USRE26253E - And z-alkylamino-g-deoxytetracycline - Google Patents

And z-alkylamino-g-deoxytetracycline Download PDF

Info

Publication number
USRE26253E
USRE26253E US26253DE USRE26253E US RE26253 E USRE26253 E US RE26253E US 26253D E US26253D E US 26253DE US RE26253 E USRE26253 E US RE26253E
Authority
US
United States
Prior art keywords
deoxy
demethyltetracycline
amino
deoxytetracycline
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Publication date
Application granted granted Critical
Publication of USRE26253E publication Critical patent/USRE26253E/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides

Definitions

  • This invention relates to new compounds of the tetracycline family and, more particularly, is concerned with novel substituted 7-[and/ or 9-]amino tetracyclines which may be represented by the following general formula:
  • R is hydrogen or methyl and R and R are hydrogen, [mono(lower alkyUamino or] and R is di(lower alkyl)amino [with the proviso that R and R cannot both be hydrogen].
  • Typical compounds represented by the above general formula are, for example,
  • These new tetracycline derivatives may be prepared by a novel reductive alkylation process comprising interacting a compound of the following general formula:
  • R is hydrogen or lower alkyl and R is hydrogen or lower alkyL] formaldehyde 0racemldchyde, in the presence of a reducing agent.
  • aldehydes and ketones useful in carrying out this reductive alkylation include. for example, .formaldehyde, acetaldehyde, propionaldehyde, nbutyraldehyde, iso-butyraldehyde, acetone, methyl ethyl ketone, diethyl ketone, etc.] methyl and ethyl.
  • the substituent[s] [Y and] Z [are] is defined as [hydrogen,] amino a substituent reducible to amino, mono (lower alkyl)amino or a substituent reducible to mono (lower alkyl)amino [with the proviso that Y and Z cannot both be hydrogen].
  • Suitable substituents reducible to amino may be, for example, nitro, nitroso, diazonium halide, beneneazo, substituted benezeneazo, etc.
  • R [and/or R in the first general formula set forth above [are] being a disubstituted amino group[s] such products may be prepared in either of two ways.
  • [Y and/or] Z may be amino or a substituent reducible to amino and reductive dialkylntion on an unsubstituted amino group occurs, whereby a disub stituted amino group is obtained.
  • [Y and/0r] Z may be monoflower alkyl)amino or a substituent reducible to mono(lower alkyl)amino and reductive monoalkylation on a monoalkyl-substituted amino group occurs, whereby a disubstituted amino group is obtained.
  • Suitable mono(lower alkyUamino groups [may be, for example,] are methylaminoL] and ethylamino[, n-propylamino, iso-propylamino, n butylamino, iso-butylamino, t-butylamino, etc].
  • Suitable substituents reducible to mono(lower alkyl)amino may be, for example, formylamino, acetylamino, N-(lower alkyl)hydroxylamino. and the like.
  • Specific starting materials operable in this process include 7-nitro-6-deoxy-6-demethyltetracycline, 7-amino-6-deoxy-6-demethyltetracycline, [9-nitro-6-deoxy-6demethyltetracycline,] [9-amino6-deoxy-6-demethyltetracycline,] [7,9-dinitro-6-deoXy-6-demethyltetracyclineJ [7,9-diamino-6-deoxy-6-demethyltetracycline,] [7-nitro-6-deoxytetracycline,] [7-amino-6-deoxytetracycline,] [9-nitro-6-deoxytetracycline,] [9-amino-6-deoxytetracycline,] [7,9-diamino-6-deoxytetracycline,] [9 amino-7-nitro-6-deoxy-6-demethyltetracycline] [9-amino-7-nitro-6-deoxytetra
  • tetracycline starting materials for this process may be prepared by following the procedures set forth in Austrian Patent No. 212,308 to American Cyanamid Company, in the articles by Beereboom et al..
  • tetracycline starting materials may be employed either in the form of their free bases or in the form of their salts with various organic and inorganic acids depending upon whether solubility in polar or non-polar solvent systems is desired.
  • the reductive alkylation process may be accomplished by either chemical or catalytic reduction using procedures well-known to those in the art.
  • Catalytic reduction which is especially suited for the reductive alkylation of the tetracycline starting compounds set forth above, may be accomplished in a solvent for the tetracycline starting compound in the presence of [a carbonyl compound] formaldehyde r acetaldehyde and a metal catalyst and hydrogen gas at pressures from atmospheric to super-atmospheric.
  • the reductive alkylation is conveniently carried out at hydrogen pressures of from about one to about four atmospheres. Temperature does not appear to be critical in the catalytic hydrogenation. Temperatures of from 0 C.
  • the metal catalyst may be of the base metal type, such as nickel or copper chromite, or it may be of the noble metal type, such as finely divided platinum, palladium or rhodium.
  • the noble metal catalysts are advantageously employed on a carrier such as finely divided alumina, activated charcoal, diatomaceous earth, etc., in which form they are commonly available.
  • the hydrogenation is carried out until the desired amount of hydrogen gas is absorbed at which point the hydrogenation is stopped.
  • the solvents selected for the catalytic reduction should be reaction-inert, that is, they should not be capable of reacting with the starting materials, product, or hydrogen under the conditions of the reaction.
  • solvents may be used for this purpose and minimum laboratory experimentation will permit the selection of a suitable solvent for any specific tetracycline starting compound.
  • the catalytic reductive alkylation may be carried out in solvents such as water, lower alkanols, e.g. methanol, ethanol; lower alkoxy lower alkanols, e.g. Z-methoxyethanol, Zethoxyethanol; tetrahydrofuran, dioxane, dimethylformamide, etc.
  • a variety of chemical reducing agents may be used in the reductive alkylation process. These include reduction with active metals in mineral acids, e.g. zinc, tin, or iron in hydrochloric acid; reduction with metal couples such as the copper-zinc couple, the tin-mercury couple, aluminum amalgam, or magnesium amalgam; and reduction with formic acid. Of these, reduction with zinc and hydrochloric acid and reduction with formic acid are preferred.
  • aqueous systems are used in the aforementioned chemical reductive alkylations, it is at times desirable to utilized a water-miscible organic solvent, particularly when the tetracycline starting compound is of limited solubility in the reaction mixture.
  • the watermiscible solvent does not alter the course of the reduction but merely provides for more efiicient reduction, e.g. a shorter reaction time by providing more intimate contact of the reagents.
  • a large number of such solvents are available for this purpose and include, among others, dimethylformamide, dimethoxyethane, methanol, ethanol, dioxane, tetrahydrofuran, and the like.
  • novel products of the present invention are obtained from the reductive alkylation reaction mixtures by standard procedures.
  • the products may be isolated from the catalytic hydrogenation reaction mixtures, after filtration of the catalyst, by precipitation with a solvent such as ether or hexane or by concentration, usually under reduced pressure, or by a combination of these.
  • Work-up of the chemical reductive alkylation reaction mixtures to obtain the desired products may also be accomplished by known procedures such as precipitation, concentration, solvent extraction, or combinations of these procedures.
  • the products may 4 be purified by any of the generally known methods for purification of tetracycline compounds. These include recrystallization from various solvents and mixed solvent systems, chromatographic techniques, and counter current distribution, all of which are usually employed for this purpose.
  • novel substituted 7-[and/ or 9-]amino tetracyclines of the present invention are biologically active and possess the broad-spectrum antibacterial activity of the previously know tetracyclines.
  • the [7-methylamino] 7-dimethylamirto-6-deoxy6-demethyltetracycline possesses extraordinary activity both orally and parcnterally against Staphylococcus aureus, strain Smith, and Staphylococcus aureus, strain Rose, infections in mice.
  • Staphylococcus aureus, strain Smith has been studied and described by J. M. Smith and R. J. Dubos in Journ. Expt. Med. 103, 87 (1956), at the Rockefeller Institute. Staphylococcus aureus, strain Smith, is coagulase positive, tcllurite negative and is sensitive to tetracycline, penicillin, streptomycin, erythromycin, carbomycin, neomycin, chloramphenicol and novobiocin in vitro. Attempts have been made for phage typing of this strain, but it has been determined that it is non-typable.
  • Staphylococcus aureus, strain Rose (ATCC No. 14,154) was isolated clinically from an abscess of a patient who did not respond to treatment with the tetracyclines. This organism has been found to be resistant to the clinically used tetracyclines in vitro and in vivo.
  • Staphylococcus aureus, strain Rose is coagulase and tellurite positive and is resistant to tetracycline, penicillin, streptomycin, and erythromycin. It is sensitive to carbomycin, neomycin, chloramphenicol and novobiocin in vitro.
  • Staphylococcus aureus, strain Rose has been phage-typed with the following results:
  • Staphylococcus aureus Staphylococcus aureus, strain RosePhage pattern 81.
  • plasma levels of [7-methylaminol7-dimethylamin0-6-demethyI-G-deoxytetracycline are about 5 times higher than those obtained with demethylchlortetracycline.
  • [7-methylamino]7- dimethylamino-6demethyl-6-deoxytetracycline is uniquely active among the tetracyclines in possessing unexpected high oral activity against the tetracycline-resistant strain Staphylococcus aureus, strain Rose. This is the only tetracycline so for known having oral activity against this tetracycline-resistant infection in mice.
  • the new tetracyclines of this invention are amphoteric compounds and hence acid-addition salts, that is both monoand di-salts, may be readily prepared.
  • the preferred acids are the non-toxic pharmaceutically acceptable acids, eg the mineral acids such as hydrochloric, sulfuric, and the like although organic acids such as trichloroacetic may also be used.
  • the acid-addition salts may be prepared by treating the new tetracyclines with approximately two equivalents or more of the chosen acid in a suitable solvent.
  • the catalyst was filtered 01f and the orange solution poured into 1.5 liters of dry ether. The precipitate was filtered off, washed well with dry ether and dried, weight 391 mg.
  • the turbidimetric assay was 852 grammas per milliliter. Eighty-three milligrams of the material was chromatographed on neutral diatomaceous earth using a partition system of heptane, ethyl acetate, methanol, water in the ratio 45:55:15z6. The compound was run as a free base, pH of sample was 5.0. The product was eluted in the second hold back volume and was mg. in weight.
  • the turbidimetric assay was 2190 gammas per milliliter. R; 0.65 (nitromethane:benzenezpyridinezpl-l 3,4, buffer- :10:323).
  • EXAMPLE 4 [Reductive methylation of 9-amino-6-deoxy-6-demethyltetracycline to yield 9-methylamino-6-deoxy 6 demethyltetracycline]
  • EXAMPLE 5 [Reductive methylation of 9-nitro-6-deoxy-6-demethyltetracycline to yield 9 methylamino-6-deoxy-6-demethyltetracycline]
  • EXAMPLE 7 Reductive ethylation of 7-nitro-6-deoxy-6-demethyltetracycline to yield [7-ethylamino]7-diethylamino-deoxyfi-demethyltetracycline
  • 30 ml. of methyl Cellosolve was suspended 560 mg. of 7-nitro-6-deoxy-6-demethyltetracycline sulfate, 2.1 ml. of 1 N sulfuric acid, 1.0 ml. of acetaldehyde, and 100 mg. of 10% palladium-on-charcoal. The mixture was shaken with hydrogen for 1.5 hours and the catalyst was then removed by filtration. The filtrate was poured into about 400 ml.
  • R is selected from the group consisting of hydrogen and methyl, and R and R are each [selected from the group consisting of] hydrogen, and [mono (lower alkyl)amino] R is selected from the group consisting of dimethylamino and diethyl amino [with the proviso that R and R cannot both be hydrogen]; and the non-toxic acid-addition salts thereof.

