Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE27281 E
Publication typeGrant
Publication dateFeb 15, 1972
Filing dateJun 30, 1970
Priority dateNov 1, 1966
Publication numberUS RE27281 E, US RE27281E, US-E-RE27281, USRE27281 E, USRE27281E
InventorsEdward V. Wilkus
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Aryl ketone containing organosilicon materials
US RE27281 E
Abstract  available in
Images(6)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 27,281 ARYL KETONE CONTAINING ORGANOSILICON MATERIALS Edward V. Wilkus, Monroe, Conn., and Abe Berger,

Schenectady, N.Y., assignors to General Electric Com- P y No Drawing. Original No. 3,391,109, dated July 2, 1968, Ser. No. 591,118, Nov. 1, 1966. Application for reissue June 30, 1970, Ser. No. 51,398

Int. Cl. C081 11/04 US. Cl. 260-465 Y 7 Claims Matter enclosed in heavy brackets II] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

ABSTRACT OF THE DISCLOSURE organosilicon materials, including monomers and polymers, and a method for making them, are provided. One class of materials have chemically combined 0 ESiRl'i'lQ units, where R" is a divalent hydrocarbon radical and Q is a radical selected from aryloxyaryl, arylthioaryl, arylsulfonylaryl, and certain heteroaromatic radicals. In addition, organosilicon polymers and copolymers are provided having chemically combined I ESiRl JQ units, where Q is a radical selected from Q radicals, monovalent aromatic hydrocarbon radicals and halogenated monovalent aromatic hydrocarbon radicals. The subject monomers can be employed as perfume oil bases in cosmetics, etc. The subject polymers can be employed as fluids and in the manufacture of elastomers and resins.

The present invention relates to organosilicon materials having at least one aroylorgano radical attached to silicon by carbon-silicon linkages.

The organosilicon materials of the present invention or aryl ketone containing organosilicon materials are selected from (A) Silylorganoaryl ketones of the formula,

O eta 1m Reissued Feb. 15, 1972 and (ii) Copolymers of from 5 to mole percent of (i) units chemically combined with from 95 mole percent to 5 mole percent of R SiO units, where R is a member selected from monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals, cyanoalkyl radicals, halogen radicals, alkoxy, R is selected from R radicals and hydroxy radicals, R" is a divalent hydrocarbon radical selected from arylene radicals and alkylene radicals, Q is a monovalent aromatic radical selected from aryloxyaryl radicals, arylthioaryl radicals, arylsulfonyl aryl radicals, and heteroaromatic radicals having as the hetero atom a member selected from oxygen, sulfur, phosphorous and nitrogen, said heteroaromatic radicals being selected from five-membered heterocyclic radicals and heterocyclic radicals which are part of a fused ring structure, Q includes all of the aforementioned Q radicals, aromatic hydrocarbon radicals and halogenated a-romatic hydrocarbon radicals, a and b are whole numbers equal to 0 or 1, c is a whole number equal to 0 to 3, inclusive, and the sum of b and c in the copolymers of (C) can have a value between 1 to 2.01, inclusive.

Radicals included by R and R of the above formulae are, for example, aryl radicals and halogenated aryl radicals such as phenyl, chlorophenyl, xylyl, tolyl, etc.; aralkyl radicals such as phenylethyl, benzyl, etc.; aliphatic radicals, haloaliphatic radicals and cycloaliphatic radicals such as methyl, ethyl, propyl, butyl, vinyl and allyl, cyclohexyl, trifluoropropyl, trifluorobutyl, cyanoalkyl radicals such as cyanoethyl, cyanopropyl, cyanobutyl, etc.; halogen radicals such as chloro, bromo, etc., alkoxy radicals such as methoxy, ethoxy, propoxy, butoxy, t-butoxy, etc. Radicals included by R of the above formulae are arylene radicals, halogenated arylene radicals, alkylene radicals and halogenated alkylene radicals such as phenylene, tolylene, methylene, ethylene, trimethylene, tetramethylene, pentamethylene, decamethylene, chlorophenylene, etc. Radicals included by Q of the above formulae are for example, phenoxyphenyl, furyl, thienyl, xanthenyl, anthryl, xylylsulfonylxylyl, benzofuranyl, carbazolyl, dibenzothienyl, etc. Radicals included by Q are all of the aforementioned Q radicals as well as monovalent aromatic hydrocarbons and halogenated monovalent hydrocarbons such as phenyl, chlorophenyl, naphthyl, biphenylyl, etc. In the above formulae, where R, R, Q and Q respectively can represent more than one radical, all of these radicals can be the same or a mixture of any two or more of these radicals.

