Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSH1938 H1
Publication typeGrant
Application numberUS 09/229,163
Publication dateFeb 6, 2001
Filing dateJan 13, 1999
Priority dateJan 28, 1998
Also published asUS5955698
Publication number09229163, 229163, US H1938 H1, US H1938H1, US-H1-H1938, USH1938 H1, USH1938H1
InventorsThomas K. Harkins, Howard K. Steves, Jacques E. Goeller
Original AssigneeThe United States Of America As Represented By The Secretary Of The Navy
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Supercavitating water-entry projectile
US H1938 H1
Abstract
A supercavitating water-entry projectile having empennage on the aft end which provides both aerodynamic and hydrodynamic stability and a supercavitating nose section is provided. A representative projectile is a subcaliber munition adapted for use in a 25 mm weapon using a sabot currently in use with the M919 round. The projectile has circumferential grooves around its center section to match these sabots. A key feature in the invention is the size and shape of the nose section. The projectile has a novel high strength extended blunt nose section followed by a truncated conical section which angles towards the body of the projectile in the range of five degrees. During underwater trajectory, the entire projectile is contained within the cavitation bubble formed by the blunt nose tip. The projectile's aft empennage, which provides both aerodynamic and hydrodynamic stability, fits within the bore of the weapon.
Images(7)
Previous page
Next page
Claims(15)
What is claimed as new and desired to be secured by Letters Patent of the United States is:
1. An air-launched, supercavitating water-entry projectile comprising:
a cylindrical long body having forward and aft sections;
a plurality of aerodynamic and hydrodynamic stabilizing fins attached to the aft section of said cylindrical body; and
a supercavitating nose section attached forward and integral of said cylindrical body comprising a truncated conical section with a supercavitating blunt nose tip in the front.
2. An air-launched, supercavitating water-entry projectile as in claim 1 wherein said cylindrical body further comprises a cylindrical aft section having a payload cavity on a rearward end and a threaded aperture on a forward end.
3. An air-launched, supercavitating water-entry projectile as in claim 1 wherein said plurality of stabilizing fins comprise four fins equally spaced around the aft section of said cylindrical body.
4. An air-launched, supercavitating water-entry projectile as in claim 3 wherein said fins are fabricated of steel.
5. An air-launched, supercavitating water-entry projectile as in claim 1 wherein said supercavitating nose section is fabricated using a tungsten alloy.
6. An air-launched, supercavitating water-entry projectile as in claim 1 wherein said cylindrical body is fabricated using tungsten alloy.
7. An air-launched, supercavitating water-entry long body projectile comprising:
a cylindrical aft section having a payload cavity on a rearward end and a bored aperture on a forward end;
a plurality of aerodynamic and hydrodynamic stabilizing fins attached to said cylindrical aft section;
a cylindrical center section attached to the bored aperture of said cylindrical aft section; and,
a nose section attached to said center section, said nose section including an extended blunt nose tip to generate an underwater cavitation bubble larger at all longitudinal location than the diameter of the projectile body at the corresponding longitudinal position.
8. An air-launched, supercavitating water-entry projectile as in claim 7 wherein said plurality of stabilizing fins are fabricated of steel.
9. An air-launched, supercavitating water-entry projectile as in claim 7 wherein said plurality of stabilizing fins comprise four stabilizing fins.
10. An air-launched, supercavitating water-entry projectile as in claim 7 wherein said cylindrical center section further comprises a center section having circumferential grooves adapted to interface with existing standard sabots.
11. An air-launched, supercavitating water-entry projectile as in claim 7 wherein said cylindrical center section is fabricated from tungsten alloy.
12. An air-launched, supercavitating water-entry projectile as in claim 7 wherein said nose tip has a diameter of approximately 0.10 inches.
13. An air-launched, supercavitating water-entry projectile as in claim 7 wherein said nose section is capable of achieving aerodynamic and hydrodynamic stabilization when used with said plurality of stabilizing fins.
14. A method for destroying water objects, comprising the steps of:
providing an aerodynamically and hydrodynamically stable air-launched, supercavitating water-entry long body projectile comprising a cylindrical body having forward and aft sections, a plurality of aerodynamic and hydrodynamic stabilizing fins attached to the aft section of said cylindrical body, and a supercavitating nose section attached forward and integral of said cylindrical body comprising a truncated conical section with a supercavitating blunt nose tip in the front, wherein said projectile enters the water at a supercavitating velocity, and,
air-launching said projectile from above the water with sufficient kinetic energy to enter a body of water and destroy the underwater object.
15. A method for removing water objects as in claim 14 wherein said projectile has sufficient kinetic energy to impart a velocity of approximately 4300 feet per second to the projectile at the surface of the water.
Description