Description

United States Patent 7- AND Q-ALKYLAMINO-ti-DEOXYTETRACYCLINE Joseph Petisi, Suiiern, N.Y., and James Howard Boothe,
Montvale, N.J., assignors to American Cyanamid Company, Stamford, Conn., a corporation of Maine No Drawing. Original No. 3,226,436, dated Dec. 28, 1965,
Ser. No. 281,349, May 17, 1963, which is a continuation of Ser. No. 147,137, Oct. 24, 1961, and Ser. No. 161,412, Dec. 22, 1961, now Patent No. 3,148,212, dated Sept. 8, 1964. Application for reissue Dec. 20, 1966, Ser. No. 606,500
3 Claims. (Cl. 260-559) Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
This application is a continuation of our copending applications Serial No. 147,137, filed October 24, 1961, now abandoned, and Serial No. 161,412 filed December 22, 1961, now US. Patent No. 3,148,212.
This invention relates to new compounds of the tetracycline family and, more particularly, is concerned with novel substituted 7-[and/ or 9-]amino tetracyclines which may be represented by the following general formula:
wherein R [is hydrogen or methyl and R and R are hydrogen, [mono(lower alkyUamino or] and R is di(lower alkyl)amino [with the proviso that R and R cannot both be hydrogen]. Typical compounds represented by the above general formula are, for example,
These new tetracycline derivatives may be prepared by a novel reductive alkylation process comprising interacting a compound of the following general formula:
n Nmrh):
on on" c ONH:
H H O OH O wherein R [is hydrogen or methyl] and Y [and Z] are hydrogen, and Z is amino, a substituent reducible to amino, mono(lower alkyl)amino or a substituent reducible to mono(lower alkyl)amino [with the proviso that Re. 26,253 Reissuecl Aug. 15, 1967 Y and Z cannot both be hydrogen], with [a carbonyl compound of the general formula:
Wherein R is hydrogen or lower alkyl and R is hydrogen or lower alkyL] formaldehyde 0racemldchyde, in the presence of a reducing agent.
It is to be understood that when the term lower alkyl" is used throughout this specification, it is meant to include [all lower alkyl groups having up to about 6 carbon atoms. Accordingly, aldehydes and ketones useful in carrying out this reductive alkylation include. for example, .formaldehyde, acetaldehyde, propionaldehyde, nbutyraldehyde, iso-butyraldehyde, acetone, methyl ethyl ketone, diethyl ketone, etc.] methyl and ethyl.
In the second general formula set forth above, the substituent[s] [Y and] Z [are] is defined as [hydrogen,] amino a substituent reducible to amino, mono (lower alkyl)amino or a substituent reducible to mono (lower alkyl)amino [with the proviso that Y and Z cannot both be hydrogen]. Suitable substituents reducible to amino may be, for example, nitro, nitroso, diazonium halide, beneneazo, substituted benezeneazo, etc. [Where] R [and/or R in the first general formula set forth above [are] being a disubstituted amino group[s] such products may be prepared in either of two ways. In the first situation, [Y and/or] Z may be amino or a substituent reducible to amino and reductive dialkylntion on an unsubstituted amino group occurs, whereby a disub stituted amino group is obtained. In the second situation, [Y and/0r] Z may be monoflower alkyl)amino or a substituent reducible to mono(lower alkyl)amino and reductive monoalkylation on a monoalkyl-substituted amino group occurs, whereby a disubstituted amino group is obtained. Suitable mono(lower alkyUamino groups [may be, for example,] are methylaminoL] and ethylamino[, n-propylamino, iso-propylamino, n butylamino, iso-butylamino, t-butylamino, etc]. Suitable substituents reducible to mono(lower alkyl)amino may be, for example, formylamino, acetylamino, N-(lower alkyl)hydroxylamino. and the like. Specific starting materials operable in this process include 7-nitro-6-deoxy-6-demethyltetracycline, 7-amino-6-deoxy-6-demethyltetracycline, [9-nitro-6-deoxy-6demethyltetracycline,] [9-amino6-deoxy-6-demethyltetracycline,] [7,9-dinitro-6-deoXy-6-demethyltetracyclineJ [7,9-diamino-6-deoxy-6-demethyltetracycline,] [7-nitro-6-deoxytetracycline,] [7-amino-6-deoxytetracycline,] [9-nitro-6-deoxytetracycline,] [9-amino-6-deoxytetracycline,] [7,9-diamino-6-deoxytetracycline,] [9 amino-7-nitro-6-deoxy-6-demethyltetracycline] [9-amino-7-nitro-6-deoxytetracycline,] 7-formylamino-6-deoxy-6-demethyltetracycline, [9-formylamino-6-deoxy-6 demethyltetracycline,] [7-acetylamino-6-deoxytetracycline.] [9-acetylamino-6-deoxytetracycline,] [7,9-diacetylamino-6-deoxytetracycline,] [7-nitro-9-acetylamino-6-deoxytetracycline] 6-deoxy-6-demethyltetracycline-7-diazonium chloride, [6-deoxy-6-de1nethyltetracycline-9-diazonium chloride,] [fi-deoxytetracycline-Q-diazonium chloride,] [9-nitro-S-hydroxy6-deoxytetracycline,] [9-amino-5-hydroxy-6-deoxytetracycline,]
and the like. The tetracycline starting materials for this process may be prepared by following the procedures set forth in Austrian Patent No. 212,308 to American Cyanamid Company, in the articles by Beereboom et al..
I.A.C.S. 82, 1003 (1960), and by Boothe ct al., J.A.C.S. 82, 1253 (1960), and in the copending application of Petisi and Boothe, Serial No. 65,584, filed October 28, 1960. The tetracycline starting materials may be employed either in the form of their free bases or in the form of their salts with various organic and inorganic acids depending upon whether solubility in polar or non-polar solvent systems is desired.
The reductive alkylation process may be accomplished by either chemical or catalytic reduction using procedures well-known to those in the art. Catalytic reduction, which is especially suited for the reductive alkylation of the tetracycline starting compounds set forth above, may be accomplished in a solvent for the tetracycline starting compound in the presence of [a carbonyl compound] formaldehyde r acetaldehyde and a metal catalyst and hydrogen gas at pressures from atmospheric to super-atmospheric. Ordinarily, the reductive alkylation is conveniently carried out at hydrogen pressures of from about one to about four atmospheres. Temperature does not appear to be critical in the catalytic hydrogenation. Temperatures of from 0 C. to 50 C., and usually room temperature, are preferred since they generally give best results. The metal catalyst may be of the base metal type, such as nickel or copper chromite, or it may be of the noble metal type, such as finely divided platinum, palladium or rhodium. The noble metal catalysts are advantageously employed on a carrier such as finely divided alumina, activated charcoal, diatomaceous earth, etc., in which form they are commonly available. The hydrogenation is carried out until the desired amount of hydrogen gas is absorbed at which point the hydrogenation is stopped. The solvents selected for the catalytic reduction should be reaction-inert, that is, they should not be capable of reacting with the starting materials, product, or hydrogen under the conditions of the reaction. A variety of solvents may be used for this purpose and minimum laboratory experimentation will permit the selection of a suitable solvent for any specific tetracycline starting compound. Generally, the catalytic reductive alkylation may be carried out in solvents such as water, lower alkanols, e.g. methanol, ethanol; lower alkoxy lower alkanols, e.g. Z-methoxyethanol, Zethoxyethanol; tetrahydrofuran, dioxane, dimethylformamide, etc.
A variety of chemical reducing agents may be used in the reductive alkylation process. These include reduction with active metals in mineral acids, e.g. zinc, tin, or iron in hydrochloric acid; reduction with metal couples such as the copper-zinc couple, the tin-mercury couple, aluminum amalgam, or magnesium amalgam; and reduction with formic acid. Of these, reduction with zinc and hydrochloric acid and reduction with formic acid are preferred. When aqueous systems are used in the aforementioned chemical reductive alkylations, it is at times desirable to utilized a water-miscible organic solvent, particularly when the tetracycline starting compound is of limited solubility in the reaction mixture. The watermiscible solvent does not alter the course of the reduction but merely provides for more efiicient reduction, e.g. a shorter reaction time by providing more intimate contact of the reagents. A large number of such solvents are available for this purpose and include, among others, dimethylformamide, dimethoxyethane, methanol, ethanol, dioxane, tetrahydrofuran, and the like.
The novel products of the present invention are obtained from the reductive alkylation reaction mixtures by standard procedures. For example, the products may be isolated from the catalytic hydrogenation reaction mixtures, after filtration of the catalyst, by precipitation with a solvent such as ether or hexane or by concentration, usually under reduced pressure, or by a combination of these. Work-up of the chemical reductive alkylation reaction mixtures to obtain the desired products may also be accomplished by known procedures such as precipitation, concentration, solvent extraction, or combinations of these procedures. After isolation, the products may 4 be purified by any of the generally known methods for purification of tetracycline compounds. These include recrystallization from various solvents and mixed solvent systems, chromatographic techniques, and counter current distribution, all of which are usually employed for this purpose.
