Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE27832 E
Publication typeGrant
Publication dateDec 4, 1973
Filing dateOct 12, 1972
Priority dateOct 12, 1972
Publication numberUS RE27832 E, US RE27832E, US-E-RE27832, USRE27832 E, USRE27832E
InventorsRoger J. Schoemer
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Solid insulated conductor
US RE27832 E
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Dec. 4, 1973 R. 14 SCHQERNER Re. 27,832

Original Filed Apl'll V, 1969 United States Patent O 27,832 SOLID INSULATED CONDUCTOR Roger J. Schoemer, Carrollton, Ga., assignor to Southwire Company, Carrollton, Ga.

Original No. 3,513,250, dated May 19, 1970, Ser. No. 814,182, Apr. 7, 1969, which is a continuation-impart of Ser. No. 795,055, Jau. 29, 1969, which is a continuatiou-in-part of Ser. No. 779,376, Nov. 27, 1968, which in turn is a continuation-impart of Ser. No. 730,933, May 21, 1968, all now abandoned. Application for reissue Oct. 12, 1972, Ser. No. 296,824

Int. Cl. H01b 7/00 U.S. Cl. 174-110 R 12 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specilication; matter printed in italics indicates the additions made by reissue.

ABSTRACT F THE DISCLOSURE A solid insulated conductor prepared from an aluminum alloy Wire having an electrical conductivity of at least sixty-one percent based on the International Annealed Copper Standard and unexpected properties of increased ultimate elongation, bendability and fatigue resistance when compared to conventional FC Wire of the same tensile strength. The aluminum alloy wire contains substantially evenly distributed iron aluminate inclusions in a concentration produced by the addition of more than about 0.30 weight percent iron and no more than 0.15 weight percent silicon to an alloy mass containing less than about 99.70 weight percent aluminum and trace quantities of conventional impurities normally found within a commercial aluminum alloy. The substantially evenly distributed iron aluminate inclusions are obtained by continuously casting an alloy consisting essentially of less than about 99.70 weight percent aluminum, more than 0.30 weight percent iron, no more than 0.15 weight percent silicon and trace quantities of typical impurities to form a continuous aluminum alloy bar, hot-working the bar substantially immediately after casting in substantially that condition in which the bar is cast to form continuous rod which is subsequently drawn into wire without intermediate anneals, annealed after the final draw and insulated. After annealing, the wire has the aforementioned novel and unexpected properties of increased ultimate elongation, electrical conductivity of at least sixty-one percent of the International Annealed Copper Standard and increased bendability and fatigue resistance.

CROSS-REFER ENCE TO RELATED APPLICATIONS This application is a continuation-impart of my copending application Ser. No. 795,055 filed Jan. 29, 1969 which is in turn a continuation-impart of my copending application Ser. No. 779,376 filed Nov. 27, 1968, which is in turn a continuation-impart of my copending application Ser. No. 730,933 tiled May 21, 1968, all now abandoned.

DISCLOSURE This invention relates to a solid insulated aluminum alloy electrical conductor and more particularly concerns a solid insulated conductor which is prepared from an aluminum alloy wire having an acceptable electrical conductivity and improved elongation and bendability at a standard tensile strength.

The use of various aluminum alloy wires (conventionally referred to as EC wire) as conductors of electricity is well established in the art. Such alloys characteristically have conductivities of at least sixty-one percent of the International Annealed Copper Standard (hereinafter sometimes referred to as IACS) and chemical constituents consisting of a substantial amount of pure aluminum and small amounts of conventional impurities such as silicon, vanadium, iron, copper, manganese, magnesium, zinc, boron and titanium. The physical properties of prior insulated aluminum alloy conductors have proven less than desirable in many applications. Generally, desirable percent elongations have been obtainable only at less than desirable tensile strengths and desirable tensile strengths have been obtainable only at less than desirable percent elongatious. In addition, the bendability and fatigue resistance of prior aluminum alloy conductors have been so low that the prior conductors have been generally unsuitable for many, otherwise, desirable applications.

