Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE26501 E
Publication typeGrant
Publication dateDec 10, 1968
Filing dateMay 1, 1964
Publication numberUS RE26501 E, US RE26501E, US-E-RE26501, USRE26501 E, USRE26501E
InventorsSydney Himmelstein
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Multi-channel rotary transformer
US RE26501 E
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

1963 s. HIMMELSTEIN ETAL R 26,501

MULTI'CHANNEL ROTARY TRANSFORMER Original Filed May 1. 1964 Fig l INVENTQRS Sydney HI els? em 0rdd SS. T mick or va or J 2 al -9 (144/ nrmmvsvs Fig. 4

United States Patent 26,501 MULTI-CHANNEL ROTARY TRANSFORMER Sydney Himmelstein, Park Ridge, Howard S. Knaack,

Lake Bluff, and Richard S. Tveter, Glenview, Ill., assignors, by direct and mesne assignments, to S. Himmelstein and Company, Elk Grove Village, "L, a corporation of Illinois Original No. 3,317,873, dated May 2, 1967, Ser. No. 364,129, May 1, 1964. Application for reissue Jan. 5, 1968, Ser. No. 698,981

9 Claims. (Cl. 336-120) Matter enclosed in heavy brackets II appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

ABSTRACT OF THE DISCLOSURE A rotary transformer having a frame with spaced bearings therein, a shaft journalled in the bearings, a plurality of U-shaped rotor cores affixed to the shaft in axiallyspaced relation, each rotor core having radially extending side walls confining a rotor coil, and a U-shaped stator core on the frame for each rotor, the stator core also having radially extending side walls confining a stator coil, each stator coil further including two substantially identical unitary gapless hemicylinders having a cylindrical portion integral with the stator core side walls to define a U-shape in radial section, the distance between the inner faces of the side walls of each stator core being greater than the distance between the outer faces of the side walls of the rotor core associated therewith, the stator cores each being mounted on the frame to dispose the side walls thereof in radially overlapping relation to the side walls of the associated rotor core.

This invention relates to a rotary transformer, and, more particularly, to a device that is capable of transferring one or several channels of either or both data and power in electrical form, between a rotating shaft and a stationary member, and the provision of such constitutes an object of this invention.

Other objects and advantages of the invention may be seen in the details of operation and construction set down in this specification.

The invention is explained in conjunction with the accompanying drawing, in which FIG. 1 is a longitudinal sectional view of a multichannel rotary transformer constructed according to the teachings of the invention;

F IG. 2 is a transverse sectional view such as would be seen along the sight line 22 applied to FIG. 1;

FIG. 3 is an enlarged fragmentary view of the details of a single transformer section showing rotor and stator, windings, and cores; and

FlG. 4 is a schematic picturization of a portion of FIG. 3 and showing the lines of flux developed by the rotor and stator.

FIG. 3 contains the details of a single transformer section, and FIG. 1 shows several transformer sections assembled into a multi-channel unit. The rotor and stator core geometries shown in FIG. 3 minimizes the total leakage flux and, in addition, minimize the external leakage; i.c., that portion of the total leakage flux which finds its way outside of the external or stator structure.

The major flux paths are shown schematically in FIG. 4. It will be seen that the air gap (necessary to accomplish rotation without mechanical contact) reluctance is minimized by the design of the rotor and stator core structures. There are two important air gap reluctanccs in this Re. 26,501 Reissued Dec. 10, 1968 "ice magnetic circuit; i.e., those between the two parallel sides of rotor and stator. Because the flux path is parallel to the gap between the two halves of the stator, that gap has no important effect on the magnetic circuit.

Returning to the two significant gaps, their magnetic reluctance is directly proportional to the gap length (distance between rotor and stator sides) and inversely proportional to the area of the parallel surfaces formed by the sides of rotor and stator cores. Because these areas are both figures of rotation, for small linear dimensions the resultant area becomes large so that practical (from a manufacturing viewpoint) air gaps can be used while maintaining very high magnetic circuit efficiency. Furthermore, with this configuration, as already noted, the total leakage flux (because the air gap reluctance has been minimized) is small. Thus, as in the case of any transformer, with leakage inductance minimized, it is possible to design a transformer that has extremely wide bandwidth; i.e., very high resonant frequency. Another important advantage of this core design is that by far the greatest portion of the small residual leakage occurs inside of the stator assembly where it cannot cause crosstalk; i.c., magnetic coupling from one transformer section to another.

Another advantage of this core configuration is that the cross-sectional area offered to the useful flux path has been maximized; i.e., the cross-sectional areas even in the relatively thin radial sections (because they are figures of rotation), are quite large. Therefore, this core design permits operation at higher flux levels for a given core volume and results in the achievement of very high volts per turn ratios and power levels for a given volume.