The novel substituted 7-[and/ or 9-]amino tetracyclines of the present invention are biologically active and possess the broad-spectrum antibacterial activity of the previously know tetracyclines. In particular, the [7-methylamino] 7-dimethylamirto-6-deoxy6-demethyltetracycline possesses extraordinary activity both orally and parcnterally against Staphylococcus aureus, strain Smith, and Staphylococcus aureus, strain Rose, infections in mice.
Staphylococcus aureus, strain Smith, has been studied and described by J. M. Smith and R. J. Dubos in Journ. Expt. Med. 103, 87 (1956), at the Rockefeller Institute. Staphylococcus aureus, strain Smith, is coagulase positive, tcllurite negative and is sensitive to tetracycline, penicillin, streptomycin, erythromycin, carbomycin, neomycin, chloramphenicol and novobiocin in vitro. Attempts have been made for phage typing of this strain, but it has been determined that it is non-typable.
Staphylococcus aureus, strain Rose (ATCC No. 14,154) was isolated clinically from an abscess of a patient who did not respond to treatment with the tetracyclines. This organism has been found to be resistant to the clinically used tetracyclines in vitro and in vivo. Staphylococcus aureus, strain Rose, is coagulase and tellurite positive and is resistant to tetracycline, penicillin, streptomycin, and erythromycin. It is sensitive to carbomycin, neomycin, chloramphenicol and novobiocin in vitro. Staphylococcus aureus, strain Rose, has been phage-typed with the following results:
Staphylococcus aureus, strain RosePhage pattern 81.
It: has been determined that intravenously against Staphylococcus aureus, strain Smith, infections in mice, [7-methylamino]7 dimelhylamz'no 6 demethyl 6- deoxytetracycline is about 4 times as potent as tetracycline. When administered in a single oral tubing dose, against Staphylococcus aureus, strain Smith, infection, [7- methylamino]7 dimethyla'mino 6 demethyl 6 deoxytetracycline is 17 times more effective than tetracycline. Additionally, after single oral tubing doses in mice, plasma levels of [7-methylaminol7-dimethylamin0-6-demethyI-G-deoxytetracycline are about 5 times higher than those obtained with demethylchlortetracycline.
Of special interest is the fact that [7-methylamino]7- dimethylamino-6demethyl-6-deoxytetracycline is uniquely active among the tetracyclines in possessing unexpected high oral activity against the tetracycline-resistant strain Staphylococcus aureus, strain Rose. This is the only tetracycline so for known having oral activity against this tetracycline-resistant infection in mice.
Thus with oral doses as low as 16 mg./kg., 16 out of 20 mice infected with Staphylococcus aureus, strain Rose, and treated with [7-methylamino]7-dimethylamino-6-dernethyl-6-deoxytetracycline were alive 7 days after infection, whereas 19 out of 20 of the infected non-treated control mice died within 1 day. Under the same test conditions tetracycline is ineffective at the maximum tolerated dose of 2,048 mg./kg.
The new tetracyclines of this invention are amphoteric compounds and hence acid-addition salts, that is both monoand di-salts, may be readily prepared. The preferred acids are the non-toxic pharmaceutically acceptable acids, eg the mineral acids such as hydrochloric, sulfuric, and the like although organic acids such as trichloroacetic may also be used. The acid-addition salts may be prepared by treating the new tetracyclines with approximately two equivalents or more of the chosen acid in a suitable solvent.
The invention will be described in greater detail in conjunction with the following specific examples.
EXAMPLE 1 Reductive methylation of 7-amino-6-deoxy-6-demethyltetracycline to yield [7-methylamino]7-dimethylamina- 6-deoxy-fi-demethyltetracycline A solution of 792.9 mg. (1.5 millimoles) of 7-arnino- 6-deoxy-6-demethyltetracycline sulfate in 90 ml. of methyl Cellosolve, 1.5 ml. of 40% aqueous formaldehyde solu tion, and 300 mg. of palladium-on-carbon catalyst was hydrogenated at room temperature and atmospheric pressure. Uptake of between one and one and one-half equivalents of hydrogen was complete in one to two hours. The catalyst was filtered 01f and the orange solution poured into 1.5 liters of dry ether. The precipitate was filtered off, washed well with dry ether and dried, weight 391 mg. The turbidimetric assay was 852 grammas per milliliter. Eighty-three milligrams of the material was chromatographed on neutral diatomaceous earth using a partition system of heptane, ethyl acetate, methanol, water in the ratio 45:55:15z6. The compound was run as a free base, pH of sample was 5.0. The product was eluted in the second hold back volume and was mg. in weight.
The turbidimetric assay was 2190 gammas per milliliter. R; 0.65 (nitromethane:benzenezpyridinezpl-l 3,4, buffer- :10:323).
EXAMPLE 2 Reductive methylation of 7 amino-6-deoxy-6-demethyltetracycline to yield [7-methylamino]7-dimethylamino- 6-deoxy-6-demethyltetracycline A solution of 527 mg. of 7-amino-6-deoxy--demethyltetracycline sulfate, 0.25 ml. of 97% formic acid, and 0.2 ml. of 37% formaldehyde solution was heated to reflux for 2 hours. The cooled mixture was taken up in 100 ml. of water. Paper chromatography revealed the presence of [7 methylamino]7 dimethylamino-fi-deoxydemethyltetracycline and its 4-epimer.
EXAMPLE 3 Reductive methylation of 7 nitro-6-deoxy-6-demethyltetracycline to yield [7-methylamino]7-dimethylamino- 6-deoxy-6-demethyltetracycline A solution of 278.7 mg. of 7-nitro-6-deoxy-6-demethyltetracycline sulfate in 15 ml. of 93% methyl Cellosolve (7% water), 0.75 ml. of 40% aqueous formaldehyde solution and 50 mg. of 10% palladium-on-carbon catalyst was hydrogenated at room temperature and atmospheric pressure. Uptake was [complete four equivalents[)] in two hours. After removal of the catalyst by filtration, the solution was poured into 300 ml. of dry ether. The precipitate was collected by filtration, washed well with dry ether, and dried; weight, 200 mg.
EXAMPLE 4 [Reductive methylation of 9-amino-6-deoxy-6-demethyltetracycline to yield 9-methylamino-6-deoxy 6 demethyltetracycline] EXAMPLE 5 [Reductive methylation of 9-nitro-6-deoxy-6-demethyltetracycline to yield 9 methylamino-6-deoxy-6-demethyltetracycline] [A solution of 114.8 mg. of 9 nitro-6-deoxy-6-demethyltetracycline in 20 ml. of methanol containing 2.5 ml. of 0.1 N methanolic hydrochloric acid, 0.4 ml. of 40% aqueous formaldehyde solution, and 50 mg. of 10% palladium-on-carbon catalyst was hydrogenated at room temperature and atmospheric pressure. Uptake was complete of theory) in one hour. After filtration of the catalyst, the solution was evaporated to dryness; weight, mg]
EXAMPLE 6 Reductive ethylation of 7-amino-6-deoxy-fi-demethyltetracycline to yield [7-ethylamino]7-diezhylamino 6- deoxy-G-demethyltetracycline A solution of 396 mg. of 7-arnino-6-deoxy-6-demethyltetracycline sulfate in 50 ml. of methyl Cellosolve was hydrogenated at room temperature and atmospheric pressure using 2 m1. of acetaldehyde and mg. of 10% palladium-on-carbon. Uptake stopped after 3 hours and the catalyst was removed by filtration and the solution poured into 750 ml. of dry ether. The precipitate was filtered off, washed well with dry ether and dried; weight, 64 mg.
EXAMPLE 7 Reductive ethylation of 7-nitro-6-deoxy-6-demethyltetracycline to yield [7-ethylamino]7-diethylamino-deoxyfi-demethyltetracycline In 30 ml. of methyl Cellosolve was suspended 560 mg. of 7-nitro-6-deoxy-6-demethyltetracycline sulfate, 2.1 ml. of 1 N sulfuric acid, 1.0 ml. of acetaldehyde, and 100 mg. of 10% palladium-on-charcoal. The mixture was shaken with hydrogen for 1.5 hours and the catalyst was then removed by filtration. The filtrate was poured into about 400 ml. of ether which precipitated a light colored solid. The product after filtering and drying weighed 582 mg. and consisted mostly of [7-ethylamino]7-diethylamino- 6-deoxy-6-demetl1yltetracycline.
EXAMPLE 8 [Reductive iso-propylation of 7-nitro-6-deoxy-6-demethyltetracycline to yield 7 iso-propylamino-fi-deoxy-6-demethyltetracycline] [A solution of 200 mg. of 7-nitro-6-deoxy-6-demethyltetracycline sulfate and 0.15 ml. of acetone in a mixture of 5.5 ml. of water and 5.5 ml. of ethanol was reduced in a Paar shaker with hydrogen and platinum oxide as a catalyst. The system absorbed 42 ml. of hydrogen during a two hour period. The catalyst was filtered and the filtrate evaporated to dryness in vacuo. The residue was dissolved in 3 ml. of MeOH and diluted with 150 ml. of ether. The solid product that separated weighed mg] What is claimed is:
1. A compound of the group consisting of tetracyclines of the formula:
Rs CONH,
H H OH O H 0 wherein R [is selected from the group consisting of hydrogen and methyl, and R and R are each [selected from the group consisting of] hydrogen, and [mono (lower alkyl)amino] R is selected from the group consisting of dimethylamino and diethyl amino [with the proviso that R and R cannot both be hydrogen]; and the non-toxic acid-addition salts thereof.
2. [7 methylamino]7 dimethylamino-6-deoxy-6-demethyltetracycline.
8 [3. 9-methylamino-Qdeoxyb-demethyltctracycline.] UNITED STA S P T 4. [7-ethylamino]7 dz'cthylamin o 6 deoxy-6-de- 3148 212 9 9 4 Baothe at a]. 2 0 methyltetracycline.
[5. 7-isopropylamino 6 deoxy 6 demethylletra- OTHER REFERENCES Y -J 5 Boothe et al.: Journal American Chemical Society,
References Cited vol. 82, pages 1253-1255 (1960).
The following references, cited by the Examiner, are of record in the patented file of this patent or the original NICHOLAS Pnmary Examiner patent.
US26253D 1963-05-17 And z-alkylamino-g-deoxytetracycline Expired USRE26253E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US281349A US3226436A (en) 1963-05-17 1963-05-17 7-and 9-alkylamino-6-deoxytetracycline

