Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS8172882 B2
Publication typeGrant
Application numberUS 11/761,006
Publication dateMay 8, 2012
Priority dateJun 14, 2006
Fee statusLapsed
Also published asUS8043337, US20080058806, US20080058807, US20080058808, WO2007146928A2, WO2007146928A3
Publication number11761006, 761006, US 8172882 B2, US 8172882B2, US-B2-8172882, US8172882 B2, US8172882B2
InventorsHenry A. Klyce, James F. Zucherman, Ken Y. Hsu, Matthew Hannibal
Original AssigneeSpartek Medical, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Implant system and method to treat degenerative disorders of the spine
US 8172882 B2
Abstract
An implant has a first hook and a second hook. A connector is coupled to the first and second hooks. The implant is adapted in a preferred embodiment to hook and look onto a spine.
Images(7)
Previous page
Next page
Claims(27)
1. An implant comprising:
a first hook adapted to be hooked onto a first lateral border of a first superior articular facet of a vertebra;
a second hook adapted to be hooked onto a second lateral border of a second superior articular facet of said same vertebra;
a connector coupled to the first and second hooks, the connector configured to be positioned between the first hook and the second hook and superior to a spinous process of said same vertebra; and
a first lock associated with the first hook and a second lock associated with the second hook;
whereby the first hook is adapted to be hooked around the first lateral border of the first superior articular facet, the second hook is adapted to be hooked around the second lateral border of the second superior articular facet; and
whereby the first hook and second hook are configured to be moved along said connector towards said spinous process, such that the first hook and second hook can then be locked in place relative to said connector thereby securing the implant to said vertebra; and
whereby the first and second hooks each comprise:
an upper portion that accepts the connector;
a lower portion adapted to engage a lateral border of a superior articular facet; and
a movable joint connecting the upper portion and the lower portion such that the lower portion can move relative to the upper portion.
2. The implant of claim 1, wherein the first and second hooks have geometries that conform to a lateral border of a superior articular facet.
3. The implant of claim 1, wherein the first and second hooks have several different radii to ensure the hooks match anatomy variations in the first and second superior articular facets.
4. The implant of claim 1, wherein the first and second hooks have several different radii to ensure the hooks match anatomy variations in the articular facets wherein said first radius is about 0.625 inches and the second radius is about 0.785 inches and the first radius describes a curve in a first plane and the second radius describes a curve that is in a second plane and wherein said first plane is about perpendicular to the second plane.
5. The implant of claim 1, wherein said first lock can lock the connector and the upper portion of the first hook together and the second lock can lock the connector and the upper portion of the second hook together.
6. The implant of claim 1, wherein the connector is configured to be fixed with compression applied by a first set screw to the first hook and by a second set screw to the second hook.
7. The implant of claim 1 wherein at least one of said first and second hooks includes at least one or more of a spike, a fin and/or a stud extending therefrom that can pierce the bone of a patient when the hooks implanted in a patient.
8. The implant of claim 1 wherein at least one of said first and second hooks includes a surface feature extending therefrom, the surface feature having a flat surface to enable the surface feature to penetrate the bone, the surface feature being resistant to being worked out of position with the motion of the spine, and wherein the surface feature is selected from the group consisting of a spike, a stud and a fin.
9. The implant of claim 1, wherein the first and second hooks are configured to provide an ability to adjust to and be affixed to the articular facets.
10. The implant of claim 1, wherein the first and second hooks include at least one member adapted to engage with the articular facet.
11. The implant of claim 1, wherein the connector is configured to be inserted to preserve the supraspinous and interspinous ligaments and the spinous processes.
12. The implant of claim 1, wherein the connector has a flat surface that conforms to a laminar anatomy or a contoured surface to match the laminar anatomy.
13. The implant of claim 1, further comprising a lamina hook connected to the first hook by an arm, the lamina hook adapted to engage a lamina of said vertebra adjacent the first superior articular facet.
14. The implant of claim 1, wherein the first and second hooks include a textured inner surface to facilitate bony ingrowth.
15. The implant of claim 1 wherein said connector is a horizontal rod that is adapted to be about parallel to a transverse axis of a vertebral body of said vertebra.
16. The implant of claim 1 wherein said connector is a horizontal rod that is flexible.
17. The implant of claim 1 wherein said connector is a horizontal rod comprised of PEEK.
18. The implant of claim 1 wherein said connector is a rod and said first hook includes a first bore that received said rod and second hook includes a second bore that receives said rod with said first hook facing said second hook and said first lock can lock said first hook onto said rod and said second lock can lock said second hook on said rod.
19. The implant of claim 1 wherein said first hook includes a first pedicle screw bore and a first pedicle screw that can be provided through said first pedicle screw bore and said second hook includes a second pedicle screw bore and a second pedicle screw that can be provided through said second pedicle screw bore.
20. An implant comprising:
a first hook adapted to be hooked onto a first lateral border of a first superior articular facet of a vertebra;
a second hook adapted to be hooked onto a second lateral border of a second superior articular facet of said same vertebra;
a connector coupled to the first and second hooks, the connector configured to be positioned between the first hook and the second hook and superior to a spinous process of said same vertebra; and
a first lock associated with the first hook and a second lock associated with the second hook;
whereby the first hook is adapted to be hooked around the first lateral border of the first superior articular facet, the second hook is adapted to be hooked around the second lateral border of the second superior articular facet; and
whereby the first hook and second hook are configured to be moved along said connector towards said spinous process, such that the first hook and second hook can then be locked in place relative to said connector thereby securing the implant to said vertebra; and
the first hook includes a first upper portion that accepts the connector, a first lower portion adapted to engage the first lateral border of the first superior articular facet, and a movable joint connecting the first upper portion and the first lower portion such that the first lower portion can move relative to the first upper portion;
the second hook includes a second upper portion that accepts the connector, a second lower portion adapted to engage the second lateral border of the second superior articular facet, and a movable joint connecting the second upper portion and the second lower portion such that the second lower portion can move relative to the second upper portion;
wherein the first lock is configured to the lock the first upper portion to the connector and also lock the first movable joint; and
wherein the second lock is configured to the lock the second upper portion to the connector and also lock the second first movable joint.
21. An implant comprising:
a first hook adapted to be hooked onto a first lateral border of a first superior articular facet of a vertebra;
a second hook adapted to be hooked onto a second lateral border of a second superior articular facet of said same vertebra;
a connector coupled to the first and second hooks, the connector configured to be positioned between the first hook and the second hook and superior to a spinous process of said same vertebra; and
a first lock associated with the first hook and a second lock associated with the second hook;
whereby the first hook is adapted to be hooked around the first lateral border of the first superior articular facet, the second hook is adapted to be hooked around the second lateral border of the second superior articular facet; and
whereby the first hook and second hook are configured to be moved along said connector towards said spinous process, such that the first hook and second hook can then be locked in place relative to said connector thereby securing the implant to said vertebra; and
wherein the first and second hooks have an upper portion that accepts the connector, which upper portion of said first hook and of second hook can rotate relative to a lower portion, of said first hook and of said second hook respectively, which lower portion of said first hook and said second hook are adapted to engage bone of a patient.
22. An implant, comprising:
a first hook having a geometry that is adapted to conform to a lateral border of a first superior articular facet of a vertebra;
a second hook having a geometry that is adapted to conform to a lateral border of a second superior articular facet of said vertebra; and
a connector coupled to the first and second hooks, the connector configured to be positioned between the first hook and the second hook and superior to a spinous process of said vertebra;
whereby, with the first hook hooked around the first lateral border of the first superior articular facet of said vertebra and the second hook hooked around the second lateral border of the second superior articular facet of said vertebra, the first hook and second hook are configured to be moved closer to one another along said connector such that the first hook and second hook can then be locked in place relative to said connector thereby securing the implant to said vertebra;
wherein the first and second hooks have an upper portion that accepts the connector, which upper portion of said first hook and of second hook can rotate relative to a lower portion, of said first hook and of said second hook respectively, which lower portion of said first hook and said second hook are adapted to engage the bone of a patient.
23. The implant of claim 22, wherein at least one of said first and second hooks includes at least one or more of a spike, a fin and/or a stud extending therefrom that can pierce the bone of a patient when the hooks implanted in a patient.
24. The implant of claim 22, wherein at least one of said first and second hooks includes a surface feature extending therefrom, the surface feature having a flat surface to enable the surface feature to penetrate the bone, the surface feature being resistant to being worked out of position with the motion of the spine, and wherein the surface feature is selected from the group consisting of a spike, a stud and a fin.
25. The implant of claim 22, further comprising a lamina hook connected to the first hook by an arm, the lamina hook adapted to engage a lamina of said vertebra adjacent the first superior articular facet.
26. An implant adapted to be implanted in a vertebra, the implant comprising:
a first hook that has a first hooked end and at least a first spike spaced from the first hooked end, the first hook having a geometry that is adapted to conform to a lateral border of a first superior articular facet of a vertebra and adapted to hook under the first superior articular facet;
a second hook that has a second hooked end and at least a second spike spaced from the second hooked end, the second hook having a geometry that is adapted to conform to a lateral border of a second superior articular facet of said vertebra and adapted to hook under the second superior articular facet;
a flexible horizontal rod coupled to the first and second hooks, the flexible horizontal rod configured to be positioned superior to a spinous process of said vertebra; and
whereby, with the first hook hooked around said first superior articular facet of said vertebra and the second hook hooked around said second articular facet of said vertebra, the first hook and second hook are configured to be moved closer to one another along said flexible horizontal rod such that the first hook and second hook can then be locked in place relative to said flexible horizontal rod thereby securing the implant to said vertebra;
wherein the first hook has a first upper portion that accepts the flexible horizontal rod, which first upper portion can move relative to a first lower portion, and which first lower portion has said first spike that is adapted to engage the bone of a patient; and
said second hook has a second upper portion that accepts the flexible horizontal rod, which second upper portion can move relative to a second lower portion, and which said lower portion has said second spike that is adapted to engage the bone of a patient.
27. The implant of claim 26 including:
a first lock to lock said first hook to said flexible horizontal rod and a second lock to lock said second hook to said flexible horizontal rod with said first hook facing said second hook.
Description
CLAIM OF PRIORITY

This application claims benefit to U.S. Provisional Application No. 60/801,871, filed Jun. 14, 2006, entitled “Implant Positioned Between the Lamina to Treat Degenerative Disorders of the Spine,” which is incorporated herein by reference and in its entirety.

CROSS REFERENCES TO RELATED APPLICATIONS

This application relates to, and incorporates herein by reference, each of the following in its entirety: U.S. patent application Ser. No. 11/761,100, filed Jun. 11, 2007, entitled “Implant System and Method to Treat Degenerative Disorders of the Spine”; and

U.S. patent application Ser. No. 11/761,116, filed Jun. 11, 2007, entitled “Implant System and Method to Treat Degenerative Disorders of the Spine”.

BACKGROUND OF INVENTION

The most dynamic segment of orthopedic and neurosurgical medical practice over the past decade has been spinal devices designed to fuse the spine to treat a broad range of degenerative spinal disorders. Back pain is a significant clinical problem and the annual costs to treat it, both surgically and medically, is estimated to be over $2 billion. Motion preserving devices to treat back and extremity pain have, however, created a treatment alternative to fusion for degenerative disc-disease. These devices offer the possibility of eliminating the long term clinical consequences of fusing the spine that is associated with accelerated degenerative changes at adjacent disc levels.

While total disc replacement is seen as a major advance over fusion, the procedure to implant the devices in the lumbar spine requires a major operation via an anterior approach, subjecting patients to the risk of significant complications. These include dislodgement of the device, which may damage the great vessels, and significant scarring as a consequence of the surgical procedure itself, which makes revision surgery difficult and potentially dangerous. Thus, there are advantages to spinal implants that can be inserted from a posterior approach, a technique with which spine surgeons are much more experienced. The posterior surgical approach also has the benefit of being able to directly address all pathologies that may be impinging the neural elements, which is not possible from an anterior approach. Motion preserving spinal devices that can be implanted with a minimally invasive, posterior procedure offer the benefit of less surgical trauma and faster patient recovery and also offer cost savings to payers with patients staying fewer days in the hospital.

Motion preserving devices placed posteriorly typically either rely on the spinous processes to support the implant or require pedicle screws to be inserted. However, spinous processes are not load bearing structures and are not rigid. In a population of patients with back pain, the laminae offer a much stronger structure to position an implant, since they consist of significantly stronger bone, and the laminae are also closer to the spine's axis of rotation. Pedicle screws have several disadvantages when used as attachments for motion preservation devices. The procedure to implant them is considered major surgery requiring a wide exposure. The screws are also subject to significant loads and screw loosening is a known consequence over time in these cases. Removing the screws and fusing the spine requires major revision surgery.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an embodiment of the dynamic spine stabilization, motion preservation implant of the invention.

FIG. 2 is a perspective view of another embodiment of the dynamic spine stabilization, motion preservation implant with pedicle screws of the invention.

FIG. 3 is a side view of an embodiment of a hook of the invention of the embodiment of FIG. 2.

FIG. 4 is a top view of the embodiment of the hook of the embodiment of the invention of FIG. 3.

FIG. 5 is an end view of the embodiment of the hook of the embodiment of the invention of FIG. 3.

FIG. 6 is a bottom view of the embodiment of the hook of the embodiment of the invention of FIG. 3.

FIG. 7 is a side perspective view of the embodiment of the hook of the embodiment of the invention of FIG. 3.

FIG. 8 is a side perspective view of another embodiment of the hook of the invention.

FIG. 9 is a top view of the embodiment of the invention of FIG. 8.

FIG. 10 is a side view of the embodiment of the invention of FIG. 8.

FIG. 11 is a side partially sectioned view of another embodiment of an implant of the invention.

FIG. 12 is a side view of an embodiment of a hook of the embodiment of the invention of FIG. 11.

FIG. 13 is a perspective view of a hook with barbs of an embodiment of the invention to be used with the embodiment of the invention of FIG. 11.

FIG. 14 is a side view of the embodiment of the hook of the invention of FIG. 13.

FIG. 15 is a side view of another embodiment of the hook of the invention.

FIG. 16 is a side view of the another embodiment of the hook of the invention of FIG. 15 in a different orientation.

FIGS. 17A, 17B are schematical top views of the embodiment of FIG. 15.

FIGS. 18A, 18B are side views of another embodiment of the hook of the invention.

FIG. 19 depicts an embodiment of the method of implantation of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In one embodiment of the present invention, an implant is provided that can be placed between the lamina through a posterior, minimally invasive surgical technique and is designed to treat degenerative disorders of the spine. Degenerative disc disease results from the natural process of aging and ultimately affects all structures of the vertebral motion segment. The degenerative process causes loads that are normally borne by the intervertebral disc to be transferred to the articular facet joints, ligaments and other soft tissues of the spine.