Still another advantage of this core geometry is that it inherently cancels the effect of radial run-out. Thus, it is seen that the net air gap is maintained constant even if the rotor assembly should have appreciable run-out. Stated in other words, as the clearance in one sector of the figure of rotation increases, it decreases in the other sector, and, because the coils are wound to produce radially symmetrical fields, the net coupling, as the rotor shaft turns with radial run-out, remains constant.

This same result obtains for any residual axial play. If there is residual axial play, the net reluctance between rotor and stator remains constant because as the clearance increases (and therefore the reluctance increases) on one side, it decreases (and therefore the reluctance decreases) by an equal amount on the other side-the net effect being inherent immunity to such variations. It will be recognized that the essential core characteristics described above may be obtained with minor variations in core geometry. However, the structure delineated in FIG. 3 is our preferred arrangement.

By way of emphasis, the essential features of these core structures are that they provide, by virtue of their geometrical configuration, low reluctance air gaps between rotor and stator, very small external flux leakage, and air gap symmetry both with respect to the axis of rotation and in the plane perpendicular to the axis of rotation. The low reluctance results from favorable use of areas of rotation in the design of the core sections. The air gap symmetry provides transformer electrical characteristics with inherent immunity from the effects of radial run-out and shaft end play.

Other advantages which accure from this design are high resultant volumetric cfliciency for any given power and harmonic distortion requirement as well as unusually low total leakage (results in wide bandwidth) and outside leakage (results in low crosstalk). Furthermore, because the stator cores are split along their diameter, the resultant air gap is not critical and assembly of multichannel units is facilitated.

In FIG. 1 the numeral 20 designates generally a casing or cylindrical housing for the rotary transformer and is equipped with end closures as at 21 and 22 suitably secured thereto. In the case of the end closure 22, radially extending bolts 23 are employed to secure the end closure 22 to the cylindrical housing 20. The end closure 22 is apcrtured for the extension of the rotor shaft 24 and also is recessed as at 25 to support one bearing 26.

The other end closure 21 is apertured as at 27 for the extension of the shaft 24. The shaft extension 24a is seen to be equipped with the gear 28 which provides rotational power for the shaft 24. Additionally, the shaft 24 is equipped with a hollow bore as at 24b for the purpose of supplying the electrical connections 29 (see FIG. 3) to the rotor winding 30.

Returning again to FIG. 1, the end closure 21 is seen to be bolted to a bearing support member 31 (the bolts being designated 32). Additionally the bearing carrying member provides one support for the alignment bars 33 (see also FIG. 2) which support and align the various stators 34.

Interposed between adjacent stators are laminated shields 35 (see also FIG. 3), and the shields are supported on a ground rod 36 extending between the end plates 21 and 22.

Referring particularly to FIG. 3, the numeral 37 designates a terminal board carrying terminals 38 and 39 which are in turn connected by means of Wires 40 and 41 to the stator winding 42. The stator 34 is seen to be apertured as at 43 to permit access of the wires 40 and 41. An additional access is provided at 44 for the purpose of carrying a shield ground wire 45. The wire 4-5 is seen to be connected to the ground rod or boss 36.

Turning now to FIG. 2, it will be seen that the stator 34 is divided into portions 3421 which are identical hemicylinders, mating along a diametral plane 34b. Supporting the hemi-cylinders 34a are the alignment bars 33 previously mentioned.

Turning now to FIG. 1, it is seen that the shaft 24 is supported at one end by means of duplex bearings 46. The bearings constrain the rotor shaft 24 at one end. The duplex bearings are designed with a fixed pre-load that eliminates axial shaft movement at the reference end, i.e., the end equipped with the driving means 28, until the axial shaft load reaches the fixed pre-load. This pre-load may be made greater than the expected rotor axial load. The other end of the rotor shaft is not constrained in the axial direction. The stator core 34 is positioned by the four slotted alignment bars 33. The alignment bars 33 advantageously have controlled dimensions from the shaft reference end (R in FIG. 1) to a reference surface on each stator face. The stator cores are then held in position against these reference surfaces for accurate alignment and are cemented or otherwise fastened to them.

FIG. 3 shows a method for making electrical connections to both the rotating and stationary coils. It also shows one method of insulating the coils from the core structures and additionally depicts one method of providing electrostatic shield between the rotor and stator winding.