Publications (1)

Publication Number Publication Date
USRE26253E true USRE26253E (en) 1967-08-15

Family

ID=23076910

Family Applications (2)

Application Number Title Priority Date Filing Date
US26253D Expired USRE26253E (en) 1963-05-17 And z-alkylamino-g-deoxytetracycline
US281349A Expired - Lifetime US3226436A (en) 1963-05-17 1963-05-17 7-and 9-alkylamino-6-deoxytetracycline

Family Applications After (1)

Application Number Title Priority Date Filing Date
US281349A Expired - Lifetime US3226436A (en) 1963-05-17 1963-05-17 7-and 9-alkylamino-6-deoxytetracycline

Country Status (1)

Country Link
US (2) US3226436A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0535346A1 (en) 1991-10-04 1993-04-07 American Cyanamid Company 9-amino-7-substituted-6-demethyl-6-deoxytetracyclines
US5248797A (en) * 1992-08-13 1993-09-28 American Cyanamid Company Method for the production of 9-amino-6-demethyl-6-deoxytetracycline
US5284963A (en) * 1992-08-13 1994-02-08 American Cyanamid Company Method of producing 7-(substituted)-9-[(substituted glycyl)-amidol]-6-demethyl-6-deoxytetra-cyclines
US5328902A (en) * 1992-08-13 1994-07-12 American Cyanamid Co. 7-(substituted)-9-[(substituted glycyl)amido]-6-demethyl-6-deoxytetracyclines
US5371076A (en) * 1993-04-02 1994-12-06 American Cyanamid Company 9-[(substituted glycyl)amido]-6-(substituted)-5-hydroxy-6-deoxytetracyclines
US5386041A (en) * 1992-08-13 1995-01-31 American Cyanamid Company 7-(substituted)-8-(substituted)-9-[(substituted glycyl) amido]-6-demethyl-6-deoxytetracyclines
US5430162A (en) * 1992-08-13 1995-07-04 American Cyanamid Company 7-(substituted)-8-(substituted)-9-substituted amino)-6-demethyl-6-deoxytetracyclines
US5495030A (en) * 1992-08-13 1996-02-27 American Cyanamid Company 9-[(substituted glycyl)amido)]-6-demethyl-6-deoxytetracyclines
US5529990A (en) * 1991-10-04 1996-06-25 American Cyanamid Company Method for treating bacterial infection with novel 7-substituted-9-substituted amino 6-demethyl-6-deoxytetracyclines
US5675030A (en) * 1994-11-16 1997-10-07 American Cyanamid Company Method for selective extracting a 7-(hydrogen or substituted amino)-9- (substituted glycyl) amido!-6-demethyl-6-deoxytetracycline compound
US20040192657A1 (en) * 2001-03-13 2004-09-30 Carmen Garcia-Luzon 9-Aminoacyl tetracycline compounds and methods of use thereof
US20040224928A1 (en) * 2000-07-07 2004-11-11 Trustees Of Tufts College 7-Substituted tetracycline compounds
US20040266740A1 (en) * 2001-08-02 2004-12-30 Sophie Huss 7-pyrollyl 9-aminoacyl tetracycline compounds and methods of use thereof
US20050026876A1 (en) * 2001-03-13 2005-02-03 Nelson Mark L. 9-aminomethyl substituted minocycline compounds
US20050026875A1 (en) * 2002-03-08 2005-02-03 Paratek Pharmaceuticals, Inc. Amino-methyl substituted tetracycline compounds
US20050143352A1 (en) * 2003-07-09 2005-06-30 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
US20050187198A1 (en) * 1999-09-14 2005-08-25 Trustees Of Tufts College Methods of preparing substituted tetracyclines with transition metal-based chemistries
US20050282787A1 (en) * 2004-05-21 2005-12-22 Myers Andrew G Synthesis of tetracyclines and analogues thereof
US7001918B2 (en) 2001-03-13 2006-02-21 Paratek Pharmaceuticals, Inc. 7-pyrrolyl tetracycline compounds and methods of use thereof
US20060089336A1 (en) * 2002-01-08 2006-04-27 Paratek Pharmaceuticals, Inc. 4-Dedimethylamino tetracycline compounds
US7094806B2 (en) 2000-07-07 2006-08-22 Trustees Of Tufts College 7, 8 and 9-substituted tetracycline compounds
US20060281717A1 (en) * 2005-02-04 2006-12-14 Joel Berniac 11a, 12-derivatives of tetracycline compounds
US20060287283A1 (en) * 2003-07-09 2006-12-21 Paratek Pharmaceuticals, Inc. Prodrugs of 9-aminomethyl tetracycline compounds
US7176225B2 (en) 2003-12-08 2007-02-13 Wyeth Oxazole derivatives of tetracyclines
US20070049561A1 (en) * 2005-05-27 2007-03-01 Lalitha Krishnan Methods of purifying tigecycline
US20070049560A1 (en) * 2005-05-27 2007-03-01 Lalitha Krishnan Tigecycline and methods of preparing 9-nitrominocycline
US20070049563A1 (en) * 2005-05-27 2007-03-01 Lalitha Krishnan Tigecycline and methods of preparing 9-aminominocycline
US20070049562A1 (en) * 2005-05-27 2007-03-01 Lalitha Krishnan Tigecycline and methods of preparation
US20070049564A1 (en) * 2005-08-31 2007-03-01 Wyeth 9-Aminocarbonylsubstituted derivatives of glycylcyclines
US20070155708A1 (en) * 2000-06-16 2007-07-05 Trustees Of Tufts College 7-phenyl-substituted tetracycline compounds
USRE40183E1 (en) 1991-10-04 2008-03-25 Wyeth Holdings Corporation 7-Substituted-9-substituted amino-6-demethyl-6-deoxytetracyclines
US20090093640A1 (en) * 2006-10-11 2009-04-09 Myers Andrew G Synthesis of enone intermediate
US7696187B2 (en) 1999-09-14 2010-04-13 Trustees Of Tufts College Methods of preparing substituted tetracyclines with transition metal-based chemistries
US7696186B2 (en) 2001-03-13 2010-04-13 Paratek Pharmaceuticals, Inc. 7,9-substituted tetracycline compounds
US20100130451A1 (en) * 2006-04-07 2010-05-27 Presidents And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US20100160656A1 (en) * 2000-06-16 2010-06-24 Nelson Mark L 7-phenyl-substituted tetracycline compounds
US7812008B2 (en) 2005-02-15 2010-10-12 Wyeth Llc 9-substituted tetracyclines
US7820641B2 (en) 2002-03-21 2010-10-26 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
US8048867B2 (en) 2000-07-07 2011-11-01 Trustees Of Tufts College 9-substituted minocycline compounds
US8466132B2 (en) 2004-10-25 2013-06-18 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
US8518912B2 (en) 2007-11-29 2013-08-27 Actelion Pharmaceuticals Ltd. Phosphonic acid derivates and their use as P2Y12 receptor antagonists
US9073829B2 (en) 2009-04-30 2015-07-07 President And Fellows Of Harvard College Synthesis of tetracyclines and intermediates thereto