The benefits of this implant are: The articular facets provide an excellent structure to which to attach an implant. They consist of very strong cortical bone, the strongest in the lumbar vertebra. There are no major nerves or vessels in the area approximate to the lateral aspect of facets, making them also a very safe point of attachment.

Attached to hooks, a crosslink can be positioned as far anterior as is possible without actually impinging on the spinal canal.

The implant can be inserted through two small incisions on either side of the mid-line, preserving the spinal ligament structures, including the supraspinous ligament and the interspinous ligament and permitting the implant to placed using a minimally invasive procedure.

An embodiment of the clamp implant system 20 of the invention is depicted in FIG. 1. Implant system 20 provides for dynamic stabilization and motion preservation of the spine. Implant system 20 includes anchor systems 22, horizontal rods 24, 26 and vertical connector system 28. Preferably, the anchor systems 22 and the vertical connector system 28 are made of titanium although stainless steel can also be used. The horizontal rods 24, 26 are preferably made of PEEK or other similar polymer as described below or are made of a super elastic material such as Nitinol which is an alloy of titanium and nickel. Other biocompatible materials can be used and be within the spirit and scope of the invention. Preferably, the vertical system 28 is rigid while the horizontal rods 24, 26 are flexible. Such a system 20 would accordingly have the horizontal rods made of PEEK or a similar polymer or a super elastic material while the vertical system is comprised of titanium or stainless steel. With such a system, the load that the spine places on the system would be absorbed by the horizontal rods causing the horizontal rods to flex while the vertical system remains rigid.

FIG. 2 includes another embodiment of the clamp implant system 20 which has an additional provision for pedicle screws 38 to assist in holding the system 20 to the spine. Elements of the embodiment of FIGS. 1, 2 that are the same have similar numerical references.

Generally, the clamping implant system 20 (FIGS. 1, 2) includes opposing clamps 30, 32 that can wrap around the facets (from posterior to anterior) and hook or angle under the facets to assist in maintaining the clamps in position and resist pull-out forces. Accordingly, the clamps 30, 32 hook or angle around the outside of the facets and are held in place by the design of the clamps 30, 32. The system 20 also includes opposing clamps 34, 36 which are the similar to opposing clamps 30, 32. The clamps 30, 32, 34, 36 have set screws 40 as explained below to lock in the horizontal rods 24, 26.

The opposing clamps 30, 32, and opposing clamps 34, 36 as can be seen in FIGS. 3, 4, 5, 6, 7, include a head 42 and a foot or hook 44. Preferably, the clamps are of one piece construction, however, as described below, the clamps can be of several piece construction with the added advantage of more degrees of freedom in implanting the clamps in the patient. The clamps 30, 32, 34, 36 include a threaded set screw bore 46 for receiving the set screw 40 and a horizontal rod bore 48 for receiving the horizontal rods 24, 26. The head 42 also includes a pedicle screw bore 50 which is preferably unthreaded and which can receive the pedicle screw 38. The bore 50 is angled in order to guide the pedicle screw into the pedicle of the spine. The head 42, accordingly, accepts in this embodiment a horizontal rod that is transversely mounted in the head and the top mounted set screw 40. As will be discussed below, the head 42 can include a split retainer, such as a split ball retainer that has a central bore for accepting the horizontal rod, and, which split retainer can be compressed by the set screw to retain the horizontal rod in the head of the clamp. The foot 44, points like a finger away from the head and in FIG. 3 looks much like an index finger of a right hand of a human extending from the rest of the hand, with the fingers and thumb of the rest of the hand folded down into the palm of the human hand. Stated another way there is an L-shaped junction between the head 42 and the foot or hook 44. As is evident from the figures, there is in this preferred embodiment, a continuous transition from the head 42 to the foot or hook 44. The inner surface of the foot 44 can be comprised of a textured surface to provide for bony ingrowth of the spine bone into the foot 44. Also the inner surface can be coated with bone growth inducing materials such as bone morphogenetic proteins or BMPs. The inner surface of the foot 44 in this preferred embodiment, is comprised of a compound surface that can accommodate the anatomical shape of the facets in order to secure the clamps about the facets. In this embodiment, the foot 44 has a first radius of curvature 52 (FIG. 5) which defines the first curve of the foot along the length of the foot. The foot 44 also includes a second radius of curvature 54 (FIG. 6) which defines the second curve of the foot across the width of the foot with the first curve and the second curve in this embodiment being about perpendicular to each other. The first curve runs about vertically and the second curve runs about horizontally. In this embodiment the first radius of curvature is about 0.625 inches and the second radius of curvature is about 0.785 inches. These curves allow the foot or hook 44 to optimally conform to the anatomical shape of the outside of the facet with a contour for maximum contact area. In this preferred embodiment, the clamps 30, 32, 34, 36 have about up to 40 degrees of adjustment upon implantation relative to the coronal orientation of the spine and up to about 10 degrees of adjustment upon implantation relative to the sagittal orientation of the spine.

As can be seen in FIGS. 3, 5, 6, spikes 56 extend from the inner surface of the foot or hook 44 of the clamps 30, 32, 34, 36. These spikes 56 are used to also secure the foot or hook 44 to the outer surface of the facets. The tips of the spikes 56 are designed to cut and penetrate the facet bone and not to compress the facet bone. The spikes have flat surfaces 58 that increase lateral resistance to lateral movement of the clamps 30, 32, 34, 36, and, thus, assist in preventing the clamps from working themselves out of engagement with the facets. The spines 58 are arranged down the length of the foot 44 and across the base of the foot 44, where the foot 44 transitions to the head 42. As depicted, the spikes 56 are arrayed in the foot in order to obtain optimal stability of the clamp as secured to the facets. The smooth transition between the head 42 and the foot 44 allows for, in this embodiment, continuous sagittal adjustment. This additionally allows for optimal positioning and orientation of the horizontal rods 24, 26 upon implantation of the system 20. The shape and radii of the foot and the transition from the head to the foot allow the clamp to match the anatomical variations in the junction between the transverse process and articular processes of the spine.

FIGS. 8, 9, 10, depict alternative embodiments of the clamps 30, 32, 34, 36, which have lamina articular process hooks 60, 62 which have a hook element 64, 66, respectively, that is curved to fit around the lamina and assist in holding the clamp in place in the spine. The hooks 60, 62 include adjustable arms 68, 70 that can adjust to the size of the lamina of the spine. As is evident from FIGS. 8, 9, 10, each arm 68, 70 includes an elongate slot such as slot 72 with a set screw such as set screw 74, provided through said slot 72. The set screw 74 is mounted in a threaded bore in the clamp 30 and the arm 68 can slide relative to the rest of the clamp to adjust to the spine and then the arm 68 can be locked into position by the set screw. It is evident from the depiction that clamp 30 in FIGS. 8, 9, 10, has a different head than the head depicted in the prior embodiment of the clamp 30. In order to accommodate the laminar hooks 60, 62, the embodiments of the clamp 30 in FIGS. 1-7 can be modified in a number of ways. For example, the top of the head of the clamp in these figures can be widened to accept the arm 68 and the set screw 74, and, thus, both the set screw 40 and the set screw 74, can be tightened from the top of the head of the clamp. Alternatively, the slot 72 of the arm can be rotated by about ninety degrees so that the set screw can lock the arm to the clamp along the outside of the clamp, opposite to the surface of the clamp that has the spines and conforms to the surface of the facet. It is also to be understood that the clamps 30, as they appear in FIGS. 8, 9, 10, can be used by themselves to repair fractures of the pars interarticularis on the lamina of the spine.

The horizontal rods 24, 26 can have variable lengths and diameters in order accommodate the shape of the spine. Preferably, the diameters of the horizontal rods 24, 26 can be selected to adjust the dynamic stabilization, motion preservation feature afforded by these embodiments. Larger diameter, generally, will provide for a stiffer system while smaller diameters will provide for a less stiff system. For the same diameter, rods made of PEEK will provide for a stiffer system than rods made of a super elastic material. Also rods made of stainless steel will be stiffer than rods made of titanium. PEEK rods will be less stiff than rods made of titanium or stainless steel. Accordingly, the rods can be selected to give the degree of flex desired, and, thus, the degree of dynamic stabilization desired in response to dynamic loads placed on the system 20 by the spine in motion. It is to be understood that the horizontal rods can also be bent or bowed out in order to accommodate the anatomical structures of the spine.

The vertical connector system 28 in FIGS. 1, 2, connect adjacent horizontal rods 24, 26, which horizontal rods are associated with different vertebral levels. In this embodiment the vertical connector system 28 is about U-shaped. The vertical connector system 28 includes an upper half connector 76 joined to a lower half connector 78, along the split line 86, by a locking screw 80. With the upper connector and the lower connector joined, the system 28 defines a first horizontal rod capture bore 82 and a second horizontal rod capture bore 84. The vertical connector systems 28 are curved at the midpoint or apex of the curve in order to accommodate, and, thus, preserve the spinous processes and the associated ligaments. In this particular embodiment, the locking screw 80 is located at the midpoint and is used to lock the system 28 about the first and second horizontal rods 24, 26. It is to be appreciated that another vertical connector system 28 can be used with the system 20 in order to impart additional stiffness. If two systems 28 were used, one would be closer to the first clamp 30 (also clamp 34) and the other would be closer to the second clamp 32 (also clamp 36) in order to accommodate the spinous processes and ligament structures of the spine. If two systems 28 were used, the set screws 80 and the midpoint or apex of each system would be closer to the respective clamps in order to define a large opening between the two vertical connector systems 20 to accommodate the spinous processes and associated ligaments. If desired, the vertical connector system can be made of a less stiff biocompatible material as discussed herein, should additional flexibility be desired.

Referring to FIGS. 11, 12, another embodiment of the present invention is an implant, generally denoted as 100, with a first hook 102, a second hook 104 and a cross-link or horizontal rod 106 coupled to the first and second hooks 102 and 104. The first and second hooks 102 and 104 have geometries that conform to a lateral border of a superior articular facet.

In various embodiments, the implant (i) engages the laminae to stabilize the spine in a dynamic manner, and (ii) can be made stiff enough to rigidly stabilize the spine as an aid to a fusion.

In one embodiment, the first and second hooks have radii to provide conformance with the spine. As discussed below, the first and second hooks 102 and 104 can be symmetrical in a sagittal orientation and free to rotate around a coronal axis. The first and second hooks 102 and 104, can provide an ability to adjust to, and be affixed to, the articular facets. In one embodiment, the first and second hooks 102 and 104 include at least one member to engage with the articular facet. This member can be a fin, stud, spike, and the like, as discussed above with respect to other embodiments.

Further as seen in FIGS. 11, 12, the hooks include a ventral or lower hooked section 108 and an dorsal or upper head section 110. The hooked section 108 can conform to the spine as described herein and the head section 110 can mount the cross-link or horizontal rod 106. The head sections 110 can include a top bore 112 that is threaded and can accept a set screw to lock the horizontal rod 106 in place. The head section 110 also includes either (1) a recess 114 that can receive an end of the horizontal rod 106 such that the set screw can lock the rod 106 in place, or (2) a bore 116 through which the rod 106 can be received so that the spacing between the hooks 102, 104 can be adjusted. Once the rod 106 is received in the bore 116 and the spacing of the hooks 102, 104 is adjusted by sliding the hook 102 on the rod 106, a set screw can be used to lock the rod 106 in place. It is to be understood, that procedurally and preferably, the hooks 102, 104 are placed adjacent to the facets and the length between the hooks is adjusted prior to the tightening of the set screws to lock the rod 106 and the hooks 102, 106 together. Alternatively, the rod 106 can be telescoping such that a first portion 118 of the rod 106 can slide into a second portion 120 of the rod 106 in order to adjust the length of the rod 106. If desired, an additional set screw can be mounted on the second portion 120 of the rod 106 to lock the first portion to the second portion of the rod.

As illustrated in FIGS. 13, 14, 15, 16, 17A, 17B the first and second hooks such as hook 102 can have a ventral or lower section 108 and dorsal or upper sections 110 that can move and in this embodiment, rotate relative to each other. The ventral or lower hooked sections 108 has a freedom of motion about an axial plane to allow for variations in anatomy of the articular facet. The dorsal or upper section 110 accepts the horizontal rod 106. The dorsal or upper section 110, as previously discussed, includes a recess or bore to accept the horizontal rod 106. In this embodiment, the horizontal rod 106 rests in the saddle or head or upper portion 110 and a set screw locks the horizontal rod in place in the head.

As depicted in FIGS. 15, 16, 17A, 17B, the lower hooked portion 108 can rotate relative to the upper head portion 110. The rotation occurs at split line 122. Preferably, the upper portion 110 can snap into the lower portion 108 and be captured under a lip of the cylindrical recess of the lower portion 108. Thus, the upper portion 110 can rotate in the recess 122 of the lower portion 108 at the split line 122. If desired the rotation can be limited by a limit rod 126 that is mounted on the lower portion 108 and projects through the cylindrical recess 122. The upper portion includes an enlarged bore 128 through which the limit rod 126 is received, when the upper portion is assembled with the lower portion of the hook 102. In a preferred embodiment, the limit rod allows the upper portion of the hook 102 to rotate about 15 degrees on each side of a central axis, for a total of about 30 degrees of rotation. It is to be understood that 360 degrees of rotation is possible with the limit rod 126 removed, and also that changes to the size of the bore 128 can be made to adjust the degree of rotation of the upper portion to the lower portion or the hook 102. Accordingly, the first and second hooks 102 and 104 illustrated in FIGS. 15, 16 are adjustable and can be re-adjusted after the hooks 102 and 104 are initially implanted.

In the embodiment of FIGS. 18A, 18B, the horizontal rod 106 is configured to be fixed with compression applied by a set screw received though bore 112 in head 1110. The set screw can fix an orientation of the ventral or upper section 108 of the hooks 102 and horizontal rod 106, as well as, lock the upper portion of the hook to the lower portion 108 at the same time. In this embodiment, the horizontal rod 106 can be received in a compression block 130 that is received in the bore 112. Generally, the compression block is cylindrical and can be comprised of two pieces which mate with facing recesses that can receive the horizontal rod 106. Alternatively, the compression block can be a one piece construction with a slit. In either embodiment, the set screw, when turned down in the bore 112, causes the compression block 130 to compress about, and without causing damage to, the horizontal rod 106 to lock the rod in place.

In one embodiment, the horizontal rod 106 has a flat surface that conforms to a laminar anatomy or a contoured surface to match the laminar anatomy.

