Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS8180408 B2
Publication typeGrant
Application numberUS 12/161,280
PCT numberPCT/SE2006/050457
Publication dateMay 15, 2012
Filing dateNov 7, 2006
Priority dateJan 17, 2006
Also published asCN101361280A, CN101361280B, CN103209469A, EP1974476A1, US8694061, US20090005127, US20120195245, US20140161013, WO2007084045A1, WO2007084045A8
Publication number12161280, 161280, PCT/2006/50457, PCT/SE/2006/050457, PCT/SE/2006/50457, PCT/SE/6/050457, PCT/SE/6/50457, PCT/SE2006/050457, PCT/SE2006/50457, PCT/SE2006050457, PCT/SE200650457, PCT/SE6/050457, PCT/SE6/50457, PCT/SE6050457, PCT/SE650457, US 8180408 B2, US 8180408B2, US-B2-8180408, US8180408 B2, US8180408B2
InventorsPål Frenger, Per Magnusson, Stefan Parkvall, Niclas Wiberg
Original AssigneeTelefonaktiebolaget Lm Ericsson (Publ)
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and arrangement for reducing power consumption in a mobile communication network
US 8180408 B2
Abstract
The invention relates to a method and an arrangement for reducing power consumption of a receiver in a mobile communication network comprising a sender transmitting packet data on a downlink channel to one or more receivers over a radio interface. Inactive time instants and listening time instants are defined according to provided rules. The receiver is arranged to listen for information from the sender during the listening time instants and to sleep during the inactive time instants. Thus, less power will be consumed during the inactive time instants.
Images(3)
Previous page
Next page
Claims(26)
1. A method for reducing power consumption of a receiver in a mobile communication network comprising a sender transmitting packet data on a downlink channel to one or more receivers over a radio interface, wherein the method comprises the step of:
making an agreement on a rule with said sender;
defining inactive time instants and listening time instants according to said agreed rule,
wherein, during said listening time instants said receiver is listening for signalling from said sender,
wherein, during said inactive time instants, said receiver is not listening for signalling from said sender and said sender agrees not to send packets to the receiver, whereby less power is consumed during said inactive time instants.
2. A method according to claim 1, wherein the method further comprises the step of defining said listening time instants according to a fixed periodical pattern.
3. A method according to claim 1, wherein said listening time instants starts at a pre-determined time and ends when a packet is received in said receiver.
4. A method according to claim 3, wherein the method further comprises the step of sending a dummy packet to said receiver in order to end said listening time instants.
5. A method according to claim 1, wherein said listening time instants starts at a pre-determined time and ends after a pre-determined time.
6. A method according to claim 1, wherein the method further comprises the step of sending commands instructing said receiver to go into said inactive mode for a time period according to instructions in said command.
7. A method according to claim 1, wherein the method further comprises the step of sending commands instructing said receiver to go into said inactive mode until a pre-determined time.
8. A method according to claim 1, wherein the method further comprises the step of triggering the start of said listening time instant by a negative acknowledgement sent from said receiver when a packet is erroneously received in said receiver.
9. A method according to claim 1, wherein said listening time instant starts after a channel quality report is received in said receiver.
10. A method according to claim 1, wherein said rules are tabulated for different types of applications.
11. A method according to claim 1, wherein the method further comprises the step of automatically selecting said rules by means of an algorithm based on pre-determined parameters.
12. A method according to claim 1, wherein the method further comprises the step of determining said rules by means of an adaptive algorithm based on observed traffic characteristics.
13. An arrangement for reducing power consumption of a receiver in a mobile communication network comprising a sender transmitting packet data on a downlink channel to one or more receivers over a radio interface, wherein the arrangement comprises:
a processor configured to:
make an agreement on a rule with said sender;
define inactive time instants and listening time instants according to said agreed rule,
wherein, during said listening time instants said receiver is arranged to listen for signalling from said sender,
wherein, during said inactive time instants, said receiver is not arranged to listen for signalling from said sender and said sender agrees not to send packets to the receiver, whereby less power is consumed during said inactive time instants.
14. An arrangement according to claim 13, wherein the arrangement further comprises means for defining said listening time instants according to a fixed periodical pattern.
15. An arrangement according to claim 14, wherein said listening time instants are arranged to start at a pre-determined time and to end when a packet is received in said receiver.
16. An arrangement according to claim 14, wherein the processor is further configured to send a dummy packet to said receiver in order to end said listening time instants.
17. An arrangement according to claim 14, wherein said listening time instants are arranged to start at a pre-determined time and to end after a pre-determined time.
18. An arrangement according to claim 14, wherein the processor is further configured to send commands instructing said receiver to go into said inactive mode for a time period according to instructions in said command.
19. An arrangement according to claim 14, wherein the processor is further configured to send commands instructing said receiver to go into said inactive mode until a pre-determined time.
20. An arrangement according to claim 14, wherein the processor is further configured to trigger the start of said listening time instant by a negative acknowledgement sent from said receiver when a packet is erroneously received in said receiver.
21. An arrangement according to claim 14, wherein said listening time instants are arranged to start after a channel quality report is received in said receiver.
22. An arrangement according to claim 13, wherein said rules are tabulated for different types of applications.
23. An arrangement according to claim 13, wherein the processor is further configured to automatically select said rules by means of an algorithm based on pre-determined parameters.
24. An arrangement according to claim 13, wherein the processor is further operable to determine said rules by means of an adaptive algorithm based on observed traffic characteristics.
25. The arrangement of claim 13, wherein the arrangement is part of a mobile terminal.
26. A tangible, non-transitory computer-readable medium storing a computer program for reducing power consumption of a receiver in a mobile communication network comprising a sender transmitting packet data on a downlink channel to one or more receivers over a radio interface, wherein the computer program, when executed by a processor, performs the step of:
making an agreement on a rule with said sender;
defining inactive time instants and listening time instants according to said agreed rule,
wherein, during said listening time instants said receiver is listening for signalling from said sender,
wherein, during said inactive time instants, said receiver is not listening for signaling from said sender and said sender agrees not to send packets to the receiver, whereby less power is consumed during said inactive time instants.
Description
TECHNICAL FIELD