Some of the aryl ketone containing organosilicon materials of the present invention can be made directly by acylating an aryl nucleus, which hereinafter will signify at least one member of a class of aryl nuclei which can include hydrocarbons as well as heterocyclics,with a silyl acid halide of the formula,

where R, R" and b are as defined above, and X is a halogen radical, such as chloro.

Aryl nuclei which can be employed to provide for the aryl ketone containing organosilicon materials of the present invention are for example, benzene, naphthalene, anthracene, diphenylether, furan, thiophene, dixylylsulfone, dibenzofuran, carbazole, dibenzothiophene, etc. Unlike the method shown in our copending application [Sen No. 591,117, filed Nov. 1, 1966], Patent 3,410,822, filed concurrently herewith and assigned to the same assignee as the present invention, which can provide for the production of dicarbonyl containing organosilicon materials by deacylating various aryl nuclei, the method of the present invention provides for production of aryl ketone conaining organosilicon materials by the monoacylation of he aforementioned aryl nuclei.

Carboxylic acid halides of Formula 5, and methods for naking them, are shown by Sommer et al., J.A.C.S. 73, F130 (1951). Included by the carboxylic acid halide of *ormula are beta-trichlorosilylpropionyl chloride, gamna-methyldichlorosilylbutyryl chloride, gamma-phenylnethylchlorosilylbutyryl chloride, trimethylsilylpropionyl :hloride, etc.

Acylation catalysts that can be utilized to effect reaction wetween the silyl acid halide of Formula 5, with the aryl nucleus in accordance with the practice of the invention, nclude for example, aluminum chloride, boron trichloide, zinc chloride, stannic chloride, polyphosphoric acid, IOI'OII trifiuoride, etc.

Organosilicon polymers of the present invention having hemically combined siloxy units with aroylorgano radials attached to silicon, as shown by Formula 2, can be nade by either hydrolyzing halosilylorganoaryl ketones of he formula,

X ,SiR' Q XJ-hSiR"CQ' DI'OdUCCd by acylating various aryl nuclei with certain of he silyl acid halides of Formula 5, or by cohydrolyzing uch halosilylorganoaryl ketones with organohalosilanes f the formula,

vhere R, X, b and c are as defined above.

Included by organohalosilanes of Formula 7 are for ex- .mple, methyltrichlorosilane, silicon tetrachloride, methylrhenyldibromosilane, dimethyldichlorosilane, trimethyl hlorosilane, methylvinyldichlorosilane, methylcyanoethyllichlorosilane, etc.

Some of the silylorganoaryl ketones of Formula 1 are or example, trimethylsilylbutyrylthiophene, l,3-'bis(4-phe- .oxybenzoylpropyl)tetramethyldisiloxane, 1,3 bis(furo- 'lpropyl)tetramethyldisiloxane, 2 trimethylsilylpropiolylxanthene, furoylpropyldimethylsilanol, p-phenoxybenoylpropylmethyldimethylsilane, thenoyibutyldimethylhlorosilane, 3-diethoxymethylsilylbutyrylcarbazole. These naterials can be used as perfumes, oil bases in cosmetics, to.