These planar shields 35 are a lamination of highly permeable magnetic material (such as Mumetal alloy) with highly conducting material, or, alternatively, they are Mumetal or equivalent plated with a highly conducting material such as silver or copper. The purpose of these inter-channel shields is twofold; first, the presence of the conductor which is electrically connected to ground provides for electrostatic shielding between adjacent transformer channels. Second, the planar shield provides further magnetic shielding between adjacent channels both at extremely low frequencies (by virtue of the presence of highly permeable magnetic materials) and at extremely high frequencies (by virtue of the 4 presfnce of highly P b e magnetic materials and good electrical conductors).

Referring to FIG. 1, it will be seen how several of these transformer core sections and shields are combined in a complete assembly. One practical method for making electrical connetcions is shown in FIG. 3. However, it will be obvious to those skilled in the art that many variations are possible; for instance, twisted wires could be substituted for the coaxial cables shown (29 In FIG. 3); coaxial connectors could be used in lieu of the terminals indicated on FIG. 3; but none of these changes are significant, nor, in fact, will they affect the overall performance except in a trivial and well known manner.

The alignment bars 33 may be advantageously made of the same metal as the rotor shaft 24. Thus, they have the same temperature coefficient of expansion as the shaft. The net result of such an arrangement is that, as the temperature varies over a wide range, the rotor and stator cores remain in fixed relation to one another and, in particular, the net magnetic reluctance of the air gaps remains fixed. Therefore, the leakage 1nductance of the transformer remains constant over wide ranges of temperature and its electrical characteristics are constant.

We claim:

1. A multi-channel rotary transformer comprisinga frame providing spaced bearings, a shaft jollfl'ltlllCd ll'l said bearings, means coupled to said shaft for rotating the same, a plurality of U-shaped rotor cores affixed to said shaft in axially-spaced relation, each rotor core having radially-extending side walls confinmg a rotor C011, and a U-shaped stator core on said frame for each rotolr, said stator core also having radially-extending s de wal s confining a stator coil, each stator core further ncluding two substantially identical unitary gapless hemicylinders having a cylindrical portion integral with said stator core side Walls to define a U-shape in radial section, the distance between the inner faces of the side walls of each stator core being greater than the distance between the outer faces of the side walls of the rotor core associated therewith, said stator cores each being mounted on said frame to dispose the side walls thereof in radially-over: lapping relation to the side walls of the associated rotor core so as to position said outer faces of said rotor core in confronting relation with said inner faces of said stator core whereby said rotor core is received within the hentr cylinders constituting the associated stator core to provide a minimum-reluctance rotor transformer charac; terized by air gaps existing only between the side wallslo said rotor and stator cores and between the dimetral yarranged hemicylinders.

2. A rotary transformer for use Will! a frame proweing spaced bearings, a shaft journallcd in said bearings, and means coupled to said shaft for rotatmg the same, said transformer comprising:

a radially outwardly opcnirrt, U-rlmperl rotor (ore ajfixed to said shaft and having radial/y extending Sltlc walls confining a rotor coil, and radially inwardly opening U-slzaperl stator core on said frame defined by a plurality of segmcntallv mnular unitary gapless members cooperatively defining an annular core arrangement confining a stator coil, each said member having a bight portion and radial- 1)! extending side walls integral therewith, the distance between the inner faces of said stator corc side walls being greater than the distance between the outer faces of the rotor core side walls, said stator core being mounted on said frame to dispose the stator core side walls in overlapping relation to the rotor core side walls so as to position said rotor core outer faces in confronting spaced relatio i h id state" Core Mlle" l ws whereby said rotor core is received within the stator core to provide a minimumrelucrance rotary mansfomwr Characterized by gaps existing axial/y between the side wullr of said rotor and stator cores and annularly between the segmentally annular members.

3. The rotary transformer of claim 2 wherein said stator core side walls are radially substantially longer than the radial dimension of said rotor core.

4. The rotary transformer of claim 2 wherein said stator core side walls extend substantially to said shaft whereby said 'stator core cooperates with said shaft to effectively envelop said rotor core.

5. The rotary transformer of claim 2 wherein said stator core side walls are spaced apart a distance greater than the axial dimension of the stator coil.

6. The rotary transformer of claim 2 wherein a grounded permeable shield is disposed adjacent one of said stator core side walls and is arranged to extend radially a distance substantially greater than the radial dimension of said transformer.

7. The rotary transformer of claim 2 wherein said stator core members comprise substantially identical members.

8. The rotary transformer of claim 2 wherein said stator core members comprise substantially identical hemicylindrical members.

References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.

UNITED STATES PATENTS 2,298,216 10/1942 Lamberger et a1. 73141 XR 2,432,982 12/1947 Braddon et a1. 336123 XR 3,179,909 4/1965 Cheney 336120 LEWIS H. MYERS, Primary Examiner.