In another embodiment of the present invention, the implant 100 includes an artificial ligament attached to the horizontal rod 106. The artificial ligament can be looped around the superior spinous process and then re-attached to the horizontal rod 106. The artificial ligament provides a limit to flexion and increases rigidity of the implant. The artificial ligament can be made of a biocompatible material.

In another embodiment of the present invention, an implant assembly is provided that has first and second implants 100. The first and second implants 100 can be coupled by at least one vertically running rod configured to provide rigid stability as an aid in fusing the spine.

It is to be understood that the various features, designs and functions of the various embodiments can be selected for and or combined in other embodiments as is advantageous.

With respect to the method of implantation (FIG. 19), the hooks can be placed adjacent to the facets, and then the position of the horizontal rod relative to the hooks can be adjusted. The hooks can be pressed into the bone and the set screws can be tightened to hold the hooks and horizontal rod in place. With two such configurations in the spine, the configurations can be connected with vertical rods and the like. Alternatively, the implant, including the hooks and the horizontal rod loosely coupled together, can be inserted as an assembly and then once positioned, the set screws can be tightened to lock the system 100 in place in the spine.

Materials for use with the implant include the following:

As indicated above, the implant can be made of titanium, stainless steel, super elastic materials and/or polymers such as PEEK.

In addition to Nitinol or nickel-titanium (NiTi) other super elastic materials include copper-zinc-aluminum and copper-aluminum-nickel. However for biocompatibility the nickel-titanium is the preferred material.

Other suitable material include, by way of example, only polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyetherketone (PEK), polyetherketoneether-ketoneketone (PEKEKK), and polyetheretherketoneketone (PEEKK). Still, more specifically, the material can be PEEK 450G, which is an unfilled PEEK approved for medical implantation available from Victrex of Lancashire, Great Britain. (Victrex is located at www.matweb.com or see Boedeker www.boedeker.com). Other sources of this material include Gharda located in Panoli, India (www.ghardapolymers.com).

Preferably, the horizontal rods are made of PEEK or a similar polymer or a super elastic material, which materials are flexible, or the rods are made of another flexible material, and the anchors and the vertical systems are made of titanium or stainless steel which are stiff or made of another stiff material.