This is a divisional of Ser. No. 09/014,688 filed on Jan. 28, 1998, U.S. Pat. No. 5,955,698.

ORIGIN OF THE INVENTION

The invention described herein was made in the performance of official duties by an employee of the Department of the Navy and may be manufactured, used, licensed by or for the Government for any government purpose without payment of royalties thereon.

FIELD OF THE INVENTION

The invention described herein relates to underwater projectiles and in particular to long-rod projectiles used for destroying underwater objects such as obstacles, torpedoes, and mines.

BACKGROUND OF THE INVENTION

Development of penetrating projectiles as currently used in anti-armor applications has addressed numerous technological difficulties in order to produce effective weapons. The basic requirements of a long-rod penetrator includes the use of high density projectiles having a long length-to-diameter ratio and having very high impact velocities. The presently available projectiles are generally used for maximum target penetration of a hardened structure. The invention adapts long-rod penetrators with the capability of traveling both in air and water where the object is to achieve low-drag water penetration for the purpose of delivering high kinetic energy to underwater targets. This requires that the hydroballistic projectile maintain stability and low drag both in air and water so that sufficient kinetic energy can be delivered to the underwater target to assure its destruction.

Current projectiles do not exhibit the capability to travel in both air and water and deliver high kinetic energy to defeat targets at any significant depth below the water surface. An operational need exists for a projectile having the capability of launch above the water surface and providing effective water travel after impact with the water surface.

SUMMARY OF THE INVENTION

It is an object of the invention to provide an air-launchable, penetrating projectile which is ballistically stable both aerodynamically and hydrodynamically.

It is another object of the invention to provide a projectile having a supercavitating nose which provides a cavitation bubble of sufficient size to encompass the body of the projectile which reduces hydrodynamic drag.

It is a yet another object of the invention to provide a projectile launchable by existing gun systems and having sufficient strength to withstand high speed water impact loads while maintaining sufficient strength and ductility to withstand gun launch and hydrodynamic loads during water travel.

In accordance with these and other objects, the invention is a supercavitating water entry projectile having aft mounted empennage which provides stabilization in both air and water and a supercavitating nose section. The projectile is a subcaliber, gun launched munitions using an appropriate sabot assembly to provide full caliber integrity. The projectile has circumferential grooves around its center section to match grooves in the sabot assembly. A key feature in the invention is the size and shape of the nose section. The projectile has a novel high strength extended blunt nose section followed by a truncated conical section which angles towards the body of the projectile in the range of five degrees. During underwater trajectory, the entire projectile is contained within the cavitation bubble formed by the blunt nose tip. The projectile's empennage, which provides both aerodynamic and hydrodynamic stability, fits within the bore of the weapon.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing objects and other advantages of the present invention will be more fully understood from the following detailed description of representative components of a representative 25 mm projectile and reference to the appended drawings wherein:

FIG. 1 is a side view of the projectile with a partial cutaway of the aft end.

FIG. 2 is a partial side view of the supercavitating nose section of the projectile.

FIG. 3 is a partial side view of a cutaway depicting a variation of the supercavitating nose section of the projectile.

FIG. 4 is a side view of the projectile with the sabot installed.

FIG. 5 is a graphical representation of the cavitation bubble with a profile of the projectile included.

FIG. 6 is a graphical representation depicting decreasing underwater velocity for increasing underwater range.