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483251A (en) * 1967-03-03 1969-12-09 American Cyanamid Co Reductive alkylation process
CA999855A (en) * 1972-09-18 1976-11-16 Societa' Farmaceutici Italia S.P.A. Process for the preparation of tetracyclines derivatives in the 7 position
JPH0737433B2 (en) * 1987-06-11 1995-04-26 協和醗酵工業株式会社 Method for producing 7-amino-6-demethyl-6-deoxytetracycline
US4918208A (en) * 1987-07-28 1990-04-17 Nippon Kayaku Kabushiki Kaisha Process for producing 7-dimethylamino-6-demethyl-6-deoxytetracycline
US4837030A (en) * 1987-10-06 1989-06-06 American Cyanamid Company Novel controlled release formulations of tetracycline compounds
ES2064564T3 (en) * 1989-09-21 1995-02-01 American Cyanamid Co PULSE PRESSURE RELEASE SYSTEM OF DAILY UNIT DOSE OF MINOCYCLINE.
US5563130A (en) * 1994-12-13 1996-10-08 American Cyanamid Company Methods for inhibiting angiogenesis, proliferation of endothelial or tumor cells and tumor growth
US5843925A (en) * 1994-12-13 1998-12-01 American Cyanamid Company Methods for inhibiting angiogenesis, proliferation of endothelial or tumor cells and tumor growth
US5574026A (en) * 1994-12-13 1996-11-12 American Cyanamid Company Methods for inhibiting angiogenesis proliferation of endothelial or tumor cells and tumor growth
US5567693A (en) * 1994-12-13 1996-10-22 American Cyanamid Company Method for inhibiting angiogenesis, proliferation of endothelial or tumor cells and tumor growth
US20020123637A1 (en) * 1998-01-23 2002-09-05 Stuart B. Levy Pharmaceutically active compounds and methods of use thereof
US6197776B1 (en) * 1999-03-17 2001-03-06 Ernest L. Bonner, Jr. Method for treatment of reactive arthritis or bursitis
US6765000B2 (en) * 1999-03-17 2004-07-20 Bonner Jr Ernest L Treatment for reactive arthritis or bursitis
US7691831B2 (en) * 1999-03-17 2010-04-06 Ernest L. Bonner, Jr. Pharmaceutical combination and method for treatment of reactive arthritis or bursitis
US6087382A (en) * 1999-03-17 2000-07-11 Bonner, Jr.; Ernest L. Method for treatment of reactive arthritis or bursitis
US20050137181A1 (en) * 1999-03-17 2005-06-23 Bonner Ernest L. Method for treatment of reactive arthritis or bursitis
US7884090B2 (en) * 1999-03-17 2011-02-08 Ernest L. Bonner, Jr. Compositions and methods for the treatment of arthritis
PT103661B (en) * 2007-02-23 2010-09-07 Hovione Farmaciencia S A MINOCYCINE PREPARATION PROCESS CRYSTALLINE
JP2012520305A (en) 2009-03-12 2012-09-06 ワイス・エルエルシー Nitration of tetracycline
EP2427425B1 (en) 2009-05-08 2017-03-08 Tetraphase Pharmaceuticals, Inc. Tetracycline compounds
RU2647972C2 (en) 2010-05-12 2018-03-21 Ремпекс Фармацеутикалс, Инк. Tetracyclin composition
CN108329312B (en) 2012-08-31 2021-12-31 四相制药公司 Tetracycline compounds
PT108223B (en) 2015-02-13 2018-05-08 Hovione Farm S A NEW BASE MINOCYCLINE POLYMERIC FORMS AND PROCESSES FOR THEIR PREPARATION
PT108978B (en) 2015-11-24 2020-03-09 Hovione Farm S A TETRACYCLINE SALTS
MA46567A (en) 2016-10-19 2019-08-28 Tetraphase Pharmaceuticals Inc ERAVACYCLINE CRYSTALLINE FORMS

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3148212A (en) * 1961-12-22 1964-09-08 American Cyanamid Co Reductive alkylation process

