Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS8205060 B2
Publication typeGrant
Application numberUS 12/644,885
Publication dateJun 19, 2012
Filing dateDec 22, 2009
Priority dateDec 16, 2008
Also published asUS20100180091
Publication number12644885, 644885, US 8205060 B2, US 8205060B2, US-B2-8205060, US8205060 B2, US8205060B2
InventorsJudah Gamliel Hahn, Baddireddi Kalyan Venkannadora Jagannadha, Natarajanja Raja Subramanian
Original AssigneeSandisk Il Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Discardable files
US 8205060 B2
Abstract
The present application includes methods and system for managing a storage device. In one implementation, a storage allocator that is present in a host or a storage device receives a request to store a file in a storage area of the storage device. The storage allocator marks the file as discardable in a file system structure associated with the storage device and updates a primary file allocation table (“FAT”) to associate a cluster chain that is allocated to the file with the file. The storage allocator additionally updates a discardable FAT or a database to reflect a physical location of the file, or may generate one or more location files that store the physical location of the file. The storage allocator then manages the storage area device based on the FAT and a discardable FAT, database, or one more location files indicating the physical location of the file.
Images(13)
Previous page
Next page
Claims(31)
1. A method for managing a storage device, the method comprising:
in a host to which a storage device is operatively coupled:
receiving a request to store a first file in a storage area of the storage device, wherein the storage contains a primary file allocation table (“FAT”) and, in addition, a discardable FAT;
marking the first file as discardable, the marking of the first file being done in a file system structure associated with the storage device;
causing the storage device to update the primary FAT to associate a cluster chain that is allocated to the first file with the first file;
causing the storage device to update the discardable FAT to reflect a physical location of the first file in the storage device; and
managing the storage area of the storage device in accordance with the discardable FAT.
2. The method of claim 1, wherein the cluster chain masks at least the physical location of the first file.
3. The method of claim 1, further comprising:
enabling an attribute associated with the first file to prevent a host operating system from accessing the first file.
4. The method of claim 1, further comprising:
receiving a request to store a second file in the storage area of the storage device;
marking the second file as discardable, the marking of the second file being done in the file system structure associated with the storage device;
causing the storage device to update the primary FAT to associate the cluster chain with the second file, wherein the cluster chain is associated with the first file and the second file; and
causing the storage device to update the discardable FAT to reflect a physical location of the second file.
5. The method of claim 4, wherein the cluster chain masks the physical location of the first file and the second file.
6. The method of claim 1, further comprising:
receiving a request to store a second file in the storage area of the storage device;
marking the second file as discardable, the marking of the second file being done in the file system structure associated with the storage device;
causing the storage device to update the primary FAT to associate a second cluster chain that is allocated to the second file with the second file; and
causing the storage device to update the discardable FAT to reflect the physical location of the second file.
7. The method of claim 1, further comprising:
marking the first file as a non-discardable file, the marking of the first file being done in the file system structure associated with the storage device;
causing the storage device to update the primary FAT to reflect the physical location of the first file; and
causing the storage device to update the discardable FAT to remove the physical location of the first file.
8. The method of claim 7, further comprising:
identifying a value of a conversion lock identifier associated with the first file to determine whether the first file may be converted from a discardable file to a non-discardable file;
wherein the first file is marked as a non-discardable file after determining the value of the conversion lock identifier associated with the first file indicates that the first file is not locked.
9. The method of claim 1, further comprising:
identifying a value of a conversion lock identifier associated with the first file to determine whether the first file may be converted from a discardable file to a non-discardable file; and
prohibiting the marking of the first file as non-discardable after determining the value of the convert lock identifier associated with the first file indicates that the first file is locked.
10. The method of claim 1, further comprising:
identifying file permissions associated with a user ID and a preview file associated with the first file; and
managing access to the preview file associated with the first file based on the identified file permissions.
11. The method of claim 10, wherein the user ID is a shared user ID.
12. The method of claim 1, wherein the cluster chain of the primary FAT points to a location in the discardable FAT.
13. The method of claim 1, wherein marking the first file as discardable comprises:
assigning a discarding priority level to the first file.
14. The method of claim 13, wherein assigning the discarding priority level to the first file comprises at least one of:
setting a corresponding value to most significant bits in the primary FAT entry corresponding to the first file; or
setting a corresponding value to a data field in a file system entry corresponding to the first file.
15. The method of claim 13, wherein the discarding priority level is assigned to the first file according to any one of:
anticipated usage of the first file;
anticipated revenue associated with using the file;
a type of file of the first file;
a size of the first file;
a location of the first file in the storage device; and
an age of the first file.
16. The method of claim 1, wherein managing the storage area of the storage device in accordance with the discardable FAT comprises any one or a combination of:
restoring a storage usage safety margin by selectively removing one or more files marked as discardable;
freeing a storage area by removing all files marked as discardable; and
remapping clusters of the first file to a lower-performance storage module.
17. A storage system comprising:
a communication interface on a host; and
a storage allocator on the host for managing a file system associated with a storage device, the storage allocator including a processor for managing storage of one or more files in a storage area of the storage device;
wherein the processor is configured to:
receive a request via the communication interface to store a first file in a storage area of the storage device, wherein the storage device contains a primary file allocation table (“FAT”) and, in addition, a discardable FAT;
mark the first file as discardable, the marking of the first file being done in a file system structure associated with the storage device;
cause the storage device to update the primary FAT to associate a cluster chain that is allocated to the first file with the first file;
cause the storage device to update the discardable FAT to reflect a physical location of the first file in the storage device; and
manage the storage area of the storage device in accordance with the discardable FAT.
18. The storage system of claim 17, wherein the processor is further configured to:
mark the first file as a non-discardable file, the marking of the first file being done in the file system structure associated with the storage device;
cause the storage device to update the primary FAT to reflect the physical location of the first file; and
cause the storage device to update the discardable FAT to remove the physical location of the first file.
19. The storage system of claim 18, wherein the processor is further configured to:
identify a value of a conversion lock identifier associated with the first file to determine whether the first file may be converted from a discardable file to a non-discardable file;
wherein the first file is marked as a non-discardable file after determining the value of the conversion lock identifier associated with the first file indicates that the first file is not locked.
20. The storage system of claim 17, wherein the processor is further configured to:
identify a value of a conversion lock identifier associated with the first file to determine whether the first file may be converted form a discardable file to a non-discardable file; and
prohibit the marking of the first file as non-discardable after determining the value of the conversion lock identifier associated with the first file indicates that the first file is locked.
21. The storage system of claim 17, wherein the processor is further configured to:
identify file permissions associated with a user ID and a preview file associated with the first file; and
manage access to the preview file associated with the first file based on the identified file permissions.
22. The storage system of claim 17, wherein to receive a request via the communication interface to store a first file in a storage area of the storage device, the processor is configured to derive the request to store the first file based on one or more write requests associated with the first file that are received via the communication interface.
23. A method for managing a storage device, the method comprising:
in a host to which a storage device is operatively coupled:
receiving a request to store a first file in a storage area of the storage device;
marking the first file as discardable, the marking of the first file being done in a file system structure associated with the storage device;
causing the storage device to update a file allocation table (“FAT”) to associate a cluster chain that is allocated to the first file with the first file;
updating a database to reflect a physical location of the first file in the storage device; and
managing the storage area of the storage device in accordance with the FAT and the database.
24. A method for managing a storage device, the method comprising:
in a host to which a storage device is operatively coupled:
receiving a request to store a first file in a storage area of the storage device;
marking the first file as discardable, the marking of the first file being done in a file system structure associated with the storage device;
causing a storage device to update a file allocation table (“FAT”) to associate a cluster chain that is allocated to the first file with the first file;
updating a location file to reflect a physical location of the first file in the storage device; and
managing the storage area of the storage device in accordance with the FAT and the location file.
25. The method of claim 24, wherein the location file is a text file.
26. The method of claim 24, wherein the location file is a binary file.
27. A method for managing a storage device, the method comprising:
in a host to which a storage device is operatively coupled:
receiving a request to store a first file in a storage area of the storage device;
marking the first file as discardable, the marking of the first file being done in a file system structure associated with the storage device;
causing the storage device to update a file allocation table (“FAT”) to associate a cluster chain that is allocated to the first file with the first file;
scrambling an order of two or more clusters of the cluster chain that are associated with the first file within the FAT;
creating a first range file in the FAT which comprises at least one cluster of the cluster chain that is associated with the first file; and
managing the storage area of the storage device in accordance with the FAT and the first range file.
28. The method of claim 27, further comprising:
receiving a request to store a second file in the storage area of the storage device;
marking the second file as discardable, the marking of the second file being done in the file system structure associated with the storage device;
causing the storage device to update the FAT to associate the cluster chain with the second file, wherein the cluster chain is associated with the first file and the second file; and
scrambling an order of two or more clusters of the cluster chain that are associated with the second file within the FAT.
29. The method of claim 28, further comprising:
updating the first range file in the FAT to comprise at least one cluster of the cluster chain associated with the second file.
30. The method of claim 27, further comprising:
receiving a request to store a second file in the storage area of the storage device;
marking the second file as discardable, the marking of the second file being done in the file system structure associated with the storage device;
causing the storage device to update the FAT to associate a second cluster chain that is allocated to the second file with the second file;
scrambling an order of two or more clusters of the second cluster chain that are associated with the second file within the FAT;
creating a second range file in the FAT which comprise at least one cluster of the cluster chain associated with the second file; and
wherein managing the storage area of the storage device in accordance with the FAT and the first range file comprises:
managing the storage area of the storage device in accordance with the FAT, the first range file and the second range file.
31. The method of claim 27, further comprising:
creating a second range file in the FAT that comprises at least one cluster of the cluster chain that is associated with the first file that does not comprise the first range file;
wherein managing the storage area of the storage device in accordance with the FAT and the first range file comprises:
managing the storage area of the storage device in accordance with the FAT, the first range file, and the second range file.
Description
RELATED APPLICATIONS

The present application is a continuation of PCT Application No. PCT/US09/65056 (still pending), filed Nov. 19, 2009, which claims priority to Indian Patent Application No. 2238/MUM/2009, filed Sep. 25, 2009, which is a continuation-in-part application of U.S. patent application Ser. No. 12/336,089 (still pending), filed Dec. 16, 2008, and which claims the benefit of U.S. Provisional Patent Application No. 61/159,034, filed Mar. 10, 2009, and the entirety of each of these applications is hereby incorporated by reference.

FIELD OF THE INVENTION

The present invention generally relates to storage devices and more specifically to a method and to a device for managing files in a storage device.

BACKGROUND

Use of non-volatile storage devices has been rapidly increasing over the years because they are portable and they have small physical size and large storage capacity. Storage devices come in a variety of designs. Some storage devices are regarded as “embedded”, meaning that they cannot, and are not intended to be removed by a user from a host device with which they operate. Other storage devices are removable, which means that the user can move them from one host device (e.g., from a digital camera) to another, or replace one storage device with another.

The digital content stored in a storage device can originate from a host of the storage device. For example, a digital camera, an exemplary host, captures images and translates them into corresponding digital data. The digital camera then stores the digital data in a storage device with which it operates. Digital content that is stored in a storage device may also originate from a remote source: it can be sent to a host of the storage device, for example, over a data network (e.g., the Internet) or a communication network (e.g., a cellular phone network), and then be downloaded by the host to the storage device. The remote source may be, for example, a service provider or a content provider. Service providers and content providers are collectively referred to hereinafter as “publishers”.

Users of storage devices can willingly download media content and advertisements by requesting the media content or the advertisements from publishers. However, sometimes, publishers, trying to increase their income, send content to users without asking their permission, and sometimes even without the users being aware that such content was downloaded to their storage devices. Content that a publisher sends to users without getting their consent are referred to herein as “unsolicited content”. Oftentimes, unsolicited content is intended to be consumed by users after paying, or after committing to pay, the publisher a fee.