Thus, it becomes apparent that a need has arisen within the industry for a solid insulated aluminum alloy electrical conductor which has both increased tensile strength and percent ultimate elongation, and also possesses an ability to withstand numerous bends at one point and to resist fatiguing during use of the conductol. Therefore, it is an object of the present invention to provide a solid insulated aluminum alloy electrical conductor of acceptable conductivity and improved physical properties such that the conductor may be used in new applications. These and other objects, features and advantages of the present invention will become apparent to those skilled in the art from a consideration of the following detailed description of the invention.

In accordance with this invention, the present solid insulated aluminum alloy electrical conductor is manufactured from a solid wire which is prepared from an alloy composed of less than about 99.70 weight percent aluminum, more than about 0.30 percent iron, and no more than 0.15 weight percent silicon. Preferably, the aluminum content of the present alloy comprises from about 98.95 to less than about 99.45 weight percent with particularly superior results being achieved when from about 99.15 to about 99.40 weight percent aluminum is employed. Preferably, the iron content of the present alloy comprises about 0.45 weight percent to about 0.95 weight percent with particularly superior results being achieved when from about 0.50 Weight percent to about 0.80 weight percent iron is employed. Preferably, no more than 0.07 weight percent silicon is employed in the present alloy. The ratio between the percentage iron and percentage silicon must be 1.9921 or greater. Preferably, the ratio between percentage iron and percentage silicon is 8:1 or greater. Thus, if the present aluminum alloy conductor contains an amount of iron within the low area of the present range for iron content, the percentage of aluminum must be increased rather than increasing the percentage of silicon outside the ratio limitation previously specified. It has been found that a properly processed solid insulated conductor prepared from a solid wire having aluminum alloy constituents which fall within the above-specified ranges possesses acceptable electrical conductivity and improved physical properties of tensile strength, ultimate elongation and fatigue resistance.

The solid wire of the present aluminum alloy conductor is prepared by initially melting and alloying aluminum with the necessary amounts of iron or other constituents to provide the requisite alloy for processing. Normally, the content of silicon is maintained as low as possible without adding additional amounts to the melt. Typical impurities or trace elements are also present within the melt, but only in trace quantities such as less than 0.05 weight percent each with a total content of trace impurities generally not exceeding 0.15 weight percent. f course, when adjusting the amounts of trace elements due consideration must be given to the conductivity of the final alloy since some trace elements affect conductivity more severely than others. The typical trace elements include vanadium, copper, manganese, magnesium, zinc, boron and titanium. If the content of titanium is relatively high (but still quite low when compared to the aluminum, iron and silicon content), small amounts of boron may be added to tie-up the excess titanium and keep it from reducing the conductivity of the wire. Iron is the major constituent added to the melt to produce the alloy of the present invention. Normally, about 0.50 weight percent iron is added to the typical aluminum component used to prepare the present alloy. Of course, the scope of the present invention includes the addition of more or less iron together with the adjustment of the content of all alloying constituents.

After alloying, the melted aluminum composition is continuously cast into a continuous bar. The bar is then hot-worked in substantially that condition in which it is received from the casting machine. A typical hotworking operation comprises rolling the bar in a rolling mill substantially immediately after being cast into a bar.

One example of a continuous casting and rolling operation capable of producing continuous rod as specified in this application is as follows.

A continuous casting machine serves as a means for solidifying the molten aluminum alloy metal to provide a cast bar that is conveyed in substantially the condition in which it solidied from the continuous casting machine to the rolling mill which serves as a means for hotforming the cast bar into rod or another hot-formed product in a manner which imparts substantial movement to the cast bar along a plurality of angularly disposed axes.

The continuous casting machine is of conventional casting wheel type having a casting wheel with a casting groove partially closed by an endless belt supported by the casting wheel and an idler pulley. The casting wheel and the endless belt cooperate to provide a mold into one end of which molten metal is poured to solidify and from the other end of which the bar is emitted in substantially that condition in which it solidified.