The aryl ketone containing organosilicon polymers of be present invention can be fluids, viscous gums, or resinlus solids depending upon the functionality of the respecive chemically combined units. The polymers can be comosed of from 2 to 3 thousand chemically combined units, vhile preferably they are composed of from 5 to 500 hemically combined units. Among the aryl ketone con aining organosilicon polymers, there are preferred polyflBl'S consisting essentially of chemically combined units f Formula 4, and copolymers consisting essentially of hits of Formula 4 and R SiO units. As indicated previusly, the aforementioned polymers and copolymers can Ie silanol chain-stopped, or if desired, chain-stopped with L3SIO0 5 units.

The aryl ketone containing organosilicon polymers of be present invention can be compounded with convenional organopolysiloxane elastomer materials such 'as ilica fillers, for example, fumed silica etc., heat-age addiives, plasticizers, pigments, etc. A proportion of from bout 5 to 300 parts of filler which can include reinforcing s well as non-reinforcing fillers, such as zinc oxide, ditomaceous earth, can be employed. Cure of the aryl keone containing organosilicon polymers can be elfected vith conventional room temperature vulcanizing curing gents, such as methyltriacetoxysilane, or curing agents uch as organosilicates, in combination with a metal soap uch as dibutyltindilaurate, zinc octoate, etc., as taught by lerridge Patent 2,845,541, assigned to the same assignee s the present invention. A peroxide curing catalyst also an be employed such as benzoyl peroxide, dicumyl perxide, etc., in instances where a heat-cure is desired, such 4 as where the. aforementioned polymers are terminated with R SiO units and contain chemically combined (C H CH SiO units. In addition, cure can be effected with the employment of a platinum catalyst as taught for example by Ashby Patent 3,159,601, Lamoreux Patent 3,220,972, both assigned to the same assignee as the present invention, in combination with chemically combined siloxy units having hydrogen attached to silicon and siloxy units having alkenyl radicals attached to silicon which can be chemically combined with units of Formula 2.

Some of the aryl ketone containing organosilicon materials of the present invention can be further shown by the formula,

where R, R" and Q are as defined above, f has a value of from 0 to 2.5, inclusive, g has a value of from 0.001 to 1, inclusive, and the sum of f and g has a value equal to 1 to 3, inclusive. Also included by the present invention are disiloxanes having the formula,

where R, R" and Q are as defined above.

In the practice of the invention, the aryl nucleus is acylated with a silyl acid halide as shown in Formula 5 and the resulting silylorganoaryl ketone is recovered. In instances where there are hydrolyzable radicals attached to silicon, the resulting silylorganoaryl ketone can be hydrolyzed or cohydrolyzed with halosilanes, as shown by Formula 7, to produce a variety of organopolysiloxane polymers and copolymers.

In most instances the acylation of the aryl nucleus can be accomplished by standard Friedel-Crafts methods. Experience has shown however, that a modified Friedel- Crafts procedure is preferably employed when utilizing a silyl acid halide having no more than two carbon atoms between the silicon atoms and the carbonyl group. It has been found that such silyl acid halides, for example, a. silyl propionyl halide, often decomposes when mixed directly with a Friedel-Crafts catalyst such as an alumium halide in the absence of the aryl nucleus. Instead of forming a stable complex with the alumium halide, silyl acid halides having no more than two carbon atoms between the silicon atoms and the carbonyl group can partially decompose to carbon monoxide and the corresponding halosilanes and olefin, if the complex is formed in the absence of the aryl nucleus previously described. Generally, any standard Friedel-Crafts acylation procedure can be utilized for acylating the aryl nucleus. In instances where a silyl acid halide such as propionyl halide is used however, it is preferred to add the Friedel-Crafts catalyst in small increments to a mixture of the aryl nucleus and the silyl acid halide.

If desired, a suitable organic solvent can be utilized during the acylation of the aryl nucleus to facilitate the acylation reaction. Suitable organic solvents are any organic solvents that are substantially inert to the reactants or to the conditions of the reaction and which facilitate the acylation of the aryl nucleus. Suitable organic solvents include for example, methylene chloride, nitrobenzene, carbon disulfide, etc. Temperatures at which the acylation of the aryl nucleus can be effected can vary widely. For example, a range of from -50 C. to C. has been found operable, while a range of between 0 C. to 50 C. is preferred. Any standard Friedel-Crafts catalyst can be utilized to effect the acy1ation of the aryl nucleus with the silyl acid halide. A preferred Friedel-Crafts catalyst is alumium chloride. Other Friedel-Crafts catalysts that can be employed however, are for example, B1 ZnCl H PO SnCl etc.