By downloading unsolicited content to users' storage devices publishers hope that users will eventually consume the unsolicited content for a fee, thus increasing their income. Publishers storing unsolicited contents on storage devices without asking users' consent, hoping that the users will consume these contents for a fee, is a concept known in the media publishing field as “predictive consignment”. However, unsolicited content may remain stored in a storage device without the user of the storage device knowing of its existence or wanting to consume it. Storing unsolicited content in a storage device reduces the available (i.e., free) user storage space on the storage device, which is undesirable from the user's point of view. A user may find that there is less space in the storage device for the user's own content (e.g., a music file) because someone else (i.e., some publisher) has taken over part of the storage space on the storage device, or that the user may have to reclaim the storage space so taken by deleting the unsolicited content.

One partial solution to the problem of taking over parts of the user's storage space involves blocking publishers' access to the storage device, such as by blocking the publisher's website. This solution may be acceptable for the users but it is problematic from the publishers' point of view because publishers will make fewer sales and lose a potential income source. Another partial solution to this problem involves publishing content to hosts (i.e., storing content files in storage devices of these hosts) and removing the content when it becomes irrelevant. In other words, the publisher that originated the content removes the stored unsolicited content from the storage device when the content becomes irrelevant. An unsolicited content is regarded as irrelevant if the time for its consumption has lapsed, or when there are indications that the user is not likely to consume it.

There is therefore a need to address the problem with unsolicited files. Specifically, while publishers should be allowed to pursue downloads to storage devices of unsolicited content in the course of conducting their business, these downloads should not have a materially deterring effect on the user experience.

SUMMARY

It would, therefore, be beneficial to be able to store unsolicited files in a storage device for as long as the storage space required to accommodate them in the storage device is not required for user's files, and to remove unsolicited files from the storage device in order to guarantee a minimum size of free storage space for user files. Various embodiments are designed to implement such files management, examples of which are provided herein.

To address the foregoing, files stored, or files to be stored, in a storage device are marked either as non-discardable or discardable in a structure of a file system associated with the storage device. Each marked file has associated with it a discarding priority level. A new publisher's file (i.e., an unsolicited file) is permitted to be stored in the storage device only if storing it in the storage device does not narrow a storage usage safety margin, which is reserved for user files, beyond a desired margin. User files, on the other hand, are allowed to be stored in the storage device even if their storage narrows the storage usage safety margin beyond the desired width. However, in such cases, the desired width of the storage usage safety margin is restored by removing one or more discardable files from the storage device. A discardable file is removed from the storage device if its discarding priority level equals or is higher (or lower, as explained herein) than a predetermined discarding threshold value.

In some implementations, a storage allocator present in a host, a storage device, or a combination of both utilizes a primary file allocation table (FAT) and a discardable FAT, database, or one or more location files to store a discardable file in a storage area of the storage device. The primary FAT stores an association between a cluster chain and the discardable file, and one of a discardable FAT, database, or one or more location files indicates a physical location of the file. Information in the discardable FAT, database, or one or more location files is used to override FAT entries in the primary FAT corresponding to the discardable file. By overriding FAT entries with information in the discardable FAT, database, or one or more location files, FAT32 file system checking and repair utilities see clusters associated with the discardable file as allocated rather than as data fragments (also known as orphan clusters), thereby preventing the utilities from turning a discardable file into a non-discardable file. The storage allocator manages the storage area of the storage device in accordance with the primary FAT and the discardable FAT, database, or one or more location files.

The discardable file system additionally provides the ability to control what operations applications may perform associated with discardable files based on a user ID associated with the applications. The user ID may be an owner user ID that identifies the application or user that created a discardable file. Typically, an application associated with the owner user ID is provided the ability to define what applications associated with additional user IDs may access the discardable file and what actions applications associated with the additional user IDs may take with respect to the discardable file. An additional user ID may be associated with a single application or a single user, or the additional user ID may be a shared user ID that is associated with multiple applications or multiple users.

BRIEF DESCRIPTION OF THE DRAWINGS

Various exemplary embodiments are illustrated in the accompanying figures with the intent that these examples not be restrictive. It will be appreciated that for simplicity and clarity of the illustration, elements shown in the figures referenced below are not necessarily drawn to scale. Also, where considered appropriate, reference numerals may be repeated among the figures to indicate like, corresponding or analogous elements. Of the accompanying figures:

FIG. 1 is a block diagram of a storage system according to an example embodiment;

FIG. 2 is a block diagram of a storage system according to another example embodiment;

FIG. 3 is a block diagram of a storage allocator according to an example embodiment;

FIG. 4 is a method for managing files according to an example embodiment;

FIG. 5 is a method for managing the storage of discardable files in a storage device according to an example embodiment;

FIG. 6 is a method for marking one or more unsolicited files in a FAT32-structured file system according to an example embodiment;

FIG. 7 is an exemplary directory area associated with a FAT32 table;

FIG. 8 is a FAT32 table according to an example embodiment;

FIG. 9 is an NTFS table according to an example embodiment;

FIG. 10 is a logical image of a FAT-based file system according to example embodiments;

FIG. 11 demonstrates files' storage management method in accordance with the present disclosure;

FIG. 12 a illustrates an exemplary primary FAT;

FIG. 12 b illustrates an exemplary discardable FAT:

FIG. 13 is a flow chart of a method for managing a storage device using a primary FAT and a discardable FAT;

FIG. 14 is a flow chart of a method for managing a storage device using a FAT and a database;

FIG. 15 is a flow chart of a method for managing a storage device using a FAT and a location file;

FIG. 16 illustrates an exemplary FAT including a cluster chain in which an order of two or more clusters that comprise the cluster chain have been scrambled;

FIG. 17 illustrates an exemplary FAT and associated location files, where the FAT includes cluster chains in which an order of two or more of the clusters that comprise the cluster chains have been scrambled;

FIG. 18 is a flow chart of a method for managing a storage device using a FAT in which an order of two or more clusters that comprise a cluster chain is scrambled;

FIG. 19 is a flow chart of a method for utilizing conversion locks to prevent a conversion of a discardable file when the discardable file is open in a file system implementing a primary FAT and a discardable FAT; and

FIG. 20 illustrates exemplary bit masks user IDs in a file system.

DETAILED DESCRIPTION

The description that follows provides various details of exemplary embodiments. However, this description is not intended to limit the scope of the claims but instead to explain various principles of the invention and the manner of practicing it.

In order to address unsolicited content and related issues, user files are given storage priority over other files, and a storage usage safety margin is maintained to guarantee that priority. A “user file” is a file that a user of a storage device has willingly stored, or has approved its storage in the storage device. For example, a music file that the user downloads to her/his storage device is regarded as a user file. Being requested or approved for storage by the user, user files are regarded as “solicited” files.

The “other files” are referred to herein as “publisher files” and “unsolicited files”. A “publisher file” is a file stored in a storage device without the user requesting it or being aware of it; at least not for a while. The user may not want to use an unsolicited file. Unused unsolicited files tend to consume expensive storage space on the user's storage device. Therefore, according to the principles disclosed herein such files are permitted to be stored in the storage device only if storing them does not narrow the storage usage safety margin. Storage priority is rendered to user files by maintaining a free storage space (i.e., a storage usage safety margin) that will be reserved for future user's files. The storage usage safety margin has to be maintained in order to ensure that user files can be stored in the storage device whenever required or desired.

If for some reason the storage usage safety margin gets narrower than desired, one or more unsolicited files will be removed (i.e., deleted) from the storage device in order to restore the storage usage safety margin. Maintaining the storage usage safety margin guarantees storage space for additional user files if such files are downloaded to the storage device. To this end, unsolicited files are marked as “discardable” in a structure of the storage file system and, if required, removed later to reclaim at least the free storage space required to maintain the storage usage safety margin.

Because the likelihood of the user using the various discardable files may differ from one discardable file to another, each unsolicited file (i.e., each discardable file) is assigned in advance a discarding priority level according to one or more criteria such as the probability of using the file, the probable revenue associated with using the file, the file's size, the file's type, the file's location, the file's age, etc. For example, the discarding priority level may be determined by the potential for revenue. According to another example movie trailers or advertisements would have a higher discarding priority than the actual movie because users usually don't like seeing trailers and advertisements. According to another example, the one or more discardable files that are most likely to be used by the user will be assigned the lowest discarding priority level, which means that such files will be the last file(s) to be removed from the storage device. In other words, the higher the usage probability is of a discardable file the lower the level is of the discarding priority level assigned to that file. If the desired storage usage safety margin is not fully restored even though one or more discardable files were removed, additional discardable files will be removed from the storage device until the desired storage usage safety margin is restored.

Briefly, a file system implements a methodology for storing and organizing computer files. A file system includes a set of abstract data types and metadata that are implemented for the storage, hierarchical organization, manipulation, navigation, access, and retrieval of data. The abstract data types and metadata form “directory trees” through which the computer files (also referred to herein as “data files”, or “files” for simplicity) can be accessed, manipulated and launched. A “directory tree” typically includes a root directory and optional subdirectories. A directory tree is stored in the file system as one or more “directory files”. The set of metadata and directory files included in a file system is called herein a “file system structure”. A file system, therefore, includes data files and a file system structure that facilitate accessing, manipulating, updating, deleting, and launching the data files.

File Allocation Table (“FAT”) is an exemplary file system architecture. FAT file system is used with various operating systems including DR-DOS, OpenDOS, MS-DOS, Linux, Windows, etc. A FAT-structured file system uses a table that centralizes the information about which storage areas are free or allocated, and where each file is stored on the storage device. To limit the size of the table, storage space is allocated to files in groups of contiguous sectors called “clusters”. As storage devices have evolved, the maximum number of clusters has increased and the number of bits that are used to identify a cluster has grown. The version of the FAT format is derived from the number of the table bits: FAT12 uses 12 bits; FAT 16 uses 16 bits, and FAT32 uses 32 bits.

Another file system architecture is known as New Technology File System (“NTFS”). Currently, NTFS is the standard file system of Windows NT, including its later versions Windows 2000, Windows XP, Windows Server 2003, Windows Server 2008, and Windows Vista. FAT32 and NTFS are exemplary file systems with which storage device 100 can be provided.

FIG. 1 shows a typical storage device 100. Storage device 100 includes a storage area 110 for storing various types of files (e.g., music files, video files, etc.), some of which may be user files and others may be publisher files. Storage device 100 also includes a storage controller 120 that manages storage area 110 via data and control lines 130. Storage controller 120 also communicates with a host device 140 via host interface 150. Host device 140 may be dedicated hardware or general purpose computing platform.

Storage area 110 may be, for example, of a NAND flash variety. Storage controller 120 controls all of the data transfers to/from storage area 110 and data transfers to/from host device 140 by controlling, for example, “read”, “write” and “erase” operations, wear leveling, and so on, and by controlling communication with host 140. Storage area 110 may contain, for example, user files and publisher's files, protected data that is allowed to be used only by authorized host devices, and security data that is used only internally, by storage controller 120. Hosts (e.g., host 140) cannot directly access storage area 110. That is, if, for example, host 140 asks for, or needs, data from storage device 100, host 140 has to request it from storage controller 120. In order to facilitate easy access to data files that are stored in storage device 100, storage device 100 is provided with a file system 160.

Storage area 110 is functionally divided into three parts: user area 170, publisher area 180, and free storage space 190. User area 170 is a storage space within storage area 110 where user files are stored. Publisher area 180 is a storage space within storage area 110 where publisher files are stored. Free storage space 190 is an empty storage space within storage area 110. Free storage space 190 can be used to hold a user file or a publisher file. Upon storing a user file in free storage space 190, the storage space holding the user file is subtracted from free storage space 190 and added to user area 170. Likewise, upon storing a publisher file in free storage space 190, the storage space holding the publisher file is subtracted from free storage space 190 and added to publisher area 180. If a user file or a publisher file is removed (i.e., deleted) from storage area 110, the freed storage space is added (it returns) to free storage space 190.