The rolling mill is of conventional type having a plurality of roll stands arranged to hot-form the cast bar by a series of deformations. The continuous casting machine and the rolling mill are positioned relative to each other so that the cast bar enters the rolling mill substantially immediately after solidication and in substantially that condition in which it solidified. In this condition, the cast bar is at a hot-forming temperature within the range of temperatures for hot-forming the cast bar at the initiation of hot-forming without heating between the casting machine and the rolling mill. In the event that it is desired to closely control the hot-forming temperature of the cast bar within the conventional range of hot-forming temperatures, means for adjusting the temperature of the cast bar may be placed between the continuous casting machine and the rolling mill without departing from the inventive concept disclosed herein.

The roll stands each include a plurality of rolls which engage the cast bar. The rolls of each roll stand may be two or more in number and arranged diametrically opposite from one another or arranged at equally spaced positions about the axis of movement of the cast bar through the rolling mill. The rolls of each roll stand of the rolling mill are rotated at a predetermined speed by a power means such as one or more electric motors and the casting wheel is rotated at a speed generally determined by its operating characteristics. The rolling mill serves to hot-form the cast bar into a rod of a crosssectional area substantially less than that of the cast bar as it enters the rolling mill.

The peripheral surfaces of the rolls of adjacent roll stands in the rolling mill change in configuration; that is, the cast bar is engaged by the rolls of successive roll stands with surfaces of varying configuration, and from different directions. This varying surface engagement of the cast bar in the roll stands functions to knead or shape the metal in the cast bar in such a manner that it is worked at each roll stand and also to simultaneously reduce and change the cross-sectional area of the cast bar into that of the rod.

As each roll stand engages the cast bar, it is desirable that the cast bar be received with sufficient volume per unit of time at the roll stand for the cast bar to generally fill the space defined by the rolls of the roll stand so that the rolls will be effective to work the metal in the cast bar. However, it is also desirable that the space defined by the rolls of each roll stand not be over-filled so that the cast bar will not be forced into the gaps between the rolls. Thus, it is desirable that the rod be fed toward each roll stand at a volume per unit of time which is sutlicient to till, but not overll, the space defined by the rolls of the roll stand.

As the cast bar is received from the continuous casting machine, it usually has one large flat surface corresponding to the surface of the endless band and inwardly tapered side surfaces corresponding to the shape of the groove in the casting wheel. As the cast bar is compressed by the rolls of the roll stands, the cast bar is deformed so that it generally takes the cross-sectional shape defined by the adjacent peripheries of the rolls of each roll stand.

Thus, it will be understood that with this apparatus, cast aluminum alloy rod of an innite number of different lengths is prepared by simultaneous casting of the molten aluminum alloy and hot-forming or rolling the cast aluminum bar.

The continuous rod produced by the casting and rolling operation is then processed in a reduction operation designed to produce continuous wire of various gauges between 0000 gauge AWG (corresponding to a crosssectional diameter or greatest perpendicular distance between parallel faces of about 0.460 inches) to 40 gauge AWG (corresponding to a cross-sectional diameter or greatest perpendicular distance between parallel faces of about 0.0031 inches). The unannealed rod (i.e., as rolled to f temper) is cold-drawn through a series of progressively constricted dies without intermediate anneals to form a continuous wire of desired diameter. At the conclusion of this drawing operation, the alloy wire will have an excessively high tensile strength and au unacceptably low ultimate elongation, plus a conductivity below that which is industry accepted as the minimum for an electrical conductor, i.e., 61% of IACS. The wire is then annealed or partially annealed to obtain a desired tensile strength and cooled. At the conclusion of the annealing operation, it is found that the annealed alloy wire has the properties of acceptable conductivity and improved tensile strength together with unexpectedly improved ultimate elongation and surprisingly increased bendability and fatigue resistance as specified in this application. The annealing operation may be continuous as in resistance annealing, induction annealing, convection annealing by continuous furnaces, or radiation annealing by continuous furnaces; or, preferably, may be batch annealed in a batch furnace. In addition, the present aluminum alloy wire may be partially annealed by resistance or induction annealing and then additionally annealed by batch annealing. When continuously annealing, temperatures of about 450 F. to about 1200 F. may be employed with annealing times of about five minutes to about 1/10000 of a minute. Generally, however, continuous annealing temperatures and times may be adjusted to meet the requirements of the particular overall processing operation so long as the desired tensile strength is achieved. ln a batch annealing operation, a temperature of approximately 400 F. to about 750 F. is employed with residence times of about twenty-four (24) hours to about thirty (30) minutes. As mentioned with respect t0 TABLE I Temperature Tensile strength P.) Time (hrs.)

