substituted for (x_{0,1}, x_{1,1}, . . . , x_{nx,1}, y_{0,1}, y_{1,1}, . . . , y_{ny,1}) in the above equation in order to obtain:
(x _{0,3} ,x _{1,3} , . . . ,x _{nx,3} ,y _{0,3} ,y _{1,3} , . . . ,y _{ny,3})=(x″ _{0,1} ,x″ _{1,1} , . . . ,x″ _{nx,1} ,y″ _{0,1} ,y″ _{1,1} , . . . ,y″ _{ny,1})+(x _{0,2} ,x _{1,2} , . . . ,x _{nx,2} ,y _{0,2} ,y _{1,2} , . . . ,y _{ny,2}).
Mappings that are used to define equivalences can be based on certain properties that exist in elliptic polynomial equations, such as symmetry between variables. As an example, we consider the point (x_{0}, x_{1}, y_{0}) that satisfies the equation y_{0} ^{2}=x_{0} ^{3}+x_{1} ^{3}+x_{0}x_{1}. The equivalent of this point may be defined as (x_{1}, x_{0}, −y_{0}).
With regard to the addition rules for (EC^{nx+ny+2}, +), the addition operation of two points (x_{0,1}, x_{1,1}, . . . , x_{nx,1}, y_{0,1}, y_{1,1}, . . . , y_{ny,1})∈EC^{nx+ny+2 }and (x_{0,2}, x_{1,2}, . . . , x_{nx,2}, y_{0,2}, y_{1,2}, . . . , y_{ny,2}))∈EC^{nx+ny+2}, otherwise expressed as:
(x _{0,3} ,x _{1,3} , . . . ,x _{nx,3} ,y _{0,3} ,y _{1,3} , . . . ,y _{ny,3})=(x _{0,1} ,x _{1,1} , . . . ,x _{nx,1} ,y _{0,1} ,y _{1,1} , . . . y _{ny,1})+(x _{0,2} ,x _{1,2} , . . . ,x _{nx,2} ,y _{0,2} ,y _{1,2} , . . . ,y _{ny,2})
is calculated in the following manner. First, a straight line is drawn which is passes through the two points to be added. The straight line intersects EC^{nx+ny+2 }at a third point, which we denote (x′_{0,3}, x′_{1,3}, . . . , x′_{nx,3}, y′_{0,3}, y′_{1,3}, . . . , y′_{ny,3})∈EC^{nx+ny+2}. The sum point is defined as (x_{0,3}, x_{1,3}, . . . , x_{nx,3}, y_{0,3}, y_{1,3}, . . . , y_{ny,3})=−(x′_{0,3}, x′_{1,3}, . . . , x′_{nx,3}, y′_{0,3}, y′_{1,3}, . . . , y′_{ny,3}).
From the above definition of the addition rule, addition over EC^{nx+ny+2 }is commutative, that is:
(x _{0,1} ,x _{1,1} , . . . ,x _{nx,1} ,y _{0,1} ,y _{1,1} , . . . ,y _{ny,1})+(x _{0,2} ,x _{1,2} , . . . ,x _{nx,2} ,y _{0,2} ,y _{1,2} , . . . ,y _{ny,2})=(x _{0,2} ,x _{1,2} , . . . ,x _{nx,2} ,y _{0,2} ,y _{1,2} , . . . ,y _{ny,2})+(x _{0,1} ,x _{1,1} , . . . ,x _{nx,1} ,y _{0,1} ,y _{1,1} , . . . ,y _{ny,1})
for all (x_{0,1}, x_{1,1}, . . . , x_{nx,1}, y_{0,1}, y_{1,1}, . . . , y_{ny,1})∈EC^{nx+ny+2 }and for all (x_{0,2}, x_{1,2}, . . . , x_{nx,2}, y_{0,2}, y_{1,2}, . . . , y_{ny,2})∈EC^{nx+ny+2}. This commutivity satisfies axiom (iii) above.
There are two primary cases that need to be considered for the computation of point addition for (EC^{nx+ny+2}, +): (A) for at least one j∈S_{nx}, x_{j,1}≠x_{j,2}; and (B) for all j∈S_{nx}, x_{j,1}=x_{j,2}=x_{j,0}. Case B includes three sub-cases:
For Case A, for at least one j∈S_{nx}x_{j,1}≠x_{j,2}, a straight line in (nx+ny+2)-dimensional space is defined by
k∈S_{ny }and j∈S_{nx }and
i≠j,i∈S_{nx}.
For this case, y_{k}=m_{yk}x_{j}+c_{yk}, where
and c_{yk}=y_{k,1}−x_{j,1}m_{yk}. Further, x_{i}=m_{xi}x_{j}+c_{xi}, where
and c_{xi}=x_{i,1}−x_{j,1}m_{xi}. Equation (1) can then be re-written as:
and substitution of the above into the rewritten equation (1) for y_{k}, k∈S_{ny }and x_{i}, i∈S_{nx }& i≠j, results in:
Expanding the terms in the above equation leads to a cubic equation in x_{j}, C_{3}x_{j} ^{3}+C_{2}x_{j} ^{2}+C_{1}x_{j}+C_{0}=0, where C_{3}, C_{2}, C_{1 }& C_{0 }are obtained from the above equation.
Assuming C_{3}≠0, the above cubic equation in x_{j }has three roots x_{j,1}, x_{j,2}, & x′_{j,3 }and can be written as (x_{j}−x_{j,1})(x_{j}−x_{j,2})(x_{j}−x′_{j,3})=0. Normalizing by the coefficient of x^{3 }and equating the coefficients of x^{2 }in the resulting equation with that in (x_{j}−x_{j,1})(x_{j}−x_{j,2})(x_{j}−x′_{j,3})=0, one obtains a solution for x′_{j,3}:
The values of y′_{k,3}, k∈S_{ny }and x′_{i,3}, i∈S_{nx }& i≠j, may be similarly obtained from equations for x_{j}=x′_{j,3}.
For cases where C_{3}=0, C_{3}x_{j} ^{3}+C_{2}x_{j} ^{2}+C_{1}x_{j}+C_{0}=0 becomes a quadratic equation. Such quadratic equations may be used in the definition of point equivalences.
With regard to Case B for all j∈S_{nx}, x_{j,1}=x_{j,2}, the three sub-cases are considered below. In all cases, x_{j,o }is defined as x_{j,o}=x_{j,1}=x_{j,2}, j∈S_{nx}.
For Case B.i., all k∈S_{ny}, y_{k,1}=y_{k,2}, which corresponds to point doubling. In this case, (x_{0,1}, x_{1,1}, . . . , x_{nx,1}, y_{0,1}, y_{1,1}, . . . , y_{ny,1})=(x_{0,2}, x_{1,2}, . . . , x_{nx,2}, y_{0,2}, . . . , y_{ny,2}).