If the size of free storage space 190 permits it, the user of storage device 100 can download a user file from host 140 to storage area 110. The downloaded user file will be stored in free storage space 190 and, as explained above, the storage space holding that file will be subtracted from free storage space 190 and added to user area 170. As explained above, user files have priority over other (e.g., publisher) files, and in order to guarantee that priority, a desired storage usage safety margin is set, and, if required, restored, in the way described below.

Host 140 includes a storage allocator 144 to facilitate restoration of free storage space 190. Storage allocator 144 may be hardware, firmware, software or any combination thereof. In general, storage allocator 144 determines whether a file (e.g., file 142) that is communicated to host 140 is either a user file or a publisher file, and then marks the communicated file accordingly (i.e., as a non-discardable file or as a discardable file).

If storage allocator 144 determines that a file (e.g., file 142) communicated to host 140 is non-discardable, for example because the file is a user file, storage allocator 144 stores the file in storage area 110 in a regular way. As explained above, the storage space within storage area 110 that holds the non-discardable file will be added to, or be part of, user area 170. If, however, storage allocator 144 determines that the file communicated to host 140 is discardable, for example because it is a publisher file, storage allocator 144 marks the file as discardable. If free storage space 190 is larger than the desired storage usage safety margin storage allocator 144 also stores the marked discardable file in free storage space 190, and, as explained above, the storage space within free storage space 190 that holds the discardable file is subtracted from free storage space 190 (i.e., the free storage space is reduced) and added to publisher area 180 (the addition is logically shown as discardable file(s) 182).

As explained above, the likelihood that publisher files may be used by the user may vary from one publisher file to another, which makes a publisher file with the least usage likelihood the first candidate for removal form storage area 110. Therefore, in addition to marking a file as non-discardable or discardable storage allocator 144 assigns a discarding priority level to each discardable file prior, concurrently, or after the discardable file is stored in storage area 110.

By marking files as non-discardable or as discardable, assigning a discarding priority level by storage allocator 144, and by using the file system 160 (or an image thereof) of storage device 100, storage allocator 144 “knows” the number of user files and publisher files in storage area 110, and also their sizes and logical locations within storage area 110. Knowing this information (i.e., the number, sizes and locations of the files), and particularly based on one or more marked files, storage allocator 144 manages storage area 110 and the storage of solicited and unsolicited files in storage area 110. Managing storage area 110, or managing storage of files in storage area 110, may include, for example, restoring a storage usage safety margin by selectively removing one or more files marked as discardable, freeing a storage area by removing all files marked as discardable, and remapping clusters of a file to a lower-performance storage module. Managing storage area 110 or files stored therein may include managing other, additional, or alternative aspects of storage area 110 or files stored therein.

Storage allocator 144 also knows, by the discarding level assigned to each discardable file, the order at which discardable files can or should be discarded (i.e., deleted or removed from storage area 110) in order to restore the free storage space originally reserved for future user files (i.e., to restore the desired storage usage safety margin). Accordingly, if a user wants to store a new user file in storage area 110 but there is not enough free storage space to accommodate that user file (which means that the storage usage safety margin is narrow than desired), storage allocator 144 uses the discarding priority levels assigned to the discardable files to iteratively delete one discardable file after another to regain more free storage space (i.e., to extend free storage space 190) until the desired storage usage safety margin is fully restored. As explained above, a fully restored storage usage safety margin guarantees with high probability that an adequate free storage space is reserved for future user files. Discardable files are removed or deleted from storage device 100 only responsive to receiving a request to store a new user files because it is taken into account that the user may want to use a stored discardable file sometime and, therefore, the discardable file is removed from the storage device only if the storage space accommodating that file is required for the new user file. Storage allocator 144 may be embedded or incorporated into host 140, or it may reside externally to host 140 (shown as dashed box 144′) and to storage device 100.

Storage allocator 144 has a representative image of the file system of, or associated with, storage device 100. Storage allocator 144 uses the storage device's file system image to mark files as non-discardable or as discardable, and to assign a discarding level to each discardable file. In one example, the file system includes the FAT and in this case the marking is done in an unused portion of a FAT entry associated with the file, by setting one or more unused bits. Because different file systems have different structures, marking files (i.e., as non-discardable or as discardable) and assigning discarding levels is adapted to the used file system structure, as elaborated in and described below in connection with FIGS. 6 through 1.

FIG. 2 is a block diagram of a portable storage device 200 according to another example embodiment. Storage controller 220 functions like storage controller 120 and storage allocator 244 functions like storage allocator 144. Storage allocator 244 may be hardware, firmware, software or any combination thereof. Storage allocator 244 internally cooperates with storage controller 220. Whenever storage controller 220 receives from host 240 a storage request to store a file in storage area 210, the request including an indication of whether or not the file is a discardable file, storage controller 220 informs storage allocator 244 of the storage request and whether or not the file is discardable. The storage allocator 244 then marks the file either as non-discardable or discardable in the structure of the file system associated with storage device 200. Typically, applications running on the host 240 determine that a file is a discardable file and send a flag or other indication to the storage controller 220 indicating that the file is a discardable file. The applications running on the host 240 send the flag or other indication as part of storage protocols for requesting to store a file on the storage device. Examples of such storage protocols include POSIX file system functions or the usage of the java.io class tree.

If storage allocator 244 determines that the new file is discardable storage allocator 244 assigns to the new file a discarding priority level according to the file's usage probability. Then, storage allocator 244 evaluates the current size of free storage space 290 and decides whether one or more discardable files should be removed (i.e., deleted) from storage area 210 in order to make room for the new file. If discardable file or files should be removed from the storage device storage allocator 244 decides which file(s) are the current candidate files for removal. Then, storage allocator 244 notifies storage controller 220 of the discardable files that should be removed from storage area 210 and, responsive to the notification, storage controller 220 removes the discardable file or files indicated by storage allocator 244. In some configurations of portable storage device 200, the storage allocator 244 may be functionally disposed between storage controller 220 and storage area 210. In configurations where storage allocator 244 is functionally disposed between storage controller 220 and storage area 210, storage allocator 244 or storage area 210 have to assume some of the functions of storage controller 220. In such configurations storage area 210 is comprised of memory units that communicate at a higher level than flash NAND protocols.

FIG. 3 is a block diagram of a storage allocator 300 according to an example embodiment. Storage allocator 300 includes a memory unit 310, a processor 320, and an interface 330. Memory unit 310 may hold a file system structure, or an image of the file system structure, that is associated with a storage device (e.g., storage device 200 of FIG. 2). Processor 320 manages the file system associated with the storage device. Interface 330 may be adapted to cooperate with a host and with a storage controller of a storage device, as demonstrated in FIG. 1, or only with a storage controller of a storage device, as demonstrated in FIG. 2.

Processor 320 is configured or adapted to receive a request via interface 330 to store a file in a storage area of the storage device, and to mark the file either as discardable or as non-discardable in a structure of the file system associated with the storage device with which storage allocator 300 operates. If interface 330 is functionally attached to storage controller 220 of FIG. 2 (and thus receives, for example, SCSI or wrapped USB/MSC commands rather than file level commands), the received request is at a level that is much lower than a file level. That is, the received request would be a request to store sectors at logical block addresses that, when properly interpreted by a host, would correspond to a file. If storage controller 220 supports the NVMHCI protocol, or a networking file system protocol such as NFS or a similar protocol, storage controller 220 can get file level requests. Therefore, the communication between a storage controller such as storage controller 220 and an interface such as interface 330 is not limited to NVMHCI or to NVMHCI-like implementations. Communication interface 330 may be an integral of storage allocator 300, as shown in FIG. 3.

Processor 320 is further configured or adapted to send the marked file to the storage device, marking the file as discardable includes assigning to the file a discarding priority level. If the file system used by the storage device is FAT-based, processor 320 assigns the discarding priority level to the marked file by setting a corresponding value to m uppermost (i.e., most significant) bits (e.g., m=4) in a FAT corresponding to the marked file. The corresponding value set to the most significant bits in the FAT entry, or the value set to the NTFS directory entry, may be, or it may be, related to an attribute of the file. By “attribute” is meant a metadata tag or some data structure in the header of the FAT table or NTFS table that contains information that pertains to the type of the content stored within the table. “Advertisement”, “premium content”, and “promotional (free) content” are exemplary types of contents that may be stored in the FAT table or in the NTFS table. Alternative criteria for setting discarding levels are, for example, the last accessed files, file sizes, file types, etc.

The number m of the uppermost bits of FAT32 entries dedicated for marking files may be four or less than four because those bits are not used. In addition, the more bits are used the more discarding priority levels can be used. For example, using three bits (i.e., m=3) provides eight (23=8) discarding priority levels and using four bits (i.e., m=4) provides sixteen (24=16) discarding priority levels (i.e., including discarding priority level “0”, which is assigned to non-discardable files). In other words, processor 320 sets the value of the m uppermost bits to 0 if the marked file is non-discardable or to a value between 1 and 2m−1 if the marked file is discardable. The discarding priority level indicates the priority at which the marked file can or should be discarded from the storage device. For example, depending on the implementation, the value “1” may denote a file that is either discardable with the lowest priority or with the highest priority, and the value “2m−1” may respectively denote a file that is either discardable with the highest priority or with the lowest priority.

Processor 320 may assign the discarding priority levels to marked files according to an anticipated usage of the files, as explained above in connection with the likelihood or probability that an unsolicited file is going to be used by the user of the storage device. Processor 320 may update the discarding priority level of the marked file with, or responsive to receiving, each request to store a new file in the storage device. Processor 320 may update the discarding priority level of a given marked file independently from one or more new requests to store a file in the storage device. For example, a file that was previously of a high priority may have its priority lowered after a certain time interval. Processor 320 deletes a file that is stored in the storage device if the file has associated with it a discarding priority level that equals or is greater than a predetermined discarding threshold value. Processor 320 may (re)set the discarding threshold value based on the number of file writes or additions, or depending on the anticipated use of free storage space on the storage device or availability of new publisher files.

Memory unit 310 may hold an assignment table 340 that contains discarding priority levels that processor 320 assigns to files stored in the storage device. In addition, assignment table 340 may hold files' identifiers and information that associates files with the discarding priority levels assigned to the files. Assignment table 340 may additionally hold a discarding threshold value. The information held in assignment table 340 allows processor 320 to identify which discardable file or files can be removed form the storage device in order to restore the desired storage usage safety margin.

Responsive to receiving a request to store a new file in the storage device processor 320 evaluates the size of a free storage space (f) on the storage device and stores the new file in the storage device if the evaluated size of the free storage space on the storage device is larger than a predetermined size or, if it is not larger than the predetermined size, processor 320 searches for one or more discardable files within the storage device that can be deleted and, upon finding such file or files, processor 320 deletes that file or files to extend the current free storage space (f) such that the total size of the extended free storage space equals or is larger than the predetermined size. The discardable file or files can be deleted from the storage device if the discarding priority level associated with the discardable files equals or is greater than a predetermined discarding threshold value (for example between 1 and 15 inclusive, for example 15).

After the free storage space is extended enough processor 320 permits the new file to be stored in the extended free storage space. By “free storage space is extended enough” is meant expanding the free storage space by freeing one occupied storage space after another until the total free storage space can accommodate the new file without narrowing the desired storage usage safety margin mentioned above or, equivalently, until the total size of the extended free storage space equals or is greater then a predetermined size or until all discardable files are removed.

Processor 320 can be a standard off-the-shelf System-on-Chip (“SoC”) device or a System-in-Package (“SiP”) device or general purpose processing unit with specialized software that, when executed, performs the steps, operations and evaluations described herein. Alternatively, processor 320 can be an Application-Specific Integrated Circuit (“ASIC”) that implements the steps, operations and evaluations described herein by using hardware.