The acylation of the aryl nucleus will be completed when no further hydrogen halide, produced during the acylation reaction, is evolved. The acylated aryl nucleus then can be hydrolyzed by standard procedures. An acidified mixture of water and ice can be employed for example. The crude product can be extracted by use of a suitable organic solvent, and then purified in accordance with standard procedures such as chromatography, distillation, etc.

Further reaction of the acylated aryl nuclear also can be achieved such as alkylation, sulfonation, and other standard reactions analogous to chemical reactions common to organic aromatic chemistry. In addition, the monovalent functional groups on the silicon atom of the silylorgano radical can also be replaced with other monovalent radicals to provide for additional chemical reactions with the acylated aryl nucleus. For example, a silicon-carbon cleavage reaction can be utilized to form silanol radicals. Silicon halogen bonds can be alkoxylated to form alkoxy silanes, etc.

In order that those skilled in the art will be better able to practice the invention, the following examples are given by way of illustration and not by way of limitation. All parts are by weight.

Example 1 There was added 130 parts of anhydrous stannic chloride to a mixture of 90 parts of trimethylsilylbutyryl chloride, 100 parts methylene chloride, and 84 parts of thiophene under a nitrogen atmosphere. Hydrogen chloride was continually evolved as the mixture was stirred resulting in the production of a deep colored complex. The mixture was allowed to warm to room temperature and stirred for an additional 3 hours. It was then heated to reflux for 3 more hours. The mixture was then stirred with a mixture of crushed ice and dilute hydrochloric acid. After the reaction product had been completely hydrolyzed, the organic layer was separated, dried and fractionated. There was obtained 70 parts of a product boiling at 134l37 C. at 1.5 mm. Based on method of preparation and its infrared spectrum, the product was trimethylsilylbutyryl-2-triophene having the formula,

( sM (CH2)a iHiS) Example 2 There was added 130 parts of anhydrous stannic chloride to a mixture of 100 parts of chlorodimethylsilylbutyryl chloride, 100 parts methylene chloride, and 84 parts of thiophene under an inert nitrogen atmosphere. During the reaction the mixture was cooled externally with an ice bath. A red complex formed and hydrogen chloride was continuously evolved. The mixture was allowed to warm to room temperature, stirred for an additional three hours, and then refluxed for three more hours. The mixture was poured into a mixture of crushed ice and dilute hydrochloric acid, as described above. The organic layer was dried and fractionated. A 73% yield of product was obtained which distilled at 228 C. at 1 mm. Based on its method of preparation and its infrared spectrum, the product was 1,3-bis(gamma-thenoylpropyl) tetramethyldisiloxane having the formula,

Example 3 The procedure of Example 2 was repeated, except that prior to the hydrolysis of the acylated thiophene, there was added to the mixture 645 parts of dimethyldichlorosilane. After thoroughly stirring the resulting mixture, it was poured into a mixture of 500 parts of ice and 5% solution of hydrochloric acid. The organic layer was separated, and washed repeatedly with aqueous sodium bicarbonate solution until neutral to litmus; it was dried with anhydrous magnesium sulfate. Based on its method of preparation and its infrared spectrum, the product was a polydimethylsiloxane having terminal a-thenoylpropyldimethylsilyl linkages of the average formula,