During the continuous casting of this alloy, a substantial portion of the ion present in the alloy precipitates out of solution as iron aluminate intermetallic compound (FeAla). Thus, after casting, the bar contains a dispersion of FeAl3 in a supersaturated solid solution matrix. The supersaturated matrix may contain as much as 0.17 weight percent iron. As the bar is rolled in a hot-working operation immediately after casting, the FeAla particles are broken up and dispersed throughout the matrix inhibiting large cell formation. When the rod is then drawn to its final gauge size without intermediate anneals and then aged in a iinal annealing operation, the tensile strength, elongation and bendability are increased due to the small cell size and the additional pinning of dislocations by preferential precipitation of FeAl3 on the dislocation sites. Therefore, new dislocation sources must be activated under the applied stress of the drawing operation and this causes both the strength and the elongation to be further improved.

The properties of the present aluminum alloy wire are significantly affected by the size of the FeAl3 particles in the matrix. Coarse precipitates reduce the percent elongation and bendability of the wire by enhancing nucleation and, thus, formation of large cells which, in turn, lowers the recrystallization temperature of the wire. Fine precipitates improve the percent elongation and bendability by reducing nucleation and increasing the recrystallization temperature. Grossly coarse precipitates of FeAl3 cause the wire to become brittle and generally unusable. Coarse precipitates have a particle size of above 2,000 angstrom units and fine precipitates have a particle size of below 2,000 angstrom units.

`Following the annealing operation, the aluminum alloy electrical conductor is continuously insulated in a standard continuous insulating operation. A typical insulating operation comprises passing the solid conductor through an extrusion head. As the conductor passes through an extrusion head, a continuous thermoplastic coat of insulation is generated around the conductor. The coated conductor is then cooled in the air or by contact with a cooling bath. The insulating material should be one which is capable of insulating the solid conductor and the material should be of a thickness suicient to insulate the solid conductor and withstand the physical hazards associated with solid insulated conductors. Typical thicknesses 0f insulation are between about 1A of an inch and 1%.; of an inch. A preferred thermoplastic insulating material is poly (vinyl chloride), but other coatings such as neoprene, polypropylene and polyethylene may also be employed.

A typical No. l2 AWG solid wire, which is subsequently insulated to produce the conductor of the present invention, has physical properties of 16,000 p.s.i. tensile strength, ultimate elongation of conductivity of 61% IACS, and bendability of thirty (30) bends to break. Ranges of physical properties generally provided by a suitable No. l2 AWG solid wire prepared from the present alloy include tensile strengths of about 13,000 to about 22,000 p.s.i., ultimate elongations of about to about 5%, conductivities of about 61% to about 63% and number of bends to break of about to 10. Preferred wires for use in the present invention have a tensile strength of between 14,000 and 18,000 p.s.i., and ultimate elongation of between 30% and 15%, a conductivity of between 61% and 63% and number of bends to break of between 40 and 15.

A more complete understanding of the invention will be obtained from the following examples:

EXAMPLE NO. 1

A comparison between EC aluminum alloy wire and the aluminum alloy wire of the present insulated conductor is provided by preparing an EC alloy with aluminum content of 99.73 weight percent, iron content of 0.18 weight percent, silicon content of 0.059 weight percent, and trace amounts of typical impurities. The present alloy is prepared with aluminum content of 99.45 weight percent, iron content of 0.34 weight percent, silicon content of 0.056 weight percent, and trace amounts of typical impurities. Both alloys are continuously cast into continuous bars and hot-rolled into continuous rod in similar fashion. The alloys are then cold-drawn through successively constricted dies to yield #12 AWG continuous wire. Sections of the wire are collected on separate bobbins and batch furnace-annealed at various temperatures and for various lengths of time to yield sections of the prior EC alloy and the present alloy of varying tensile strengths. Several samples of each section of wire are tested in a device designed to measure the number of bends required to break each sample at a particular flexure point. Through uniform force and tension, the device fatigues each sample through an arc of approximately The uninsulated wire is bent across a pair of spaced opposed mandrels having a diameter equal to that of the wire. The mandrels are spaced apart a distance of about 11A times the diameter of the wire. One bend is recorded after the wire is detlected from a vertical disposition to one extreme of the arc, returned back to vertical, deflected to the opposite extreme of the arc, and returned back to the original vertical disposition. The speed of deflection, force and tension are substantially equal for all tested samples. The results are as follows:

TABLE II-A EC alloy wire Present alloy wire Average No. of bends to break No. o1 bends Several samples of the present alloy #12 AWG wire and EC alloy #l2 AWG wire, processed as previously specified, are then tested for percent ultimate elongation by standard testing procedures. At the instant of breakage, the increase in length of the uninsulated wire is measured. The percent ultimate elongation is then figured by dividing the initial length of the wire sample into the increase in length of the wire sample. The tensile strength of the wire sample is recorded as the pounds per square inch of cross-sectional diameter required to break the wire during the percent ultimate elongation test. The resuits are as follows:

EXAMPLES 2 THROUGH 7 Six aluminum alloys are prepared with varying amounts of major constituents. The alloys are reported in the The six alloys are then cast into six continuous bars and hot-rolled into six continuous rods. The rods are cold-drawn through successively constricted dies to yield #12 gauge Wire. The wire produced from the alloys of Examples number 2 and 4 are resistance annealed and the remainder of the examples are batch furnace annealed to yield the tensile strengths reported in Table IV. Each of the uninsulated wires is tested for percent conductivity, tensile strength, percent ultimate elongation and average number of bends to break by standard testing procedures for each, except that the procedure specified in Example No. 1 is used for determining average number of bends to break. The results are reported in the following able:

TABLE IV Conductivity Percent Average in percent Tensile ultimate No. of bends Example No. IACS strength elongation to break From a review of these results it may be seen that Example No. 2 falls outside the scope of the present invention in percentage of components. In addition, it will be noted for Example No. 2 that the percentage of ultimate elongation is somewhat lower than desirable and the average number of bends to break the sample is lower than the remaining examples.

EXAMPLE NO. 8

An aluminum alloy is prepared with an aluminum content of 99.42 weight percent, iron content of 0.50 weight percent, silicon content of 0.055 weight percent and trace amounts of typical impurities. The alloy is cast into a continuous bar which is hot-rolled to yield a continuous rod. The rod is then cold-drawn through successively constricted dies to yield l2 AWG wire. The wire is collected on a 30 inch bobbin until the collected wire Weighs approximately 250 pounds. The bobbin is then placed in a cold General Electric Bell Furnace and the temperature therein is raised to 480 F. The temperature of the furnace is held at 480 F. for 3 hours after which the heat is terminated and the furnace cools to 400 F. The furnace is then quick cooled and the bobbin is removed. The annealed wire is then passed through an extrusion head and insulated with poly (vinyl chloride). Under testing it is found that the insulated alloy wire has a conductivity of 61.6% IACS and improved physical properties.

EXAMPLE NO. 9

Example No. 8 is repeated except the Bell Furnace temperature is raised to 600 F. and held 3 hours prior to cooling. The annealed and insulated alloy wire has a conductivity of 61.2% IACS and improved physical properties.

EXAMPLE N0. 10

Example No. 8 is repeated except that the Bell Furnace temperature is raised to 600 F. and held 11/2 hours prior to cooling. The annealed and insulated conductor has a conductivity of 61.5% IACS and improved physical properties.

EXAMPLE NO. 1l

The alloy of Example No. 8 is cast into a continuous bar which is hot-rolled to yield a continuous f temper rod of /s inch diameter. The rod is then cold-drawn through successively constricted dies to yield #14 AWG wire. The wire is then redrawn on a Synchro Model BG- 16 wire drawing machine which includes a Synchro Resistoneal continuous in line annealer. The wire is drawn to #28 AWG at a finishing speed of 3,300 feet per minute and the in line annealer is operated at 52 volts with a transformer tap setting at No. 8. The annealed wire is then insulated by extruding poly (vinyl chloride) around the wire. The annealed and insulated alloy wire has a conductivity of 62% IACS and improved physical properties.