Letting:
(x _{0,o} ,x _{1,o} , . . . ,x _{nx,o} ,y _{0,o} ,y _{1,o} , . . . ,y _{ny,o})=(x _{0,1} ,x _{1,1} , . . . ,x _{nx,1} ,y _{0,1} ,y _{1,1} , . . . ,y _{ny,1})=(x _{0,2} ,x _{1,2} , . . . ,x _{nx,2} ,y _{0,2} ,y _{1,2} , . . . ,y _{ny,2})
the sum is written as
(x _{0,3} ,x _{1,3} , . . . ,x _{nx,3} ,y _{0,3} ,y _{1,3} , . . . ,y _{ny,3})=(x _{0,o} ,x _{1,o} , . . . ,x _{nx,o} ,y _{0,o} ,y _{1,o} , . . . ,y _{ny,o})+(x _{0,o} ,x _{1,o} , . . . ,x _{nx,o} ,y _{0,o} ,y _{1,o} , . . . ,y _{ny,o}) (3).
There are several ways of defining the addition in this case. Three possible rules are described below. Case B.i.1: Letting S_{nx,Lx }denote a subset of S_{nx }with Lx elements, i.e., S_{nx,Lx} ⊂S_{nx}; letting S_{ny,Ly }denote a subset of S_{ny }with Ly elements and which does not include the element 0; i.e. S_{ny,Ly} ⊂S_{ny }and 0∉S_{ny,Ly}; setting the value of Lx and Ly as at least one, then the straight line in this case can be defined as a tangent to the point (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,o}, y_{1,o}, . . . , y_{ny,o}) defined in a sub-dimensional space with coordinates y_{n }and x_{m }with n∈S_{ny,Ly }and m∈S_{nx,Lx}.
In this case, the gradients m_{yn }and m_{xm }of the straight line to be used in equation (2) are essentially the first derivatives of y_{n }and x_{m}, n∈S_{ny,LY }and m∈S_{nx,Lx}, for F with respect to x_{j}, j∈S_{nx,Lx}, i.e.,
Using these derivatives for the values of the gradients,
where n∈S_{ny,Ly}, and
where m∈S_{nx,Lx}, in equation (2) and noting that it is assumed that
for m∈(S_{nx}−S_{nx,Lx}) and
for n∈(S_{ny}−S_{ny,Lx}), then a solution for x′_{j,3 }may be obtained.
The values of y′_{n,3 }for n∈S_{ny }and x′_{m,3}, for m∈S_{nx }& m—j, can further be obtained for x_{j}=x′_{j,3}. The choice of the x_{m}-coordinates, m∈S_{nx,Lx }and y_{n}-coordinates, n∈S_{ny,Ly}, which can be used to compute the tangent of the straight line in this case may be chosen at random or according to a pre-defined rule. Further, a different choice of the x_{m}-coordinates, m∈S_{nx,Lx}, and y_{n}-coordinates, n∈S_{ny,Ly}, may be made when one needs to compute successive point doublings, such as that needed in scalar multiplication.
With regard to the next case, Case B.i.2, the second possible way of defining the addition of a point with itself is to apply a sequence of the point doublings according to the rule defined above in Case B.i.1, where the rule is applied with a different selection of the x-coordinate(s) and y-coordinates(s) in each step of this sequence.
In the third sub-case, Case B.i.3, a point is substituted with one of its equivalents. Letting (x_{0,oe}, x_{1,oe}, . . . , x_{nx,oe}, y_{0,oe}, y_{1,oe}, . . . , y_{ny,oe})) represent the equivalent point of (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,o}, y_{1,o}, . . . , y_{ny,o})) then equation (3) may be written as:
(x _{0,3} ,x _{1,3} , . . . ,x _{nx,3} ,y _{0,3} ,y _{1,3} , . . . ,y _{ny,3})+(x _{0,o} ,x _{1,o} , . . . ,x _{nx,o} ,y _{0,o} ,y _{1,o} , . . . ,y _{ny,o})+(x _{0,oe} ,x _{1,oe} , . . . ,x _{nx,oe} ,y _{0,oe} ,y _{1,oe} , . . . ,y _{ny,oe}).
With regard to Case B.ii, for k∈S_{ny }& k≠0, y_{k,1}=y_{k,2}, and where y_{0,1 }& y_{0,2 }are the roots of the quadratic equation in y_{0}, this case corresponds to generation of the point inverse.
Letting y_{k,1}=y_{k,2}=y_{k,o }for k∈S_{ny }& k≠0, then any two points, such as the point (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,1}, y_{1,o}, . . . , y_{ny,o}))∈EC^{nx+ny+2 }and the point (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,2}, y_{1,o}, . . . , y_{ny,o})∈EC^{nx+ny+2}, are in the hyper-plane with x_{i}=x_{i,o}, i∈S_{nx }and y_{k}=y_{k,o}, k∈S_{ny }& k≠0. Thus, any straight line joining these two points such that (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,1}, y_{1,o}, . . . , y_{ny,o})≠(x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,2}, y_{1,o}, . . . , y_{ny,o}) is also in this hyper-plane.
Substituting the values of x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{1,o}, . . . , & y_{ny,o }in an elliptic polynomial equation with multiple x-coordinates and multiple y-coordinates, a quadratic equation for y_{0 }is obtained, as given above. Thus, y_{0 }has only two solutions, y_{0,1 }& y_{0,2}.
Thus, a line joining points (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,1}, y_{1,o}, . . . , y_{ny,o})∈EC^{nx+ny+2 }and (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,2}, y_{1,o}, . . . , y_{ny,o})∈EC^{nx+ny+2 }does not intersect with EC^{nx+ny+2 }at a third point.
A line that joins these two points is assumed to intersect with EC^{nx+ny+2 }at infinity (x_{0,1}, x_{1,1}, . . . , x_{nx,1}, y_{0,1}, y_{1,1}, . . . , y_{ny,1})∈EC^{nx+ny+2}. This point at infinity is used to define both the inverse of a point in EC^{nx+ny+2 }and the identity point. According to the addition rule defined above, one can write:
(x _{0} ,x _{1} , . . . ,x _{nx} ,y _{0,1} ,y _{1} , . . . ,y _{ny})+(x _{0} ,x _{1} , . . . ,x _{nx} ,y _{0,2} ,y _{1} , . . . ,y _{ny})=(x _{0,1} ,x _{1,1} , . . . ,x _{nx,1} ,y _{0,1} ,y _{1,1} , . . . ,y _{ny,1}) (4),
since the third point of intersection of such lines is assumed to be at infinity, (x_{0,l}, x_{1,l}, . . . , x_{nx,l}, y_{0,l}, y_{1,l}, . . . , y_{ny,l})∈EC^{nx+ny+2}. Thus, this equation defines a unique inverse for any point (x_{0}, x_{1}, . . . , x_{nx}, y_{0}, y_{1}, . . . , y_{ny})∈EC^{nx+ny+2}, namely:
−(x _{0} ,x _{1} , . . . ,x _{nx} ,y _{0,1} ,y _{1} , . . . ,y _{ny})=(x _{0} ,x _{1} , . . . ,x _{nx} ,y _{0,2} ,y _{1} , . . . ,y _{ny}).