FIG. 4 is a method for storing discardable files according to one example embodiment. FIG. 4 will be described in association with FIG. 1. At step 410 host 140 receives a request to store file 142 in storage device 100. At step 420 storage allocator 144 marks the file as “discardable” or as “non-discardable” and sends, at step 430, the marked file to storage controller 120 of storage device 100 (i.e., for storage in storage area 110) if free storage space 190 is sufficiently large. A file is marked also in the sense that a discarding priority level is assigned to the file. At step 440 storage allocator 144 manages storage area 110 (through communication with storage controller 120) or files that are stored in storage area 110 based on the marked file and, optionally, based on one or more files that have already been marked.

FIG. 5 is a method for managing the storage of discardable files in a storage device according to one example embodiment. FIG. 5 will be described in association with FIG. 1. A new file is candidate for storage in storage device 100. Knowing the current image of file system 160 of storage device 100, storage allocator 144 evaluates, at step 510, the current size “f” of free storage space 190 to see whether free storage space 190, whose current size is f, can accommodate the new file (i.e., the file that is candidate for storage). In general, the way storage allocator 144 handles the new file depends on whether the new file is a user file or a publisher file. Therefore, storage allocator 144 determines first whether the new file is a user file or a publisher file.

The New File is a User File

At step 520 storage allocator 144 checks whether free storage space 190 can accommodate the new user file. If free storage space 190 can accommodate the new user file (shown as “Y” at step 520), storage allocator 144 stores, at step 560, the new user file in free storage space 190 regardless of whether the desired storage usage safety margin is narrowed by storing the new user file or not. If the desired storage usage safety margin gets narrower (i.e., relative to the desired storage usage safety margin) after storage allocator 144 stores the new user file in free storage space 190, storage allocator 144 takes no further actions with respect to the storage of the new user file.

If, however, the desired storage usage safety margin gets narrower after storage allocator 144 stores the new user file in free storage space 190, step 550 includes an additional step where storage allocator 144 determines which stored discardable file should be deleted first, which discardable file should be deleted second, and so on, in order to maintain the desired storage usage safety margin. Storage allocator 144 determines which discardable file should be deleted first, which should be deleted second, etc. based on discarding levels that storage allocator 144 assigned to the stored discardable files.

If storage allocator 144 determines at step 520 that free storage space 190 cannot accommodate the new user file (shown as “N” at step 520), storage allocator 144 determines, at step 530, whether free storage space 190 and the storage space consumed by discardable files, when combined, is sufficient for storing the new user file. If the combined storage space is insufficient (shown as “N” at step 530), this means that no matter how many discardable will be deleted the new user file cannot be stored in the “non-user” storage area due to its larger size. If the combined storage space is sufficient (shown as “Y” at step 530), storage allocator 144 searches, at step 540, among stored discardable files which discardable file can be deleted in order to free sufficient storage space for the new user file. Storage allocator 144 searches for these discardable files by using the file system of storage device 100 because, as explained above, storage allocator 144 marks files as non-discardable or as discardable in the file system of the storage device. In addition, the discarding levels assigned by storage allocator 144 to marked files are also embedded into the storage device's file system such that each discarding level is associated with the corresponding marked file.

Upon finding a discardable file (“DF”) that should be discarded first (that file is called hereinafter “DF1”), storage allocator 144 deletes file DF1 in order to add, or to return, its storage space (that storage space is called hereinafter “SP1”) to storage space 190.

Then, at step 550 storage allocator 144 checks whether the extended free storage space 190 (i.e., free storage space 190 plus the last returned storage space, or f+SP1) can accommodate the new user file. If the extended free storage space 190 (i.e., f+SP1) still cannot accommodate the new user file (shown as “N” at step 550) storage allocator 144 iteratively repeats step 550 (the iterations are shown at 555) in order to return an additional storage space to free storage space 190 (i.e., by finding and deleting the next discardable file that should be deleted).

Upon finding the next discardable file with the second highest discarding priority (the next discardable file is called hereinafter “DF2”), storage allocator 144 deletes file DF2 in order to free and add additional storage space (the additional storage space is called hereinafter “SP2”) to free storage space 190. Then, at step 550 storage allocator 144 checks again whether the extended free storage space 190 (i.e., free storage space 190 plus the two last freed storage spaces, or f+SP1+SP2) can accommodate the new file. If the extended free storage space 190 (i.e., f+SP1+SP2) still cannot accommodate the new file (shown as “N” at step 540), storage allocator 144 repeats step 540 one more time in order to find the next discardable file that should be deleted. Storage allocator 144 iterates steps 540 and 550 until the accumulated free storage space 190 can accommodate the new user file (shown as “Y” at step 550). Then, at step 560 storage allocator 144 stores the new user file in storage area 110.

As said above, if the actual storage usage safety margin gets narrower than the desired storage usage safety margin after storage allocator 144 stores the new user file in free storage space 190, step 560 may include an additional step in which storage allocator 144 determines which stored discardable file should be deleted first, which discardable file should be deleted second, etc., in order to restore the desired storage usage safety margin.

The New File is a Publisher File

If the new file is a publisher file, storage allocator 144 stores (at step 560) the new publisher file in storage area 110 only if free storage space 190 can accommodate the new publisher file without narrowing the desired storage usage safety margin. That is, if storing the new publisher file would result in narrowing the desired storage usage safety margin storage allocator 144 may decide not to store the new publisher file in storage area 110. In such a case, storage allocator 144 may refrain from taking any action with respect to that file, and delete no file from the storage device to free storage space for the new publisher file. Alternatively, storage allocator 144 may delete at step 540 one or more higher priority discardable files in order to free storage space for a discardable file that has a lower discarding priority. As stated above, files are marked in, and discarding levels are embedded into, the file system of storage device 100, and the way the files are marked and the discarding levels embedded into the file system depends on, or can be adapted to, the used file system.

FIG. 6 is a method for marking an unsolicited file in a FAT32-structured file system according to one example embodiment. FAT32-structured file systems use clusters. As described above in connection with FAT32-structured file systems, the number of bits that are used to identify a FAT32 cluster is 32. FIG. 6 will be described in association with FIG. 1.

At step 610 m uppermost bits of the 32 bits (where m≦4) of each cluster of the FAT32 are allocated or dedicated for marking files as non-discardable or as discardable, as the case may be, and also for holding a corresponding discarding level for each discardable file. Assigning the discarding level to a file is done by setting a corresponding value to the allocated m bits corresponding to the marked file.

At step 620 storage allocator 144 evaluates the level of likelihood at which the user of storage device 100 will use the unsolicited file. Evaluation of the likelihood of using the file can be implemented in various ways that are known to those skilled in the art of consignment files. For example, the evaluation of the likelihood of using the file may be based on monitoring the location of the person using the storage device, and/or on monitored user's previous experience and preferences. Evaluation of the likelihood of using the file may also be based, for example, on the type of content stored within the FAT table or NTFS table (e.g., “advertisement content”, “premium content”, “promotional (free) content”, etc.). Storage allocator 144 may use alternative or additional criteria to evaluate the likelihood at which the file will be used. For example it may use attributes or characteristics of file(s), which may be, or be associated with, the last accessed file(s), file sizes, file types, etc.

After storage allocator 144 evaluates the level of likelihood at which the user will use the unsolicited file storage allocator 144 assigns, at step 630, a discarding priority level corresponding to the evaluated likelihood level of usage of the unsolicited file. The more likely the unsolicited file is going to be used by the user of storage device 100 the lower is the discarding level.

If m equals four bits, this means that the discarding scale provides 15 discarding levels from 1 (i.e., 0001) to 15 (i.e., 1111). That is, discarding level 0 will be assigned to every non-discardable file, discarding level 1 will be assigned to a discardable file with the lowest discarding priority, and discarding level 15 will be assigned to a discardable file with the highest discarding priority. After storage allocator 144 assigns a corresponding discarding level to the unsolicited file, storage allocator 144 sets, at step 640, a corresponding value between 1 and 15 to the four uppermost bits of the clusters associated with the unsolicited file. If the unsolicited file has associated it two or more clusters, the four uppermost bits in each cluster is set to the same value.

At step 650 it is checked whether the unsolicited file is the last file that needs to be evaluated. If the unsolicited file is not the last file that needs to be evaluated (shown as “N” at step 650) another file is evaluated in the way described above. If the unsolicited file is the last file that needs to be evaluated (shown as “Y” at step 650) the unsolicited file(s) is(are) sent to storage device with the m bits for each whose value was set at step 640.

FIG. 7 is an exemplary directory table 700 associated with a FAT32 table. Directory table 700 is only a partial table used for illustration and as such, table 700 does not show all the fields of a FAT directory entry. Directory area 700 holds particulars of files that are stored in a related file system, such as the files names, files size, and where in a related storage space each file begins. The particulars of the files are held in the following fields. Field 710 holds the Disk Operating System (“DOS”) filenames of the files stored in the related file system, field 720 holds the extension of the files, field 730 holds various attributed of the files, field 740 holds the high 16-bitword of the First Cluster Number (“FCN”) of the files, field 750 holds the low part of the First Cluster Number (“FCN”) of the files, and field 760 holds the size of the files. Each FCN number indicates the first logical cluster where a file may be found.

The first entry of directory area 700 holds information for an exemplary file called “REALFILE” (shown at 770). REALFILE 770 has a file extension “DAT”, its FCN is “0000 0002” (shown at 755), and its size is “0000 24E4”. Numbers in table 700 are shown in hexadecimal values. As part of the standard, attribute values “00” (shown at 780) and “20” (not shown in FIG. 7) refer to a “regular” file, whereas attribute value “02” refers to a file that is hidden in the file system. Filename “\xE5Consign” indicates a deleted file, where “\xE5” means that the value of the first byte of the filename is E5 in hex. By way of example, FCN number 0000 0002 (shown at 755) designates the first cluster of file REALFILE.

FIG. 8 is an exemplary partial FAT32 table 800 according to an example embodiment. FAT32 table 800 is shown as a double-word (“DWORD”) array, and the values are hexadecimal values. Reference numeral 810 designates the type of device holding FAT32 table 800, where “F8” refers to a hard drive. FAT32 table 800 includes 23 clusters that are designated as cluster #1 (shown at 820), cluster #2 (shown at 825), . . . , and cluster #23 (shown at 830). FIG. 8 will be described in association with FIG. 7. A cluster in FAT32 table 800 may be the first cluster of a file, or it may point to the next linked cluster of the file, or it may be an End-of-File (“EOF”) indication.

Referring again to directory area 700, the first FCN of file REALFILE (shown at 770) is “0000 0002” (shown at 755), which points at cluster #2 in table 800 of FIG. 8. As shown in FIG. 8 the value of cluster #2 (i.e., the value “000 0003”) points (shown at 840) at cluster #3, which is the next file's cluster. Likewise, the value of cluster #3 (i.e., “0000 0004”) points at cluster #4, which is the next file's cluster. Cluster #4 has the value “0FFF FFFF” (“F” is the hexadecimal digit that represents the decimal value “15”), where “FFF FFFF” (shown at 850) denotes the file's EOF indication, and the zero value (shown at 860) denotes discarding level 0. File REALFILE, therefore, has associated with it three clusters (i.e., cluster #2, cluster #3, and cluster #4).

As explained above, a discarding level 0 is assigned to non-discardable files. It is noted that the most significant hexadecimal digit of each cluster of a particular file is set to the same discarding priority level that is assigned to that file. For example, file REALFILE has been assigned a discarding level “0” and, therefore, each of the most significant hexadecimal digits of clusters #2, #3, and #4 has that value (i.e., value “0”, the “0” values are underlined). According to another example, the file “E5 Consign” whose FCN is “0000 0005” (as shown in FIG. 7) has been assigned a discarding priority level “1”. Therefore, the most significant hexadecimal digit of each of clusters #5 through 12, which pertain to that file, has the value “1” (for example as shown at 870). In other words, according to the present disclosure the most significant hexadecimal digit (or, equivalently, the four uppermost bits of the clusters associated with a particular discardable file are set to the same value corresponding to the discarding priority level assigned to the particular file. As explained above the number m of the uppermost bits used for indicating the discarding priority level may differ from four (i.e., m≦4).