The present invention generally relates to a mobile communication network and, in particular, to an arrangement allowing for reducing power consumption in a mobile terminal as well as a method for such reduction. The invention further relates to a computer-readable medium containing computer program for reducing power consumption in a mobile terminal.

BACKGROUND OF THE INVENTION

In packet transmission systems, the data is organized into packets and transmitted along with control information such as the size (or start and end) of the data, and the identity of the receiver (at least when communicating over shared media). In many systems the time is divided into time frames, where each frame carries zero or more packets, along with the mentioned control information.

A receiver in such a system monitors the transmitted control information for the presence of packets that should be received by that receiver. In situations where the bitrate required by the application is much lower than the transmission bitrate, the receiver is most of the time essentially idle, just monitoring the control information.

Examples of the above include all existing cellular packet transmission techniques, i.e. GPRS/EDGE, WCDMA (R99, HSDPA, and E-UL), and CDMA2000 (1x, Ev-DO, and Ev-DV).

With many transmission technologies, actively monitoring the control information can be very power consuming, even if the control information itself contains little information and there is no data that needs to be received. For example, a wideband radio transmission technique, designed for high data bit rates, may require that the receiver demodulates and processes the entire frequency band even though it is only interested in the control information. This is the case, e.g. for WCDMA HSDPA and may well turn out to be the case for OFDM-based systems such as the long-term evolution (LTE) of UMTS.

This means that for a low-rate service (such as voice) the power consumption can be significantly larger when using a wideband system compared to a narrowband system.

If the mobile terminal occasionally could enter a “sleep mode”, meaning that it does not monitor the control information during a period of time, power consumption could be reduced. This type of sleep mode is currently used when the mobile terminal has entered a paging state. In paging state the mobile terminal only occasionally listens for a “wake up” or “paging” signal, from the network. However this method requires additional signaling between the network and the mobile terminal, in order to “wake it up”, and wouldn't be appropriate to use for short time intervals e.g. between successive packets in an ongoing real-time data session.

SUMMARY OF THE INVENTION

Accordingly, it is an objective with the present invention to provide an improved method for reducing power consumption of a receiver in a mobile communication network comprising a sender transmitting packet data on a downlink channel to one or more receivers over a radio interface.

Another objective with the present invention is to provide an improved arrangement for reducing power consumption of a receiver in a mobile communication network comprising a sender transmitting packet data on a downlink channel to one or more receivers over a radio interface.