While the aforementioned figures apply to the 25 mm projectile, the invention can be scaled to any caliber weapon.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIG. 1, the projectile 10 of the present invention is shown with its major sections depicted. The projectile has a cylindrical body comprising three major sections, the cylindrical aft section 12, the cylindrical center section 22, and the nose section 32. The steel aft section 12 is configured with suitable stabilizing empennage. This empennage is in the form of a plurality of fins 14. In the preferred embodiment, four equally spaced fins are circumferentially located around the aft section 12 and are sized to fit within the gun bore of a selected existing weapon. For aerodynamic stability, the center of gravity of the projectile 10 must be located forward of the center of pressure. The long body design of the projectile 10 with fins 14 as stabilizing empennage on the aft section 12 produces restoring force sufficient to provide good stability in both air and water. Gyroscopic-induced stability, such as used by spinning bullets in air, cannot be achieved because of the difference in the medium density of water versus air.

A payload cavity 16 is located inside the aft section 12 of the projectile 10 suitable for containing tracer material or other desired payload. The threaded aperture 18 of the main body 24 attaches into a bored aperture of the aft section 12. A threaded aperture 18 provides an attachment point for fixing the aft section 12 to the main body 24 of the projectile 10. The main body 24 is a tungsten or similar heavy metal rod comprising the center section 22 and the nose section 32 of projectile 10. On the center section 22, circumferential grooves 26 are machined to provide a matching interface for a sabot assembly (hereinafter described).

The forward or nose section 32 of the projectile 10 includes the tapered portion 34 and the supercavitating blunt nose tip 36. The nose taper angle 38 of the tapered portion 34 forms a shoulder 42 integral with the center section 22. As previously described, it is necessary to generate a water cavity such that the entire projectile 10 travels within the cavity. This cavity is produced by the supercavitating blunt nose tip 36. The supercavitating blunt nose tip 36 is cylindrical about the axis of the projectile 10 and has a flat circular face 40 which generates the water cavity as the projectile 10 travels through water.

It is imperative to the hydrodynamic stability of the projectile 10 and, thus to success of the invention, that the diametrical size of the flat circular face 40, the nose taper angle 38, and the length of the supercavitating blunt nose tip 36 be designed such that the shoulder 42 does not touch the water cavity wall before the fins 14 of the stabilizing empennage touch the water cavity wall. It is also important to minimize the hydrodynamic drag of the projectile 10 by reducing the diametrical size of flat circular face 40 as much as possible without producing a resultant increase in hydrodynamic drag as a result of the fins 14 of the stabilizing empennage contacting the water cavity wall in an excessive manner beyond what is necessary to provide hydrodynamic stabilization.

Referring now to FIG. 2, a detailed view of the nose section 32 is shown. The aforementioned supercavitating blunt nose tip 36 is illustrated in more detail. For the subcaliber 25 mm design having a nominal center section 22 (the center section 22 is depicted in FIG. 1) diameter of 0.327 inches, the preferred diameter of the flat circular face 40 is in the range of 0.10 inches in diameter. The preferred length of the supercavitating blunt nose tip 36 is 0.07 inches. The preferred nose taper angle 38 is five degrees.

A variation on the supercavitating blunt nose tip 36 is depicted in FIG. 3. In some applications where the water impact loads are higher than the strength of the material of the projectile 10 (the projectile 10 is depicted in FIG. l), the supercavitating blunt nose tip 36 (as shown in FIGS. 1 and 2) is replaced by a very high strength supercavitating insert 46. The supercavitating insert 46 is made from very high strength material sufficient to withstand the loads generated by the combination of high speed water impact and impact obliquities approaching perpendicular to the water surface. The supercavitating insert 46 is cylindrical with a flat circular face 50 which generates the water cavity. The supercavitating insert 46 is placed in the insert bore 47 of the projectile 10. In this variation of the supercavitating invention, the alternative nose section 33 of the projectile 10 includes the tapered portion 44 having a nose taper angle 48 and forms a shoulder 52 with the center section 22 (the center section 22 is depicted in FIG. 1). The tapered portion 44 is terminated on the end by the lip 45. The means of securing the supercavitating insert 46 into the insert bore 47 may be secured by an interference fit, taper fit, threaded fit, or suitable bonding material.