EXAMPLE NO. 12

The alloy of Example No. 8 is cast into a continuous bar which is hot-rolled to yield a continuous f temper rod of 3/8 inch diameter. The rod is then cold-drawn on a Synchro Style No. FX13 wire drawing machine which includes a continuous in line annealer. The rod is drawn to #12 AWG wire at a finishing speed of 2,000 feet per minute and the in line annealer voltage at preheater #1 is 35 volts, at preheater #2 is 35 volts, and at the annealer is 22 volts. The three transformer taps are set at #5. The annealed wire is continuously insulated by passing through an extrusion head where poly (vinyl chloride) is applied. The annealed and insulated alloy Wire has a conductivity of 62% IACS and improved physical properties.

It should be understood that the present invention concerns solid aluminum alloy insulated conductors. Also included within the scope of the present invention are insulated cables made up of individual solid insulated aluminum alloy conductors. Particular examples of specific solid insulated conductors or cables formed therefrom as encompassed by the present invention include building wire, NM sheath cable, underground building wire, feeder cable, type TW single wire harness wire, neon sign cable, radio hook-up wire, re alarm and burglar alarm wire, xture wire, control wire, machine tool wire, enunciator wre, DD service entrance wire, and railroad signal cable.

While this invention has been described in detail with particular reference to preferred embodiments thereof, it will be understood that variations and modifications can be effected within the spirit and scope of the invention as described hereinbefore and as defined in the appended claims.

I claim:

1. Insulated solid aluminum alloy wrought metallic wire [conductor] having a minimum conductivity of sixtyone percent IACS and a diameter or greatest perpendicular distance between parallel faces of between 0.460 inch and 0.0031 consisting essentially of from about 0.55 to about 0.95 weight percent iron; about 0.015 to [no more than] about 0.15 weight percent silicon; from 0.0001 to less than 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron, and titanium; and

from about 98.95 to less than 99.45 weight percent aluminum, said alloy containing from 0.004 to [no more than] 0.15 total weight percent trace elements and having an iron to silicon ratio of 8:1 or greater.

2. Aluminum alloy metallic wire [conductor] of claim 1 consisting essentially of from about 0.80 to about 0.95 weight percent iron; from about 0.07 to about 0.15 weight percent silicon; and from about 98.95 to about 99.13 weight percent aluminum.

3. Aluminum alloy metallic wire [conductor] of claim 1 consisting essentially of from about 0.55 to about 0.80 weight percent iron; from about 0.015 [0.01] to about 0.07 weight percent silicon; and from about 99.15 to about 99.40 weight percent aluminum.

4. Aluminum alloy metallic wire [conductor] of claim 1 consisting essentially of from about 0.55 to less than 0.60 weight percent iron; from about 0.015 [0.01] to about 0.15 weight percent silicon; and from about 99.10 to about 99.44 weight percent aluminum.

5. Aluminum alloy metallic wire [conductor] of claim 1 wherein the metallic wire [conductor] is covered with an insulating material selected from the group consisting of poly(vinyl chloride), neoprene, polypropylene, and polyethylene.

6. Insulated solid aluminum alloy metallic wire [conductor] having a minimum conductivity of sixty-one percent IACS and a diameter or greatest perpendicular distance between parallel faces of between 0.460 inch to 0.0031 inch and containing substantially evenly distributed iron aluminate inclusions in a concentration produced by the presence of about 0.45 to about 0.95 weight percent iron in an alloy mass consisting essentially of about 98.95 to less than 99.45 weight percent aluminum; [no more than about] 0.015 to 0.15 weight percent silicon; and [less than] 0.001T to 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron, and titanium, the total trace element content being from 0.004 to 0.15, said iron aluminate inclusions having a particle size of less than 2,000 angstrom units.

7. Aluminum alloy metallic wire [conductor] of claim 6 wherein iron is present in a concentration of about 0.55 to about 0.95 Weight percent; silicon is present in a concentration of about 0.015 [0.01] to about 0.15 Weight percent; and aluminum is present in a concentration of about 98.95 to about 99.44 weight percent.