A further objective with the present invention is to provide an improved computer-readable medium for reducing power consumption of a receiver in a mobile communication network comprising a sender transmitting packet data on a downlink channel to one or more receivers over a radio interface.

Further embodiments are listed in the dependent claims.

Thanks to the provision of defined sleep rules, the power consumption in mobile terminals is reduced and, thus, the battery life is increased.

The network and the terminal agree on a rule that specifies time instants when the network may not transmit anything to the terminal, thereby allowing the terminal to disable receiving processing. No extra signaling is needed when the terminal should listen for control information, thus enabling this technique to be used on a very short time interval, e.g. between successive packets in an ongoing real-time session. Further, the proposed rule principles, as well as selection algorithms, are designed to work well during ongoing sessions.

When running a low-rate service over a wideband system, the sender and receiver agrees on a sleep rule that prescribes when the sender may send packets to the receiver and when it may not do so. Such a rule would typically specify relatively long periods when no packets should be transmitted to the receiver, allowing the receiver to stop monitoring the media for control information.

Still other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, wherein like reference characters denote similar elements:

FIG. 1 shows an exemplary block diagram over a communication network;

FIG. 2 shows a state diagram of a user equipment having the present invention implemented.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

FIG. 1 depicts a communication system, such as a WCDMA communication system, including a Radio Access Network (RAN), such as the UMTS Terrestrial Radio Access Network (UTRAN) architecture, comprising at least one Radio Base Station (RBS) (Base Station (BS) or Node B) 15 connected to one or more Radio Network Controllers (RNCs) 10. The RAN is connected to a Core network (CN) 12. The RAN and the CN 12 provide communication and control for a plurality of user equipments (UE) 18 (only one is shown in FIG. 1), that each uses downlink (DL) channels 13 (i.e. base-to-user or forward) and uplink (UL) channels 14 (i.e. user-to-base or reverse). On the downlink channel 13, the RBS 15 transmits to each user equipment 18 at respective power level. On the uplink channel 14, the user equipments 18 transmit data to the RBS 15 at respective power level. According to a preferred embodiment of the present invention, the communication system is herein described as a WCDMA communication system. The skilled person, however, realizes that the inventive method and arrangement works very well on any packet based system.

A sleep rule should be setup between a pair of sender and receiver. In the sender, the rule specifies when the sender is allowed to transmit packets to the receiver. These time instants will be referred to as the active awake periods, while the remaining time instants will be called active sleep periods (inactive periods). During active sleep periods, the receiver can turn off its reception, demodulation, and processing hardware and software, thereby saving power.

The active sleep mode according to the invention is different from the inactive sleep mode according to prior art. In the prior art inactive sleep mode, the terminal is only listening on a paging channel and is typically assigned a long Radio Network Temporary Identifier (RNTI). The terminal needs a wake-up message on the paging channel to be able to receive any information. In order to achieve an effective scheduling, the terminal needs a shorter RNTI, which requires additional signaling.

In the active sleep mode according to the present invention, the terminal typically has a short RNTI, but it is not possible to address the terminal unless it is in an active awake mode. However, the transition from the active sleep state to the active awake state requires no signaling at all.

If the active awake periods of two or more terminals are configured such that they do not overlap in time then it is possible to use the same short RNTI for all these terminals. The base station may then use the shared short RNTI in the transmission time interval corresponding to active awake period of the terminal it needs to address. This can be used to increase the efficiency of the control signaling since there is only a limited number of unique RNTI sequences of any given length, and in order for the control signaling to consume little resources the short RNTIs shall be of as short length as possible.

FIG. 2 shows a state diagram, in which an active state of the UE is denoted with 20. When the UE is active, it is assigned a short Radio Network Temporary Identifier (RNTI) and may send and receive data. According to the present invention, the active state 20 has been divided into an active awake state 21 and an active sleep state 22.

In the active awake state 21:

    • both UE and BS initiated actions are allowed;
    • the UE may receive DL control information, demodulate and decode the control channel;
    • the UE may receive DL data.

In the active sleep state 22:

    • only UE initiated actions are performed:
    • UL transmissions possible:
    • Measurements, channel estimation, cell search etc are possible;
    • Demodulation and decoding of the control channel may be turned off.

The transition 24 from the active sleep state 22 to the active awake state 21:

    • is triggered by pre-determined rules (pattern);
    • is immediate with no additional signaling required;
    • can not be initiated from the transmitter.