Further, it should be apparent to those skilled in the art that various changes in form and details of the invention as shown and described may be made. It is intended that such changes be included within the spirit and scope of the claims appended hereto. The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims and their equivalents.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4041939Apr 26, 1976Aug 16, 1977Downs Surgical LimitedSurgical implant spinal screw
US4065817Apr 23, 1976Jan 3, 1978Per Ingvar BranemarkBone prosthesis and method of forming a bone joint
US4274401 *Dec 8, 1978Jun 23, 1981Miskew Don B WApparatus for correcting spinal deformities and method for using
US4347845Mar 23, 1981Sep 7, 1982Mayfield Jack KHook inserter device
US4369770Jul 22, 1981Jan 25, 1983Wyzsza Szkola Inzynierska Im. J. GagarinaSurgical strut for treatment of the back-bone
US4382438Mar 9, 1981May 10, 1983Synthes AgInstrument for treatment of spinal fractures, scoliosis and the like
US4409968Apr 17, 1981Oct 18, 1983Drummond Denis SMethod and apparatus for engaging a hook assembly to a spinal column
US4411259Nov 24, 1981Oct 25, 1983Drummond Denis SApparatus for engaging a hook assembly to a spinal column
US4422451Mar 22, 1982Dec 27, 1983Ali KalamchiSpinal compression and distraction instrumentation
US4479491Jul 26, 1982Oct 30, 1984Martin Felix MIntervertebral stabilization implant
US4567885Sep 18, 1984Feb 4, 1986Androphy Gary WTriplanar knee resection system
US4573454May 17, 1984Mar 4, 1986Hoffman Gregory ASpinal fixation apparatus
US4604995Mar 30, 1984Aug 12, 1986Stephens David CSpinal stabilizer
US4611580Nov 23, 1983Sep 16, 1986Henry Ford HospitalIntervertebral body stabilization
US4611581Dec 16, 1983Sep 16, 1986Acromed CorporationApparatus for straightening spinal columns
US4611582Dec 27, 1983Sep 16, 1986Wisconsin Alumni Research FoundationVertebral clamp
US4641636Apr 12, 1984Feb 10, 1987Cotrel Yves P C ADevice for supporting the rachis
US4648388Nov 1, 1985Mar 10, 1987Acromed CorporationApparatus and method for maintaining vertebrae in a desired relationship
US4653481Jun 18, 1986Mar 31, 1987Howland Robert SAdvanced spine fixation system and method
US4653489May 5, 1986Mar 31, 1987Tronzo Raymond GFenestrated hip screw and method of augmented fixation
US4655199Mar 29, 1985Apr 7, 1987Acromed CorporationSpinal column straightening apparatus
US4658809Feb 24, 1984Apr 21, 1987Firma Heinrich C. UlrichImplantable spinal distraction splint
US4696290Mar 31, 1986Sep 29, 1987Acromed CorporationApparatus for straightening spinal columns
US4719905Dec 1, 1986Jan 19, 1988Acromed CorporationApparatus and method for maintaining vertebrae in a desired relationship
US4763644Mar 25, 1986Aug 16, 1988Webb Peter JSpinal fixation
US4773402Aug 19, 1987Sep 27, 1988Isola Implants, Inc.Dorsal transacral surgical implant
US4805602Nov 3, 1986Feb 21, 1989Danninger Medical TechnologyTranspedicular screw and rod system
US4815453Dec 5, 1986Mar 28, 1989Societe De Fabrication De Materiel Orthopedique (Sofamor)Device for supporting the rachis
US4887595Jul 29, 1987Dec 19, 1989Acromed CorporationSurgically implantable device for spinal columns
US4913134Jul 29, 1988Apr 3, 1990Biotechnology, Inc.Spinal fixation system
US4946458Feb 28, 1989Aug 7, 1990Harms JuergenPedicle screw
US4950269Jun 13, 1988Aug 21, 1990Acromed CorporationSpinal column fixation device
US4955885Dec 21, 1988Sep 11, 1990Zimmer, Inc.Surgical slider instrument and method of using instrument
US4987892Dec 21, 1989Jan 29, 1991Krag Martin HSpinal fixation device
US5005562Jun 21, 1989Apr 9, 1991Societe De Fabrication De Material OrthopediqueImplant for spinal osteosynthesis device, in particular in traumatology
US5024213Feb 8, 1989Jun 18, 1991Acromed CorporationConnector for a corrective device
US5030220Mar 29, 1990Jul 9, 1991Advanced Spine Fixation Systems IncorporatedSpine fixation system
US5042982Jul 8, 1988Aug 27, 1991Harms JuergenPositioning device
US5047029Apr 5, 1989Sep 10, 1991Synthes (U.S.A.)Clamp and system for internal fixation
US5067955Apr 13, 1990Nov 26, 1991Societe De Fabrication De Material OrthopediqueVertebral implant for osteosynthesis device
US5074864Dec 21, 1988Dec 24, 1991Zimmer, Inc.Clamp assembly for use in a spinal system
US5084049Feb 8, 1989Jan 28, 1992Acromed CorporationTransverse connector for spinal column corrective devices
US5092866Feb 2, 1990Mar 3, 1992Breard Francis HFlexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US5102412Jun 19, 1990Apr 7, 1992Chaim RogozinskiSystem for instrumentation of the spine in the treatment of spinal deformities
US5112332May 14, 1991May 12, 1992Zimmer, Inc.Method of performing spinal surgery
US5113685Jan 28, 1991May 19, 1992Acromed CorporationApparatus for contouring spine plates and/or rods
US5127912Oct 5, 1990Jul 7, 1992R. Charles RaySacral implant system
US5129388Feb 8, 1990Jul 14, 1992Vignaud Jean LouisDevice for supporting the spinal column
US5129900Jul 24, 1990Jul 14, 1992Acromed CorporationSpinal column retaining method and apparatus
US5147359May 14, 1991Sep 15, 1992Zimmer, Inc.Spinal hook body
US5154718May 14, 1992Oct 13, 1992Zimmer, Inc.Spinal coupler assembly
US5176680Feb 8, 1991Jan 5, 1993Vignaud Jean LouisDevice for the adjustable fixing of spinal osteosynthesis rods
US5180393Mar 17, 1992Jan 19, 1993Polyclinique De Bourgogne & Les HortensiadArtificial ligament for the spine
US5190543Nov 25, 1991Mar 2, 1993Synthes (U.S.A.)Anchoring device
US5201734May 14, 1991Apr 13, 1993Zimmer, Inc.Spinal locking sleeve assembly
US5207678Jan 7, 1992May 4, 1993PruferPedicle screw and receiver member therefore
US5261911Jul 9, 1992Nov 16, 1993Allen CarlAnterolateral spinal fixation system
US5261912Aug 15, 1991Nov 16, 1993Synthes (U.S.A.)Implant for an osteosynthesis device, in particular for spinal column correction
US5261913Aug 25, 1992Nov 16, 1993J.B.S. Limited CompanyDevice for straightening, securing, compressing and elongating the spinal column
US5281222Jun 30, 1992Jan 25, 1994Zimmer, Inc.Spinal implant system
US5282801Feb 17, 1993Feb 1, 1994Danek Medical, Inc.Top tightening clamp assembly for a spinal fixation system
US5282863Jul 24, 1992Feb 1, 1994Charles V. BurtonFlexible stabilization system for a vertebral column
US5290289Oct 5, 1992Mar 1, 1994Sanders Albert ENitinol spinal instrumentation and method for surgically treating scoliosis
US5312402Apr 16, 1992May 17, 1994Synthes (U.S.A.)Connection device
US5312404Feb 20, 1992May 17, 1994Acromed CorporationSpinal column retaining apparatus
US5344422Dec 10, 1992Sep 6, 1994Synthes (U.S.A.)Pedicular screw clamp
US5346493Jul 30, 1993Sep 13, 1994Acromed CorporationTop-entry rod retainer
US5360429Feb 19, 1993Nov 1, 1994Jbs Societe AnonymeDevice for straightening, fixing, compressing, and elongating cervical vertebrae
US5360431Apr 26, 1990Nov 1, 1994Cross Medical ProductsTranspedicular screw system and method of use
US5374267 *Feb 17, 1993Dec 20, 1994Acromed B.V.Device for fixing at least a part of the human cervical and/or thoracic vertebral column
US5380325Nov 5, 1993Jan 10, 1995BiomatOsteosynthesis device for spinal consolidation
US5380326Nov 12, 1993Jan 10, 1995Lin; Chih-IClamping device for vertebral locking rod
US5382248Sep 10, 1992Jan 17, 1995H. D. Medical, Inc.System and method for stabilizing bone segments
US5385583Sep 23, 1993Jan 31, 1995SofamorImplant for an osteosynthesis device, particular for the spine
US5387213Aug 20, 1993Feb 7, 1995Safir S.A.R.L.Osseous surgical implant particularly for an intervertebral stabilizer
US5415661Mar 24, 1993May 16, 1995University Of MiamiImplantable spinal assist device
US5429639May 9, 1994Jul 4, 1995Tornier S.A.Spine fixator for holding a vertebral column
US5443467Feb 18, 1994Aug 22, 1995Biedermann Motech GmbhBone screw
US5466237Nov 19, 1993Nov 14, 1995Cross Medical Products, Inc.Variable locking stabilizer anchor seat and screw
US5474555Aug 3, 1994Dec 12, 1995Cross Medical ProductsSpinal implant system
US5487742Nov 24, 1993Jan 30, 1996Sofamore Danek GroupTransverse fixation device for a spinal osteosynthesis system
US5496321Dec 12, 1994Mar 5, 1996Cross Medical Products, Inc.Rod anchor seat having a sliding interlocking rod connector
US5498264Dec 23, 1994Mar 12, 1996Synthes (U.S.A.)Clamp connection for connecting two construction components for a setting device, particularly an osteosynthetic setting device
US5520689Mar 8, 1995May 28, 1996Synthes (U.S.A.)Osteosynthetic fastening device
US5534001May 11, 1993Jul 9, 1996Synthes (U.S.A.)Osteosynthetic fixation element and manipulation device
US5536268Dec 22, 1993Jul 16, 1996Plus Endoprothetik AgSystem for osteosynthesis at the vertebral column, connecting element for such a system and tool for its placement and removal
US5540688Mar 8, 1994Jul 30, 1996Societe "Psi"Intervertebral stabilization device incorporating dampers
US5545167Apr 11, 1995Aug 13, 1996Lin; Chih-IRetaining mechanism of vertebral fixation rod
US5549607Mar 2, 1995Aug 27, 1996Alphatec Manufacturing, Inc,Apparatus for spinal fixation system
US5562737Nov 15, 1994Oct 8, 1996Henry GrafExtra-discal intervertebral prosthesis
US5569248May 9, 1995Oct 29, 1996Danek Medical, Inc.Apparatus for subcutaneous suprafascial pedicular internal fixation
US5601552 *Mar 18, 1994Feb 11, 1997Sofamor, S.N.C.Fixing device for a rigid transverse connection device between rods of a spinal osteosynthesis system
US5609592Jun 7, 1995Mar 11, 1997Danek Medical, Inc.Spinal Fixation System
US5609593Oct 13, 1995Mar 11, 1997Fastenetix, LlcAdvanced polyaxial locking hook and coupling element device for use with top loading rod fixation devices
US5611800Feb 15, 1994Mar 18, 1997Alphatec Manufacturing, Inc.Spinal fixation system
US5624441Apr 10, 1995Apr 29, 1997Danek Medical, Inc.Attachment plate for top-tightening clamp assembly in a spinal fixation system
US5628740Jun 30, 1995May 13, 1997Mullane; Thomas S.Articulating toggle bolt bone screw
US5630816May 1, 1995May 20, 1997Kambin; ParvizDouble barrel spinal fixation system and method
US5643260Feb 14, 1995Jul 1, 1997Smith & Nephew, Inc.Orthopedic fixation system
US5645599Apr 22, 1996Jul 8, 1997FixanoInterspinal vertebral implant
US5651789Jun 7, 1995Jul 29, 1997Sofamor Danek GroupTransverse fixation device for ensuring a rigid transverse connection between two rods of a spinal osteosynthesis system
US5653708Sep 9, 1994Aug 5, 1997Advanced Spine Fixation Systems, Inc.Cervical spine rod fixation system
US5658284Jun 30, 1995Aug 19, 1997Allo Pro AgConnection member for the connection of a resilient rod with a bone screw which can be anchored in a vertebra
US5667506Mar 14, 1995Sep 16, 1997Danek Medical, Inc.Spinal rod transverse connector for supporting vertebral fixation elements
US5667507Dec 4, 1995Sep 16, 1997Fastenetix, LlcCompression locking variable length cross-link device for use with dual rod apparatus
US5669910Jan 2, 1996Sep 23, 1997Pioneer Laboratories, Inc.Crosslink for implantable rods
US5672175Feb 5, 1996Sep 30, 1997Martin; Jean RaymondDynamic implanted spinal orthosis and operative procedure for fitting
US5672176Mar 5, 1996Sep 30, 1997Biedermann; LutzAnchoring member
US5676665Jun 23, 1995Oct 14, 1997Bryan; Donald W.Spinal fixation apparatus and method
US5676703Jul 24, 1996Oct 14, 1997Gelbard; Steven D.Spinal stabilization implant system
US5681311Dec 20, 1995Oct 28, 1997Smith & Nephew, Inc.Osteosynthesis apparatus
US5681319Feb 26, 1996Oct 28, 1997Biedermann; LutzLocking tool
US5683391Jun 7, 1995Nov 4, 1997Danek Medical, Inc.Anterior spinal instrumentation and method for implantation and revision
US5683392Oct 17, 1995Nov 4, 1997Wright Medical Technology, Inc.Multi-planar locking mechanism for bone fixation
US5683393Dec 23, 1996Nov 4, 1997Third Millennium Engineering, LlcBidirectional rod-hook locking mechanism
US5688272Mar 30, 1995Nov 18, 1997Danek Medical, Inc.Top-tightening transverse connector for a spinal fixation system
US5688273 *Oct 23, 1995Nov 18, 1997Fastenetix, Llc.Spinal implant apparatus having a single central rod and plow hooks
US5690629Apr 24, 1996Nov 25, 1997Acromed CorporationApparatus for maintaining vertebrae of a spinal column in a desired spatial relationship
US5690632Nov 30, 1995Nov 25, 1997Schwartz; Paul StevenOsteosynthesis screw fastener having angularly adjustable threads and methods of use therefor
US5690633Apr 3, 1996Nov 25, 1997Smith & Nephew Richards, Inc.Orthopedic fracture fixation device
US5693053Oct 19, 1995Dec 2, 1997Sdgi Holdings, Inc.Variable angle and transitional linking member
US5697929Oct 18, 1995Dec 16, 1997Cross Medical Products, Inc.Self-limiting set screw for use with spinal implant systems
US5700292Sep 15, 1995Dec 23, 1997Hospital For Joint DiseasesSpinal stabilization system and method
US5702392Sep 25, 1995Dec 30, 1997Wu; Shing-ShengCoupling plate for spinal correction and a correction device of using the same
US5702394Apr 19, 1994Dec 30, 1997Stryker CorporationAssembly piece for an osteosynthesis device
US5702395Nov 10, 1993Dec 30, 1997Sofamor S.N.C.Spine osteosynthesis instrumentation for an anterior approach
US5702396Jul 31, 1996Dec 30, 1997Hoenig; Johannes FranzOsteosynthesis plate
US5702399May 16, 1996Dec 30, 1997Pioneer Laboratories, Inc.Surgical cable screw connector
US5702452Jan 22, 1996Dec 30, 1997Sofamor S.N.C.Spinal osteosynthesis device with median hook and vertebral anchoring support
US5713900May 31, 1996Feb 3, 1998Acromed CorporationApparatus for retaining bone portions in a desired spatial relationship
US5713904Feb 12, 1997Feb 3, 1998Third Millennium Engineering, LlcSelectively expandable sacral fixation screw-sleeve device
US5716355Apr 10, 1995Feb 10, 1998Sofamor Danek Group, Inc.Transverse connection for spinal rods
US5716356Mar 1, 1995Feb 10, 1998Biedermann; LutzAnchoring member and adjustment tool therefor
US5716357Jul 29, 1996Feb 10, 1998Rogozinski; ChaimSpinal treatment and long bone fixation apparatus and method
US5716358Dec 2, 1994Feb 10, 1998Johnson & Johnson Professional, Inc.Directional bone fixation device
US5716359May 29, 1996Feb 10, 1998Asahi Kogaku Kogyo Kabushiki KaishaAnchor and method for fixing a screw in bone
US5720751Nov 27, 1996Feb 24, 1998Jackson; Roger P.Tools for use in seating spinal rods in open ended implants
US5725528Feb 12, 1997Mar 10, 1998Third Millennium Engineering, LlcModular polyaxial locking pedicle screw
US5725582Aug 18, 1993Mar 10, 1998Surgicraft LimitedSurgical implants
US5728098Nov 7, 1996Mar 17, 1998Sdgi Holdings, Inc.Multi-angle bone screw assembly using shape-memory technology
US5733286Feb 12, 1997Mar 31, 1998Third Millennium Engineering, LlcRod securing polyaxial locking screw and coupling element assembly
US5735851Oct 9, 1996Apr 7, 1998Third Millennium Engineering, LlcModular polyaxial locking pedicle screw