Thus, equation (4) can be written as:
(x _{0} ,x _{1} , . . . ,x _{nx} ,y _{0,1} ,y _{1} , . . . ,y _{ny})−(x _{0} ,x _{1} , . . . ,x _{nx} ,y _{0,1} ,y _{1} , . . . ,y _{ny})=(x _{0,l} ,x _{1,l} , . . . ,x _{nx,l} ,y _{0,l} ,y _{1,l} , . . . ,y _{ny,l}) (5).
Further, a line joining the point at infinity (x_{0,l}, x_{1,l}, . . . , x_{nx,l}, y_{0,l}, y_{1,l}, . . . , y_{ny,l})∈EC^{nx+ny+2 }and a point (x_{0}, x_{1}, . . . , x_{nx}, y_{0,1}, y_{1}, . . . , y_{ny})∈EC^{nx+ny+2 }will intersect with EC^{nx+ny+2 }at (x_{0}, x_{1}, . . . , x_{nx}, y_{0,2}, y_{1}, . . . , y_{ny})∈EC^{nx+ny+2}. Thus, from the addition rule defined above,
(x _{0} ,x _{1} , . . . ,x _{nx} ,y _{0} ,y _{1} ,y _{2} , . . . ,y _{ny})+(x _{0,l} ,x _{1,l} , . . . ,x _{nx,l} ,y _{0,l} ,y _{1,l} , . . . ,y _{ny,1})=(x _{0} ,x _{1} , . . . ,x _{nx} ,y _{0} ,y _{1} , . . . ,y _{ny}) (6).
Equation (5) satisfies axiom (ii) while equation (6) satisfies axiom (i), defined above.
Case B.iii applies for all other conditions except those in cases B.i and B.ii. This case occurs only when ny is greater than or equal to one. Given two points (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,1}, y_{1,1}, . . . , y_{ny,1})∈EC^{nx+ny+2 }and (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,2}, y_{1,2}, . . . , y_{ny,2})∈EC^{nx+ny+2 }that do not satisfy the conditions of cases B.i and B.ii above, the sum point is written as (x_{0,3}, x_{1,3}, . . . , x_{nx,3}, y_{0,3}, y_{1,3}, . . . , y_{ny,3})=(x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,1}, y_{1,1}, . . . , y_{ny,1})+(x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,2}, y_{1,2}, . . . , y_{ny,2}).
There are several possible rules to find the sum point in this case. Three possible methods are given below.
1) Using three point doublings and one point addition,
(x _{0,3} ,x _{1,3} , . . . ,x _{nx,3} ,y _{0,3} ,y _{1,3} , . . . ,y _{ny,3})4=(x _{0,o} ,x _{1,o} , . . . ,x _{nx,o} ,y _{0,1} ,y _{1,1} , . . . ,y _{ny,1})−2(x _{0,o} ,x _{1,o} , . . . ,x _{nx,o} ,y _{0,2} ,y _{1,2} , . . . ,y _{ny,2});
2) using one point doublings and three point additions,
(x _{0,3} ,x _{1,3} , . . . ,x _{nx,3} ,y _{0,3} ,y _{1,3} , . . . ,y _{ny,3})=(2(x _{0,o} ,x _{1,o} , . . . ,x _{nx,o} ,y _{0,1} ,y _{1,1} , . . . ,y _{ny,1})+(x _{0,o} ,x _{1,o} , . . . ,x _{nx,o} ,y _{0,2} ,y _{1,2} , . . . ,y _{ny,2}))−(x _{0,o} ,x _{1,o} , . . . ,x _{nx,o} ,y _{0,1} ,y _{1,1} , . . . ,y _{ny,1}); and
3) using point equivalence,
(x _{0,3} ,x _{1,3} , . . . ,x _{nx,3} ,y _{0,3} ,y _{1,3} , . . . ,y _{ny,3})=(x _{0,o} ,x _{1,o} , . . . ,x _{nx,o} ,y _{0,1} ,y _{1,1} , . . . ,y _{ny,1})+(x _{0,oe} ,x _{1,oe} , . . . ,x _{nx,oe} ,y _{0,2e} ,y _{1,2e} , . . . ,y _{ny,2e}),
where (x_{0,oe}, x_{1,oe}, . . . , x_{nx,oe}, y_{0,2e}, y_{1,2e}, . . . , y_{ny,2e}) is assumed to be the equivalent point of (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0,2}, y_{1,2}, . . . , y_{ny,2}).
It should be noted that the above methods for defining the sum point are not the only ones that can be defined and are provided for exemplary purposes only. The choice of method used to obtain the sum point in this case should depend on the computation complexity of point addition and point doubling.
With regard to associativity, one way of proving associativity of (EC^{nx+ny+2}, +) is as follows: Given particular elliptic polynomial equations (i.e., for particular coefficients a_{1l}, a_{2kl}, a_{3k}, c_{1lki}, c_{2kl}, c_{3kli}, b_{1l, }b_{2lk}, b_{3lk}, b_{4k}, b_{c}∈F) defined over a finite field F, if it can be shown by computation that any point Q∈EC^{nx+ny+2 }(and any of its equivalent points) can be uniquely written as k_{Q}P∈EC^{nx+ny+2}, where P is the generator point of (EC^{nx+ny+2}, +), then the corresponding EC^{nx+ny+2 }groups based on such polynomials are associative. This is because any three points Q,R,S∈EC^{nx+ny+2 }(or any of their equivalent points) can be written as k_{Q}P,k_{R}P,k_{S}P∈EC^{nx+ny+2}, respectively, thus their sum (Q+R+S)=(k_{Q}P+k_{R}P+k_{S}P)=(k_{Q}+k_{R}+k_{S})P can be carried out in any order.
The following elliptic polynomial equation with nx=1 and ny=0 is used to show an example of the equations in Case A used in point addition: y_{0} ^{2}=x_{0} ^{2}+x_{1} ^{3}+x_{0}x_{1}. Choosing x_{j}=x_{0}, and substituting y_{k}=m_{yk}x_{j}+c_{yk }from Case A above for y_{0}, and the corresponding equation x_{i}=m_{xi}x_{j}+c_{xi }for x_{l}, one obtains (m_{y0}x_{0}+c_{y0})^{2}=x_{0} ^{3}+(m_{x1}x_{0}+c_{x1})^{3}+x_{0}(m_{x1}x_{0}+c_{x1}).