The transition 24 from the active awake state 21 to the active sleep state 22:

    • may be triggered by pre-determined rules (pattern);
    • may also be initiated from the transmitter, e.g. with a specific command or as a result of transmitting a packet to the receiver;
    • is immediate with no additional signaling required.

On the contrary to the active state 20, the UE also have an inactive sleeping state denoted with 23. In the inactive sleeping state 23:

    • the receiver radio of the UE is periodically turned off;
    • the UE only listens to paging messages from the BS;
    • the UE is assigned a long RNTI;
    • the transmitter radio of the UE may also be turned off.

The transition 25 between the active state 20 and the inactive sleep state 23:

    • the BS may only trigger transitions from inactive sleeping 23 to active 20 state by transmitting explicit wake-up signaling.
    • When entering the active state 20, the UE will also enter one of the sub-states active awake 21 or active sleep 22 by following a pre-defined rule;
    • A timer or explicit signaling may trigger transitions from the active 20 to the inactive sleeping state 23.

There are two steps of the invention: principles for sleep rules, and algorithms to select sleep rules suitable in specific scenarios.

In the following when discussing the “active” mode/period it is the active awake state mode/period that is meant and when discussion the “sleep” mode/period it is the active sleep mode/period that is meant.

One straightforward principle is to specify a fixed pattern of active periods and sleep periods. Such a pattern would typically be periodic. For example, in the case of voice (telephony) applications, it could amount to a short active period (a few frames) every 20 ms.

A drawback of a fixed pattern is the inherent conflict between scheduler flexibility and power consumption. If the active period is very short, the sender has little or no freedom as to which receiver to transmit to at what time, which can reduce the transmission efficiency. A longer active period gives the scheduler more freedom but requires the receiver to listen actively for a longer period, reducing the power consumption gain.

A slightly more advanced rules principle is to specify that each active period starts at a predetermined time and ends when a packet has been received, after which the receiver can go back to sleep mode. Such dynamic active periods may be specified to start periodically, e.g. once every 20 ms. If no packet is transmitted during an active period, it extends until the next active period would anyway have started. Alternatively, the active period may be specified to end after a certain time, e.g. 5 ms, if no packet is transmitted.

To shorten the active period for the receiver when there is nothing to receive, the sender may send dummy/empty packets to the receiver in order to force the receiver to go into sleep mode. This can be advantageous especially in low and medium load situations when there is unused transmission capacity available.

More generally, sleep commands may be embedded in the transmission. For instance, the network may send a few packets followed by a command that instructs the terminal to sleep for a certain time interval, or until a certain time when it should wake up.

The sleep rules may also be connected with retransmissions. If a packet has been received in error, and the receiver informs the sender by means of a negative acknowledgement, a new active period can be defined to start as a result. The extent of this active period should be coupled to the nature of retransmissions. For example, it should not start earlier than the earliest time at which a retransmission can possibly occur, e.g. due to delays in transmission and processing of the acknowledgement. Further, if the retransmission scheme mandates that retransmissions shall occur at a certain exact time instant, the active period should be set to only include that time instant.

Another option is to relate the active periods to channel quality reporting from the receiver. Such reporting is present for example in WCDMA HSDPA, in the form of CQI reports that are transmitted with a period that is signaled from the network to the terminal. It may be desirable to keep the period long to limit the amount of radio resources spent on the reporting. A drawback of this is that the network has up-to-date information about the channel quality only directly after a CQI report. The accuracy of that information then reduces as time passes, until the next report. In such cases, it may be advantageous to specify the sleep rule such that each active period begins slightly after a CQI report, so that the network can utilize up-to-date information about the channel quality.

Naturally, sleep rules should be selected dependent on the type of traffic in order to be efficient. This could either be done based on knowledge of the application type (e.g. if it is a speech call or a video call), agreed QoS for the traffic, or based on the observed nature of the traffic.

If explicit information about particular applications is available, e.g. from higher layers, then pre-designed sleep rules can be tabulated for some applications. For instance, a speech application may have a sleep rule where the terminal enters sleep mode immediately upon reception of a data packet, and periodically returns to active mode every 20 ms, as discussed above.