T. I KOZMA, Assistant Examiner.

US. Cl. X.R.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3492618 *May 7, 1968Jan 27, 1970Breeze CorpSplit rotary electric transformer
US4563905 *Aug 27, 1984Jan 14, 1986S. Himmelstein And CompanyShaft torquemeter
US7068015 *Oct 5, 2000Jun 27, 2006Vestas Wind Systems A/SWind power plant having magnetic field adjustment according to rotation speed
US7608092Feb 20, 2004Oct 27, 2009Biomet Sports Medicince, LLCMethod and apparatus for performing meniscus repair
US7608098Nov 9, 2004Oct 27, 2009Biomet Sports Medicine, LlcBone fixation device
US7658751Sep 29, 2006Feb 9, 2010Biomet Sports Medicine, LlcMethod for implanting soft tissue
US7905903Nov 6, 2007Mar 15, 2011Biomet Sports Medicine, LlcMethod for tissue fixation
US7909851Jan 15, 2008Mar 22, 2011Biomet Sports Medicine, LlcSoft tissue repair device and associated methods
US7914539Dec 5, 2005Mar 29, 2011Biomet Sports Medicine, LlcTissue fixation device
US7959650Aug 22, 2008Jun 14, 2011Biomet Sports Medicine, LlcAdjustable knotless loops
US8034090Mar 21, 2006Oct 11, 2011Biomet Sports Medicine, LlcTissue fixation device
US8088130May 29, 2009Jan 3, 2012Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to a bone
US8118836Aug 22, 2008Feb 21, 2012Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to a bone
US8128658Aug 22, 2008Mar 6, 2012Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to bone
US8231654May 6, 2011Jul 31, 2012Biomet Sports Medicine, LlcAdjustable knotless loops
US8251998Feb 12, 2008Aug 28, 2012Biomet Sports Medicine, LlcChondral defect repair
US8273106Dec 22, 2010Sep 25, 2012Biomet Sports Medicine, LlcSoft tissue repair and conduit device
US8292921Mar 11, 2011Oct 23, 2012Biomet Sports Medicine, LlcSoft tissue repair device and associated methods
US8298262Jun 22, 2009Oct 30, 2012Biomet Sports Medicine, LlcMethod for tissue fixation
US8303604Sep 30, 2009Nov 6, 2012Biomet Sports Medicine, LlcSoft tissue repair device and method
US8337525Mar 11, 2011Dec 25, 2012Biomet Sports Medicine, LlcSoft tissue repair device and associated methods
US8343227May 27, 2010Jan 1, 2013Biomet Manufacturing Corp.Knee prosthesis assembly with ligament link
US8409253Jul 1, 2010Apr 2, 2013Biomet Sports Medicine, LlcSoft tissue repair assembly and associated method
US8500818May 27, 2010Aug 6, 2013Biomet Manufacturing, LlcKnee prosthesis assembly with ligament link
US8506597Oct 25, 2011Aug 13, 2013Biomet Sports Medicine, LlcMethod and apparatus for interosseous membrane reconstruction
US8551140Jul 13, 2011Oct 8, 2013Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to bone
US8562645May 2, 2011Oct 22, 2013Biomet Sports Medicine, LlcMethod and apparatus for forming a self-locking adjustable loop
US8562647Oct 29, 2010Oct 22, 2013Biomet Sports Medicine, LlcMethod and apparatus for securing soft tissue to bone
US8574235May 19, 2011Nov 5, 2013Biomet Sports Medicine, LlcMethod for trochanteric reattachment
US8597327Nov 3, 2010Dec 3, 2013Biomet Manufacturing, LlcMethod and apparatus for sternal closure
US8608777Oct 21, 2011Dec 17, 2013Biomet Sports MedicineMethod and apparatus for coupling soft tissue to a bone
US8652171May 2, 2011Feb 18, 2014Biomet Sports Medicine, LlcMethod and apparatus for soft tissue fixation
US8652172Jul 6, 2011Feb 18, 2014Biomet Sports Medicine, LlcFlexible anchors for tissue fixation
US8672968Feb 8, 2010Mar 18, 2014Biomet Sports Medicine, LlcMethod for implanting soft tissue
US8672969Oct 7, 2011Mar 18, 2014Biomet Sports Medicine, LlcFracture fixation device
US8721684Mar 5, 2012May 13, 2014Biomet Sports Medicine, LlcMethod and apparatus for coupling anatomical features
US8771316Mar 5, 2012Jul 8, 2014Biomet Sports Medicine, LlcMethod and apparatus for coupling anatomical features
US8771352May 17, 2011Jul 8, 2014Biomet Sports Medicine, LlcMethod and apparatus for tibial fixation of an ACL graft