US5741254Apr 18, 1994Apr 21, 1998Stryker CorporationImplant for an ostheosynthesis device, in particular for the spine
US5743907Feb 9, 1994Apr 28, 1998Acromed CorporationSpinal column retaining method and apparatus
US5743911Aug 1, 1996Apr 28, 1998Sofamor S.N.C.Fixing device for a rigid transverse connection device between rods of a spinal osteosynthesis system
US5752957Feb 12, 1997May 19, 1998Third Millennium Engineering, LlcPolyaxial mechanism for use with orthopaedic implant devices
US5766254Jul 24, 1996Jun 16, 1998Gelbard; Steven D.Spinal stabilization implant system
US5776135Dec 23, 1996Jul 7, 1998Third Millennium Engineering, LlcSide mounted polyaxial pedicle screw
US5782833Dec 20, 1996Jul 21, 1998Haider; Thomas T.Pedicle screw system for osteosynthesis
US5785711May 15, 1997Jul 28, 1998Third Millennium Engineering, LlcPolyaxial pedicle screw having a through bar clamp locking mechanism
US5797911Sep 24, 1996Aug 25, 1998Sdgi Holdings, Inc.Multi-axial bone screw assembly
US5800435May 1, 1997Sep 1, 1998Techsys, LlcModular spinal plate for use with modular polyaxial locking pedicle screws
US5810819Jun 23, 1997Sep 22, 1998Spinal Concepts, Inc.Polyaxial pedicle screw having a compression locking rod gripping mechanism
US5863293Oct 18, 1996Jan 26, 1999Spinal InnovationsSpinal implant fixation assembly
US5879350Sep 24, 1996Mar 9, 1999Sdgi Holdings, Inc.Multi-axial bone screw assembly
US5885286Feb 11, 1997Mar 23, 1999Sdgi Holdings, Inc.Multi-axial bone screw assembly
US5891145Jul 14, 1997Apr 6, 1999Sdgi Holdings, Inc.Multi-axial screw
US5899904Oct 19, 1998May 4, 1999Third Milennium Engineering, LlcCompression locking vertebral body screw, staple, and rod assembly
US5910142Oct 19, 1998Jun 8, 1999Bones Consulting, LlcPolyaxial pedicle screw having a rod clamping split ferrule coupling element
US5925047Oct 19, 1998Jul 20, 1999Third Millennium Engineering, LlcCoupled rod, anterior vertebral body screw, and staple assembly
US5928231May 10, 1996Jul 27, 1999Klein; Jean-MichelImplantable osteosynthesis device
US5928232Apr 4, 1996Jul 27, 1999Advanced Spine Fixation Systems, IncorporatedSpinal fixation system
US5928233Mar 21, 1997Jul 27, 1999Ohio Medical Instrument Co., Inc.Spinal fixation device with laterally attachable connectors
US5947965Mar 11, 1996Sep 7, 1999Bryan; Donald W.Spinal fixation apparatus and method
US5947969Oct 19, 1998Sep 7, 1999Third Millennium Engineering, LlcRotatable locking vertebral body screw, staple and rod assembly
US5954725Mar 17, 1998Sep 21, 1999Sdgi Holdings, Inc.Multi-angle bone screw assembly using shape memory technology
US5961517Nov 25, 1997Oct 5, 1999Biedermann; LutzAnchoring member and adjustment tool therefor
US5964760Apr 1, 1997Oct 12, 1999Spinal InnovationsSpinal implant fixation assembly
US5980521May 21, 1997Nov 9, 1999Sdgi Holdings,Inc.Top-tightening transverse connector for a spinal fixation system
US5980523Jan 8, 1998Nov 9, 1999Jackson; RogerTransverse connectors for spinal rods
US5984922Dec 16, 1996Nov 16, 1999Mckay; Douglas WilliamSpinal fixation device and method
US5989251Jun 17, 1998Nov 23, 1999Surgical Dynamics, Inc.Apparatus for spinal stabilization
US5989254May 18, 1998Nov 23, 1999Katz; Akiva RaphaelPedicle screw assembly
US6001098Jan 17, 1997Dec 14, 1999Howmedica GmbhConnecting element for spinal stabilizing system
US6004322Sep 10, 1996Dec 21, 1999Sdgi Holdings, Inc.Modular pedicle screw system
US6010503Apr 3, 1998Jan 4, 2000Spinal Innovations, LlcLocking mechanism
US6015409Oct 10, 1997Jan 18, 2000Sdgi Holdings, Inc.Apparatus and method for spinal fixation and correction of spinal deformities
US6036693Nov 30, 1998Mar 14, 2000Depuy Orthopaedics, Inc.Cervical spine stabilization method and system
US6050997Jan 25, 1999Apr 18, 2000Mullane; Thomas S.Spinal fixation system
US6053917Mar 9, 1999Apr 25, 2000Sdgi Holdings, Inc.Multi-axial bone screw assembly
US6063089Apr 13, 1998May 16, 2000Spinal Concepts, Inc.Side mounted polyaxial pedicle screw
US6077262Feb 20, 1997Jun 20, 2000Synthes (U.S.A.)Posterior spinal implant
US6086588May 5, 1998Jul 11, 2000Aesculap Ag & Co. KgOsteosynthesis system for vertebra arthrodesis
US6090111Jun 17, 1998Jul 18, 2000Surgical Dynamics, Inc.Device for securing spinal rods
US6096039May 12, 1999Aug 1, 2000Howmedica GmbhMeans for interconnecting two spaced elongated rods of a human spine implant
US6113600Oct 8, 1997Sep 5, 2000Denek Medical, Inc.Device for linking adjacent rods in spinal instrumentation
US6113601Jun 12, 1998Sep 5, 2000Bones Consulting, LlcPolyaxial pedicle screw having a loosely coupled locking cap
US6127597Mar 6, 1998Oct 3, 2000Discotech N.V.Systems for percutaneous bone and spinal stabilization, fixation and repair
US6132430Jun 9, 1998Oct 17, 2000Spinal Concepts, Inc.Spinal fixation system
US6132434May 17, 1999Oct 17, 2000Sdgi Holdings, Inc.Multi-angle bone screw assembly using shape-memory technology
US6136000Jan 17, 1997Oct 24, 2000Louis; ReneAnchoring device for posterior vertebral osteosynthesis
US6146383Feb 1, 1999Nov 14, 2000Sulzer Orthopadie AgPivotal securing system at a bone screw
US6171311Oct 18, 1996Jan 9, 2001Marc RichelsophTransverse connector
US6193720Nov 24, 1999Feb 27, 2001Depuy Orthopaedics, Inc.Cervical spine stabilization method and system
US6197028Aug 13, 1993Mar 6, 2001Sdgi Holdings, Inc.Sacral implant system
US6210413Sep 29, 1999Apr 3, 2001Sdgi Holdings, Inc.Connecting apparatus using shape-memory technology
US6217578Oct 19, 1999Apr 17, 2001Stryker Spine S.A.Spinal cross connector
US6248106Feb 25, 2000Jun 19, 2001Bret FerreeCross-coupled vertebral stabilizers
US6254602Sep 29, 1999Jul 3, 2001Sdgi Holdings, Inc.Advanced coupling device using shape-memory technology
US6261287Jan 31, 2000Jul 17, 2001Stryker Trauma GmbhApparatus for bracing vertebrae
US6273888Sep 29, 1999Aug 14, 2001Sdgi Holdings, Inc.Device and method for selectively preventing the locking of a shape-memory alloy coupling system
US6273914Dec 2, 1997Aug 14, 2001Sparta, Inc.Spinal implant
US6280443Nov 18, 1999Aug 28, 2001Ja-Kyo GuSpinal fixation system
US6287311Jun 12, 2000Sep 11, 2001Sdgi Holdings, Inc.Multi-angle bone screw assembly using shape-memory technology
US6293949Mar 1, 2000Sep 25, 2001Sdgi Holdings, Inc.Superelastic spinal stabilization system and method
US6302888Mar 19, 1999Oct 16, 2001Interpore Cross InternationalLocking dovetail and self-limiting set screw assembly for a spinal stabilization member
US6309391Mar 15, 2000Oct 30, 2001Sdgi Holding, Inc.Multidirectional pivoting bone screw and fixation system
US6325802Oct 19, 1994Dec 4, 2001Synthes (U.S.A.)Spinal fixation element
US6328740Nov 12, 1999Dec 11, 2001Spinal Innovations, LlcTransverse connector
US6344057May 5, 1998Feb 5, 2002Sdgi Holdings, Inc.Adjustable vertebral body replacement
US6355040Sep 14, 2000Mar 12, 2002Spinal Innovations, L.L.C.Locking mechanism
US6379354Nov 3, 1997Apr 30, 2002Chaim RogozinskiSpinal implant and method
US6402749Mar 28, 2000Jun 11, 2002Sdgi Holdings, Inc.Variable angle connection assembly for a spinal implant system
US6402751Jul 11, 2000Jun 11, 2002Sdgi Holdings, Inc.Device for linking adjacent rods in spinal instrumentation
US6402752Feb 7, 2001Jun 11, 2002Ulrich Gmbh & Co. KgPolyaxial pedicle-screw
US6413257May 15, 1997Jul 2, 2002Surgical Dynamics, Inc.Clamping connector for spinal fixation systems
US6416515Oct 24, 1996Jul 9, 2002Spinal Concepts, Inc.Spinal fixation system
US6423064May 20, 2000Jul 23, 2002Ulrich Gmbh & Co. KgOrthopaedic screw variable angle connection to a longitudinal support
US6440169Jan 27, 1999Aug 27, 2002DimsoInterspinous stabilizer to be fixed to spinous processes of two vertebrae
US6451021Feb 15, 2001Sep 17, 2002Third Millennium Engineering, LlcPolyaxial pedicle screw having a rotating locking element
US6454773Aug 31, 2001Sep 24, 2002Sdgi Holdings, Inc.Multi-angle bone screw assembly using shape-memory technology
US6458131Aug 7, 2000Oct 1, 2002Salut, Ltd.Apparatus and method for reducing spinal deformity
US6458132Feb 5, 2001Oct 1, 2002Gil-Woon ChoiSpine supporting system
US6468276Sep 10, 1999Oct 22, 2002Mckay Douglas WilliamSpinal fixation device and method
US6471705Jun 27, 2000Oct 29, 2002Lutz BiedermannBone screw
US6478797May 16, 2001Nov 12, 2002Kamaljit S. PaulSpinal fixation device
US6482207Jul 13, 2000Nov 19, 2002Fastenetix, LlcEfficient assembling modular locking pedicle screw
US6485491Sep 15, 2000Nov 26, 2002Sdgi Holdings, Inc.Posterior fixation system
US6488681Jan 5, 2001Dec 3, 2002Stryker Spine S.A.Pedicle screw assembly
US6520962Oct 23, 2000Feb 18, 2003Sdgi Holdings, Inc.Taper-locked adjustable connector
US6520990Dec 13, 1995Feb 18, 2003Sdgi Holdings, Inc.Lateral fixation plates for a spinal system
US6537276May 1, 2001Mar 25, 2003Stryker Trauma GmbhApparatus for bracing vertebrae
US6540748Dec 28, 2000Apr 1, 2003Blackstone Medical, Inc.Surgical screw system and method of use
US6540749Feb 6, 2002Apr 1, 2003Bernd SchäferBone screw
US6547789May 26, 2000Apr 15, 2003Sulzer Orthopedics Ltd.Holding apparatus for the spinal column
US6554832Apr 2, 2001Apr 29, 2003Endius IncorporatedPolyaxial transverse connector
US6554834Oct 7, 1999Apr 29, 2003Stryker SpineSlotted head pedicle screw assembly
US6565565Jan 19, 2000May 20, 2003Howmedica Osteonics Corp.Device for securing spinal rods
US6565566Mar 22, 2000May 20, 2003Spinal Concepts, Inc.Sacral screw assembly and method
US6565567Aug 18, 2000May 20, 2003Thomas T. HaiderPedicle screw for osteosynthesis
US6565605Dec 13, 2000May 20, 2003Medicinelodge, Inc.Multiple facet joint replacement
US6572617Nov 6, 1998Jun 3, 2003Stryker SpineVertebra implant
US6572653Dec 7, 2001Jun 3, 2003Rush E. SimonsonVertebral implant adapted for posterior insertion
US6579290Nov 27, 1998Jun 17, 2003Surgicraft LimitedSurgical implant and surgical fixing screw
US6585737Apr 29, 1999Jul 1, 2003Stryker SpineBackbone osteosynthesis system with collar and lock
US6616669Jul 13, 2001Sep 9, 2003Sdgi Holdings, Inc.Method for the correction of spinal deformities through vertebral body tethering without fusion
US6623485Oct 17, 2001Sep 23, 2003Hammill Manufacturing CompanySplit ring bone screw for a spinal fixation system
US6626905Aug 2, 2000Sep 30, 2003Sulzer Spine-Tech Inc.Posterior oblique lumbar arthrodesis
US6626908Jun 29, 2001Sep 30, 2003Corin Spinal Systems LimitedPedicle attachment assembly
US6645207May 1, 2001Nov 11, 2003Robert A. DixonMethod and apparatus for dynamized spinal stabilization
US6652526Oct 5, 2001Nov 25, 2003Ruben P. ArafilesSpinal stabilization rod fastener
US6656181Nov 20, 2001Dec 2, 2003Robert A DixonMethod and device utilizing tapered screw shanks for spinal stabilization
US6660004Aug 28, 2001Dec 9, 2003Sdgi Holdings, Inc.Multi-axial bone screw assembly
US6660005Dec 26, 2001Dec 9, 2003Kyocera CorporationVertebra correcting and fixing device
US6660038 *Mar 22, 2001Dec 9, 2003Synthes (Usa)Skeletal reconstruction cages
US6695845Oct 15, 2001Feb 24, 2004Robert A DixonMethod and apparatus utilizing interference fit screw shanks for nonmetallic spinal stabilization
US6706045May 31, 2002Mar 16, 2004Howmedica Osteonics Corp.Clamping connector for spinal fixation systems
US6709434Jul 29, 1999Mar 23, 2004Sofamor S.N.C.Spinal osteosynthesis device
US6716213Oct 24, 2001Apr 6, 2004Hideo ShitotoSpinal-rod connecting apparatus and a connector thereof
US6716214Jun 18, 2003Apr 6, 2004Roger P. JacksonPolyaxial bone screw with spline capture connection
US6726689Sep 6, 2002Apr 27, 2004Roger P. JacksonHelical interlocking mating guide and advancement structure
US6736820Nov 9, 2001May 18, 2004Biedermann Motech GmbhBone screw
US6749614Oct 10, 2001Jun 15, 2004Vertelink CorporationFormable orthopedic fixation system with cross linking
US6752807Dec 3, 2002Jun 22, 2004Howmedica Osteonics Corp.Transverse rod connector clip
US6755829Sep 22, 2000Jun 29, 2004Depuy Acromed, Inc.Lock cap anchor assembly for orthopaedic fixation
US6755835Jan 24, 2002Jun 29, 2004Aesculap Ag & Co. KgBone screw
US6761719Sep 21, 2001Jul 13, 2004Sdgi Holdings, Inc.Superelastic spinal stabilization system and method
US6783526May 15, 1997Aug 31, 2004Howmedica Osteonics Corp.Transverse rod connector clip
US6783527Oct 30, 2001Aug 31, 2004Sdgi Holdings, Inc.Flexible spinal stabilization system and method
US6786907Apr 23, 2002Sep 7, 2004Co-Ligne AgInstrumentation for stabilizing certain vertebrae of the spine
US6793656Mar 6, 2000Sep 21, 2004Sdgi Holdings, Inc.Systems and methods for fixation of adjacent vertebrae
US6805695Mar 18, 2003Oct 19, 2004Spinalabs, LlcDevices and methods for annular repair of intervertebral discs
US6805714Apr 1, 2002Oct 19, 2004Ulrich Gmbh & Co. KgAnchorable vertebral implant
US6811567Feb 4, 2002Nov 2, 2004Archus Orthopedics Inc.Facet arthroplasty devices and methods
US6832999Mar 7, 2003Dec 21, 2004Showa Ika Kohgyo Co., Ltd.Rod for cervical vertebra and connecting system thereof
US6840940Apr 3, 2002Jan 11, 2005K2 Medical, LlcPolyaxial pedicle screw having a rotating locking element
US6843791Jan 10, 2003Jan 18, 2005Depuy Acromed, Inc.Locking cap assembly for spinal fixation instrumentation
US6852128Oct 9, 2003Feb 8, 2005Sdgi Holdings, Inc.Flexible spine stabilization systems
US6858030Jul 17, 2002Feb 22, 2005Stryker SpinePedicle screw assembly and methods therefor
US6869433Jan 11, 2002Mar 22, 2005Depuy Acromed, Inc.Polyaxial screw with improved locking
US6875211Dec 7, 2001Apr 5, 2005Howmedica Osteonics Corp.Apparatus for spinal stabilization
US6881215Mar 17, 2003Apr 19, 2005Stryker SpineBackbone osteosynthesis system with clamping means in particular for anterior fixing
US6883520Sep 5, 2002Apr 26, 2005Intrinsic Therapeutics, Inc.Methods and apparatus for dynamically stable spinal implant
US6887242Feb 4, 2002May 3, 2005Ortho Innovations, LlcSplit ring bone screw for a spinal fixation system
US6899714Mar 28, 2002May 31, 2005Vaughan Medical Technologies, Inc.Vertebral stabilization assembly and method
US6918911Mar 27, 2003Jul 19, 2005Biedermann Motech GmbhBone anchoring device for stabilizing bone segments and seat part of a bone anchoring device
US6932817Sep 6, 2002Aug 23, 2005Innovative Spinal DesignPolyaxial modular skeletal hook
US6945974Jul 7, 2003Sep 20, 2005Aesculap Inc.Spinal stabilization implant and method of application
US6951561May 6, 2004Oct 4, 2005Triage Medical, Inc.Spinal stabilization device
US6964666Apr 9, 2003Nov 15, 2005Jackson Roger PPolyaxial bone screw locking mechanism
US6966910Apr 4, 2003Nov 22, 2005Stephen RitlandDynamic fixation device and method of use
US6986771May 23, 2003Jan 17, 2006Globus Medical, Inc.Spine stabilization system
US6991632Feb 25, 2004Jan 31, 2006Stephen RitlandAdjustable rod and connector device and method of use