More generally, the desired nature of the radio connection may be known in a parameterized form, e.g. in the form of RAB parameters [ref to 3GPP spec] or other type of QoS agreement. This may for instance include the maximum bit rate, guaranteed bit rate, maximum packet size, and maximum delay. Then the sleep rule can be selected automatically by means of an algorithm. For example, the sleep rule may be designed to enter the active period periodically with a period that is determined from the QoS parameters. The period may be calculated by comparing the maximum incoming traffic bit rate with the estimated bit rate over the radio, such that it is likely that, at each active period, all buffered data can be transmitted in a single transmission. With such an algorithm, the sleep rule may be dynamically updated based on changes in the estimated bit rates.

An alternative may also be to use an adaptive algorithm that determines the sleep rules based on observed traffic characteristics. An example can be to monitor the inter-arrival time between packets for each user and dynamically adapt the sleep rule to this time. This can be done either in the network or in the terminal (or even both), depending on the nature of the control signaling defined to setup the sleep rules.

The invention, if properly implemented, can significantly reduce the power consumption in the terminal, thereby increasing the battery life.

It will be appreciated that at least some of the procedures described above are carried out repetitively as necessary to respond to the time-varying characteristics of the channel between the transmitter and the receiver. To facilitate understanding, many aspects of the invention are described in terms of sequences of actions to be performed by, for example, elements of a programmable computer system. It will be recognized that the various actions could be performed by specialized circuits (e.g. discrete logic gates interconnected to perform a specialized function or application-specific integrated circuits), by program instructions executed by one or more processors, or a combination of both.

Moreover, the invention can additionally be considered to be embodied entirely within any form of computer-readable storage medium having stored therein an appropriate set of instructions for use by or in connection with an instruction-execution system, apparatus or device, such as computer-based system, processor-containing system, or other system that can fetch instructions from a medium and execute the instructions. As used here, a “computer-readable medium” can be any means that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction-execution system, apparatus or device. The computer-readable medium can be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device or propagation medium. More specific examples (a non-exhaustive list) of the computer-readable medium include an electrical connection having one or more wires, a portable computer diskette, a random access memory (RAM), a read only memory (ROM), an erasable programmable read only memory (EPROM or Flash memory), an optical fibre, and a portable compact disc read only memory (CD-ROM).

Thus, a computer-readable medium containing computer program according to a preferred embodiment of the present invention for reducing power consumption of a mobile terminal in a communication network comprising a sender transmitting packet data on a downlink channel to one or more receivers over a radio interface, wherein the computer program performs the step of: defining inactive time instants and listening time instants, during which said receiver is listening for signalling from said sender, whereby less power is consumed during said inactive time instants.

Modifications to embodiments of the invention described in the foregoing are possible without departing from the scope of the invention as defined by the accompanying claims. Expressions such as “including”, “comprising”, “incorporating”, “consisting of”, “have”, “is” used to describe and claim the present invention are intended to be constructed in a non-exclusive manner, namely allowing for items, components or elements not explicitly described also to be present. Reference to the singular is also to be construed to relate to the plural and vice versa.