Example 4 There was added uniformly over a 30 minute period, 4.2 parts of anhydrous aluminum chloride to a mixture of 15 parts of diphenylether, 5 parts of beta-trimethylsilyl propionyl chloride, and 50 parts of methylene chloride while the mixture was stirred. During the addition hydrogen chloride was continuously evolved. The mixture was then stirred for an additional hour and then refluxed for two more hours. The mixture was then hydrolyzed in accordance with the procedure described in Example 1, and the crude oily product was purified by chromatography on a column packed with Alcoa F-2O alumina in hexane. Elution with hexane removed the excess diphenyl ether; elution with ether gave 7 parts of a colorless oil whose infrared spectrum showed absorption for alkylaryl ketone at 6.0 microns, for methyl-to-silicon at 8.0 microns, and for the trimethylsilyl grouping at 11.6 microns. In addition, absorption characterizing diphenyl ether was found at 6.3 microns, 6.8 microns, 8.3 microns, 7.5 microns, 13.3 microns and 14.4 microns. Based on its method of preparation and its infrared spectrum, the product was (beta-trimethylsilylpropionyl)diphenylether having the formula,

ll 3)3 2)2C 061140 CaH;

Example 5 There was added 3.8 parts of anhydrous aluminum chloride over a period of 30 minutes to a stirred mixture of 5.4 parts of beta-dimethylchlorosilylpropionyl chloride, 15 parts of diphenyl ether, and 40 parts of methylene chloride. The mixture was stirred several additional hours during which time HCl was continuously evolved. The mixture was then hydrolyzed and the organic product was recovered as previously described. A crude oil was obtained which was purified by chromatography on a column packed with Alcoa F-20 alumina in hexane. Elution with hexane removed excess diphenyl ether; elution with diethyl ether gave 4 parts of a colorless oil. Based on its method of preparation and its infrared spectrum which showed absorption for alkylaryl ketone at 6.0 microns, methyl-to-silicon at 8.0 microns, in addition to linear disiloxane linkages at 9.5 microns, and typical absorption for diphenyl ether at 6.35 and 6.8, etc., the product was 1,3 bis[beta (phenoxybenzoyl)ethyl]tetramethyldisiloxane having the formula,

The above procedure was repeated except that in place of beta-dimethylchlorosilylpropionyl chloride there was employed gamma dimethylchlorosilylbutyryl chloride. There was obtained a colorless oil which was 1,3-bis[gamma (phenoxybenzoyl) propyl] tetramethyldisiloxane having the formula,

Example 6 There was added 3.5 parts of anhydrous aluminum chloride to a stirred mixture of 4 parts of xanthene and 4.1 parts of beta-trimethylsilylpropionyl chloride in 50 parts of methylene chloride. During and after the addition was completed, HCl was continuously evolved. The mixture was stirred for an additional 8 hours. It was then hydrolyzed and the crude product was recrystallized from a hexenetoluene mixture. A white crystalline solid having a melting point of 94-94.5 C. was obtained. Based on its method of preparation and its infrared spectrum showing absorption at 6.0 microns for carbonyl-to-aryl linkages as well as absorption for the presence of trimethylsilyl at 11.5 to 12 microns, plus absorption characteristics of monosubstituted xanthene, the product was beta-trimethylsilylpropionylxanthene having the formula,

ah w zh 13119 Example 7 The procedure of Example 6 was repeated, except that in place of 4.1 parts of beta-trimethylsilylpropionyl chloride there was utilized 4.5 parts of gamma-trimethylsilylbutyryl chloride. A crude product was obtained Which was recrystallized from a hexene-toluene mixture. There was obtained 1.4 parts of a white crystalline solid having a melting point of 97 98 C. Based on its method of preparation and its infrared spectrum the product was gammatrimethylsilylbutyrylxanthene having the formula,

l? H3) (011.)30 131 0 Example 8 There was added over a 30 minute period, 3.9 parts of anhydrous aluminum chloride to a stirred mixture of 15 parts of dibenzothiophene and parts of gamma-trimethylsilylbutyryl chloride in methylene chloride. Hydrogen chloride was continuously evolved during the addition. The mixture was stirred for an additional 8 hours, after which it was refluxed for 1 hour. The mixture was then hydrolyzed and the crude product was purified by chromatography on a column packed with Alcoa F-2O alumina in hexane in accordance with the procedure described above. Hexane elution removed the excess dibenzothiophene; ether gave a 61% yield of yellow solid. Based on its method of preparation and its infrared spectrum, the product was gamma-trimethylsilylbutyryldibenzothiophene having the formula,