FIG. 9 is an exemplary partial NTFS table 900 according to an example embodiment. NTFS table 900 holds particulars of files such as the file names, the file sizes, etc. NTFS table 900 includes a data field 910 to hold “regular” data (e.g., data 920) for files that change according to “normal” data flow. According to the present disclosure, NTFS table 900 also includes a “Discarding Information” field 915 for holding, discarding information (e.g., discarding information 930) for each evaluated file. Discarding information field 915 may also include information other than the discarding priority level. For example, discarding information field 915 may include information pertaining to the server that supplied the file and an expiration time after which the file must be discarded. Unlike FAT-based file systems, in NTFS-based file systems the discarding values assigned to discardable files are not limited to a maximum number that is dictated by a set of bits. This means that the range of discarding values can be chosen liberally. For example, discarding values can range from 1 to 25. NTFS is an exemplary non-FAT file system. In general, corresponding discarding values may be set to a data field in a non-FAT based file system entries corresponding to marked files.

FIG. 10 is a logical arrangement of file system 1000 of a storage device according to an example embodiment. A storage allocator (e.g., storage allocator 144 of FIG. 1) may either hold file system 1000 of the storage device with which it operates or an image of file system 1000, or the storage allocator may have an access to file system 1000.

File system 1000 includes a boot section 1010, a FAT 1020 associated with file system 1000, directory tables 1030, a files area 1040, and a discardable files area 1050. FAT 1020 includes a discardable files allocations area 1025 that contains the discarding priority levels of discardable files. Directory tables 1030 include access information for accessing whatever files (i.e., discardable files and/or non-discardable files) are stored in the storage device. Files area 1040 contains the non-discardable files. Index and database area 1045 holds indexes for the discardable files and also metadata that is related to the discardable files. The indexes and metadata held in Index and database area 1045 are used to calculate the discarding levels but they are not required during the actual discarding process. Discardable files area 1050 holds the discardable files.

FIG. 11 demonstrates the files management method according to the present disclosure. FIG. 11 will be described in association with FIG. 1. It is assumed that at time T0 two user files (i.e., files “F1” and “F2”) are initially stored in storage area 110. Because files “F1” and “F2” are user files they are stored in user area 170 and the discarding level assigned to them by storage allocator 144 is zero. Because the total storage capacity of storage area 110 is T (shown at 1110) and files F1 and F2 are stored in storage device 100, the size of the remaining free storage space 190 (see FIG. 1) is f (shown at 1120). It is assumed that a publisher wants to store three unsolicited files in storage area 110. As described above, storage allocator 144 evaluates the size of free storage space 190 (or f at 1120) in storage device 100 in order to determine whether storing the publisher's three unsolicited files in storage area 110 will not narrow a desired storage usage safety margin (shown at 1130) that is reserved for future user's files. If storing publisher's three unsolicited files would narrow storage usage safety margin 1130 (i.e., the desired storage usage safety margin) storage allocator 144 will refrain from storing these files.

In this example, storage allocator 144 determines that the publisher's three unsolicited files can be stored in storage area 110 without reducing storage usage safety margin 1130. Therefore, at time T1 storage allocator 144 permits storage controller 120 to store the publisher's three unsolicited files in storage area 110. The three publisher's unsolicited files are designated as “P1”, “P2”, and “P3”. Storage allocator 144 also determines the probability that files P1, P2, and P3 will be used by the user of storage device 100 and assigns a corresponding discarding level to each of these file. Storage allocator 144 then stores the discarding levels assigned to the files in the FAT table, as demonstrated in FIG. 8, or in the NTFS table, as demonstrated in FIG. 9.

At time T2 the user of storage device 100 wants to store in storage area 110 two more files (i.e., files “F3” and “F4”). Storage allocator 144 reevaluates the size of free storage space 190 (or f at 1120) in storage device 100 in order to determine whether there is sufficient storage space in storage area 110 to store the additional files (i.e., files F3 and F4). In this example storage allocator 144 determines that the currently free storage space can accommodate files F3 and F4. Therefore, at time T2 storage allocator 144 permits storage controller 120 to store files F3 and F4 in storage area 110.

Because files F3 and F4 are user files the probability that files F3 and F4 will be used by the user of storage device 100 is irrelevant because user files have storage priority over publisher files regardless of how many times, if at all, the user is going to use files F3 and F4. Accordingly, storage allocator 144 assigns a discarding level “0” to files F3 and F4 and stores the assigned discarding level in the FAT table, as demonstrated in FIG. 8, or in the NTFS table, as demonstrated in FIG. 9.

At time T3 the user of storage device 100 wants to store in storage area 110 another file (i.e., file “F5”). Storage allocator 144 reevaluates the size of free storage space 190 (or f at 1120) in storage device 100 in order to determine whether there is sufficient storage space in storage area 110 to store the additional file (i.e., file F5).

In this example, storage allocator 144 determines that the currently free storage space can accommodate file F5. Therefore, at time T3 storage allocator 144 permits storage controller 120 to store file F5 in storage area 110. As shown in FIG. 11, storing user file F5 narrows the storage usage safety margin. That is, the free storage space fin storage area 110 that remains after files F1 through F5 and P1 through P3 are stored in storage area 110 is smaller than storage usage safety margin 1130. Therefore, storage allocator 144 reinstates or restores the storage usage safety margin by removing one of the publisher's files (i.e., P1, P2, and P3). A storage usage safety margin is reinstated or restored by removing (i.e., deleting) one or more publisher files because, as explained above, user files have ultimate storage priority.

As described above, the decision which publisher file or publisher files should be removed from the storage area 110 is made by storage allocator 144 based on the discarding priority level that storage allocator 144 assigned to each stored discardable file.

Turning back to FIG. 11, it is assumed that among the stored publisher files P1 through P3 publisher file P3 was assigned the highest discarding priority level (e.g., 13). Therefore, at time T4 file P3 is removed from storage area 110, thus enlarging the free storage space 190. Because the size of free storage space 190 (or f at 1120) at time T4 is larger than storage usage safety margin 1130, there is no need to remove any more publisher files.

The user of storage device 100 may want to remove one or more user files. At time T5 the user removed two of his files (i.e., files F4 and F5), thus further enlarging free storage space 190. The removal of files F4 and F5 has nothing to do with the size of free storage space 190 or the storage usage safety margin because, as stated herein, regaining free storage space or restoring the storage usage safety margin is done by removing as many discardable files as necessary. It is assumed that a publisher wants to store another unsolicited file in storage area 110. As described above, storage allocator 144 evaluates the size of free storage space 190 (or f at 1120) in order to determine whether storing the publisher's unsolicited file in storage area 110 will not narrow storage usage safety margin 1130. If storing the publisher's the new unsolicited file will narrow storage usage safety margin 1130 storage allocator 144 will refrain from storing that file.

In this example storage allocator 144 determines that the publisher's new unsolicited file (i.e., file “P4”) can be stored in storage area 110 without reducing storage usage safety margin 1130. Therefore, at time T6 storage allocator 144 permits storage controller 120 to store the publisher's file P4 in storage area 110. Storage allocator 144 also determines the probability that file P4 will be used by the user of storage device 100 and assigns a corresponding discarding level to this file. Storage allocator 144 then stores the discarding level assigned to file P4 in the FAT table, as demonstrated in FIG. 8, or in the NTFS table, as demonstrated in FIG. 9. The process of storing new publisher's files and new user files and removing stored files may continue while each time a new file is to be added to storage area 110 storage allocator 144 evaluates the current size of free storage space 190 and determines which publisher file or files (if at all) has/have to be removed from storage area 110.

Assigning a discarding level to a discardable file may be based on user experience or preferences, on Global Positioning System (“GPS”) location of the user, and/or on other criteria. For example, if the user of the storage device seems (based on previous user experience) to like certain types of music, the storage allocator may assign a relatively low discarding priority level (e.g., 3 in a scale of 1 to 15) to a publisher's file if that file contains music that is one of the user's favorite types of music. However, if the publisher's music is disliked by the user (i.e., based on previous user experience), the storage allocator may assign to the related publisher's file a higher discarding priority level (e.g., 12 in a scale of 1 to 15). The criteria used to assign a discarding level to a discardable file may include anticipated usage of the file, anticipated revenue associated with using the file, the file's type, the file's size, the file's location in the storage device, the file's age, and other criteria or parameter as specified herein. Other criteria, whether alone or in combination with any of the criteria mentioned herein, may likewise be used, and the assignment of discarding levels may be done using one or more criterions. In addition, different criteria may be used to assign a discarding level to different discardable files.

In another example, if a publisher wants to send to a user a location-dependent advertisement (i.e., an advertisement relating to a product or service rendered within a specific locality), the storage allocator may assign a discarding priority level to the publisher's advertisement that changes according to the user's changing location. That is, the farther the user gets from a particular location, the higher the discarding level would be, because by getting away from the specific locality it can be assumed that the user is not interested in consuming the product or service rendered at the specific locality.

As described above, cluster chains for discardable files are recorded in a FAT with a flag identifying a file associated with a FAT32 entry as a discardable file. Typically, the flag is in the four most significant bits of each FAT32 entry. Because cluster chains may be allocated to a discardable file but do not have a non-discardable file associated with them, it is possible that a utility such as chkdsk or fsck.vfat will turn a discardable files into non-discardable files, also known as “real” files, thereby reducing the security of the file system 160. Additionally, there is a risk that some FAT recovery utilities will reset the discardable-file flags in the FAT32 entries. FAT32 file system checking and repair utilities often step through a file system and apply rules in order to fix common errors. Generally, these utilities may look for cluster chains in a FAT that have no corresponding entry in the First Cluster Number (FCN) column within the directory tables. The utilities treat cluster allocations in the FAT that do not have any directory or file entries as unaccounted data fragments (also known as orphan clusters) and the utilities may delete these orphan clusters or create a corresponding file entry in a directory table. Because the discardable file system described herein may make use of what would otherwise be considered an orphan cluster, the utilities may improperly turn a discardable file into a non-discardable file or remove the discardable file entirely.

To address these problems, in some implementations, the storage allocator 144 may associate a discardable file with a cluster chain in a primary FAT, where the cluster chain hides a physical location of the discardable file, and the storage allocator 144 stores the physical location of the file in a discardable FAT, a database, or one or more location files. Typically, the discardable FAT, database, or one or more location files are not visible to the primary FAT, and in some implementations, an attribute associated with the discardable FAT, database, or one or more location files may be enabled that prevents a host operating system from accessing the discardable FAT, database, or one or more location files.

As noted before, each entry in a FAT32 is 32 bits, but only the lower 28 bits are used. Typically, the upper four bits are reserved and are set to zero. (Compliant implementations of FAT32 are required to ignore the upper four bits if set on allocated clusters, and to set the upper four bits to zero when writing new FAT entries.) Discardable files are distinguished from non-discardable files by a flag within the upper four bits of the FAT entries of each cluster chain that is associated with the file. Standard FAT32 drivers will see discardable files as allocated space and will not write over them. However, a storage allocator 144 may periodically perform operations, such as those described above with respect to FIG. 5, in order to maintain free space allocations in the storage device 110 and may recover the space allocated to discardable files.

By utilizing a primary FAT and at least one of a discardable FAT, a database, and one or more location files, the primary FAT may be extended. When the extended primary FAT is used in conjunction with a branch in file allocation table lookup logic, such that if the upper four bits of a FAT entry are nonzero, information in the discardable FAT, database, or one or more location files reflecting a physical location of the discardable file is used in place of the FAT entry in the primary FAT. Due to the information in the discardable FAT, database, or one or more location files overriding a value in the FAT entry of the primary FAT, utilities such as chkdsk and fsck.vfat will not turn discardable files into non-discardable files because the utilities will see the clusters of the discardable file as associated with directory or file entries in the discardable FAT, database or one or more location files. Also, FAT recovery utilities will not reset the flags in FAT32 entries indicating that a file is a discardable file because utilities such as chkdsk and fsck.vfat see the clusters associated with the discardable files as associated with directory or file entries in the discardable FAT, database, or one or more location files rather than as free space.