It is imperative to the hydrodynamic stability of the projectile 10 (as shown in FIG. 1), and thus to success of the invention, that the diameter of the flat circular face 50, the length that the supercavitating insert 46 protrudes from the projectile 10, and the nose taper angle 48 be designed such that the shoulder 52 and the lip 45 do not touch the water cavity wall before the fins 14 (the fins 14 are depicted in FIG. 1) touch the water cavity wall. However, in order to minimize the hydrodynamic drag of the projectile 10, the diametrical size of flat circular face 50 must be reduced as much as possible without producing a resultant increase in hydrodynamic drag which results when the fins 14 of the stabilizing empennage protrude into the water cavity wall to an excessive depth beyond what is necessary to provide hydrodynamic stabilization.

For the subcaliber 25 mm design having a nominal center section 22 (the center section 22 is depicted in FIG. 1) diameter of 0.327 inches, the preferred diameter of the flat circular face 50 of the supercavitating insert 46 is on the order of 0.10 inches in diameter. The preferred protrusion distance of the supercavitating insert 46 from the face of the lip 45 is 0.20 inches. The preferred diameter of the lip 45 is 0.136 inches. The preferred nose taper angle 48 is five degrees.

The overall configuration of the projectile 10 with the three sabot petals 62 is shown in FIG. 4. The sabot petal 62 is formed in a 120 degree segment and the three sabot petals form a complete 360 degree fit over the center section 22 of projectile 10. The circumferential grooves 26 (as shown in FIG. 1) of the projectile 10 match with the circumferential sabot grooves 56. The sabots are held in place by the obturation band 64. The obturation band 64 provides a gas seal during cartridge actuation in the weapon. During firing, the sabot petals 62 and the obturation band 64 separate from the projectile 10 shortly after muzzle exit from the weapon. Stabilizing fins 14 are shown for reference.

Operation of the Invention

FIG. 5 is a two-dimensional, graphical representation of the cavitation bubble formed by travel of the blunt nose through the water. The cavity radius in units of inches, along the ordinate of the graph, is shown with respect to length of cavity in units of inches, along the abscissa. The water cavity wall 72 stands off from the nose section 32 of the projectile and off the entire projectile 10. By this means, the entire projectile 10 travels inside of the cavitation bubble as it travels through the water. In this illustration, it can be seen that if the projectile 10 is disturbed about its longitudinal axis, the tip of the fins 14 will contact the water cavity wall prior to the shoulder 42.

One embodiment of the invention is adapted to a subcaliber projectile launched from a 25 mm caliber cannon. The cartridge used to launch the projectile utilized existing parts from the standard M919 cartridge, including the 25 mm sabot assembly, the obturator, and the propelling charge. The invention, however, can be applied in similar fashion to other long-rod projectiles. FIG. 6 illustrates the hydroballistic capabilities of several calibers of long-rod projectiles with the invention incorporated into the round. The projectile velocity in units of feet per second, along the ordinate of the graph, is shown with respect to range of water travel in units of feet, along the abscissa. The 25 mm hydroballistic potential 81 shows the exponential decay typical of velocity degradation while traveling through a fluid medium. The 30 mm hydroballistic potential 82, the 35 mm hydroballistic potential 83, the 40 mm hydroballistic potential 84, the 76 mm hydroballistic potential 85, and the 105 mm hydroballistic potential 86 are also shown in this graph. The water entry velocities of each caliber represented in the graph are decayed from the muzzle velocity by 1000 feet of air flight. The velocity potential of each caliber cartridge is driven by the particular design.