Expanding this equation yields the equation m_{y0} ^{2}x_{0} ^{2}+2m_{y0}c_{y0}x_{0}+c_{y0} ^{2}=x_{0} ^{3}+m_{x1} ^{3}x_{0} ^{3}+3m_{x1} ^{2}c_{x1}x_{0} ^{2}+3m_{x1}c_{x1} ^{2}x_{0}+c_{x1} ^{3}+m_{x1}x_{0} ^{2}+c_{x1}x_{0}, or (1+m_{x1} ^{3})x_{0} ^{3}+(3m_{x1} ^{2}c_{x1}+m_{x1}−m_{y0} ^{2})x_{0} ^{2}+(3m_{x1}c_{x1} ^{2}+c_{x1}−2m_{y0}c_{y0})x_{0}+c_{x1} ^{3}−c_{y0} ^{2}=0. From equation (2), the solution for x′_{0,3 }in this case is obtained:
Similarly, one can obtain the values of y′_{0,3 }and x′_{1,3 }for x_{0}=x′_{0,3}.
It should be noted that when m_{x1}=−1, the coefficient of the cubic term in the above is zero; i.e. C_{3}=0. In this case, the resulting quadratic equation can be used in the definition of point equivalences for the points that satisfy the elliptic polynomial equation.
Each of the equations for point addition and point doublings derived for cases A and B above require modular inversion or division. In cases where field inversions or divisions are significantly more expensive (in terms of computational time and energy) than multiplication, projective coordinates are used to remove the requirement for field inversion or division from these equations.
Several projective coordinates can be utilized. In the preferred embodiment, the Jacobean projective coordinate system is used. As an example, we examine:
Using Jacobian projection yields:
which can be rewritten as:
In the following, the points (X_{0}, X_{1}, . . . , X_{nx}, Y_{0}, Y_{1}, . . . , Y_{ny}, V) are assumed to satisfy equation (10). When V≠0, the projected point (X_{0}, X_{1}, . . . , X_{nx}, Y_{0}, Y_{1}, . . . , Y_{ny}, V) corresponds to the point:
which satisfies equation (1).
Using Jacobean projective coordinates, equation (10) can be written as:
By using Jacobian projective coordinates in the equations of Cases A and B above, and by an appropriate choice of the value of V_{3}, it can be shown that point doubling and point addition can be computed without the need for field inversion or division.
As described above, conventional bit string embedding into an elliptic curve point involves an iterative algorithm to search for an x-coordinate value which will lead to a quadratic residue value of the y-coordinate starting from an initial x-coordinate value specified by the bit string to be embedded. However, such a process requires that the number of iterations needed is different for different bit strings that are being embedded. In the present method, an embedding methodology is utilized that embeds a bit string into an appropriate elliptic polynomial point with (nx+1) x-coordinates and (ny+1) y-coordinates in a deterministic and non-iterative manner. Further, the elliptic polynomial equation is of a specified form, i.e., it is isomorphic to its twist. This method circumvents the need for an iterative algorithm that involves the usual search for a quadratic residue value of the y-coordinate (which typically requires several iterations) and, further, suffers from the drawback that the number of iterations needed is different for different bit strings that are being embedded.
In order to examine the embedding method, the twist of an elliptic polynomial equation needs to be defined. Given an elliptic polynomial with (nx+1) x-coordinates and (ny+1) y-coordinates of the form described above:
where a_{1l}, a_{2kl}, b_{1l}, b_{2lk}∈F .
Given certain values for the x-coordinates x_{0,o}, x_{1,o}, . . . , x_{nx,o }and y-coordinates y_{1,o}, . . . , y_{ny,o}, respectively, that are elements of the finite field, F, these values are substituted into the elliptic polynomial equation (1) in order to obtain a quadratic equation in y_{0}:
If a solution of the above quadratic equation (i.e., y_{0} ^{2}=T) is an element of the finite field F, the point (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0}, y_{1,o}, . . . , y_{ny,o}) is said to satisfy the given elliptic polynomial equation. If a solution of the above quadratic equation is not an element of the finite field F, the point (x_{0,o}, x_{1,o}, . . . , x_{nx,o}, y_{0}, y_{1,o}, . . . , y_{ny,o}) is said to satisfy the twist of the given elliptic curve equation. The inventive embedding method is based on the isomorphic relationship between a curve and its twist as described in the following theorem:
An elliptic polynomial equation of the form given above is isomorphic to its twist if:
The proof of this theorem is as follows. Re-writing equation (12) as:
and letting the right-hand side of equation (13) be denoted as T, then:
Thus, any value of x_{0}, x_{1}, . . . , x_{nx}, y_{1}, . . . , y_{ny }will lead to a value of T∈F(p). T could be quadratic residue or non-quadratic residue. If T is quadratic residue, then equation (14) is written as:
where x_{0,q}, x_{1,q}, . . . , x_{nx,q}, y_{1,q}, . . . , y_{ny,q}∈F denotes the values of x_{0}, x_{1}, . . . , x_{nx}, y_{1}, . . . , y_{ny }that result in a quadratic residue value of T, which is hereafter denoted as T_{q}.
If T is non-quadratic residue, then equation (14) is written as:
where x_{0, q }, x_{1, q }, . . . , x_{nx, q }, y_{1, q }, . . . , y_{ny, q }∈F denotes the values of x_{0}, x_{1}, . . . , x_{nx}, y_{1}, . . . , y_{ny }that result in a non-quadratic residue value of T, denoted as T_{ q }.
Letting g be any non-quadratic residue number in F (i.e., g∈F(p) & √{square root over (g)}∉F(p)), then multiplying equation (15) with g^{3 }yields:
which can be re-written as:
It should be noted that if g is non-quadratic residue, then g^{3 }is also non-quadratic residue. Further, the result of multiplying a quadratic residue number by a non-quadratic residue number is a non-quadratic residue number. Thus, g^{3}T_{q }is non-quadratic residue.
By comparing the terms of equations (16) and (17), we obtain the following mappings:
x _{i, q } =gx _{i,q}; (18);
y _{i, q }=√{square root over (g ^{3})}y _{i,q}; (19); and
T _{ q } =g ^{3} T _{q} (20).
The mappings between the variables x_{i,q }and x_{i, q } in equation (18), y_{i,q }and y_{i, q } in equation (19), and T_{q }and T_{ q } in equation (20) are all bijective, i.e., there is a one-to-one correspondence from basic finite field arithmetic. As a consequence, the mappings between the (nx+ny+2)-tuple (x_{0,q}, x_{1,q}, . . . , x_{nx,q}, T_{q}, y_{1,q}, . . . , y_{ny,q}) and the (nx+ny+2)-tuple (x_{0, q }, x_{1, q }, . . . , x_{nx, q }, T_{ q }, y_{1, q }, . . . , y_{ny, q }) are also bijective.