(CH )3Si (CH2) (C i2H7S) Example 9 There was added 4.2 parts of anhydrous aluminum chloride to a stirred mixture of parts of dibenzofuran and 5 parts of beta-trimethylsilylpropionyl chloride in 50 parts methylene chloride. After the addition, the mixture was stirred continuously for several hours to eflect the separation of hydrogen chloride. A crude product was obtained in accordance with the previously described procedure by hydroylsis and recovery techniques. It was recrystallized from hexane. A 51% yield of solid was obtained; the solid had a melting point of 65 to 67 C. Based on its method of preparation of its infrared spectrum the solid was beta-trimethylsilylpropionyldibenzofuran having the formula,

0 Ha)a Hz)a n v Example 10 There was added 9 parts of anhydrous aluminum chloride to a mixture consisting of 100 parts anhydrous benzene and 14 parts of dichloromethylsilylpropionyl chloride under a nitrogen atmosphere. The addition was performed over a period of two hours at ambient temperatures. As the reaction proceeded, a deep red complex developed and copious amounts of HCl gas were evolved. After the addition the reaction mixture was refluxed for 6 hours. A deep red color solution was obtained. The solution was divided equally into two portions. Fraction 1 was poured onto parts ice and heated on a steam bath to effect hydrolysis. Two layers developed. The organic layer was separated, washed to neutrality, dried, and solvent stripped. A viscous oil remained behind having a pleasant odor. An infrared scan showed carbonyl absorption at 5.95, some silanol absorption at 2.95 and a broad siloxane absorption at 9.l10.4 microns. Based 011 method of preparation, the product was a mixture of linear and cyclic material composed of chemically com bined CH3 0 S iO eHsfl z Hz units.

There was added 65 parts of dimethylchlorosilane to the second portion and the above procedure was repeated. A viscous liquid was obtained having an infrared scan similar to the above product having carbonyl and phenyl absorption of diminished intensity. Based on method of preparation, the product was a silanol-terminated copolymer composed of chemically combined CH; 8!. 0 (3H,

units and C H; (can) i: OH2CH2S l 0 units.

A mixture of the above copolymer, tetraethyl silicate and stannous octoate is made in accordance with the teaching of Berridge Patent 2,845,541. There is obtained a tack-free elastomer after 8 hours.

Example 11 There was added 29 parts of a boron trifluorideethyl ether complex to a mixture of 68 parts furane and 40 parts chlorodimethylsilylbutyryl chloride,, cooled on an ice bath and maintained under an inert atmosphere. A mild exothermic reaction occured, The reaction mixture darkened as it proceeded to a deep reddish brown color. After the addition, the mixture was poured onto crushed ice. There was added 100 parts of chloroform to effect separation. The organic phase was recovered and washed to neutrality with sodium bicarbonate solution, dried and stripped. There was obtained 15 parts of a liquid product having a pleasant odor. Infrared showed carbonyl absorp tion at 5.89 microns, absorption at 3.10-3.30 microns showed silanol. It had a B.P. of 8587 C. at 1 mm. Based on method of preparation and its infrared absorption, the product was 0 HOSRCHaCHz (C4Ha Example 12 There was added 13.3 parts of aluminum chloride to a mixture of 22.6 parts trichlorosilylpropionyl chloride and parts benzene maintained under a nitrogen atmosphere. The addition was performed at room temperature over a 3 hour period. A red colored complex formed which gradually darkened, the evolution of hydrogen chloride was observed. After the addition, the reaction was brought to reflux and held there for 5 hours. The above mixture is divided into two portions. There is added to one portion of the mixture 15 parts of phosphorous oxychloride. The mixture is stirred and a precipitate of an aluminum chloride-phosphorous oxychloride complex results. The mixture is filtered and the organic layer stripped. There is obtained a crude liquid product. Its infrared spectrum is consistent with the formula,

Hydrolysis of the other portion of the mixture was effected by pouring it onto 30 parts ice; it was then heated on a steam bath. A crude product was recovered with chloroform which was added to the mixture; the organic layer was separated, washed to neutrality, dried and stripped. A 45% yield of resin was obtained which could be drawn into filaments. An infrared scan of the material showed carbonyl absorption at 5.98 microns, a very broad siloxane absorption from 8.5 to 10 microns and a silanol absorption. Based on its method of preparation and infrared spectra, the product was a polymer which consisted essentially of chemically combined oflmdornomsiom units.