The features and advantages of the present invention are numerous. The invention's unique supercavitating nose section allows current long-rod ammunition designs to have hydroballistic potential. The supercavitating nose, which is designed to be incorporated as part of a subcaliber projectile such as the M919's subcaliber projectile, is based upon a truncated cone with an extended tip whose diameter in this particular projectile is 0.10 inch. The base diameter of the truncated cone is the diameter of the cylindrical center section of the subcaliber projectile body. The angle of the truncated cone determines the majority of the length of the supercavitating nose. The length of the extended tip, expressed in terms of the diameter of the tip, can be as short as 0.2 times the diameter to as long as 2.0 times the diameter. The extended tip diameter, the length of the extended tip, and the cone angle are critical to the stability during water entry and subsequent travel to the underwater target. The nose diameter also controls the diameter of the water cavity such that the water cavity wall clears the shoulder of the nose cone at the joint with the projectile's cylindrical center section. However, the stabilizing empennage on the aft end of the projectile can contact the water cavity wall providing stability before the unstable situation of the cone shoulder contacting the water cavity wall can occur.

The supercavitating nose tip diameter is made as small as possible to reduce the hydrodynamic drag which results in high kinetic energy delivered to the target. The supercavitating nose tip diameter and cone angle are designed to optimize drag reduction while maintaining the required shape and mass distribution to promote stability not only in water but also in air.

The material chosen for the projectile has a number of properties critical to the design. The tungsten alloy or heavy metal equivalent must withstand the high impact loads due to high velocity water impact, particularly for the nose tip. The projectile material must also maintain strength and ductility to withstand gun launch and hydrodynamic loads during underwater travel. To achieve high kinetic energy at the target, the density of the material must be high. The materials of the present invention achieved but are not limited to water entry velocities up to 4300 feet per second.

The use of the aft empennage for stabilization in both air and water gives further advantage to the invention. Using the empennage for both fluid mediums gives the invention robustness with simplicity. The empennage is preferably in the form of fins, but it may be of a flared nature (flared designs have strength and mass property disadvantages).

The projectile's basic construction is based on a long-rod projectile design which incorporates empennage on the aft end of the projectile that provides both aerodynamic and hydrodynamic stability. The front end, or nose, of the projectile is shaped in such a way that the water is displaced by the nose tip, creating a cavitation bubble which is large enough for the rest of the projectile to travel in. The 25 mm M919 cartridge was chosen as the basis for proof of the invention, but would apply to other calibers as well. The shape of the existing M919 projectile was modified to incorporate the supercavitating nose.