US7008423Mar 13, 2003Mar 7, 2006Stryker SpineSpinal osteosynthesis system for anterior fixation
US7011685Jan 5, 2004Mar 14, 2006Impliant Ltd.Spinal prostheses
US7018378Mar 15, 2002Mar 28, 2006Biedermann Motech GmbhScrew
US7018379Mar 4, 2004Mar 28, 2006Sdgi Holdings, Inc.Flexible spinal stabilization system and method
US7022122Apr 16, 2002Apr 4, 2006Synthes (U.S.A.)Device for connecting a longitudinal bar to a pedicle screw
US7029475Apr 30, 2004Apr 18, 2006Yale UniversitySpinal stabilization method
US7048736May 17, 2002May 23, 2006Sdgi Holdings, Inc.Device for fixation of spinous processes
US7051451Apr 22, 2004May 30, 2006Archus Orthopedics, Inc.Facet joint prosthesis measurement and implant tools
US7060066Jun 28, 2002Jun 13, 2006Mayo Foundation For Medical Education And ResearchSpinal fixation support device and methods of using
US7074237Apr 22, 2003Jul 11, 2006Facet Solutions, Inc.Multiple facet joint replacement
US7081117Apr 20, 2004Jul 25, 2006Depuy Acromed, Inc.Locking cap assembly for spinal fixation instrumentation
US7083621Aug 15, 2003Aug 1, 2006Sdgi Holdings, Inc.Articulating spinal fixation rod and system
US7083622Feb 17, 2004Aug 1, 2006Simonson Peter MArtificial facet joint and method
US7087056Apr 2, 2004Aug 8, 2006Vaughan Medical Technologies, Inc.Vertebral stabilization assembly and method
US7087057Jun 27, 2003Aug 8, 2006Depuy Acromed, Inc.Polyaxial bone screw
US7087084Sep 9, 2003Aug 8, 2006Archus Orthopedics, Inc.Method for replacing a natural facet joint with a prosthesis having an artificial facet joint structure
US7090698Mar 4, 2002Aug 15, 2006Facet SolutionsMethod and apparatus for spine joint replacement
US7101398Dec 31, 2002Sep 5, 2006Depuy Acromed, Inc.Prosthetic facet joint ligament
US7104992Jan 14, 2003Sep 12, 2006Ebi, L.P.Spinal fixation system
US7107091Jul 25, 2002Sep 12, 2006Orthosoft Inc.Multiple bone tracking
US7125410May 21, 2003Oct 24, 2006Spinelab GmbhElastic stabilization system for vertebral columns
US7125426Jun 25, 2003Oct 24, 2006Depuy Spine SarlLocking cap assembly for spinal fixation instrumentation
US7137985 *Dec 5, 2003Nov 21, 2006N Spine, Inc.Marking and guidance method and system for flexible fixation of a spine
US7214227Mar 22, 2004May 8, 2007Innovative Spinal TechnologiesClosure member for a medical implant device
US7250052Oct 30, 2003Jul 31, 2007Abbott Spine Inc.Spinal stabilization systems and methods
US7282064Sep 24, 2003Oct 16, 2007Spinefrontier LlsApparatus and method for connecting spinal vertebrae
US7294129Feb 18, 2005Nov 13, 2007Ebi, L.P.Spinal fixation device and associated method
US7306603Dec 17, 2002Dec 11, 2007Innovative Spinal TechnologiesDevice and method for percutaneous placement of lumbar pedicle screws and connecting rods
US7306606Dec 15, 2004Dec 11, 2007Orthopaedic Innovations, Inc.Multi-axial bone screw mechanism
US7326210Mar 3, 2005Feb 5, 2008N Spine, IncSpinal stabilization device
US7335201Sep 26, 2003Feb 26, 2008Zimmer Spine, Inc.Polyaxial bone screw with torqueless fastening
US7338490 *May 21, 2003Mar 4, 2008Warsaw Orthopedic, Inc.Reduction cable and bone anchor
US8043337 *Oct 25, 2011Spartek Medical, Inc.Implant system and method to treat degenerative disorders of the spine
US20020013586Sep 21, 2001Jan 31, 2002Justis Jeff R.Superelastic spinal stabilization system and method
US20020026192Aug 2, 2001Feb 28, 2002Schmiel Daniel G.Posterior oblique lumbar arthrodesis
US20020068975Oct 10, 2001Jun 6, 2002Teitelbaum George P.Formable orthopedic fixation system with cross linking
US20020082603Nov 20, 2001Jun 27, 2002Dixon Robert A.Method and device utilizing tapered screw shanks for spinal stabilization
US20020120271Feb 25, 2002Aug 29, 2002Dixon Robert A.Method and device for using extended interference fit screw shanks for spinal stabilization
US20020143329Mar 30, 2001Oct 3, 2002Serhan Hassan A.Intervertebral connection system
US20020169450Apr 23, 2002Nov 14, 2002Co-Ligne AgInstrumentation for stabilizing certain vertebrae of the spine
US20030004511Jun 27, 2002Jan 2, 2003Ferree Bret A.Polyaxial pedicle screw system
US20030073996Oct 17, 2001Apr 17, 2003Doubler Robert L.Split ring bone screw for a spinal fixation system
US20030073997Feb 4, 2002Apr 17, 2003Doubler Robert L.Split ring bone screw for a spinal fixation system
US20030083657Oct 30, 2001May 1, 2003Drewry Troy D.Flexible spinal stabilization system and method
US20030125742Feb 12, 2003Jul 3, 2003Howmedica Osteonics Corp.Device for securing spinal rods
US20030171749Jul 25, 2001Sep 11, 2003Regis Le CouedicSemirigid linking piece for stabilizing the spine
US20040015166Jul 22, 2002Jan 22, 2004Gorek Josef E.System and method for stabilizing the spine by securing spine stabilization rods in crossed disposition
US20040030337Apr 8, 2003Feb 12, 2004Neville AlleyneBone fixation apparatus
US20040039384Dec 17, 2002Feb 26, 2004Boehm Frank H.Device and method for pertcutaneous placement of lumbar pedicle screws and connecting rods
US20040097925Jun 9, 2003May 20, 2004Boehm Frank H.Cervical spine stabilizing system and method
US20040097933Oct 31, 2003May 20, 2004Rodolphe LourdelVertebral anchoring device and its blocking device on a polyaxial screw
US20040111088Dec 6, 2002Jun 10, 2004Picetti George D.Multi-rod bone attachment member
US20040116929Dec 9, 2003Jun 17, 2004Barker B. ThomasMulti-axial bone screw assembly
US20040122425Sep 11, 2003Jun 24, 2004Showa Ika Kohgyo Co., Ltd.Rod fixing apparatus for vertebra connecting member
US20040138662Oct 30, 2003Jul 15, 2004Landry Michael E.Spinal stabilization systems and methods
US20040143264Aug 21, 2003Jul 22, 2004Mcafee Paul C.Metal-backed UHMWPE rod sleeve system preserving spinal motion
US20040143265Oct 30, 2003Jul 22, 2004Landry Michael E.Spinal stabilization systems and methods using minimally invasive surgical procedures
US20040147928Oct 30, 2003Jul 29, 2004Landry Michael E.Spinal stabilization system using flexible members
US20040153077Jan 22, 2004Aug 5, 2004Lutz BiedermannBone screw
US20040158245Sep 24, 2003Aug 12, 2004Chin Kingsley RichardApparatus and method for connecting spinal vertebrae
US20040158247Feb 4, 2004Aug 12, 2004Arthit SitisoPolyaxial pedicle screw system
US20040162560Feb 19, 2003Aug 19, 2004Raynor Donald E.Implant device including threaded locking mechanism
US20040172022Oct 30, 2003Sep 2, 2004Landry Michael E.Bone fastener assembly for a spinal stabilization system
US20040172024Mar 4, 2004Sep 2, 2004Gorek Josef E.System and method for stabilizing the spine by securing spine stabilization rods in crossed disposition
US20040215192May 19, 2004Oct 28, 2004Justis Jeff RSuperelastic spinal stabilization system and method
US20040225289May 6, 2004Nov 11, 2004Biedermann Motech GmbhDynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device
US20040230192Jan 16, 2004Nov 18, 2004Henry GrafIntervertebral linking device
US20040236327May 23, 2003Nov 25, 2004Paul David C.Spine stabilization system
US20040236330May 19, 2004Nov 25, 2004Thomas PurcellVariable angle spinal screw assembly
US20050033441Sep 20, 2004Feb 10, 2005Lambrecht Gregory H.Method of implanting dynamically stable spinal implant
US20050049589Aug 28, 2003Mar 3, 2005Jackson Roger P.Polyaxial bone screw apparatus
US20050065515Dec 5, 2003Mar 24, 2005Tae-Ahn JahngMarking and guidance method and system for flexible fixation of a spine
US20050070899Sep 26, 2003Mar 31, 2005Doubler Robert L.Polyaxial bone screw with torqueless fastening
US20050070901Oct 29, 2003Mar 31, 2005Stryker SpineBone fixation assembly and method
US20050080415Oct 14, 2003Apr 14, 2005Keyer Thomas R.Polyaxial bone anchor and method of spinal fixation
US20050085813Oct 21, 2003Apr 21, 2005Innovative Spinal TechnologiesSystem and method for stabilizing of internal structures
US20050090822Oct 24, 2003Apr 28, 2005Dipoto GeneMethods and apparatus for stabilizing the spine through an access device
US20050096652Oct 31, 2003May 5, 2005Burton Charles V.Integral flexible spine stabilization device and method
US20050096659Oct 18, 2004May 5, 2005Stefan FreudigerPedicle screw with a closure device for the fixing of elastic rod elements
US20050107788Dec 12, 2002May 19, 2005Jacques BeaurainImplant for osseous anchoring with polyaxial head
US20050113927Nov 25, 2003May 26, 2005Malek Michel H.Spinal stabilization systems
US20050113929Oct 22, 2004May 26, 2005Cragg Andrew H.Spinal mobility preservation apparatus
US20050119658Dec 13, 2004Jun 2, 2005K2 Medical LlcPolyaxial pedicle screw having a rotating locking element
US20050124991Mar 10, 2004Jun 9, 2005Tae-Ahn JahngMethod and apparatus for flexible fixation of a spine
US20050131404Feb 24, 2003Jun 16, 2005Keyvan MazdaDevice for the connection between a shaft and a screw head with spherical symmetry
US20050131405Dec 10, 2003Jun 16, 2005Sdgi Holdings, Inc.Method and apparatus for replacing the function of facet joints
US20050131406Dec 15, 2003Jun 16, 2005Archus Orthopedics, Inc.Polyaxial adjustment of facet joint prostheses
US20050143737Dec 31, 2003Jun 30, 2005John PaffordDynamic spinal stabilization system
US20050143823Dec 31, 2003Jun 30, 2005Boyd Lawrence M.Dynamic spinal stabilization system
US20050171537Nov 19, 2002Aug 4, 2005Christian MazelConnector for vertebral anchoring system
US20050171543Dec 31, 2004Aug 4, 2005Timm Jens P.Spine stabilization systems and associated devices, assemblies and methods
US20050177156Dec 31, 2004Aug 11, 2005Timm Jens P.Surgical implant devices and systems including a sheath member
US20050177157Mar 2, 2005Aug 11, 2005N Spine, Inc.Method and apparatus for flexible fixation of a spine
US20050177164Dec 31, 2004Aug 11, 2005Carmen WaltersPedicle screw devices, systems and methods having a preloaded set screw
US20050177166Dec 31, 2004Aug 11, 2005Timm Jens P.Mounting mechanisms for pedicle screws and related assemblies
US20050182400Dec 31, 2004Aug 18, 2005Jeffrey WhiteSpine stabilization systems, devices and methods
US20050182401Dec 31, 2004Aug 18, 2005Timm Jens P.Systems and methods for spine stabilization including a dynamic junction
US20050182409Dec 31, 2004Aug 18, 2005Ronald CallahanSystems and methods accommodating relative motion in spine stabilization
US20050187548Jan 12, 2005Aug 25, 2005Butler Michael S.Pedicle screw constructs for spine fixation systems
US20050192569Feb 22, 2005Sep 1, 2005Howmedica Osteonics Corp.Apparatus for spinal stabilization
US20050192571Jan 28, 2005Sep 1, 2005Custom Spine, Inc.Polyaxial pedicle screw assembly
US20050192572Feb 1, 2005Sep 1, 2005Custom Spine, Inc.Medialised rod pedicle screw assembly
US20050203514Dec 27, 2004Sep 15, 2005Tae-Ahn JahngAdjustable spinal stabilization system
US20050203517Mar 3, 2005Sep 15, 2005N Spine, Inc.Spinal stabilization device
US20050203518Mar 4, 2005Sep 15, 2005Biedermann Motech GmbhStabilization device for the dynamic stabilization of vertebrae or bones and rod like element for such a stabilization device
US20050222570Apr 5, 2004Oct 6, 2005Jackson Roger PUpload shank swivel head bone screw spinal implant
US20050228375Jul 22, 2003Oct 13, 2005Keyvan MazdaVertebral fixing system
US20050228382Apr 12, 2004Oct 13, 2005Marc RichelsophScrew and rod fixation assembly and device
US20050228385Jun 7, 2005Oct 13, 2005Globus Medical Inc.Polyaxial screw
US20050234451Apr 16, 2004Oct 20, 2005Markworth Aaron DPedicle screw assembly
US20050234454Jun 20, 2005Oct 20, 2005Chin Kingsley RMulti-axial screw with a spherical landing
US20050234557Oct 21, 2004Oct 20, 2005Lambrecht Gregory HStabilized intervertebral disc barrier
US20050240180Sep 3, 2002Oct 27, 2005Cecile VienneySpinal osteosynthesis system comprising a support pad
US20050240265Oct 25, 2004Oct 27, 2005Kuiper Mark KCrossbar spinal prosthesis having a modular design and related implantation methods
US20050240266Mar 2, 2005Oct 27, 2005Kuiper Mark KCrossbar spinal prosthesis having a modular design and related implantation methods
US20050261770May 3, 2005Nov 24, 2005Kuiper Mark KCrossbar spinal prosthesis having a modular design and related implantation methods
US20050267470May 13, 2004Dec 1, 2005Mcbride Duncan QSpinal stabilization system to flexibly connect vertebrae
US20050267472Jun 22, 2005Dec 1, 2005Biedermann Motech GmbhBone anchoring device for stabilising bone segments and seat part of a bone anchoring device
US20050277922Jun 9, 2004Dec 15, 2005Trieu Hai HSystems and methods for flexible spinal stabilization
US20050277925Jun 9, 2004Dec 15, 2005Mujwid James RSpinal fixation device with internal drive structure
US20050277927Jun 14, 2004Dec 15, 2005Guenther Kevin VFastening system for spinal stabilization system
US20050277928Jun 14, 2004Dec 15, 2005Boschert Paul FSpinal implant fixation assembly
US20050288670Jun 23, 2005Dec 29, 2005Panjabi Manohar MDynamic stabilization device including overhanging stabilizing member
US20050288671Aug 31, 2005Dec 29, 2005Hansen YuanMethods for securing spinal rods
US20060004357Apr 8, 2004Jan 5, 2006Andrew LeePolyaxial screw
US20060025771Oct 7, 2005Feb 2, 2006Jackson Roger PHelical reverse angle guide and advancement structure with break-off extensions
US20060030839Oct 1, 2004Feb 9, 2006Solco Biomedical Co., Ltd.Pedicle screw and operating device thereof
US20060036242Aug 10, 2004Feb 16, 2006Nilsson C MScrew and rod fixation system
US20060036324Aug 3, 2005Feb 16, 2006Dan SachsAdjustable spinal implant device and method
US20060052783Aug 17, 2004Mar 9, 2006Dant Jack APolyaxial device for spine stabilization during osteosynthesis
US20060052784Aug 3, 2005Mar 9, 2006Zimmer Spine, Inc.Polyaxial device for spine stabilization during osteosynthesis
US20060052786Oct 11, 2005Mar 9, 2006Zimmer Spine, Inc.Polyaxial device for spine stabilization during osteosynthesis
US20060058787Aug 24, 2004Mar 16, 2006Stryker SpineSpinal implant assembly
US20060058788Aug 27, 2004Mar 16, 2006Hammer Michael AMulti-axial connection system
US20060058790Aug 3, 2005Mar 16, 2006Carl Allen LSpinous process reinforcement device and method
US20060064090Jan 28, 2005Mar 23, 2006Kyung-Woo ParkBio-flexible spinal fixation apparatus with shape memory alloy
US20060064091Sep 28, 2005Mar 23, 2006Depuy Spine, Inc.Rod attachment for head to head cross connector
US20060069391Nov 10, 2005Mar 30, 2006Jackson Roger PSpinal fixation tool attachment structure
US20060074419Oct 5, 2004Apr 6, 2006Taylor Harold SSpinal implants with multi-axial anchor assembly and methods
US20060079894Nov 16, 2004Apr 13, 2006Innovative Spinal TechnologiesConnector transfer tool for internal structure stabilization systems
US20060079896Jun 21, 2005Apr 13, 2006Depuy Spine, Inc.Methods and devices for posterior stabilization
US20060084978Sep 30, 2004Apr 20, 2006Mokhtar Mourad BSpinal fixation system and method