When the file system 160 utilizes a primary FAT 1200 and a discardable FAT 1201, to store a file that has been marked as a discardable file, the storage allocator 144 updates the primary FAT 1200 as shown in FIG. 12 a to associate a cluster chain 1202 allocated to a discardable file with the file. Generally, the cluster chain 1202 may be the same size as, or larger than, the discardable file associated with the cluster chain 1202. In some implementations, the cluster chain 1202 masks a physical location of the discardable file in the primary FAT. Typically, as described above with respect to FIGS. 7 and 8, each cluster in the cluster chain starting in entry 1204 points to the next sequential cluster of the cluster chain 1202 until a value such as 1FFF FFFF, as shown in entry 1206, indicates an end to the cluster chain 1202. However, in other implementations, each cluster of the cluster chain may have a value such as 1FFF FFFF indicating that the cluster is an individually allocated cluster rather than pointing to a next sequential cluster of a cluster chain.

The first entry 1204 of the cluster chain 1202 points to a corresponding entry 1208 in the discardable FAT 1201, as shown in FIG. 12 b. As described above with respect to FIGS. 7 and 8, for each file, each cluster in the cluster chain 1202 within the discardable FAT 1201 points to a next sequential cluster of the file until a value such as 1FFF FFFF, as shown in entry 1210, indicates the file's EOF.

It should be appreciated that one cluster chain 1202 may be associated with more than one file. For example, as shown in FIG. 12 b, cluster chain 1202 includes a first set of clusters from cluster #6 (element 1208) to cluster #9 (element 1210) for a first file 1212 and includes a second set of cluster from cluster #10 to cluster #11 for a second file 1214.

Additionally, it should be appreciated that a primary FAT 1200 and corresponding discardable FAT 1201 may include more than one cluster chain. For example, as shown in FIGS. 12 a and 12 b, a primary FAT may include the cluster chain 1202 of cluster #6 to cluster #11 and may include a second cluster chain 1216 of cluster #20 to cluster #22.

In other implementations, rather than using a primary FAT 1200 and a discardable FAT 1201, a file system may utilize a primary FAT 1200 to associate one or more files with a cluster chain, as described above, and a database or one or more separate location files in place of the discardable FAT to store physical locations of the one or more discardable files associated with the cluster chain. The database or location files may be text files or binary files that are stored in the non-discardable area of the file system.

FIG. 13 is a method for managing a storage device using a primary FAT and a discardable FAT. FIG. 13 will be described in association with FIG. 1. At step 1310, host 140 receives a request to store file 142 in storage device 100. In some implementations, the storage allocator 144 derives the request to store file 142 in the storage device 100 based on one or more write requests associated with the file.

At step 1320, the storage allocator 144 marks the file as “discardable” or as “non-discardable” in a file system structure associated with the storage device 100 as described above. At step 1320, the file is marked also in the sense that a discarding priority level is assigned to the file.

At step 1330, when the file is a discardable file, the storage allocator 144 updates a primary FAT to associate a cluster chain that is allocated to the file with the file. At step 1340, the storage allocator 144 updates a discardable FAT to reflect a physical location of the file in the storage device 100. At step 1350, the storage allocator 144 manages the storage area 110 of the storage device 100 (through communication with the storage controller 120) or manages files that are stored in the storage area 110 based on the marked file and in accordance with the discardable FAT. The management of the storage area is similar to that described above with respect to FIG. 5.

FIG. 14 is a method for managing a storage device using a FAT and a database. FIG. 14 will be described in association with FIG. 1. At step 1410, host 140 receives a request to store file 142 in storage device 100. At step 1420, the storage allocator 144 marks the file as “discardable” or as “non-discardable” in a file system structure associated with the storage device 100 as described above. At step 1420, the file is marked also in the sense that a discarding priority level is assigned to the file.

At step 1430, when the file is a discardable file, the storage allocator 144 updates a FAT to associate a cluster chain that is allocated to the file with the file. At step 1440, the storage allocator 144 updates a database to reflect a physical location of the file in the storage device 100. At step 1450, the storage allocator 144 manages the storage area 110 of the storage device 100 (through communication with the storage controller 120) or manages files that are stored in the storage area 110 based on the FAT and the database.

FIG. 15 is a method for managing a storage device using a FAT and a location file. FIG. 15 will be described in association with FIG. 1. At step 1510, host 140 receives a request to store file 142 in storage device 100. At step 1520, the storage allocator 144 marks the file as “discardable” or as “non-discardable” in a file system structure associated with the storage device 100 as described above. At step 1520, the file is marked also in the sense that a discarding priority level is assigned to the file.

At step 1530, when the file is a discardable file, the storage allocator 144 updates a FAT to associate a cluster chain that is allocated to the file with the file. At step 1540, the storage allocator 144 updates a location file to reflect a physical location of the file in the storage device 100. At step 1550, the storage allocator 144 manages the storage area 110 of the storage device 100 (through communication with the storage controller 120) or manages files that are stored in the storage area 110 based on the FAT and the location files.

In yet other implementations, to enhance security, and to prevent the file system from being destroyed or compromised by file system integrity utilities such as dosfsck (also known as fsck.vfat) or chkdsk, the storage allocator 144 does not allocate clusters to cluster chains sequentially in the discardable file area to ensure that cluster chains cannot be reconstructed without reading a discardable FAT, database, or one or more location files which store the physical location of a discardable file. Additionally, range files are generated in the FAT that are associated with one or more of the scrambled clusters of the cluster chain so that utilities such as dosfsck will not turn discardable files into non-discardable files or reset the flag in the upper bits of the file indicating that the file is discardable. In some implementations, an attribute such as a hidden, system, directory, or volume attribute may be enabled that is associated with a range file to prevent a host operating system from accessing the range files.

FIG. 16 is a chart representing a FAT including a cluster chain in which an order of two or more clusters that comprise the cluster chain have been scrambled. As shown in FIG. 16, the clusters that comprise a cluster chain that starts at entry 1602 are not contiguous. For example, the order of the cluster chain starting at entry 1602 is cluster #13, cluster #9, cluster #7, cluster #18, and cluster #21. In the FAT, the value of each cluster points to the next cluster in the cluster chain, as described above with respect to FIGS. 7 and 8.

In addition to scrambling the order of the clusters that comprise a cluster chain associated with one or more files, one or more range files may be created in the FAT that comprise one or more clusters of the cluster chain that is associated with the file. In some implementations, each range file may represent all clusters within a range of clusters that are part of a cluster chain. Due to the association between the range files and the clusters that comprise the cluster chain, utilities such as chkdsk or fsck.vfat will not turn the discardable file into non-discardable files and FAT recovery utilities will not reset the flags in a FAT32 entry indication that the file is a discardable file.

FIG. 17 is a chart illustrating one or more range files that are created in the FAT, that each stores at least one cluster of the cluster chain starting at entry 1602. For example, a first range file 1604 stores cluster #7 and cluster #9 from the cluster chain starting at entry 1602, and a second range file 1606 stores cluster #13, cluster #18, and cluster #21 from the cluster chain starting at entry 1602.

A range file may store clusters from more than one cluster chain. For example, in addition to the clusters listed above from the cluster chain starting at entry 1602, the first range file 1604 may store cluster #5 and cluster #10 from the cluster chain starting at entry 1608. Similarly, in addition to the clusters listed above from the cluster chain starting at entry 1602, the second range file 1606 may storage cluster #16, cluster #17, and cluster #22 from the cluster chain starting at entry 1608.

FIG. 18 is a method for managing a storage device using a FAT in which an order of two or more clusters that comprise a cluster chain is scrambled. FIG. 18 will be described in association with FIG. 1. At step 1810, host 140 receives a request to store file 142 in storage device 100. At step 1820, the storage allocator 144 marks the file as “discardable” or as “non-discardable” in a file system structure associated with the storage device 100 as described above. At step 1820, the file is marked also in the sense that a discarding priority level is assigned to the file.

At step 1830, when the file is a discardable file, the storage allocator 144 updates a FAT to associate a cluster chain that is allocated to the file with the file. At step 1840, an order of two or more clusters of the cluster chain that are associated with the file are scrambled within the FAT based on factors such as an amount of memory within the storage device 100, a total size of a cluster chain, a number of clusters between two sequential clusters of a cluster chain, and/or flash memory management algorithms that may consider an erase block size, a physical block address of each logical address in an allocated block, and/or wear leveling data for each page associated with a physical block address. In some implementation the order of two or more clusters of the cluster chain are scrambled using a pseudo-random number generator or entropic random number generator, which provides an offset within a range for each cluster that has not been previously allocated. In other implementations, the order of two or more clusters of the cluster chain is scrambled using a one-way hash function that takes into account non-deterministic values from the host system 140 and/or the storage device 100.

At step 1850, a first range file is created in the FAT that comprises at least one cluster of the cluster chain that is associated with the first file. At step 1860, the storage allocator 144 manages the storage area 110 of the storage device 100 (through communication with the storage controller 120) or manages files that are stored in the storage area 110 based on the FAT and the range files.

In yet other implementations, the file system may implement conversion locks to ensure that a discardable file is not converted to a non-discardable file while the discardable file is open. A discardable file may be open, for example, during a period of time while the discardable file is being downloaded to the storage device 100 or during a period of time before data associated with discardable file is to be released to the public, such as when the discardable file is downloaded to the storage device 100 before a release date associated with a movie, song, or program that is associated with the discardable file. Generally, the conversions locks operate such that a discardable file cannot be converted to a non-discardable file when the conversion lock is set.

FIG. 19 is a method for utilizing conversion locks to prevent a conversion of a discardable file when the discardable file is open in a file system implementing a primary FAT and a discardable FAT. FIG. 19 will be described in association with FIG. 1. At step 1910, the storage allocator 144 receives a request to convert a discardable file to a non-discardable file. At step 1920, the storage allocator 144 identifies a value of a conversion lock identifier associated with the discardable file. At step 1930, the storage allocator 144 determines whether the discardable file may be converted to a non-discardable file based on the value of the conversion lock identifier. Typically, the storage allocator 144 will determine that the discardable file may not be converted when the value of the conversion lock identifier indicates that the discardable file is open and the storage allocator 144 will determine that the discardable file may be converted when the value of the conversion lock identifier indicates that the discardable file is not open.

If the storage allocator 144 determines at step 1930 that the discardable file may not be converted to a non-discardable file, the storage allocator 144 prohibits the marking of the discardable file as non-discardable at step 1940. However, if the storage allocator 144 determines at step 1930 that the discardable file may be converted to a non-discardable file, the storage allocator 144 proceeds to mark the file as a non-discardable file in the file system structure associated with the storage device 100 at step 1950; update the primary FAT to reflect a physical location of the file at step 1960; and to update the discardable FAT to remove the physical location of the file at step 1970.

It will be appreciated that similar methods are implemented with a conversion lock when a database or location file are used with a primary FAT in place of the discardable FAT as described above.

In some implementations, an application may be permitted to perform operations such as converting a discardable file to a non-discardable file, or checking a value of a conversion lock identifier, based on an identifier associated with the application. Typically, an application that creates or downloads a discardable file may associate a user IDENTIFIER (ID) with the discardable file. The user ID may be an owner user ID that identifies the application or user that created the discardable file. In some implementations, the owner user ID is a 4-byte value.

The file system 160 provides the owner user ID the ability to define what additional user IDs, associated with other users or applications, may access the discardable file and what actions the additional user IDs may take with respect to the discardable file. It will be appreciated that depending on the use of the discardable file, an additional user ID may be associated with a single application or a single user, or the additional user ID may be a shared user ID that is associated with multiple applications or multiple users.