The mixture of the above polymer and 10% by weight of the polymer of methyltriacetoxysilane is allowed to cure under atmospheric conditions. A tack-free elastomer is obtained after 10 hours.

Although the foregoing examples have been limited to only a few of the very many variables Within the scope of the present invention, it should be understood that the present invention is directed to a method involving the acylation of a much broader class of aryl nuclei with silyl acid halide of Formula in the presence of a Friedel- Crafts catalyst. Also, the aryl ketone containing organosilicon materials that are included within the scope of the present invention are shown by Formula 1, as well as polymers which can have chemically combined units of Formula 2.

What we claim as new and desire to secure by Letters Patent of the United States is:

1. Aryl ketone containing organosilicon [arganosilicon] materials selected from the class consisting of,

(A) silylorganoaryl ketones 09 the formula,

0 l 1, ads )RzSz (M) [(A)] (B) polymers consisting essentially of chemically combined units of the formula,

[(B):| (C) copolymers composed of 0.01 to 99.99 mole percent of organosiloxy units of the formula,

o'ba'sio Q Me loand 10 (ii) copolymers of from 5 to mole percent of (i) units chemically combined with from 95 mole percent to 5 mole percent of R SiO- units, where R is a member selected from the class consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals, and cyanoalkyl radicals, R is selected from R radicals and hydroxy radicals, R" is a divalent hydrocarbon radical selected from the class consisting of arylene radicals and alkylene radicals, Q is a monovalent aromatic radical selected from the class consisting of aryloxyaryl radicals, arylthioaryl radicals, arylsulfonylaryl radicals, and heteroaromatic radicals having as the hetero atom a member selected from oxygen, sulfur, phosphorus and nitrogen, Q includes all the aforementioned Q radicals, aromatic hydrocarbon radicals and halogenated aromatic radicals, [Q is a member selected from the class consisting of aryloxyaryl radicals, arylthioaryl radicals, and arylsulfonylaryl radicals, heteroaromatic radicals having as the hetero atom a member selected from the class consisting of oxygen, sulfur, phosphorus and nitrogen, aromatic hydrocarbon radicals and halogenated aromatic hydrocarbon radicals,] a and b are [is a] whole [number] numbers equal to 0 or 1, c is a whole number equal to 0 to 3, inclusive, and the sum of b and c in the copolymers of [(B)] (C) have a value between 1 to [2.0], 2.01, inclusive.

2. Silylorganoaryl ketones in accordance with claim 1 of the formula,

where R is a member selected from the class consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals, and cyanoalkyl radicals, R is selected from R radicals and hydroxy radicals, [R'] R" is a divalent hydrocarbon radical selected from the class consisting of arylene radicals and alkylene radicals, Q is a monovalent aromatic radical selected from the class consisting of aryloxyaryl radicals, arylthioaryl radicals, arylsulfonylaryl radicals, and heteroaromatic radicals having as the hetero atom a member selected from oxygen, sulfur, phosphorous and nitrogen, and a is a whole number equal to 0 to 1.

3. Polymers in accordance with claim 1 consisting essentially of chemically combined units of the formula,

u t n I, [a CRS10 Q CR S10 where R is a member selected from the class consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals, and cyanoalkyl radicals, [R] R" is a divalent hydrocarbon radical selected from the class consisting of arylene radicals and alkylene radicals, Q is a member selected from the class consisting of aryloxyaryl radicals, arylthioaryl radicals, arylsulfonylaryl radicals, and hetero-aromatic radicals having as the hetero atom a member selected from oxygen, sulfur, phosphorous and nitrogen, aromatic hydrocarbon radicals and halogenated aromatic hydrocarbon radicals, and b is a whole number equal to O or I.