US20060084980Oct 5, 2004Apr 20, 2006Melkent Anthony JSpinal implants and methods with extended multi-axial anchor assemblies
US20060084982Oct 20, 2004Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084983Oct 20, 2004Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084984Dec 6, 2004Apr 20, 2006The Board Of Trustees For The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084985Dec 6, 2004Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084987Jan 10, 2005Apr 20, 2006Kim Daniel HSystems and methods for posterior dynamic stabilization of the spine
US20060084988Mar 10, 2005Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084989Apr 29, 2005Apr 20, 2006Sdgi Holdings, Inc.Multi-axial anchor assemblies for spinal implants and methods
US20060084990May 25, 2005Apr 20, 2006Jose GournayDual anchor spinal implant apparatus
US20060084993Nov 21, 2005Apr 20, 2006Landry Michael ESpinal stabilization systems and methods
US20060084995Dec 2, 2005Apr 20, 2006Biedermann Motech GmbhBone screw
US20060085069Feb 4, 2005Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060085070Jul 26, 2005Apr 20, 2006Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US20060089643Jun 9, 2004Apr 27, 2006Mujwid James RSpinal fixation device
US20060089644Oct 20, 2005Apr 27, 2006Felix Brent ASpinal stabilizing system
US20060095035Nov 3, 2004May 4, 2006Jones Robert JInstruments and methods for reduction of vertebral bodies
US20060095038Nov 3, 2004May 4, 2006Jackson Roger PPolyaxial bone screw
US20060100621Nov 10, 2004May 11, 2006Jackson Roger PPolyaxial bone screw with discontinuous helically wound capture connection
US20060100622Nov 10, 2004May 11, 2006Jackson Roger PPolyaxial bone screw with helically wound capture connection
US20060106380Nov 16, 2004May 18, 2006Innovative Spinal TechnologiesExtension for use with stabilization systems for internal structures
US20060106383Dec 29, 2005May 18, 2006Biedermann Motech GmbhBone screw
US20060111712Nov 23, 2004May 25, 2006Jackson Roger PSpinal fixation tool set and method
US20060111715Jan 9, 2006May 25, 2006Jackson Roger PDynamic stabilization assemblies, tool set and method
US20060116676Dec 16, 2003Jun 1, 2006Thomas GradelDevice comprising anterior plate for vertebral column support
US20060122597Dec 2, 2004Jun 8, 2006Jones Robert JInstruments and methods for adjusting separation distance of vertebral bodies with a minimally invasive spinal stabilization procedure
US20060122599Jan 20, 2006Jun 8, 2006Sdgi Holdings, Inc.Flexible spinal stabilization system and method
US20060122620Dec 6, 2004Jun 8, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for stabilizing the motion or adjusting the position of the spine
US20060129147Apr 8, 2005Jun 15, 2006Biedermann Motech GmbhElastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element
US20060129148Oct 3, 2005Jun 15, 2006Simmons Edward DScrew sleeve made of polyetheretherketone (PEEK) for augmentation of bone screw insertion in osteoporotic or revision lumbar spine instrumentation
US20060129149Dec 6, 2005Jun 15, 2006Andrew IottPolyaxial screw
US20060142761Jan 23, 2006Jun 29, 2006Landry Michael ESpinal stabilization systems and methods
US20060149231Dec 13, 2004Jul 6, 2006Rsb Spine LlcBone fastener assembly for bone retention apparatus
US20060149232Dec 15, 2004Jul 6, 2006Sasing Jude LMulti-axial bone screw mechanism
US20060149234Dec 22, 2004Jul 6, 2006Stryker SpineVariable offset connectors and bone fixation methods
US20060149237Dec 30, 2004Jul 6, 2006Markworth Aaron DScrew with deployable interlaced dual rods
US20060149238Jan 4, 2005Jul 6, 2006Sherman Michael CSystems and methods for spinal stabilization with flexible elements
US20060149240Nov 17, 2005Jul 6, 2006Jackson Roger PPolyaxial bone screw with multi-part shank retainer
US20060149242Dec 16, 2005Jul 6, 2006Gary KrausSpinal stabilization systems supplemented with diagnostically opaque materials
US20060149244Feb 2, 2006Jul 6, 2006Synthes (Usa)Device for connecting a longitudinal bar to a pedicle screw
US20060149380Dec 1, 2005Jul 6, 2006Lotz Jeffrey CSystems, devices and methods for treatment of intervertebral disorders
US20060155277May 19, 2003Jul 13, 2006Peter Metz-StavenhagenAnchoring element for securing a rod of a device for adjusting a human or animal vertrebal column on a vertreba
US20060155278Oct 25, 2005Jul 13, 2006Alphaspine, Inc.Pedicle screw systems and methods of assembling/installing the same
US20060161153Oct 25, 2005Jul 20, 2006Alphaspine, Inc.Pedicle screw systems and methods of assembling/installing the same
US20060173456Jan 30, 2006Aug 3, 2006Hawkes David TPolyaxial pedicle screw assembly
US20060189983Mar 22, 2005Aug 24, 2006Medicinelodge, Inc.Apparatus and method for dynamic vertebral stabilization
US20060195093Nov 22, 2005Aug 31, 2006Tae-Ahn JahngMethod and apparatus for flexible fixation of a spine
US20060200128Apr 2, 2004Sep 7, 2006Richard MuellerBone anchor
US20060200130Feb 18, 2005Sep 7, 2006Hawkins Nathaniel ESpinal fixation device and associated method
US20060200131Mar 4, 2005Sep 7, 2006Depuy Spine SarlConstrained motion bone screw assembly
US20060200133Jul 11, 2005Sep 7, 2006Jackson Roger PPolyaxial bone screw assembly
US20060217716Mar 22, 2005Sep 28, 2006Baker Daniel RSpinal fixation locking mechanism
US20060229606Jun 24, 2004Oct 12, 2006Jean-Luc ClementVertebral osteosynthesis equipment
US20060229607Mar 16, 2005Oct 12, 2006Sdgi Holdings, Inc.Systems, kits and methods for treatment of the spinal column using elongate support members
US20060229613Jan 13, 2006Oct 12, 2006Timm Jens PSheath assembly for spinal stabilization device
US20060229615Feb 21, 2006Oct 12, 2006Abdou M SDevices and methods for dynamic fixation of skeletal structure
US20060229616Feb 23, 2006Oct 12, 2006Accin CorporationSpinal stabilization using bone anchor seat and cross coupling with improved locking feature
US20060235385Mar 31, 2005Oct 19, 2006Dale WhippleLow profile polyaxial screw
US20060235389Feb 23, 2006Oct 19, 2006Accin CorporationSpinal stabilization using bone anchor and anchor seat with tangential locking feature
US20060235392Mar 24, 2006Oct 19, 2006Hammer Michael AMulti-axial connection system
US20060235393Jun 2, 2006Oct 19, 2006Depuy Spine, Inc.Locking cap assembly for spinal fixation instrumentation
US20060241594Apr 8, 2005Oct 26, 2006Mccarthy RichardSystems, devices and methods for stabilization of the spinal column
US20060241595Apr 22, 2005Oct 26, 2006Sdgi Holdings, Inc.Force limiting coupling assemblies for spinal implants
US20060241599May 1, 2006Oct 26, 2006Konieczynski David DPolyaxial Bone Screw
US20060241600Mar 23, 2006Oct 26, 2006Ensign Michael DPercutaneous pedicle screw assembly
US20060241601Apr 7, 2006Oct 26, 2006Trautwein Frank TInterspinous vertebral and lumbosacral stabilization devices and methods of use
US20060241603Jun 26, 2006Oct 26, 2006Jackson Roger PPolyaxial bone screw assembly with fixed retaining structure
US20060241757Mar 31, 2005Oct 26, 2006Sdgi Holdings, Inc.Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US20060247623Apr 29, 2005Nov 2, 2006Sdgi Holdings, Inc.Local delivery of an active agent from an orthopedic implant
US20060247624Apr 29, 2005Nov 2, 2006Ezzine BanouskouOrthopedic implant apparatus
US20060247628Apr 29, 2005Nov 2, 2006Sdgi Holdings, Inc.Spinal stabilization apparatus and method
US20060247631Oct 19, 2005Nov 2, 2006Ahn Sae YSpinal pedicle screw assembly
US20060247636May 2, 2006Nov 2, 2006Hansen YuanMethods for securing spinal rods
US20060247637May 30, 2006Nov 2, 2006Dennis ColleranSystem and method for dynamic skeletal stabilization
US20060253118Jul 11, 2006Nov 9, 2006Bailey Kirk JSpinal fixation system
US20060264935Oct 5, 2005Nov 23, 2006White Patrick MOrthopedic stabilization device
US20060264937Dec 29, 2005Nov 23, 2006White Patrick MMobile spine stabilization device
US20060276897Dec 14, 2005Dec 7, 2006St. Francis Medical Technologies, Inc.Implant for stabilizing a bone graft during spinal fusion
US20060282073Mar 31, 2004Dec 14, 2006Naum SimanovskyImplant for treating idiopathic scoliosis and a method for using the same
US20060282078Jun 10, 2005Dec 14, 2006Depuy Spine, Inc.Posterior dynamic stabilization cross connectors
US20070005062Jun 20, 2005Jan 4, 2007Sdgi Holdings, Inc.Multi-directional spinal stabilization systems and methods
US20070005063Jun 20, 2005Jan 4, 2007Sdgi Holdings, Inc.Multi-level multi-functional spinal stabilization systems and methods
US20070016190Jul 14, 2005Jan 18, 2007Medical Device Concepts LlcDynamic spinal stabilization system
US20070016201Sep 1, 2006Jan 18, 2007Spinelab GmbhElastic stabilization system for vertebral columns
US20070032123Aug 3, 2005Feb 8, 2007Timm Jens PSpring junction and assembly methods for spinal device
US20070043356Jul 26, 2005Feb 22, 2007Timm Jens PDynamic spine stabilization device with travel-limiting functionality
US20070043358Aug 5, 2005Feb 22, 2007Sdgi Holdings, Inc.Coupling assemblies for spinal implants
US20070049936Aug 28, 2006Mar 1, 2007Dennis ColleranAlignment instrument for dynamic spinal stabilization systems
US20070073289Sep 27, 2005Mar 29, 2007Depuy Spine, Inc.Posterior dynamic stabilization systems and methods
US20070083200Sep 23, 2005Apr 12, 2007Gittings Darin CSpinal stabilization systems and methods
US20070088359Feb 7, 2006Apr 19, 2007Woods Richard WUniversal dynamic spine stabilization device and method of use
US20070093814Oct 11, 2005Apr 26, 2007Callahan Ronald IiDynamic spinal stabilization systems
US20070093820Aug 29, 2006Apr 26, 2007Stefan FreudigerFrictional screw-rod connection having an indirect form-locking portion
US20070093821Sep 12, 2006Apr 26, 2007Stefan FreudigerDynamic clamping device for spinal implant
US20070093829Oct 6, 2006Apr 26, 2007Abdou M SDevices and methods for inter-vertebral orthopedic device placement
US20070118122Nov 17, 2006May 24, 2007Life Spine, LlcDynamic spinal stabilization device and systems
US20070123861Nov 10, 2005May 31, 2007Sdgi Holdings, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US20070123871Jan 4, 2007May 31, 2007Tae-Ahn JahngMethod and apparatus for flexible fixation of a spine
US20070156143Jan 3, 2006Jul 5, 2007Zimmer Spine, Inc.Instrument for pedicle screw adhesive materials
US20070161994Sep 29, 2006Jul 12, 2007Lowery Gary LHinged Polyaxial Screw and methods of use
US20070161997Oct 16, 2006Jul 12, 2007Lanx, LlcDynamic spinal stabilization
US20070162007Feb 7, 2007Jul 12, 2007Mazor Surgical Technologies, Ltd.Minimally invasive spinal fusion
US20070167947Sep 29, 2006Jul 19, 2007Gittings Darin CSpinal stabilization device
US20070168035Sep 29, 2006Jul 19, 2007Koske Nicholas CProsthetic facet and facet joint replacement device
US20070198014Feb 7, 2006Aug 23, 2007Sdgi Holdings, Inc.Articulating connecting member and anchor systems for spinal stabilization
US20070213714Feb 7, 2006Sep 13, 2007Sdgi Holdings, Inc.Surgical instruments and techniques for percutaneous placement of spinal stabilization elements
US20070213719Mar 7, 2006Sep 13, 2007Zimmer Spine, Inc.Spinal stabilization device
US20070233068Feb 22, 2006Oct 4, 2007Sdgi Holdings, Inc.Intervertebral prosthetic assembly for spinal stabilization and method of implanting same
US20070233072Mar 1, 2006Oct 4, 2007Sdgi Holdings, Inc.Modular fastener assemblies for spinal stabilization systems and methods
US20070233075Mar 16, 2006Oct 4, 2007Zimmer Spine, Inc.Spinal fixation device with variable stiffness
US20070233090Feb 23, 2007Oct 4, 2007Naifeh Bill RAligning cross-connector
US20070233091Feb 23, 2007Oct 4, 2007Naifeh Bill RMulti-level spherical linkage implant system
US20070233092Feb 26, 2007Oct 4, 2007Falahee Mark HDynamic/static facet fixation device and method
US20070233093Feb 26, 2007Oct 4, 2007Falahee Mark HMultilevel facet/laminar fixation system
US20070233094Mar 29, 2007Oct 4, 2007Dennis ColleranDynamic motion spinal stabilization system
US20070244481Apr 17, 2006Oct 18, 2007Timm Jens PSpinal stabilization device with weld cap
US20070250061Apr 20, 2007Oct 25, 2007Spinefrontier LlsSpine fixation method and apparatus
US20070270819Apr 25, 2006Nov 22, 2007Justis Jeff RSurgical instruments and techniques for controlling spinal motion segments with positioning of spinal stabilization elements
US20070270836May 8, 2006Nov 22, 2007Sdgi Holdings, Inc.Dynamic spinal stabilization members and methods
US20070270837May 8, 2006Nov 22, 2007Sdgi Holdings, Inc.Load bearing flexible spinal connecting element
US20070270838May 8, 2006Nov 22, 2007Sdgi Holdings, Inc.Dynamic spinal stabilization device with dampener
US20070276380Feb 13, 2007Nov 29, 2007Tae-Ahn JahngSpinal stabilization device
US20070288009Mar 23, 2007Dec 13, 2007Steven BrownDynamic spinal stabilization device
US20070288012Apr 23, 2007Dec 13, 2007Dennis ColleranDynamic motion spinal stabilization system and device
US20080009864Mar 23, 2007Jan 10, 2008Charlie FortonInstruments and methods for reduction of vertebral bodies
US20080021285Jan 4, 2006Jan 24, 2008Anne DrzyzgaSurgical retractor for use with minimally invasive spinal stabilization systems and methods of minimally invasive surgery
US20080021459Jul 7, 2006Jan 24, 2008Warsaw Orthopedic Inc.Dynamic constructs for spinal stabilization
US20080021461Jul 24, 2006Jan 24, 2008Warsaw Orthopedic Inc.Spinal stabilization and reconstruction with fusion rods
US20080033433Jul 31, 2007Feb 7, 2008Dante ImplicitoDynamic spinal stabilization device
US20080039838Jun 18, 2007Feb 14, 2008Landry Michael ESpinal stabilization systems and methods
US20080045951Aug 16, 2006Feb 21, 2008Depuy Spine, Inc.Modular multi-level spine stabilization system and method
US20080045957Aug 24, 2007Feb 21, 2008Landry Michael ESpinal stabilization systems and methods using minimally invasive surgical procedures
US20080051787Jun 29, 2007Feb 28, 2008Neuropro Technologies, Inc.Percutaneous system for dynamic spinal stabilization
US20080065073Sep 10, 2007Mar 13, 2008Michael PerrielloOffset dynamic motion spinal stabilization system
US20080065075Nov 15, 2007Mar 13, 2008Zimmer Spine, Inc.METHOD FOR SPINE STABILIZATION DURING OSTEOSYNTHESIS (As Amended)
US20080065079Sep 11, 2006Mar 13, 2008Aurelien BruneauSpinal Stabilization Devices and Methods of Use
US20080071273Sep 17, 2007Mar 20, 2008Hawkes David TDynamic Pedicle Screw System
US20080077139Jul 18, 2007Mar 27, 2008Landry Michael ESpinal stabilization systems with quick-connect sleeve assemblies for use in surgical procedures
USRE36221May 15, 1996Jun 1, 1999Breard; Francis HenriFlexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
DE2649042B1Oct 28, 1976Jan 5, 1978Ulrich Max BernhardKorrekturimplantat zur ventralen Derotationsspondylodese und Geraet zur Einstellung des Korrekturimplantates