Numerals included within parentheses in the accompanying claims are intended to assist understanding of the claims and should not be construed in any way to limit subject matter claimed by these claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4961073 *Feb 27, 1989Oct 2, 1990Motorola, Inc.Battery saving apparatus and method providing optimum synchronization codeword detection
US4964121 *Aug 30, 1989Oct 16, 1990Motorola, Inc.Battery saver for a TDM system
US5109530 *Oct 24, 1990Apr 28, 1992Motorola, Inc.Receiver with battery saver
US5115236 *Oct 28, 1988May 19, 1992U.S. Philips CorporationRemote control system using a wake up signal
US5241542 *Aug 23, 1991Aug 31, 1993International Business Machines CorporationBattery efficient operation of scheduled access protocol
US5278831 *Jul 7, 1992Jan 11, 1994U.S. Philips CorporationInformation transmission system
US5355518 *May 26, 1992Oct 11, 1994Kindinger Peter AReceiver with constant battery saving duty cycle
US5473319 *Feb 25, 1994Dec 5, 1995Nec CorporationPaging receiver
US5566081 *Oct 25, 1993Oct 15, 1996Nec CorporationMethod of saving power consumption in a battery operated pager receiver
US5606728 *Jun 5, 1995Feb 25, 1997Motorola, Inc.Method and apparatus for reducing power consumption in a selective call radio
US5744874 *May 22, 1996Apr 28, 1998Hitachi, Ltd.Car electronic control system & method for controlling the same
US5767588 *Jun 7, 1996Jun 16, 1998Nippondenso Co., Ltd.Wireless vehicle control system
US5838257 *May 24, 1996Nov 17, 1998Trw Inc.Keyless vehicle entry system employing portable transceiver having low power consumption
US5883885 *Nov 7, 1996Mar 16, 1999Telefonaktiebolaget Lm EricssonBase and mobile stations including enhanced sleep mode
US6037675 *Mar 6, 1998Mar 14, 2000Hitachi, Ltd.Car electronic control system and method for controlling the same
US6212398 *Dec 3, 1998Apr 3, 2001Ericsson Inc.Wireless telephone that rapidly reacquires a timing reference from a wireless network after a sleep mode
US6236850 *Jan 8, 1999May 22, 2001Trw Inc.Apparatus and method for remote convenience function control with increased effective receiver seek time and reduced power consumption
US6532259 *Sep 28, 1999Mar 11, 2003International Business Machines CorporationEqualization method and apparatus with gain adjustment for direct access storage device (DASD) data channels
US6741836 *Feb 15, 2002May 25, 2004Qualcomm IncorporatedDual mode bluetooth/wireless device with power conservation features
US6754513 *Aug 21, 2000Jun 22, 2004Siemens AktiengesellschaftMethod and configuration for identification of a mobile station associated with a base station
US6829493 *Apr 24, 2000Dec 7, 2004Denso CorporationAdaptive adjustment of sleep duration to increase standby time in wireless mobile stations
US6880096 *Dec 4, 2001Apr 12, 2005Sumitomo Wiring Systems, Ltd.Method for reducing power consumption of CPU, electronic apparatus, and recording medium having power consumption reduction program recorded thereon
US6882286 *Apr 20, 2000Apr 19, 2005Funai Electric Co., Ltd.Remote controller and electrical apparatus controlled by the same
US7254725 *Aug 29, 2003Aug 7, 2007Siemens AktiengesellschaftMethod for the power-saving control of a receiving device, in particular for an access control system for an automobile, and a corresponding receiving device
US7295827 *Mar 31, 2004Nov 13, 2007Intel CorporationMobile station dynamic power saving control
US7551057 *Nov 4, 2005Jun 23, 2009Lear CorporationRemote entry system with increased transmit power and reduced quiescent current
US7656853 *Dec 27, 2004Feb 2, 2010Microsoft CorporationReducing power consumption of a wireless device
US7668129 *Mar 30, 2006Feb 23, 2010Intel CorporationLearning mechanism to configure power save parameters for automatic power save delivery
US7881755 *Feb 9, 2006Feb 1, 2011Marvell International Ltd.Wireless LAN power savings
US7885690 *Dec 28, 2005Feb 8, 2011Toppoly Optoelectronics Corp.Methods for driving devices capable of displaying images and processing audio messages
US7899076 *Aug 20, 2008Mar 1, 2011Hon Hai Precision Industry Co., Ltd.Network device and working mode switching method
US7916687 *Oct 4, 2006Mar 29, 2011Qualcomm IncorporatedStandby time improvements
US20040235536 *Apr 28, 2004Nov 25, 2004Samsung Electronics Co., Ltd.Method for setting sleep interval in a broadband wireless access communication system
EP1571785A2Mar 4, 2005Sep 7, 2005Samsung Electronics Co., Ltd.System and method for controlling an operational mode of a MAC layer in a broadband wireless access communication system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8826348Nov 29, 2007Sep 2, 2014Samsung Electronics Co., Ltd.System and method for wireless communication of uncompressed video having a relay device for power saving
Classifications
U.S. Classification455/574, 455/343.5, 455/571, 455/343.2
International ClassificationH04B1/16, H04B1/38
Cooperative ClassificationH04W52/0219, H04W52/0216, H04W52/287, H04W52/286, Y02B60/50, H04W52/28, H04W52/0206
European ClassificationH04W52/28, H04W52/02
Legal Events
DateCodeEventDescription
Jan 10, 2012ASAssignment
Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SWEDEN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRENGER, PAL;MAGNUSSON, PER;PARKVALL, STEFAN;AND OTHERS;SIGNING DATES FROM 20061205 TO 20061220;REEL/FRAME:027508/0637