In some implementations, the owner user ID may allow an application associated with an additional user ID to access preview data associated with the discardable file. The preview data may be part of the discardable file where in other implementations the preview data is distinct from, but associated with, the discardable file. In some exemplary implementations, a discardable file may be a movie and preview data may include a movie trailer associated with the movie; a discardable file may be a television program and preview data may include a portion of the television program; a discardable file may be music data and preview data may include a portion of the music data; or a discardable file may be a software program and preview data may include a demo version of the software program. In other exemplary implementations, preview data may be utilized such that before a release date associated with a discardable file the discardable file may not be accessed but the preview data associated with the discardable file may be accessed, and then after the release date, both the discardable file and the preview data may be accessed. In another example, the owner user ID may allow an application associated with an additional user ID to write to a discardable file based on a user ID associated with the discardable file.

In some implementations, the file system may provide permission bit masks for the owner user ID to define what operations applications associated with an additional user ID may perform with respect to a discardable file. One example of permission bit masks for typical usage scenarios is shown in FIG. 20. However, it should be appreciated that the owner user ID can override the permissions shown in FIG. 20 and assign any permission to additional user IDs.

Referring to the permissions shown in FIG. 20, an application with a properties write permission bit 2002 set may modify attributes such as enabling or disabling a conversion lock, setting a time stamp, or writing a consumption intent universal resource indicator (“URI”) and an application with a properties read permission bit 2004 set may read attributes such as a conversion lock, a time stamp, or a consumption intent URI. An application with a priority permission bit 2006 set can modify a priority level of a discardable file. An application with a preview read permission bit 2008 set can read preview data associated with a discardable file and an application with a preview write permission bit 2010 set can write preview data associated with a discardable file. An application with a read permission bit 2012 set may read a discardable file and an application with a write permission bit 2014 set may write to a discardable file. Typically, only an application associated with an owner user ID that is associated with a discardable file will have these permissions. An application with a convert permission bit 2016 set can convert a discardable file to a non-discardable file.

It is noted that the methodology disclosed herein, of marking files and assigning to them discarding levels in associated file system, may have many useful applications, one of which is restoring a storage usage safety margin to guarantee sufficient storage space for user files. For example, a discarding level assigned to a file may be used to remap file clusters to a lower-performing flash module, or to clear the clusters upon request.

The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article, depending on the context. By way of example, depending on the context, “an element” can mean one element or more than one element. The term “including” is used herein to mean, and is used interchangeably with, the phrase “including but not limited to”. The terms “or” and “and” are used herein to mean, and are used interchangeably with, the term “and/or,” unless context clearly indicates otherwise. The term “such as” is used herein to mean, and is used interchangeably, with the phrase “such as but not limited to”.