Therefore, for every solution of equation (15), there is an isomorphic solution that satisfies equation (16), and since the mappings of the coordinates of one to the other are given in equations (18)-(20), these two solutions are isomorphic with respect to each other.
Since T_{q }is quadratic residue, this expression can be written as:
T _{q} =y _{0} ^{2}. (21)
Thus, from equation (20), T_{ q } can be written as:
T _{ q } =g ^{3}y_{0} ^{2} (22).
Using equations (21) and (22), equations (15) and (16) can be written as:
Since any solution of equation (15) has an isomorphic solution that satisfies equation (16), it follows that the solution of equation (23), denoted as (x_{0,q}, x_{1,q}, . . . , x_{nx,q}, y_{0}, y_{1,q}, . . . , y_{ny,q}) has an isomorphic solution that satisfies equation (24), denoted as
The solutions of equation (23) form the points (x_{0,q}, x_{1,q}, . . . , x_{nx,q}, y_{0}, y_{1,q}, . . . , y_{ny,q}) that satisfy an elliptic polynomial. Similarly, the solutions of equation (24) form the points
that satisfy its twist. This proves the above theorem.
An example of a mapping of the solutions of equation (23) defined over F(p), where p=3 mod 4, to the solutions of its twist is implemented by using −x_{i }for the x-coordinates and −y_{i} ^{2 }for the y-coordinates.
The isomorphism between an elliptic polynomial and its twist, discussed above, is exploited for the embedding of the bit sting of a shared secret key into the appropriate x and y coordinates of an elliptic polynomial point without the need for an iterative search for a quadratic residue value of the corresponding y_{0}-coordinate, which usually requires several iterations, where the number of iterations needed is different for different bit strings which are being embedded.
Assuming F=F(p) and that the secret key is an M-bit string such that (nx+ny+1)N>M>N−1, where N is the number of bits needed to represent the elements of F(p), then the secret key bit string is divided into (nx+ny+1) bit-strings k_{x,0}, k_{x,1}, . . . , k_{x,nx}, k_{y,1}, . . . , k_{k,ny}. The value of the bit-strings k_{x,0}, k_{x,1}, . . . , k_{x,nx}, k_{y,1}, . . . , k_{k,ny }must be less than p. In the preferred embodiment of embedding the (nx+ny+1) bit-strings k_{x,0}, k_{x,1}, . . . , k_{x,nx}, k_{y,1}, . . . , k_{k,ny}, the embedding is as follows.
First, assign the value of the bit string of k_{x,0}, k_{x,1}, . . . , k_{x,nx }to x_{0,k}, x_{1,k}, . . . , x_{nx,k}. Next, assign the value of the bit string of k_{y,1}, . . . , k_{k,ny }to y_{1,k}, . . . , y_{ny,k}. Then, compute:
Finally, use the Legendre test to see if T has a square root. If T has a square root, assign one of the roots to y_{0}; otherwise, the x-coordinates and y-coordinates of the elliptic polynomial point with the embedded shared secret key bit string are given by gx_{i,k }and
respectively, where g is non-quadratic residue in F.
It should be noted that p is usually predetermined prior to encryption, so that the value of g can also be predetermined. Further, the receiver can identify whether the point (x_{0,k}, x_{1,k}, . . . , x_{nx,k}, y_{0,k}, y_{1,k}, . . . , y_{ny,k}) or the point
is the elliptic polynomial point with the embedded secret key bit strings without any additional information. Additionally, any non-quadratic value in F(p) can be used for g. For efficiency, g is chosen to be −1 for p≡3 mod 4 and g is chosen to be 2 for p≡1 mod 4.
The same deterministic and non-iterative method described above can be used to embed a secret message bit string into an elliptic polynomial point in a deterministic and non-iterative manner. Assuming F=F(p) and that the message is an M-bit string such that (nx+ny+1)N>M>N−1, where N is the number of bits needed to represent the elements of F(p), then the message bit string is divided into (nx+ny+1) bit-strings m_{x,0}, m_{x,1}, . . . , m_{x,nx}, m_{y,1}, . . . , m_{k,ny}. The value of the bit-strings m_{x,0}, m_{x,1}, . . . , m_{x,nx}, m_{y,1}, . . . , m_{k,ny }must be less than p. As in the previous embodiment, the embedding of the (nx+ny+1) bit-strings m_{x,0}, m_{x,1}, . . . , m_{x,nx}, m_{y,1}, . . . , m_{k,ny }can be accomplished out as follows.
First, assign the value of the bit string of m_{x,0}, m_{x,1}, . . . , m_{x,nx }to x_{0,m}, x_{1,m}, . . . , x_{nx,m}. Next, assign the value of the bit string of m_{y,1}, . . . , m_{k,ny }to y_{1,m}, . . . , y_{ny,m}. Then compute:
Finally, use the Legendre test to see if T has a square root. If T has a square root, then assign one of the roots to y_{0}, otherwise the x-coordinates and y-coordinates of the elliptic polynomial point with the embedded shared secret key bit string are given by gx_{i,m }and
respectively.
It should be noted that p is usually predetermined prior to encryption; thus, the value of g can also be predetermined. Further, when using the above method, the strings m_{x,0}, m_{x,1}, . . . , m_{x,nx }and m_{y,1}, . . . , m_{k,ny }can be recovered directly from x_{0,m}, x_{1,m}, . . . , x_{nx,m }and y_{1,m}, . . . , y_{ny,m}, respectively. An extra bit is needed to identify whether (x_{0,m}, x_{1,m}, . . . , x_{nx,m}, y_{0,m}, y_{1,m}, . . . , y_{ny,m}) or
is used at the sending correspondent. Additionally, any non-quadratic value in F(p) can be used for g. For efficiency, g is chosen to be −1 for p≡3 mod 4 and is chosen to be 2 for p≡1 mod 4. Further, at the receiver, the process is reversed. In the case of g=2, a division by two is carried out. It should noted that dividing x_{i,m }by is two is computed using one modulo addition, because:
The following describes the mapping of points that satisfy one elliptic polynomial to points that satisfy another elliptic polynomial. The two elliptic polynomials are not required to be isomorphic with respect to each other. This mapping is used for “hopping” between elliptic polynomials.
The type of elliptic polynomial used for such mapping of points has the following form. The elliptic polynomial is a polynomial with more than two independent variables such that one of the variables, termed the y-coordinate, has a maximum degree of two, and appears on its own in only one of the monomials. The other variables, termed the x-coordinates, have a maximum degree of three, and each must appear in at least one of the monomials with a degree of three. Finally, all monomials that contain x-coordinates must have a total degree of three.