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401863A (en) * 1991-10-04 1995-03-28 American Cyanamid Company 9-amino-7-(substituted)-6-demethyl-6-deoxytetracyclines
EP0535346A1 (en) 1991-10-04 1993-04-07 American Cyanamid Company 9-amino-7-substituted-6-demethyl-6-deoxytetracyclines
US5281628A (en) * 1991-10-04 1994-01-25 American Cyanamid Company 9-amino-7-(substituted)-6-demethyl-6-deoxytetracyclines
USRE40086E1 (en) 1991-10-04 2008-02-19 Wyeth Holdings Corporation Method for treating bacterial infection with novel 7-substituted-9-substituted amino 6-demethyl-6-deoxytetracyclines
USRE40183E1 (en) 1991-10-04 2008-03-25 Wyeth Holdings Corporation 7-Substituted-9-substituted amino-6-demethyl-6-deoxytetracyclines
US5530117A (en) * 1991-10-04 1996-06-25 American Cyanamid Company 7-substituted-9-substituted amino-6-demethyl-6-deoxytetracyclines
US5529990A (en) * 1991-10-04 1996-06-25 American Cyanamid Company Method for treating bacterial infection with novel 7-substituted-9-substituted amino 6-demethyl-6-deoxytetracyclines
US5386041A (en) * 1992-08-13 1995-01-31 American Cyanamid Company 7-(substituted)-8-(substituted)-9-[(substituted glycyl) amido]-6-demethyl-6-deoxytetracyclines
US5328902A (en) * 1992-08-13 1994-07-12 American Cyanamid Co. 7-(substituted)-9-[(substituted glycyl)amido]-6-demethyl-6-deoxytetracyclines
US5401729A (en) * 1992-08-13 1995-03-28 American Cyanamid Company 7-(substituted)-9-[(substituted glycyl)amido]-6-demethyl-6-deoxytetracyclines
US5420272A (en) * 1992-08-13 1995-05-30 American Cyanamid Company 7-(substituted)-8-(substituted)-9-](substituted glycyl)amido]-6-demethyl-6-deoxytetracyclines
US5430162A (en) * 1992-08-13 1995-07-04 American Cyanamid Company 7-(substituted)-8-(substituted)-9-substituted amino)-6-demethyl-6-deoxytetracyclines
US5495030A (en) * 1992-08-13 1996-02-27 American Cyanamid Company 9-[(substituted glycyl)amido)]-6-demethyl-6-deoxytetracyclines
US5380888A (en) * 1992-08-13 1995-01-10 American Cyanamid Company 7-(substituted)-9-[(substituted glycyl)amido]-6-demethyl-6-deoxytetracyclines
US5248797A (en) * 1992-08-13 1993-09-28 American Cyanamid Company Method for the production of 9-amino-6-demethyl-6-deoxytetracycline
US5567692A (en) * 1992-08-13 1996-10-22 American Cyanamid Company 9-[(substituted glycyl) amido)]-6-demethyl-6-deoxytetracyclines
US5284963A (en) * 1992-08-13 1994-02-08 American Cyanamid Company Method of producing 7-(substituted)-9-[(substituted glycyl)-amidol]-6-demethyl-6-deoxytetra-cyclines
US5639742A (en) * 1993-04-02 1997-06-17 Lee; Ving Jick 9-[(substituted glycyl)amido]-6-(substituted)-5-hydroxy-6-deoxytetracyclines
US5371076A (en) * 1993-04-02 1994-12-06 American Cyanamid Company 9-[(substituted glycyl)amido]-6-(substituted)-5-hydroxy-6-deoxytetracyclines
US5675030A (en) * 1994-11-16 1997-10-07 American Cyanamid Company Method for selective extracting a 7-(hydrogen or substituted amino)-9- (substituted glycyl) amido!-6-demethyl-6-deoxytetracycline compound
US7696187B2 (en) 1999-09-14 2010-04-13 Trustees Of Tufts College Methods of preparing substituted tetracyclines with transition metal-based chemistries
US20050187198A1 (en) * 1999-09-14 2005-08-25 Trustees Of Tufts College Methods of preparing substituted tetracyclines with transition metal-based chemistries
US8106225B2 (en) 1999-09-14 2012-01-31 Trustees Of Tufts College Methods of preparing substituted tetracyclines with transition metal-based chemistries
US7851460B2 (en) 2000-06-16 2010-12-14 Trustees Of Tufts College 7-phenyl-substituted tetracycline compounds
US20070155708A1 (en) * 2000-06-16 2007-07-05 Trustees Of Tufts College 7-phenyl-substituted tetracycline compounds
US7521437B2 (en) 2000-06-16 2009-04-21 Trustees Of Tufts College 7-phenyl-substituted tetracycline compounds
US8168810B2 (en) 2000-06-16 2012-05-01 Trustees Of Tufts College 7-phenyl-substituted tetracycline compounds
US8119622B2 (en) 2000-06-16 2012-02-21 Trustees Of Tufts College 7-phenyl-substituted tetracycline compounds
US20100160656A1 (en) * 2000-06-16 2010-06-24 Nelson Mark L 7-phenyl-substituted tetracycline compounds
US8492365B2 (en) 2000-07-07 2013-07-23 Trustees Of Tufts College 7-substituted tetracycline compounds
US20110118215A1 (en) * 2000-07-07 2011-05-19 Trustees Of Tufts College 7,8 And 9-Substituted Tetracycline Compounds
US7875649B2 (en) 2000-07-07 2011-01-25 Trustees Of Tufts College 7, 8 and 9-substituted tetracycline compounds
US7094806B2 (en) 2000-07-07 2006-08-22 Trustees Of Tufts College 7, 8 and 9-substituted tetracycline compounds
US8048867B2 (en) 2000-07-07 2011-11-01 Trustees Of Tufts College 9-substituted minocycline compounds
US7696188B2 (en) 2000-07-07 2010-04-13 Trustees Of Tufts College 7,8 and 9-substituted tetracycline compounds
US8252777B2 (en) 2000-07-07 2012-08-28 Trustees Of Tufts College 7, 8 and 9-substituted tetracycline compounds
US20090306022A1 (en) * 2000-07-07 2009-12-10 Trustees Of Tufts College 7-substituted tetracycline compounds
US7595309B2 (en) 2000-07-07 2009-09-29 Trustees Of Tufts College 7-substituted tetracycline compounds
US8258120B2 (en) 2000-07-07 2012-09-04 Paratek Pharmaceuticals, Inc. 9-substituted minocycline compounds
US20040224928A1 (en) * 2000-07-07 2004-11-11 Trustees Of Tufts College 7-Substituted tetracycline compounds
US20080167273A1 (en) * 2000-07-07 2008-07-10 Trustees Of Tufts College 7,8 And 9-substituted tetracycline compounds
US7361674B2 (en) 2000-07-07 2008-04-22 Trustees Of Tufts College 7, 8 and 9-substituted tetracycline compounds
US9090541B2 (en) 2000-07-07 2015-07-28 Paratek Pharmaceuticals, Inc. 9-substituted minocycline compounds
US20060084634A1 (en) * 2001-03-13 2006-04-20 Paratek Pharmaceuticals, Inc. 7-Pyrollyl tetracycline compounds and methods of use thereof
US7652002B2 (en) 2001-03-13 2010-01-26 Paratek Pharmaceuticals, Inc. 9-aminoacyl tetracycline compounds and methods of use thereof
US20040192657A1 (en) * 2001-03-13 2004-09-30 Carmen Garcia-Luzon 9-Aminoacyl tetracycline compounds and methods of use thereof
US7001918B2 (en) 2001-03-13 2006-02-21 Paratek Pharmaceuticals, Inc. 7-pyrrolyl tetracycline compounds and methods of use thereof
US20070270389A1 (en) * 2001-03-13 2007-11-22 Paratek Pharmaceuticals, Inc. 9-Aminoacyl tetracycline compounds and methods of use thereof
US8101591B2 (en) 2001-03-13 2012-01-24 Paratek Pharmaceuticals, Inc. 9-aminoacyl tetracycline compounds and methods of use thereof