4. Copolymers in accordance with claim 1, composed of 0.01 to 99.99 mole percent of organosiloxy units of the formula,

chemically combined with 99.99 mole percent to 0.01 mole percent of units of where R is a member selected from the class consisting of monovalent hydrocarbon radicals, halogenated monvalent hydrocarbon radicals, and cyanoalkyl radicals, [R'] R" is a divalent hydrocarbon radical selected from the class consisting of arylene radicals and alkylene radicals, Q is a member selected from the class consisting of aryloxyaryl radicals, arylthioaryl radicals, arylsulfonylaryl radicals, and heteroaromatic radicals having as the hetero atom a member selected from oxygen, sulfur, phosphorus and nitrogen, aromatic hydrocarbon radicals and halogenated aromatic hydrocarbon radicals, b is a whole number equal to to 1, c is a whole number equal to 0 to 3, inclusive, and the sum of b and c can have a value between 1 to 2.01, inclusive.

5. Curable compositions in accordance with claim 1 comprising (A) a silanol reactive curing agent in an amount sufficient to effect the room temperature vulcanization of said curable compositions, and (B) a silanol chain-stopped polymer consisting essentially of chemically combined units of the formula,

O R 0 [Q' HJR'SiO] QPJR'H SiO where R is a member selected from the class consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals, and cyanoalkyl radicals, [R'] R" is a divalent hydrocarbon radical selected from the class consisting of arylene radicals and alkylene radicals, and Q is a member selected from the class consisting of aryloxyaryl radicals, arylthioaryl radicals, arylsulfonyl aryl radicals and heteroaromatic radicals having as the hetero atom a member selected from oxygen, sulfur, phosphorous and nitrogen, aromatic hydrocarbon radicals and halogenated aromatic hydrocarbon radicals.

6. Curable compositions in accordance with claim 1 comprising (A) a silanol reactive curing agent in an amount sufficient to effect the room temperature vulcanization of said curable compositions, and (B) copolymers of from 5 to mile percent of units, chemically combined with 95 mole percent to 5 mole percent of R SiO units, where R is a member selected from the class consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals, and cyanoalkyl radicals, [R'] R is a divalent hydrocarbon radical selected from the class consisting of arylene radicals and alkylene radicals, and Q is a member selected from the class consisting of aryloxyaryl radicals, arylthioaryl radicals, arylsulfonylaryl radicals, and heteroaromatic radicals having as the hetero atom a member selected from oxygen, sulfur, phosphorous and nitrogen, aromatic hydrocarbon radicals and halogenated aromatic hydrocarbon radicals.

7. A curable composition in accordance with claim 6 where the curing agent is methyltriacetoxysilane.

References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.

UNITED STATES PATENTS 2,938,047 5/1960 Black. 2,957,899 10/1960 Black et al. 3,301,817 1/1967 Wilkus et al. 26046.5

DONALD E. CZAJA, Primary Examiner M. I. MARQUIS, Assistant Examiner U.S. Cl. X.R.

252522 R; 260375 B, 46.5 G, 46.5 B, 236.6 R, 448.2 N, 448.8 R

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5559163 *Aug 31, 1994Sep 24, 1996The Sherwin-Williams CompanyUV curable coatings having improved weatherability
Classifications
U.S. Classification528/34, 556/436, 512/21, 512/11, 528/42, 556/427, 528/43, 528/28, 556/428, 512/20
International ClassificationA61Q19/00, A61Q13/00, A61K8/893, C08G77/22, C07F7/08, C08G77/14
Cooperative ClassificationC08G77/22, A61Q13/00, C08G77/14, C07F7/0818, C07F7/0812, A61K8/893, A61Q19/00
European ClassificationC08G77/14, A61Q13/00, C08G77/22, C07F7/08C6D, C07F7/08C6B, A61Q19/00, A61K8/893