Although the invention has been described relative to a specific embodiment thereof, there are numerous variations and modifications that will be readily apparent to those skilled in the art in the light of the above teachings. Variations in nose tip design may improve the capability slightly. To achieve underwater stability, the water cavity formed by the tip must clear the forward part of the body such that the fins can stabilize the projectile. Nose tip designs including smaller diameter flats, flared, conical, and power law shapes can be adapted to the projectile to optimize drag. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced other that as specifically described.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US298455 *May 13, 1884 John ericsson
US1371207 *Sep 4, 1917Mar 8, 1921Wilkinson Theodore SProjectile
US3002453 *Dec 30, 1958Oct 3, 1961Harold E EvansAnti-ricochet device
US3088403 *May 26, 1959May 7, 1963Bartling James TRocket assisted torpedo
US3282216 *Jan 30, 1962Nov 1, 1966Calfee Clifford TNose cone and tail structures for an air vehicle
US3434425 *Jun 30, 1967Mar 25, 1969Aai CorpUnderwater projectile
US3476048 *Jun 30, 1967Nov 4, 1969Aai CorpUnderwater ammunition
US3477376 *Mar 6, 1968Nov 11, 1969Us NavyMissile nose cap
US3572250 *Mar 10, 1969Mar 23, 1971Aerospace Systems CoCone for aeroballistic member
US3915092 *Jul 16, 1971Oct 28, 1975Aai CorpUnderwater projectile
US4140061 *Jun 6, 1977Feb 20, 1979The United States Of America As Represented By The Secretary Of The ArmyShort-range discarding-sabot training practice round and self-destruct subprojectile therefor
US4165692 *Oct 25, 1977Aug 28, 1979Calspan CorporationFrangible projectile for gunnery practice
US4357888Nov 3, 1980Nov 9, 1982Phillips John CProjectile for underwater firearm
US4579298 *Mar 30, 1982Apr 1, 1986The Commonwealth Of AustraliaDirectional control device for airborne or seaborne missiles
US4593637 *Jun 4, 1984Jun 10, 1986The United States Of America As Represented By The Secretary Of The NavyFor a torpedo
US4732086 *Jan 27, 1987Mar 22, 1988Honeywell Inc.Fin stabilized armor-penetrating tracer projectile and method of manufacturing same
US4770102 *Oct 3, 1984Sep 13, 1988Rheinmetal GmbhPiercing projectile with a weakened head
US4779536Jan 31, 1986Oct 25, 1988Rheinmetall GmbhKinetic energy projectile
US4872409Aug 17, 1987Oct 10, 1989Rheinmetall GmbhKinetic-energy projectile having a large length to diameter ratio
US5038683Aug 31, 1989Aug 13, 1991The United States Of America As Represented By The Secretary Of The ArmyHigh explosive assembly for projecting high velocity long rods
US5097766 *Jun 5, 1990Mar 24, 1992Olin CorporationKinetic energy projectile with pyrotechnic payload
US5158509 *Dec 14, 1990Oct 27, 1992The United States Of America As Represented By The United States Department Of EnergyComposite stabilizer unit
US5162607Oct 21, 1991Nov 10, 1992Olin CorporationSub-caliber kinetic energy penetrator
US5196650 *Jun 3, 1992Mar 23, 1993The United States Of America As Represented By The Secretary Of The ArmyProjectile and sabot assembly
US5204494 *Apr 12, 1991Apr 20, 1993Rheinmetall GmbhSubcaliber projectile with sabot
US5275109Apr 1, 1988Jan 4, 1994The United States Of America As Represented By The Secretary Of The ArmyLong rod penetrator
US5408932Sep 7, 1994Apr 25, 1995The United States Of America As Represented By The Secretary Of The NavyLong rod extension system utilizing shape memory alloy
US5440995 *Apr 5, 1993Aug 15, 1995The United States Of America As Represented By The Secretary Of The ArmyTungsten penetrators
US5448936Aug 23, 1994Sep 12, 1995Hughes Aircraft CompanyDestruction of underwater objects
DE3837484A1 *Nov 4, 1988May 10, 1990Diehl Gmbh & CoUnderwater projectile
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6684801 *Oct 3, 2002Feb 3, 2004The United States Of America As Represented By The Secretary Of The NavySupercavitation ventilation control system
US7347146 *Apr 25, 2005Mar 25, 2008The United States Of America As Represented By The Secretary Of The NavySupercavitating projectile with propulsion and ventilation jet
US7779759Nov 21, 2008Aug 24, 2010Lockheed Martin CorporationSupercavitating water-entry projectile
US7832336Dec 3, 2008Nov 16, 2010Lockheed Martin CorporationMethod of operating a supercavitating projectile based on velocity constraints
US7836827Dec 3, 2008Nov 23, 2010Lockheed Martin CorporationMethod of operating a supercavitating projectile based on time constraints
US7966936 *Mar 13, 2009Jun 28, 2011The United States Of America As Represented By The Secretary Of The NavyTelescoping cavitator
US8050138Mar 24, 2009Nov 1, 2011Lockheed Martin CorporationBallistic-acoustic transducer system
US8096243Mar 4, 2010Jan 17, 2012Glasser Alan ZHigh velocity ammunition round
US8146501 *Mar 3, 2009Apr 3, 2012Lockheed Martin CorporationSupercavitating projectile having a morphable nose
US8222583Mar 23, 2009Jul 17, 2012Lockheed Martin CorporationDrag-stabilized water-entry projectile and cartridge assembly
US8316772 *May 10, 2010Nov 27, 2012The United Stated Of America As Represented By The Secretary Of The ArmyWall breaching fragmentation warhead
US8438977 *Dec 25, 2008May 14, 2013Lockheed Martin CorporationProjectile having deployable fin
US20110308418 *Dec 25, 2008Dec 22, 2011Lockheed Martin CorporationProjectile Having Deployable Fin
Classifications
U.S. Classification102/399, 114/20.1
International ClassificationF42B10/46, F42B15/08, F42B15/22
Cooperative ClassificationF42B15/08, F42B10/46, F42B15/22
European ClassificationF42B10/46, F42B15/22, F42B15/08