US20050026876A1 (en) * 2001-03-13 2005-02-03 Nelson Mark L. 9-aminomethyl substituted minocycline compounds
US7208482B2 (en) 2001-03-13 2007-04-24 Paratek Pharmaceuticals, Inc. 9-aminoacyl tetracycline compounds and methods of use thereof
US7553828B2 (en) 2001-03-13 2009-06-30 Paratek Pharmaceuticals, Inc. 9-aminomethyl substituted minocycline compounds
US9365500B2 (en) 2001-03-13 2016-06-14 Paratek Pharmaceuticals, Inc. 9-aminomethyl substituted minocycline compounds
US20110160165A1 (en) * 2001-03-13 2011-06-30 Paratek Pharmaceuticals, Inc. 7-Pyrazolyl Tetracycline Compounds and Methods of Use Thereof
US7696358B2 (en) 2001-03-13 2010-04-13 Paratek Pharmaceuticals, Inc. Five-membered heterocyclyl tetracycline compounds and methods of use thereof
US8304445B2 (en) 2001-03-13 2012-11-06 Paratek Pharmaceuticals, Inc. 7-pyrazolyl tetracycline compounds and methods of use thereof
US20100075929A1 (en) * 2001-03-13 2010-03-25 Paratek Pharmaceuticals, Inc. 9-aminoacyl tetracycline compounds and methods of use thereof
US20100081826A1 (en) * 2001-03-13 2010-04-01 Paratek Pharmaceuticals, Inc. 7-pyrrolyl tetracycline compounds and methods of use thereof
US7897784B2 (en) 2001-03-13 2011-03-01 Paratek Pharmaceuticals, Inc. Process for preparing five-membered heterocyclyl tetracycline compounds and methods of use thereof
US7696186B2 (en) 2001-03-13 2010-04-13 Paratek Pharmaceuticals, Inc. 7,9-substituted tetracycline compounds
US8211937B2 (en) 2001-08-02 2012-07-03 Paratek Pharmaceuticals, Inc. 7-pyrollyl 9-aminoacyl tetracycline compounds and methods of use thereof
US20040266740A1 (en) * 2001-08-02 2004-12-30 Sophie Huss 7-pyrollyl 9-aminoacyl tetracycline compounds and methods of use thereof
US7323492B2 (en) 2001-08-02 2008-01-29 Paratek Pharmaceuticals, Inc. 7-pyrollyl 9-aminoacyl tetracycline compounds and methods of use thereof
US20060089336A1 (en) * 2002-01-08 2006-04-27 Paratek Pharmaceuticals, Inc. 4-Dedimethylamino tetracycline compounds
US7326696B2 (en) 2002-03-08 2008-02-05 Paratek Pharmaceuticals, Inc. Amino-methyl substituted tetracycline compounds
US20050026875A1 (en) * 2002-03-08 2005-02-03 Paratek Pharmaceuticals, Inc. Amino-methyl substituted tetracycline compounds
US7820641B2 (en) 2002-03-21 2010-10-26 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
US20050143352A1 (en) * 2003-07-09 2005-06-30 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
US20060287283A1 (en) * 2003-07-09 2006-12-21 Paratek Pharmaceuticals, Inc. Prodrugs of 9-aminomethyl tetracycline compounds
US20100249076A1 (en) * 2003-07-09 2010-09-30 Paratek Pharmaceuticals, Inc. Prodrugs of 9-aminomethyl tetracycline compounds
US9533943B2 (en) 2003-07-09 2017-01-03 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
EP2157085A1 (en) 2003-12-08 2010-02-24 Wyeth a Corporation of the State of Delaware Oxazole, derivatives of tetracyclines
US7365087B2 (en) 2003-12-08 2008-04-29 Wyeth Oxazole derivatives of tetracyclines
US7176225B2 (en) 2003-12-08 2007-02-13 Wyeth Oxazole derivatives of tetracyclines
US20080177080A1 (en) * 2003-12-08 2008-07-24 Wyeth Oxazole derivatives of tetracyclines
US9365493B2 (en) 2004-05-21 2016-06-14 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US9884830B2 (en) 2004-05-21 2018-02-06 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US10669244B2 (en) 2004-05-21 2020-06-02 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US11192866B2 (en) 2004-05-21 2021-12-07 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US20110009371A1 (en) * 2004-05-21 2011-01-13 Myers Andrew G Synthesis of tetracyclines and analogues thereof
US8598148B2 (en) 2004-05-21 2013-12-03 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US20050282787A1 (en) * 2004-05-21 2005-12-22 Myers Andrew G Synthesis of tetracyclines and analogues thereof
US7807842B2 (en) 2004-05-21 2010-10-05 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US8466132B2 (en) 2004-10-25 2013-06-18 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
US20060281717A1 (en) * 2005-02-04 2006-12-14 Joel Berniac 11a, 12-derivatives of tetracycline compounds
US8470804B2 (en) 2005-02-04 2013-06-25 Paratek Pharmaceuticals, Inc. 11a, 12-derivatives of tetracycline compounds
US8088755B2 (en) 2005-02-04 2012-01-03 Paratek Pharmaceuticals, Inc. 11a, 12-derivatives of tetracycline compounds
US7812008B2 (en) 2005-02-15 2010-10-12 Wyeth Llc 9-substituted tetracyclines
US20070049560A1 (en) * 2005-05-27 2007-03-01 Lalitha Krishnan Tigecycline and methods of preparing 9-nitrominocycline
US20070049561A1 (en) * 2005-05-27 2007-03-01 Lalitha Krishnan Methods of purifying tigecycline
US20070049562A1 (en) * 2005-05-27 2007-03-01 Lalitha Krishnan Tigecycline and methods of preparation
US20070049563A1 (en) * 2005-05-27 2007-03-01 Lalitha Krishnan Tigecycline and methods of preparing 9-aminominocycline
US20070049564A1 (en) * 2005-08-31 2007-03-01 Wyeth 9-Aminocarbonylsubstituted derivatives of glycylcyclines
US8101590B2 (en) 2005-08-31 2012-01-24 Wyeth Llc 9-aminocarbonylsubstituted derivatives of glycylcyclines
US8486921B2 (en) 2006-04-07 2013-07-16 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US20100130451A1 (en) * 2006-04-07 2010-05-27 Presidents And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US8293920B2 (en) 2006-10-11 2012-10-23 President And Fellows Of Harvard College Synthesis of enone intermediate
US20090093640A1 (en) * 2006-10-11 2009-04-09 Myers Andrew G Synthesis of enone intermediate
US8907104B2 (en) 2006-10-11 2014-12-09 President And Fellows Of Harvard College Synthesis of enone intermediate
US7763735B2 (en) 2006-10-11 2010-07-27 President And Fellows Of Harvard College Synthesis of enone intermediate
US8580969B2 (en) 2006-10-11 2013-11-12 President And Fellows Of Harvard College Synthesis of enone intermediate
US20110009639A1 (en) * 2006-10-11 2011-01-13 Myers Andrew G Synthesis of enone intermediate
US7960559B2 (en) 2006-10-11 2011-06-14 President And Fellows Of Harvard College Synthesis of enone intermediate
US8518912B2 (en) 2007-11-29 2013-08-27 Actelion Pharmaceuticals Ltd. Phosphonic acid derivates and their use as P2Y12 receptor antagonists
US9688644B2 (en) 2009-04-30 2017-06-27 President And Fellows Of Harvard College Synthesis of Tetracyclines and intermediates thereto
US9073829B2 (en) 2009-04-30 2015-07-07 President And Fellows Of Harvard College Synthesis of tetracyclines and intermediates thereto