DE3639810A1Nov 21, 1986May 26, 1988Heinrich UlrichImplant for correction and/or stabilisation of the spine
EP0128058A1Apr 25, 1984Dec 12, 1984SOCIETE DE FABRICATION DE MATERIEL ORTHOPEDIQUE SOFAMOR Société à responsabilité limitée dite:Spinal fixation device
EP0669109B1Feb 28, 1994May 26, 1999Sulzer Orthopädie AGStabilizer for adjacent vertebrae
EP1281362A2Jul 31, 2002Feb 5, 2003Showa IKA Kohgyo Co., Ltd.Implant for bone connector
EP1330987A1Dec 12, 2002Jul 30, 2003Biomet Merck FranceInterspinous vertebral implant
FR2612070A1 Title not available
FR2615095A1 Title not available
FR2880256B1 Title not available
GB780652A Title not available
GB2173104B Title not available
GB2382304A Title not available
WO2004024011A1Sep 11, 2003Mar 25, 2004SpinevisionLinking element for dynamically stabilizing a spinal fixing system and spinal fixing system comprising same
WO2004034916A1Oct 13, 2003Apr 29, 2004Scient'xDynamic device for intervertebral linkage with multidirectional controlled displacement
WO2006033503A1Dec 15, 2004Mar 30, 2006Kyung-Woo ParkBio-flexible spinal fixation apparatus with shape memory alloy
WO2006066685A1Nov 24, 2005Jun 29, 2006Zimmer GmbhIntervertebral stabilisation system
WO2006105935A1Apr 4, 2006Oct 12, 2006Zimmer GmbhPedicle screw
Non-Patent Citations
Reference
1"Activ-L Lumbar (Aesculap) Total Disk Arthroplasty," J.J. Yue et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, B. Lumbar Total Disk Replacement, Chapter 26, 2006, pp. 204-211.
2"BioFlex Spring Rod Pedicle Screw System," YS Kim et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 43, 2006, pp. 340-344.
3"Biomechanical Aspects Associated with Cervical Disk Arthroplasty," D.J. DiAngelo et al., Dynamic Reconstruction of the Spine, Section II, Restoration of Cervical Motion Segment, Chapter 3, 2006, pp. 27-32.
4"Biomechanical Considerations for Total Lumbar Disk Replacement," J. LeHuec et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, B. Lumbar Total Disk Replacement, Chapter 20, 2006, pp. 149-153.
5"Biomechanical Testing Protocol for Evaluating Cervical Disk Arthroplasty," D.J. DiAngelo et al., Dynamic Reconstruction of the Spine, Section II, Restoration of Cervical Motion Segment, Chapter 4, 2006, pp. 33-41.
6"Bryan Cervical Disc Device," R. Hacker, Dynamic Reconstruction of the Spine, Section II, Restoration of Cervical Motion Segment, Chapter 7, 2006, pp. 59-66.
7"Cervical Disk Arthroplasty: Rationale, Indications, and Clinical Experience," M.R. Lim et al., Dynamic Reconstruction of the Spine, Section II, Restoration of Cervical Motion Segment, Chapter 5, 2006, pp. 42-51.
8"CerviCore Cervical Intervertebral Disk Replacement," S.S. Lee et al., Dynamic Reconstruction of the Spine, Section II, Restoration of Cervical Motion Segment, Chapter 12, 2006, pp. 92-95.
9"Cervidisc Concept: Six-Year Follow-Up and Introducing Cervidisc II: DISCOCERV," A.S. Ramadan et al., Dynamic Reconstruction of the Spine, Section II, Restoration of Cervical Motion Segment, Chapter 11, 2006, pp. 86-91.
10"Charté Artificial Disc," F.H. Geisler, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, B. Lumbar Total Disk Replacement, Chapter 22, 2006, pp. 160-178.
11"Coflex," ES Kim et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 34, 2006, pp. 268-273.
12"Complications of Lumbar Disk Arthroplasty," SH Lee et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, B. Lumbar Total Disk Replacement, Chapter 29, 2006, pp. 227-233.
13"Current Concepts in Spinal Fusion versus Nonfusion," D.H. Walker et al., Dynamic Reconstruction of the Spine, Section I, Motion Preservation of the Spine, Chapter 2, 2006, pp. 16-23.
14"Dynamic Lumbar Stabilization with the Wallis Interspinous Implant," J. Sénégas, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 33, 2006, pp. 258-267.
15"Facet Replacement Technologies," M.R. Lim et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, D. Facet Replacement, Chapter 44, 2006, pp. 347-353.
16"Flexible rods and the case for dynamic stabilization," Jason M. Highsmith, M.D., et al., Neurosurg. Focus, vol. 22, Jan. 2007, pp. 1-5.
17"Functional Lumbar Artificial Nucleus Replacement: The DASCOR System," J.E. Sherman et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, A. Lumbar Nucleus Replacement, Chapter 15, 2006, pp. 114-121.
18"Graf Soft Stabilization: Graf Ligamentoplasty," YS Kim et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 39, 2006, pp. 305-311.
19"Historical Review of Spinal Arthroplasty and Dynamic Stabilizations," K M. Shibata et al., Dynamic Reconstruction of the Spine, Section I, Motion Preservation of the Spine, Chapter 1, 2006, pp. 3-15.
20"Indications and Techniques in Annuloplasty," M.Y. Wang, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, E. Annular Repair, Chapter 47, 2006, pp. 375-379.
21"Indications for Total Lumbar Disk Replacement," R. Bertagnoli, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, B. Lumbar Total Disk Replacement, Chapter 21, 2006, pp. 154-159.
22"Isobar TTL Dynamic Instrumentation," A.E. Castellvi et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 40, 2006, pp. 312-322.
23"Management of Vascular and Surgical Approach-Related Complications for Lumbar Total Disk Replacement," S.H. Lee et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, B. Lumbar Total Disk Replacement, Chapter 28, 2006, pp. 221-226.
24"Management of Vascular and Surgical Approach—Related Complications for Lumbar Total Disk Replacement," S.H. Lee et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, B. Lumbar Total Disk Replacement, Chapter 28, 2006, pp. 221-226.
25"MAVERICK Total Disc Replacement," M.F.Gornet, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, B. Lumbar Total Disk Replacement, Chapter 24, 2006, pp. 186-195.
26"Minimally Invasive Posterior Dynamic Stabilization System," L. Pimenta et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 41, 2006, pp. 323-329.
27"Molecular Therapy of the Intervertebral Disk," S.T. Yoon, Dynamic Reconstruction of the Spine, Section IV, Future Biological Approaches to Disk Repair, Chapter 48, 2006, pp. 383-388.
28"Morphological and functional changes of the lumbar spinous processes in the elderly," R. Scapinelli, Surgical Radiologic Anatomy, vol. 11, 1989, pp. 129-133.
29"NeuDisc," R. Bertagnoli et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, A. Lumbar Nucleus Replacement, Chapter 16, 2006, pp. 122-126.
30"Nonfusion Stabilization of the Degenerated Lumbar Spine with Cosmic," A. von Strempel, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 42, 2006, pp. 330-339.
31"Nucore Injectable Disk Nucleus," S.H. Kitchel et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, A. Lumbar Nucleus Replacement, Chapter 19, 2006, pp. 142-146.
32"PCM (Porous Coated Motion) Artificial Cervical Disc," L Pimenta et al., Dynamic Reconstruction of the Spine, Section II, Restoration of Cervical Motion Segment, Chapter 10, 2006, pp. 78-85.
33"Pioneer Surgical Technology NUBAC Artificial Nucleus," Q. Bao et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, A. Lumbar Nucleus Replacement, Chapter 17, 2006, pp. 128-136.
34"Prestige Cervical Artificial Disk," J.T. Robertson, Dynamic Reconstruction of the Spine, Section II, Restoration of Cervical Motion Segment, Chapter 8, 2006, pp. 67-71.
35"ProDisc Lumbar Artificial Disk," J.E.Zigler et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, B. Lumbar Total Disk Replacement, Chapter 23, 2006, pp. 179-185.
36"ProDisc-C Cervical Artificial Disk" G.K. Jeong et al., Dynamic Reconstruction of the Spine, Section II, Restoration of Cervical Motion Segment, Chapter 9, 2006, pp. 72-77.
37"Prosthetic Disk Nucleus Partial Disk Replacement: Pathobiological and Biomechanical Rationale for Design and Function," C.D. Ray et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, A. Lumbar Nucleus Replacement, Chapter 13, 2006, pp. 99-104.
38"Rationale for Dynamic Stabilization II-SoftFlex System," D.K. Sengupta, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 31, 2006, pp. 244-250.
39"Rationale for Dynamic Stabilization II—SoftFlex System," D.K. Sengupta, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 31, 2006, pp. 244-250.
40"Rationale for Dynamic Stabilization," D.S. McNally, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 30, 2006, pp. 237-243.
41"Shape Memory Implant (KIMPF-DI Fixing) System," YS Kim et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 37, 2006, pp. 292-298.
42"SINUX (Sinitec)," J. Zoellner, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, A. Lumbar Nucleus Replacement, Chapter 18, 2006, pp. 137-141.
43"Spinal Kinetics Cervical Disc," D.H. Kim et al., Dynamic Reconstruction of the Spine, Section II, Restoration of Cervical Motion Segment, Chapter 6, 2006, pp. 52-58.
44"Tension Band System," SH Lee et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 36, 2006, pp. 284-291.
45"The FlexiCore Disk," A.D. Sharan et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, B. Lumbar Total Disk Replacement, Chapter 27, 2006, pp. 212-220.
46"The Mobidisc Prosthesis," J.P. Steib et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, B. Lumbar Total Disk Replacement, Chapter 25, 2006, pp. 196-203.
47"The Paraspinal Sacrospinalis-Splitting Approach to the Lumbar Spine," Leon L. Wiltse et al., The Journal of Bone & Joint Surgery, vol. 50-A, No. 5, Jul. 1968 pp. 919-926.
48"The Raymedica Prosthetic Disk Nucleus (PDN): Stabilizing the Degenerated Lumbar Vertebral Segment without Fusion or Total Disk Replacement," C.D. Ray, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, A. Lumbar Nucleus Replacement, Chapter 14, pp. 105-113, 2006.
49"The Spinous Process: The Forgotten Appendage," Kenneth R. Kattan, M. D. eta l., Skeletal Radiology, vol. 6, 1981, pp. 199-204.
50"The X STOP Interspinous Process Decompression System for the Treatment of Lumbar Neurogenic Claudication," R.M. Thunder et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 32, 2006, pp. 251-257.
51"TOPS-Total Posterior Facet Replacement and Dynamic Motion Segment Stabilization System," L.T. Khoo et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, D. Facet Replacement, Chapter 45, 2006, pp. 354-363.
52"TOPS—Total Posterior Facet Replacement and Dynamic Motion Segment Stabilization System," L.T. Khoo et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, D. Facet Replacement, Chapter 45, 2006, pp. 354-363.
53"Total Facet Arthroplasty System (TFAS)," S. Webb, Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, D. Facet Replacement, Chapter 46, 2006, pp. 364-371.
54"Treatment of Mobile Vertebral Instability with Dynesys," G. Dubois et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 38, 2006, pp. 299-304.
55DIAM (Device for Intervertebral Assisted Motion) Spinal Stabilization System, K. Singh et al., Dynamic Reconstruction of the Spine, Section III, Restoration of Lumbar Motion Segment, C. Dynamic Posterior Stabilization, Chapter 35, 2006, pp. 274-283.
56Dynamic Reconstruction of the Spine, D.H. Kim et al., 2006, cover through p. XIX.
57Dynamic Reconstruction of the Spine, D.H. Kim et al., 2006, Index, pp. 389-402.
58International Search Report for PCT/US/08/65434 dated Oct. 9, 2008, 4 pages.
59International Search Report for PCT/US/08/65435 dated Sep. 2, 2008, 4 pages.
60International Search Report for PCT/US07/70981 dated Apr. 23, 2008, 7 pages.
61ITOIKA Medical Instruments, product description for S-Plate, 15 pages, http://ito-ika.co.jp/s-plate/splate1.pdf and http://ito-ika.co.jp/s-plate/splate1.pdf, 2006.
62Mekanika-The Spinal Stabilization Company, product description for Modulus System, 2 pages, http://mekanika.com/htm/modsystem.htm, 2003.
63Mekanika—The Spinal Stabilization Company, product description for Modulus System, 2 pages, http://mekanika.com/htm/modsystem.htm, 2003.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8790380Apr 30, 2008Jul 29, 2014Dynamic Spine, LlcSegmental orthopaedic device for spinal elongation and for treatment of scoliosis
US8864828Jan 15, 2009Oct 21, 2014Vertiflex, Inc.Interspinous spacer
US8900271May 1, 2012Dec 2, 2014The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US9039742Apr 9, 2012May 26, 2015The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US9119680Feb 27, 2012Sep 1, 2015Vertiflex, Inc.Interspinous spacer
US9155570Sep 14, 2012Oct 13, 2015Vertiflex, Inc.Interspinous spacer
US9161784 *Feb 15, 2011Oct 20, 2015Dynamic Spine, LlcSegmental orthopedic device for spinal elongation and for treatment of scoliosis
US9204899Jul 28, 2014Dec 8, 2015Dynamic Spine, LlcSegmental orthopedic device for spinal elongation and for treatment of scoliosis
US9204908 *Feb 15, 2011Dec 8, 2015Dynamic Spine, LlcSegmental orthopedic device for spinal elongation and for treatment of scoliosis
US9277950Jun 9, 2011Mar 8, 2016Dynamic Spine, LlcLow-profile, uniplanar bone screw
US20090030462 *Apr 30, 2008Jan 29, 2009Glenn R. Buttermann, M.D.Segmental Orthopaedic device for spinal elongation and for treatment of Scoliosis
US20110137353 *Jun 9, 2011Buttermann Glenn RSegmental orthopedic device for spinal elongation and for treatment of scoliosis
Classifications
U.S. Classification606/276, 606/257
International ClassificationA61B17/70
Cooperative ClassificationA61B17/7056, A61B17/7052, A61B17/7047
European ClassificationA61B17/70H, A61B17/70D4, A61B17/70C
Legal Events
DateCodeEventDescription
Jun 16, 2008ASAssignment
Owner name: SPARTEK MEDICAL, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KLYCE, HENRY A;ZUCHERMAN, JAMES F;HSU, KEN Y;AND OTHERS;REEL/FRAME:021102/0747;SIGNING DATES FROM 20071105 TO 20071107
Owner name: SPARTEK MEDICAL, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KLYCE, HENRY A;ZUCHERMAN, JAMES F;HSU, KEN Y;AND OTHERS;SIGNING DATES FROM 20071105 TO 20071107;REEL/FRAME:021102/0747
Jan 23, 2009ASAssignment
Owner name: SPARTEK MEDICAL, INC., CALIFORNIA
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE STATE OF INCORPORATION AND ADDRESS OF THE ASSIGNEE. DOCUMENT PREVIOUSLY RECORDED AT REEL 021102 FRAME 0747;ASSIGNORS:KLYCE, HENRY A.;ZUCHERMAN, JAMES F.;HSU, KEN Y.;AND OTHERS;REEL/FRAME:022274/0615;SIGNING DATES FROM 20081216 TO 20081230
Owner name: SPARTEK MEDICAL, INC., CALIFORNIA
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE STATE OF INCORPORATION AND ADDRESS OF THE ASSIGNEE. DOCUMENT PREVIOUSLY RECORDED AT REEL 021102 FRAME 0747;ASSIGNORS:KLYCE, HENRY A.;ZUCHERMAN, JAMES F.;HSU, KEN Y.;AND OTHERS;SIGNING DATES FROM 20081216 TO 20081230;REEL/FRAME:022274/0615
Dec 18, 2015REMIMaintenance fee reminder mailed
May 8, 2016LAPSLapse for failure to pay maintenance fees
Jun 28, 2016FPExpired due to failure to pay maintenance fee
Effective date: 20160508