Letting S_{nx }represent the set of numbers from 0 to nx (i.e., S_{nx}={0, . . . , nx}), then given a finite field F and denoting b_{1l} ^{(s)}, b_{2lk} ^{(s)}∈F as the coefficients of the s-th elliptic polynomial, the following equation defined over F is an example of such an elliptic polynomial:
The following equations are examples of equation (25):
y ^{2} =b _{10} ^{(s)} x _{0} ^{3} +b _{11} ^{(s)} x _{1} ^{3} +b _{201} ^{(s)} x _{0} ^{2} x _{1} (26)
y _{0} ^{2} =b _{10} ^{(s)} x _{0} ^{3} +b _{11} ^{(s)} x _{1} ^{3} b _{201} ^{(s)} x _{0} ^{2} x _{1} +b _{210} ^{(s)} x _{1} ^{2} x _{0} (27).
Given an elliptic polynomial, such as that given above in equation (25), with coefficients b_{1l}, b_{2lk1}∈F, then (x_{0,o} ^{(s)}, x_{0,o} ^{(s)}, . . . , x_{nx,o} ^{(s)}, y_{o} ^{(s)}) is denoted as a point that satisfies the s-th elliptic polynomial. Given another elliptic polynomial that is denoted the r-th polynomial, with coefficients b_{1l} ^{(r)}, b_{2lk} ^{(r)}∈F, then
where the r-th elliptic polynomial is not necessarily isomorphic to the s-th elliptic polynomial, i.e., where all or some of the coefficients b_{1l} ^{(r)}, b_{2lk} ^{(r)}∈F are different and independent of the coefficients b_{1l} ^{(s)}, b_{2lk} ^{(s)}∈F.
Elliptic polynomial hopping refers to hopping the point (x_{0,o} ^{(s)}, x_{0,o} ^{(s)}, . . . , x_{nx,o} ^{(s)}, y_{o} ^{(s)}) satisfies the one elliptic polynomial (for example, the s-th elliptic polynomial with coefficients b_{1l} ^{(s)}, b_{2lk} ^{(s)}∈F) into an equivalent point (x_{0,o} ^{(r)}, x_{0,o} ^{(r)}, . . . , x_{nx,o} ^{(r)}, y_{o} ^{(r)}) that satisfies the r-th elliptic polynomial with coefficients b_{1l} ^{(r)}, b_{2lk} ^{(r)}∈F.
One method of achieving this is as follows. First, set the x-coordinates of the hopped point x_{0,o} ^{(r)}, x_{1,o} ^{(r)}, . . . , x_{nx,o} ^{(r) }to the x-coordinates x_{0,o} ^{(s)}, x_{1,o} ^{(s)}, . . . , x_{nx,o} ^{(s) }of the original point, x_{i,o} ^{(r)}=x_{i,o} ^{(s) }for i=0, . . . , nx. Nest, substitute the value of the x-coordinates x_{0,o} ^{(r)}, x_{1,o} ^{(r)}, . . . , x_{nx,o} ^{(r) }into the new elliptic polynomial equation to obtain
(any value of x_{0,o} ^{(r)}, x_{1,o} ^{(r)}, . . . , x_{nx,o} ^{(r) }will lead to a value of T^{(r)}∈F(p), where T^{(r) }could be quadratic residue or non-quadratic residue). Finally, if T^{(r) }is quadratic residue, set y_{o} ^{(r)}=√{square root over (T^{(r)})} and the hopped point is given by (x_{0,o} ^{(r)}, x_{1,o} ^{(r)}, . . . , x_{nx,o} ^{(r)}, y_{o} ^{(r)}); otherwise, if T^{(r) }is a non-quadratic residue, set y_{0,o} ^{(r)}=√{square root over (g^{3}T^{(r)})} and the hopped point is given by (gx_{0,o} ^{(r)}, gx_{1,o} ^{(r)}, . . . , gx_{nx,o} ^{(r)}, y_{0,o} ^{(r)}).
Thus, any point that satisfies an elliptic polynomial can be hopped to is an equivalent point on another elliptic polynomial, even if the two polynomials are not isomorphic to each other.
Further, a point is never mapped to another point that satisfies the twist of another elliptic polynomial. As can be seen in the final step above, a point that satisfies an elliptic polynomial is mapped (hopped) to another point that satisfies another elliptic polynomial. Any point that satisfies one elliptic polynomial can be uniquely mapped to another point that satisfies either the equation of an elliptic polynomial or the equation of its twist. In order to show this unique mapping, an additional “-tuple” must be used to indicate as to whether a point that satisfies an elliptic polynomial is mapped to point on another elliptic polynomial or the twist of this other elliptic polynomial.
Thus, for purposes of point mapping between one elliptic polynomial into another, a point is represented as (x_{0,o} ^{(s)}, x_{1,o} ^{(s)}, . . . , x_{nx,o} ^{(s)}, y_{o} ^{(s)}, α_{o} ^{(s)}). The last variable, α_{o} ^{(s)}, indicates whether the point (x_{0,o} ^{(s-1)}, x_{1,o} ^{(s-1)}, . . . , x_{nx,o} ^{(s-1)}, y_{o} ^{(s-1)}, α_{o} ^{(s-1)}) that satisfies the previous elliptic polynomial was mapped to an elliptic polynomial or its twist. If α_{o} ^{(s)}=1, the point (x_{0,o} ^{(s-1)}, x_{1,o} ^{(s-1)}, . . . , x_{nx,o} ^{(s-1)}, y_{o} ^{(s-1)}, α_{o} ^{(s-1)}) was originally mapped to a point on the elliptic polynomial, otherwise if α_{o} ^{(s)}=g, the point (x_{0,o} ^{(s-1)}, x_{1,o} ^{(s-1)}, . . . , x_{nx,o} ^{(s-1)}, y_{o} ^{(s-1)}, α_{o} ^{s-1}) was mapped to a point on the twist of an elliptic polynomial. The addition of the variable α^{(s) }as an extra “-tuple” in the representation of points allows the above procedure to be reversed as follows.
First, if α_{o} ^{(s)}=1, the x-coordinates x_{0,o} ^{(s-1)}, x_{1,o} ^{(s-1)}, . . . , x_{nx,o} ^{(s-1) }are given by x_{i,o} ^{(s-1)}=x_{i,o} ^{(s) }for i=0, . . . , nx; otherwise, if α_{o} ^{(s)}=g, the x-coordinates x_{0,o} ^{(s-1)}, x_{1,o} ^{(s-1)}, . . . , x_{nx,o} ^{(s-1) }are given by x_{i,o} ^{(s-1)}=g^{−1}x_{i,o} ^{(s) }for i=0, . . . , nx. Next, substitute the value of the x-coordinates x_{0,o} ^{(s-1)}, x_{1,o} ^{(s-1)}, . . . , x_{nx,o} ^{(s-1) }into the (s-1) elliptic polynomial equation to obtain
Finally, compute y_{o} ^{(s-1)}=√{square root over (T^{(s-1)})}, since it is known that the original point (x_{0,o} ^{(s-1)}, x_{1,o} ^{(s-1)}, . . . , x_{nx,o} ^{(s-1)}, y_{o} ^{(s-1)}, α_{o} ^{(s-1) }must satisfy the equation of an elliptic polynomial. Thus, T^{(s-1) }is always a quadratic residue.