Having thus described exemplary embodiments of the invention, it will be apparent to those skilled in the art that modifications of the disclosed embodiments will be within the scope of the invention. Alternative embodiments may, accordingly, include more modules, fewer modules and/or functionally equivalent modules. The present disclosure is relevant to various types of mass storage devices such as SD-driven flash memory cards, flash storage devices, non-flash storage devices, “Disk-on-Key” devices that are provided with a Universal Serial Bus (“USB”) interface, USB Flash Drives (““UFDs”), MultiMedia Card (“MMC”), Secure Digital (“SD”), miniSD, and microSD, and so on. Hence the scope of the claims that follow is not limited by the disclosure herein.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5491810Mar 1, 1994Feb 13, 1996International Business Machines CorporationMethod and system for automated data storage system space allocation utilizing prioritized data set parameters
US5754939Oct 31, 1995May 19, 1998Herz; Frederick S. M.System for generation of user profiles for a system for customized electronic identification of desirable objects
US5790886Dec 5, 1995Aug 4, 1998International Business Machines CorporationMethod in a data processing system
US5838614May 19, 1997Nov 17, 1998Lexar Microsystems, Inc.Identification and verification of a sector within a block of mass storage flash memory
US6134584Nov 21, 1997Oct 17, 2000International Business Machines CorporationMethod for accessing and retrieving information from a source maintained by a network server
US6138158Apr 30, 1998Oct 24, 2000Phone.Com, Inc.Method and system for pushing and pulling data using wideband and narrowband transport systems
US6185625Dec 20, 1996Feb 6, 2001Intel CorporationScaling proxy server sending to the client a graphical user interface for establishing object encoding preferences after receiving the client's request for the object
US6217752Dec 28, 1999Apr 17, 2001Terry L. CootsSeptic tank alarm system
US6366912Apr 6, 1998Apr 2, 2002Microsoft CorporationNetwork security zones
US6393465May 29, 1998May 21, 2002Nixmail CorporationJunk electronic mail detector and eliminator
US6453383Aug 13, 1999Sep 17, 2002Powerquest CorporationManipulation of computer volume segments
US6542964Jun 2, 1999Apr 1, 2003Blue Coat SystemsCost-based optimization for content distribution using dynamic protocol selection and query resolution for cache server
US6542967Jun 22, 1999Apr 1, 2003Novell, Inc.Cache object store
US6553393Apr 26, 1999Apr 22, 2003International Business Machines CoporationMethod for prefetching external resources to embedded objects in a markup language data stream
US6598121Nov 6, 2001Jul 22, 2003International Business Machines, Corp.System and method for coordinated hierarchical caching and cache replacement
US6742033Jun 12, 2000May 25, 2004Gateway, Inc.System, method and computer program product that pre-caches content to provide timely information to a user
US6799251Aug 29, 2000Sep 28, 2004Oracle International CorporationPerformance-based caching
US6826599Jun 15, 2000Nov 30, 2004Cisco Technology, Inc.Method and apparatus for optimizing memory use in network caching
US6917960May 5, 2000Jul 12, 2005Jibe NetworksIntelligent content precaching
US6937813Mar 31, 2000Aug 30, 2005Intel CorporationDigital video storage and replay system
US6996676Nov 14, 2002Feb 7, 2006International Business Machines CorporationSystem and method for implementing an adaptive replacement cache policy
US7043506Jun 28, 2001May 9, 2006Microsoft CorporationUtility-based archiving
US7043524Nov 6, 2001May 9, 2006Omnishift Technologies, Inc.Network caching system for streamed applications
US7103598Mar 3, 2000Sep 5, 2006Micron Technology, IncSoftware distribution method and apparatus
US7155519Apr 2, 2001Dec 26, 2006Mdsi Software SrlSystems and methods for enhancing connectivity between a mobile workforce and a remote scheduling application
US7167840Mar 15, 2000Jan 23, 2007The Directv Group, Inc.Method and apparatus for distributing and selling electronic content
US7246139May 28, 2002Jul 17, 2007Fujitsu LimitedFile system for enabling the restoration of a deffective file
US7246268Jan 16, 2002Jul 17, 2007Sandisk CorporationMethod and apparatus for dynamic degradation detection
US7248861Jun 12, 2006Jul 24, 2007Research In Motion LimitedSystem and method for pushing information to a mobile device
US7269851Jan 7, 2002Sep 11, 2007Mcafee, Inc.Managing malware protection upon a computer network
US7289563Jun 27, 2003Oct 30, 2007Hitachi, Ltd.Security camera system
US7305473Mar 27, 2001Dec 4, 2007The Coca-Cola CompanyProvision of transparent proxy services to a user of a client device
US7317907Jan 31, 2005Jan 8, 2008Research In Motion LimitedSynchronizing server and device data using device data schema
US7356591Aug 4, 2006Apr 8, 2008Research In Motion LimitedSystem and method of managing information distribution to mobile stations
US7395048Dec 26, 2002Jul 1, 2008Motorola, Inc.Unsolicited wireless content delivery and billing apparatus and method
US7428540Oct 23, 2000Sep 23, 2008Intel CorporationNetwork storage system
US7430633Dec 9, 2005Sep 30, 2008Microsoft CorporationPre-storage of data to pre-cached system memory
US7472247Sep 1, 2005Dec 30, 2008Research In Motion LimitedMethod and system for centralized memory management in wireless terminal devices
US7483871Oct 1, 2002Jan 27, 2009Pinpoint IncorporatedCustomized electronic newspapers and advertisements
US7512666Apr 18, 2001Mar 31, 2009Yahoo! Inc.Global network of web card systems and method thereof
US7512847Feb 6, 2007Mar 31, 2009Sandisk Il Ltd.Method for estimating and reporting the life expectancy of flash-disk memory
US7523013May 15, 2006Apr 21, 2009Sandisk CorporationMethods of end of life calculation for non-volatile memories
US7525570Jul 17, 2003Apr 28, 2009IgtSecurity camera interface
US7549164Mar 16, 2005Jun 16, 2009Symantec CorporationIntrustion protection system utilizing layers and triggers
US7568075Oct 26, 2005Jul 28, 2009Hitachi, Ltd.Apparatus, system and method for making endurance of storage media
US7574580Mar 25, 2005Aug 11, 2009Magnum Semiconductor, Inc.Intelligent caching scheme for streaming file systems
US7650630Dec 9, 2002Jan 19, 2010Ntt Docomo, Inc.Device and method for restricting content access and storage
US7689805Apr 27, 2007Mar 30, 2010Sandisk 3D LlcMethod and apparatus for using a one-time or few-time programmable memory with a host device designed for erasable/rewriteable memory
US7783956Jul 12, 2006Aug 24, 2010Cronera Systems IncorporatedData recorder
US7975305Dec 9, 2004Jul 5, 2011Finjan, Inc.Method and system for adaptive rule-based content scanners for desktop computers
US8001217Oct 13, 2005Aug 16, 2011Sprint Communications Company L.P.Prediction-based adaptive content broadcasting over a network
US8037527Nov 1, 2005Oct 11, 2011Bt Web Solutions, LlcMethod and apparatus for look-ahead security scanning
US20020165825May 30, 2001Nov 7, 2002Hideki MatsushimaRecording medium, license management apparatus, and recording and playback apparatus
US20020194382Dec 3, 2001Dec 19, 2002Kausik Balas NatarajanMethod and system for efficient and automated version management of embedded objects in web documents
US20030009538Nov 6, 2001Jan 9, 2003Shah Lacky VasantNetwork caching system for streamed applications
US20030023745Jul 26, 2001Jan 30, 2003Neoplanet, Inc.Method and system for adaptively downloading data from a network device
US20030033308Nov 9, 2001Feb 13, 2003Patel Sujal M.System and methods for providing a distributed file system utilizing metadata to track information about data stored throughout the system
US20030114138Aug 28, 2002Jun 19, 2003Kumar RamaswamyApparatus, methods and articles of manufacture for wireless communication networks
US20030172236Mar 7, 2002Sep 11, 2003International Business Machines CorporationMethods and systems for distributed caching in presence of updates and in accordance with holding times
US20030187960Mar 26, 2003Oct 2, 2003Kabushiki Kaisha ToshibaData transfer scheme for reducing network load using general purpose browser on client side
US20030189589Dec 3, 2002Oct 9, 2003Air-Grid Networks, Inc.Systems and methods for enhancing event quality
US20030236961Mar 1, 2001Dec 25, 2003Qiu Chaoxin C.Systems and methods for management of memory in information delivery environments
US20040049579Apr 10, 2002Mar 11, 2004International Business Machines CorporationCapacity-on-demand in distributed computing environments
US20040117586May 7, 2001Jun 17, 2004Petro EstakhriDirect logical block addressing flash memory mass storage architecture
US20040127235Dec 26, 2002Jul 1, 2004Michael KotzinUnsolicited wireless content delivery and billing apparatus and method
US20040221018Jun 11, 2002Nov 4, 2004Eun-Mook JiContents consignment sale system and method for networking broadcasting
US20040221118Jan 29, 2004Nov 4, 2004Slater Alastair MichaelControl of access to data content for read and/or write operations
US20040221130Apr 30, 2004Nov 4, 2004Lai Jui YangMethod and device for a accessing non-volatile memory by PC and X-BOX
US20040260880Feb 13, 2004Dec 23, 2004Shannon Christopher J.Method, system, and apparatus for an hierarchical cache line replacement
US20050039177Jun 30, 2004Feb 17, 2005Trevor Burke Technology LimitedMethod and apparatus for programme generation and presentation
US20050076063May 28, 2002Apr 7, 2005Fujitsu LimitedFile system for enabling the restoration of a deffective file
US20050097278Oct 31, 2003May 5, 2005Hsu Windsor W.S.System and method for providing a cost-adaptive cache
US20050102291Nov 12, 2004May 12, 2005Czuchry Andrew J.Jr.Apparatus and method providing distributed access point authentication and access control with validation feedback
US20050132286Jan 28, 2005Jun 16, 2005Rohrabaugh Gary B.Resolution independent vector display of internet content
US20050246543Jul 13, 2005Nov 3, 2005Sony CorporationSystem and method of content copy control
US20050273514May 9, 2001Dec 8, 2005Ray MilkeySystem and method for automated and optimized file transfers among devices in a network
US20060008256Sep 29, 2004Jan 12, 2006Khedouri Robert KAudio visual player apparatus and system and method of content distribution using the same
US20060010154Nov 15, 2004Jan 12, 2006Anand PrahladSystems and methods for performing storage operations using network attached storage
US20060021032Jul 20, 2004Jan 26, 2006International Business Machines CorporationSecure storage tracking for anti-virus speed-up
US20060059326Nov 4, 2005Mar 16, 2006Microsoft CorporationDynamic data structures for tracking file system free space in a flash memory device
US20060064555May 2, 2005Mar 23, 2006Anand PrahladSystems and methods for storage modeling & costing
US20060075068Oct 28, 2005Apr 6, 2006Stephane KasrielPredictive pre-download of a network object
US20060075424Jan 23, 2004Apr 6, 2006Koninklijke Philips Electronics N.V.Import control of content
US20060107062Nov 17, 2005May 18, 2006David FauthouxPortable personal mass storage medium and information system with secure access to a user space via a network
US20060161604Jan 19, 2005Jul 20, 2006Lobo Sanjay PEnterprise digital asset management system and method
US20060161960Jan 20, 2005Jul 20, 2006Benoit Brian VNetwork security system appliance and systems based thereon
US20060168123Dec 14, 2004Jul 27, 2006AlcatelQueue and load for wireless hotspots
US20060168129Jun 30, 2005Jul 27, 2006Research In Motion LimitedSystem and method for enhancing network browsing speed by setting a proxy server on a handheld device
US20060200503Mar 3, 2005Sep 7, 2006Nokia CorporationModifying back-end web server documents at an intermediary server using directives
US20060218304Mar 22, 2005Sep 28, 2006Sarit MukherjeeSession level technique for improving web browsing performance on low speed links
US20060218347Aug 17, 2005Sep 28, 2006Takashi OshimaMemory card
US20060256012Mar 6, 2006Nov 16, 2006Kenny FokApparatus and methods for managing content exchange on a wireless device
US20060259715Jul 24, 2006Nov 16, 2006Advanced Micro Devices, Inc.System and method for identifying empty locations in a scrambled memory
US20060282886Jun 9, 2006Dec 14, 2006Lockheed Martin CorporationService oriented security device management network
US20060294223Jun 24, 2005Dec 28, 2006Microsoft CorporationPre-fetching and DNS resolution of hyperlinked content
US20070088659Oct 19, 2005Apr 19, 2007Mod SystemsDistribution of selected digitally-encoded content to a storage device, user device, or other distribution target with concurrent rendering of selected content
US20070100893Oct 31, 2005May 3, 2007Sigmatel, Inc.System and method for accessing data from a memory device
US20070156845Dec 29, 2006Jul 5, 2007Akamai Technologies, Inc.Site acceleration with content prefetching enabled through customer-specific configurations
US20070156998Dec 21, 2005Jul 5, 2007Gorobets Sergey AMethods for memory allocation in non-volatile memories with a directly mapped file storage system
US20100235329 *Mar 9, 2010Sep 16, 2010Sandisk Il Ltd.System and method of embedding second content in first content
US20100235473 *Mar 9, 2010Sep 16, 2010Sandisk Il Ltd.System and method of embedding second content in first content
Non-Patent Citations
Reference
1"Android Data Caching", Process Fork, http://processfork.blogspot.com/2010/04/android-data-caching.html, Apr. 21, 2010, 2 pages.
2"Cisco MDS 9000 Series Caching Services Module with IBM TotalStorage(TM) SAN Volume Controller Storage Software for Cisco MDS 9000", Cisco Systems, Inc., http://www.cisco.com/warp/public/cc/pd/ps4159/ps4358/prodlit/md9ds-ds.pdf, printed on Dec. 7, 2010, 9 pages.
3"Persistant Caching", IBM® Cognos® 8 Virtual Manager Installation and Configuration Guide, http://publib.boulder.ibm.com/infocenter/c8bi/v8r4m0/index.jsp?topic=/com.ibm.swg.im.cognos.vvm-installation-guide.8.4.0.doc/vvm-installation-guide-id1555PersistentCaching.html, Nov. 27, 2009, 1 page.
4"Cisco MDS 9000 Series Caching Services Module with IBM TotalStorage™ SAN Volume Controller Storage Software for Cisco MDS 9000", Cisco Systems, Inc., http://www.cisco.com/warp/public/cc/pd/ps4159/ps4358/prodlit/md9ds—ds.pdf, printed on Dec. 7, 2010, 9 pages.
5"Persistant Caching", IBM® Cognos® 8 Virtual Manager Installation and Configuration Guide, http://publib.boulder.ibm.com/infocenter/c8bi/v8r4m0/index.jsp?topic=/com.ibm.swg.im.cognos.vvm—installation—guide.8.4.0.doc/vvm—installation—guide—id1555PersistentCaching.html, Nov. 27, 2009, 1 page.
6Cache Management for the IBM Virtual Taper Server, http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10054, printed on Jan. 3, 2011, 5 pages.
7Chandra et al., "Automated Storage Reclamation Using Temporal Importance Annotations", 27th International Conference on Distributed Computing Systems (ICDCS'07), IEEE, pp. 1-10, 2007.
8Deng et al., "Architectures and Optimization Methods of Flash Memory Based Storage Systems", Journal of Systems Architecture, vol. 57, pp. 214-227, 2011.
9Douglis et al., "Position: Short Object Lifetimes Require a Delete-Optimized Storage System", Proceedings of the 11th Workshop on ACM SIGOPS European Workshop, ACM, 2004, pp. 1-6.
10International Report on Patentability issued in International Application No. PCT/IL2009/000752, mailed Feb. 17, 2011, 2 pages.
11International Search Report and Written Opinion dated May 7, 2008 for PCT Application Serial No. PCT/IL2008/000126, 12 pages.
12International Search Report and Written Opinion dated Oct. 26, 2009 for PCT Application Serial No. PCT/IL2009/000752, 11 pages.
13International Search Report and Written Opinion for PCT Patent Application Serial No. PCT/US2010/026596, dated Jul. 29, 2010, 15 pages.
14International Search Report and Written Opinion for PCT Patent Application U.S. Appl. No. PCT/US2009/065456, dated Apr. 9, 2010, 11 pages.
15International Search Report and Written Opinion for PCT/US2011/047270, dated Dec. 20, 2011, 13 pages.
16International Search Report for PCT/IB2011/001206, mailed Aug. 30, 2011, 5 pages.
17Jiang, Zhimei et al., "Web Prefetching in a Mobile Environment", IEEE Personal Communications, IEEE Communications Society, US, vol. 5, No. 5, Oct. 1998, pp. 25-34.
18Office Action for U.S. Appl. No. 12/020,553, dated Dec. 19, 2011, 20 pages.
19Office Action for U.S. Appl. No. 12/020,553, dated May 12, 2011, 19 pages.
20Office Action for U.S. Appl. No. 12/185,583, dated Jan. 31, 2012, 17 pages.
21Office Action for U.S. Appl. No. 12/185,583, dated Jun. 6, 2011, 13 pages.
22Office Action for U.S. Appl. No. 12/336,089, dated Apr. 13, 2011, 14 pages.
23Office Action for U.S. Appl. No. 12/336,089, dated Mar. 22, 2012, 8 pages.
24Office Action for U.S. Appl. No. 12/336,089, dated Oct. 31, 2011, 14 pages.
25Office Action for U.S. Appl. No. 12/645,149, dated Jan. 26, 2012, 9 pages.
26Office Action for U.S. Appl. No. 12/645,194, dated Dec. 8, 2011, 26 pages.
27Office Action for U.S. Appl. No. 12/720,006, dated May 1, 2012, 11 pages.
28Office Action for U.S. Appl. No. 12/720,006, dated Nov. 14, 2011, 11 pages.
29Office Action for U.S. Appl. No. 12/720,282, dated Dec. 1, 2011, 14 pages.
30Office Action for U.S. Appl. No. 12/720,282, dated May 1, 2012, 12 pages.
31Office Action for U.S. Appl. No. 12/796,267, dated Feb. 10, 2012, 22 pages.
32Office Action for U.S. Appl. No. 13/172,589, dated Mar. 22, 2012, 9 pages.
33O'Hare, Gregory et al., "Addressing Mobile HCI Needs Through Agents", Proceedings of the 4th International Symposium on Human Computer Interaction with Mobile Devices and Services (MobileHCI'02), Pisa, Italy, 2002, pp. 311-314. Spinger Verlag LNCS 2411.
34Reddy, Mike et al., An Adaptive Mechanism for Web Browser Cache Management, date unknown, 6 pages.
35Rekkedal, S., "Caching of Interactive Branching Video in MPEG-4-Thesis for the Candidatus Scientiarum Degree", University of Oslo Department of Informatics, Jul. 12, 2004, 140 pages.
36Restriction Requirement for U.S. Appl. No. 12/494,758, dated Nov. 21, 2011, 6 pages.
37Rigoutsos et al., "Chung-Kwei: A Pattern-Discovery-Based System for the Automatic Identification of Unsolicited E-Mail Messages (SPAM)", Proceedings of the First Conference on Email and Anti-Spam (CEAS), Bioinformatics and Pattern Discovery Group, IBM, 2004.
38The International Search Report and Written Opinion for PCT Patent Application Serial No. PCT/US2009/065056, dated Jul. 29, 2010, 35 pages.
39U.S. Appl. No. 13/341,783, filed Dec. 30, 2011, entitled, "System and Method for Managing Discardable Objects", 54 pages.
40U.S. Appl. No. 13/341,785, filed Dec. 30, 2011, entitled, "System and Method for Managing Discardable Objects", 54 pages.
41U.S. Appl. No. 61/159,034, filed Mar. 10, 2009, entitled, "Smart Caching", Inventors: Judah Gamliel Hahn and David Koren (24 pages).
42Written Opinion for PCT/IB2011/001206, mailed Aug. 30, 2011, 6 pages.
43Written Opinion of the International Searching Authority issued in International Application No. PCT/IL2009/000752, mailed Feb. 17, 2011, 4 pages.
44Xiang et al., "Cost-Based Replacement Policy for Multimedia Proxy Across Wireless Internet", IEEE Global Telecommunications Conference, GLOBECOM '01, San Antonio, TX, Nov. 25-29, 2001, pp. 2009-2013.
45Yin et al., "A Generalized Target-Driven Cache Replacement Policy for Mobile Environments", Proceedings of the 2003 Symposium on Applications and the Internet (SAINT '03), pp. 1-20.
Classifications
U.S. Classification711/170, 707/692, 711/159, 711/E12.001, 711/163, 711/E12.002
International ClassificationG06F12/00, G06F7/00
Cooperative ClassificationG06F17/30147
European ClassificationG06F17/30F
Legal Events
DateCodeEventDescription
May 15, 2012ASAssignment
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAHN, JUDAH GAMLIEL;JAGANNADHA, BADDIREDDI KALYAN VENKANNADORA;SUBRAMANIAN, NATARAJAN RAJA;SIGNING DATES FROM 20091002 TO 20091006;REEL/FRAME:028212/0222
Owner name: SANDISK IL LTD., ISRAEL