Also Published As

Publication number Publication date
US3226436A (en) 1965-12-28

Similar Documents

Publication Publication Date Title
USRE26253E (en) And z-alkylamino-g-deoxytetracycline
US3148212A (en) Reductive alkylation process
US3341585A (en) Substituted 7-and/or 9-amino-6-deoxytetracyclines
USRE26271E (en) Reductive alkylation process
US3345410A (en) Substituted 7- and/or 9-amino tetracyclines
US3373196A (en) 7-and/or 9-(lower alkyl) amino-5a, 6-anhydrotetracyclines
US3338963A (en) Tetracycline compounds
US3483251A (en) Reductive alkylation process
US3403179A (en) Novel 7-(1, 2-bis-substituted-hydrazino)-tetracyclines and methods of preparing same
US3579579A (en) Substituted 7- and/or 9-amino-6-demethyl-6-deoxytetracyclines
US3901942A (en) Tetracycline derivatives substituted in the 7 position and process for preparing the same
US3360561A (en) Nitration of tetracyclines
Haskell Amicetin, bamicetin and plicacetin. Chemical studies
US3019260A (en) Process for the catalytic reduction of 6-hydroxy hydronaphthacenes
US2984686A (en) 6-deoxy-6-demethyl-6-methylene-5-oxytetracyclines
US3676454A (en) Acyloxymethyl derivatives of diphenylhydantoin
US2976318A (en) Tetracycline derivatives and process of producing the same
US3373198A (en) Substituted 5a, 11a-dehydro-6-epitetracyclines
US3373197A (en) Substituted 6-epitetracyclines and 5a-epi-6-epitetracyclines
US3388162A (en) 7-and/or 9-nitro or amino tetracyclines
US3341586A (en) Substituted 7-and/or 9-amino-6-methylenetetracyclines
US2929837A (en) Method of purifying tetracycline
Blackwood et al. Some transformations at the 12a-position in the tetracycline series1
US3165551A (en) New antibacterial agents
US3652537A (en) Epierythromycylamine and epierythromycyl b amine