It should be noted that in the above procedures, the value of α_{o} ^{(s-1) }is not defined, since the value depends on the mapping of the point that satisfies the (s-2) elliptic polynomial into the (s-1) elliptic polynomial. This value of α_{o} ^{(s-1) }must be provided as additional information.
The following is a first embodiment of the MAC generation method using elliptic polynomial hopping. The method includes the following steps:
defining a maximum block size that can be embedded into an elliptic polynomial N;
defining an integer u such that a message bit string length is uN;
a sending correspondent and a receiving correspondent agreeing upon:
the sending correspondent then performing the following steps:
initializing an integer j as j=1 and repeating the following steps 11) to 15), and incrementing j at each step until all of the message data blocks are processed:
the receiving correspondent performing the following steps:
initializing the integer j as j=1 and repeating the following steps 22) to 27), and incrementing j at each step until all of the message data blocks are processed:
In an alternative embodiment of the message authentication code generating method, the underlying finite field, the number of x-coordinates and the monomials used are selected from a predefined set of elliptic polynomial equation that are agreed upon between the corresponding entities.
The primary condition is that the MAC size must be the same as the block size. The MAC block size is determined by the maximum block size defined by the selected elliptic polynomial equations. If certain elliptic equations result in MAC block sizes that are smaller than the specified size of the MAC, then padding is used to maintain uniform block size. The alternative method includes the steps of:
defining a maximum block size that can be embedded into an elliptic polynomial N;
defining an integer u such that a message bit string length is uN;
a sending correspondent and a receiving correspondent agreeing upon:
the sending correspondent then performing the following steps:
initializing an integer j as j=1 and repeating the following steps 12) to 17), and incrementing j at each step until all of the message data blocks are processed:
the receiving correspondent performing the following steps:
initializing the integer j as j=1 and repeating the following steps 25) to 31), and incrementing j at each step until all of the message data blocks are processed:
As noted above, the methods include data embedding. In order to embed a message bit string into a point (x,√{square root over (α)}y) which satisfies either an elliptic curve equation y^{2}=x^{3}+ax+b or its twist,
If t_{m} _{ i }is quadratic residue, then y_{m} _{ i }=√{square root over (t_{m} _{ i })} and the point is given as (x_{m} _{ i }, y_{m} _{ i }). However, if t_{m} _{ i }is non-quadratic residue, then
and the point is given as (x_{m} _{ i }, √{square root over (
The Legendre Symbol is used to test whether an element of F(p) has a square root or not, i.e., whether an element is quadratic residue or not. The Legendre Symbol and test are as follows. Given an element of a finite field F(p), such as d, the Legendre symbol is defined as
In order to test whether d is quadratic residue or not, the Legendre symbol,
is computed such that
In the above, the MACs use the scalar multiplication k_{m }(x_{Pu}, y_{Pu}). It should be noted that, in order to find a collision means, that there are two message bits strings m and m′ such that their integer values k_{m }and k_{m′} will lead to k_{m}k(x_{B}, y_{B})≡k_{m′}k(x_{B}, y_{B}). This collision implies that integers can be found such that k_{m}k−k_{m′}k=l*#EC, where #EC is the order of the group (EC,+). This is equivalent to solving the elliptic curve discrete logarithm problem. This also applies to finding a collision for the points on the twist of an elliptic curve, k_{m}k(x_{TB}, √{square root over (
Thus, security of the message authentication codes depends on the security of the underlying elliptic curve cryptography. The security of elliptic curve cryptosystems is assessed by both the effect on the solution of the elliptic curve discrete logarithmic problem (ECDLP) and power analysis attacks.
It is well known that the elliptic curve discrete logarithm problem (ECDLP) is apparently intractable for non-singular elliptic curves. The ECDLP problem can be stated as follows: given an elliptic curve defined over F that needs N-bits for the representation of its elements, an elliptic curve point (x_{P}, y_{P})∈EC, defined in affine coordinates, and a point (x_{Q}, y_{Q})∈EC, defined in affine coordinates, determine the integer k, 0≦k≦#F, such that (x_{Q}, y_{Q})=k(x_{P}, y_{P}), provided that such an integer exists. In the below, it is assumed that such an integer exists.
The most well known attack used against the ECDLP is the Pollard ρ-method, which has a complexity of O(√{square root over (πK)}/2), where K is the order of the underlying group, and the complexity is measured in terms of an elliptic curve point addition.
Since the underlying cryptographic problems used in the above block cipher chaining methods is the discrete logarithm problem, which is a known difficult mathematical problem, it is expected that the security of the above methods are more secure than prior art ciphers which are not based on such a mathematically difficult problem.
It will be understood that the message authentication codes generated with elliptic polynomial hopping described above may be implemented by software stored on a medium readable by a computer and executing as set of instructions on a processor (including a microprocessor, microcontroller, or the like) when loaded into main memory in order to carry out a cryptographic system of secure communications in a computer network. As used herein, a medium readable by a computer includes any form of magnetic, optical, mechanical, laser, or other media readable by a computer, including floppy disks, hard disks, compact disks (CDs), digital versatile disk (DVD), laser disk, magnetic tape, paper tape, punch cards, flash memory, etc.
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
Cited Patent | Filing date | Publication date | Applicant | Title |
---|---|---|---|---|
US4424414 | May 1, 1978 | Jan 3, 1984 | Board Of Trustees Of The Leland Stanford Junior University | Exponentiation cryptographic apparatus and method |
US4668103 | Aug 20, 1984 | May 26, 1987 | Wilson William J | Polygraphic encryption-decryption communications system |
US4995082 | Feb 23, 1990 | Feb 19, 1991 | Schnorr Claus P | Method for identifying subscribers and for generating and verifying electronic signatures in a data exchange system |
US5010573 | Apr 27, 1990 | Apr 23, 1991 | Musyck Emile P | Cryptographic system by blocs of binery data |
US5054066 | Nov 16, 1988 | Oct 1, 1991 | Grumman Corporation | Error correcting public key cryptographic method and program |
US5146500 | Mar 22, 1991 | Sep 8, 1992 | Omnisec A.G. | Public key cryptographic system using elliptic curves over rings |
US5150411 | Jan 16, 1991 | Sep 22, 1992 | Omnisec | Cryptographic system allowing encrypted communication between users with a secure mutual cipher key determined without user interaction |
US5272755 | Jun 26, 1992 | Dec 21, 1993 | Matsushita Electric Industrial Co., Ltd. | Public key cryptosystem with an elliptic curve |
US5497423 * | Jun 20, 1994 | Mar 5, 1996 | Matsushita Electric Industrial Co., Ltd. | Method of implementing elliptic curve cryptosystems in digital signatures or verification and privacy communication |
US5651069 | Dec 8, 1994 | Jul 22, 1997 | International Business Machines Corporation | Software-efficient message authentication |
US5892829 | Jan 8, 1998 | Apr 6, 1999 | Bell Communications Research, Inc. | Method and apparatus for generating secure hash functions |
US6088798 * | Sep 26, 1997 | Jul 11, 2000 | Kabushiki Kaisha Toshiba | Digital signature method using an elliptic curve, a digital signature system, and a program storage medium having the digital signature method stored therein |
US6128737 | Apr 20, 1998 | Oct 3, 2000 | Microsoft Corporation | Method and apparatus for producing a message authentication code in a cipher block chaining operation by using linear combinations of an encryption key |
US6243467 * | Jul 23, 1998 | Jun 5, 2001 | The United States Of America As Represented By The National Security Agency | Method of elliptic curve cryptographic digital signature generation and verification using reduced base tau expansion in non-adjacent form |
US6816594 | Sep 8, 1999 | Nov 9, 2004 | Hitachi, Ltd. | Elliptic curve generating method and device, elliptic encryption system and recording medium |
US7050580 | Apr 30, 1999 | May 23, 2006 | Ferre Herrero Angel Jose | Randomization-encryption system |
US7190787 | Nov 30, 1999 | Mar 13, 2007 | Intel Corporation | Stream cipher having a combiner function with storage based shuffle unit |
US20030072443 | Jun 14, 2002 | Apr 17, 2003 | Harley Robert Joseph | Method for generating secure elliptic curves using an arithmetic-geometric mean iteration |
US20060029220 * | Aug 5, 2004 | Feb 9, 2006 | King Fahd University Of Petroleum And Minerals | Elliptic polynomial cryptography with multi x-coordinates embedding |
US20060029221 * | Aug 5, 2004 | Feb 9, 2006 | King Fahd University Of Petroleum And Minerals | Elliptic polynomial cryptography with multi y-coordinates embedding |
US20060098814 | Nov 8, 2004 | May 11, 2006 | King Fahd University Of Petroleum And Minerals | Method for communicating securely over an insecure communication channel |
US20070118746 * | Nov 4, 2005 | May 24, 2007 | Microsoft Corporation | Digital signature for network coding |
US20070217601 * | Mar 19, 2007 | Sep 20, 2007 | Lambert Robert J | Method and apparatus for elliptic curve scalar multiplication |
US20100166174 * | Dec 29, 2008 | Jul 1, 2010 | Lahouari Ghouti | Hash functions using elliptic curve cryptography |
US20100166175 * | Dec 30, 2008 | Jul 1, 2010 | Lahouari Ghouti | Cryptographic hash functions using elliptic polynomial cryptography |
US20100166176 * | Dec 29, 2008 | Jul 1, 2010 | Lahouari Ghouti | Elliptical polynomial-based message authentication code |
US20100169658 * | Dec 30, 2008 | Jul 1, 2010 | Lahouari Ghouti | Elliptic curve-based message authentication code |
US20100177890 * | Jan 12, 2009 | Jul 15, 2010 | Lahouari Ghouti | Hash functions with elliptic polynomial hopping |
US20100318804 * | Jun 12, 2008 | Dec 16, 2010 | Volkovs Nikolajs | Scheme of applying the modified polynomial-based hash function in the digital signature algorithm based on the division algorithm |
US20110200185 * | Feb 18, 2010 | Aug 18, 2011 | Lahouari Ghouti | Method of performing elliptic polynomial cryptography with elliptic polynomial hopping |
EP0874307A1 | Mar 25, 1998 | Oct 28, 1998 | Certicom Corp. | Accelerated finite field operations on an elliptic curve |
EP0892520A2 | Jul 17, 1998 | Jan 20, 1999 | Matsushita Electric Industrial Co., Ltd. | Elliptic curve calculation apparatus capable of calculating multiples at high speed |
EP1215642A1 | Sep 8, 1999 | Jun 19, 2002 | Hitachi, Ltd. | Elliptic curve generating method and device, elliptic encryption system and recording medium |
Reference | ||
---|---|---|
1 | "Twisting an Elliptic Curve to Speed Up Cryptography"; http://www.cecs.csulb.edu/~englert/research/elliptic.pdf; 10 pages; printed on Jun. 11, 2008. | |
2 | "Twisting an Elliptic Curve to Speed Up Cryptography"; http://www.cecs.csulb.edu/˜englert/research/elliptic.pdf; 10 pages; printed on Jun. 11, 2008. | |
3 | * | Gupta et al. "Speeding up secure web transactions using elliptic curve cryptography", 2004, Cryptography, 11th Network and Systems Security Symposium, pp. 231-239. |
Citing Patent | Filing date | Publication date | Applicant | Title |
---|---|---|---|---|
US8381267 * | Oct 10, 2006 | Feb 19, 2013 | Stmicroelectronics S.R.L. | Method of processing information to be confidentially transmitted |
US8886166 | Jun 4, 2012 | Nov 11, 2014 | Avago Technologies General Ip (Singapore) Pte. Ltd. | System to identify whether a text message is from a trusted source |
US20070244944 * | Oct 10, 2006 | Oct 18, 2007 | Stmicroelectronics S.R.L. | Method of processing information to be confidentially transmitted |
U.S. Classification | 380/28, 380/29, 708/100, 713/168, 708/200, 713/170, 708/490, 708/492, 713/181 |
International Classification | H04L29/06 |
Cooperative Classification | H04L9/0662, H04L9/0643 |
European Classification | H04L9/06F, H04L9/06M2B |
Date | Code | Event | Description |
---|---|---|---|
Dec 31, 2008 | AS | Assignment | Owner name: KING FAHD UNIV. OF PETROLEUM & MINERALS,SAUDI ARAB Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GHOUTI, LOHOUARI;IBRAHIM, MOHAMMAD K.;AL-NAJJAR, ATEF JAWAD;REEL/FRAME:022091/0327 Effective date: 20081208 Owner name: KING FAHD UNIV. OF PETROLEUM & MINERALS, SAUDI ARA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GHOUTI, LOHOUARI;IBRAHIM, MOHAMMAD K.;AL-NAJJAR, ATEF JAWAD;REEL/FRAME:022091/0327 Effective date: 20081208 |
Sep 15, 2015 | FPAY | Fee payment | Year of fee payment: 4 |