8. Aluminum alloy metallic wire [conductor] of claim 6 wherein iron is present in a concentration of about 0.80 to about 0.95 weight percent; silicon is present in a concentration of about 0.07 to about 0.15 weight percent; and aluminum is present in a concentration of about 98.95 to about 99.13 weight percent.

9. Aluminum alloy metallic wire [conductor] of claim 6 wherein iron is present in a concentration of about 0.50 to about 0.80 percent; silicon is present in a concentration of about 0.015 [0.01] to about 0.07 weight percent; aluminum is present in a concentration of about 99,15 to about 99,40 weight percent.

10. Aluminum alloy metallic wire [conductor] of claim 6 wherein iron is present in a concentration of about 0.55 to less than 0.60 weight percent; silicon is present in a concentration of about 0.015 [0.01] to about 0.15 weight percent; and aluminum is present in a concentration of about 99.10 to about 99.54 weight percent.

11. Aluminum alloy metallic wire [conductor] of claim 6 wherein iron is present iu a concentration of about 0.55 to less than 0.60 weight percent; silicon is present in a concentration of about 0.015 [0.01] to about 0.15 weight percent; and aluminum is present in a concentration of about 99.10 to about 99.44 weight percent.

12. Aluminum alloy metallic wire [conductor] of claim 6 wherein conductor is covered with an insulating material selected from the group consisting of poly(vinyl chloride), neoprene, polypropylene, and polyethylene.

[13. Insulated solid aluminum alloy conductor of claim 1 wherein the silicon content is from 0.01 to 0.15 weight percent, the individual trace element content is from 0.0001 to 0.05 weight percent and the total trace element content is from 0.004 to 0.15 weight percent] [14. Insulated solid aluminum alloy conductor of claim 6 wherein the silicon content is from 0.01 to 0.15 weight percent, the individual trace element content is from 0.0001 to 0.05, and the total trace element content is from 0.004 to 0.15 weight percent] References Cited UNITED STATES PATENTS 3,063,832 11/ 1962 Snyder. 3,397,044 8/ 1968 Bylund. 2,252,421 8/1941 Stroup 75-138 2,545,866 3/1951 Whitzel et al. 29-193 3,241,953 3/1966 Pryor et al. 75-138 3,278,300 10/1966 Kioke 75--138 3,571,910 3/1971 Bylund.

OTHER REFERENCES Transactions of the American Society for Metals, The

Effect of Single Addition Metals on the Recrystallizatiou, Electrical Conductivity and Rupture Strength of Pure Aluminum, 1949, vol. 4l, pp. 443-459.

Alloy Digest, Aluminum EC, filing code: AL-104, June 1961, 2 pages, published by Engineering Alloys Digest, Inc., Upper Montclair, NJ.

Horn et al., Aluminum-Conductor Cable an Alternative to Copper, Bell Laboratories Record, November 1967, pp. 314-319.

Krupotkin et al., Effect of Small Impurities of Iron, Nickel and Cobalt on the Mechanical Properties and Electrical Conductivity of Aluminum, Izv. Vysshikh Uchebn, Zavadeniv, Ener & No. 8, 10, pp. 112-116, 1965.

A. G. Field et al., The Electrical Conductivity of Aluminum Wire, Journal of the Institute of Metals, 1933, 51, 183-198.

H. G. Miller, Heat Treatment- Finishing Operations in the Production of Copper- Aluminum Rod and Wire, Journal of the Institute of Metals, 1954, 55, 83, 221-232.

Gaston G. Gauthier, The Conductivity of Super-Purity Aluminum: The Iniluence of Small Metallic Additions, Journal of the Institute of Metals, 1936, 59, 129-150.

ELLIOT A. GOLDBERG, Primary Examiner U.S. Cl. X.R.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6388194 *May 25, 1999May 14, 2002Hazardguard, Inc.Electrical cable having indicating malfunction means therein
US6646206 *May 13, 2002Nov 11, 2003Hazardguard, Inc.Electrical cable having indicating malfunction means therein
USRE41593Jan 18, 2005Aug 31, 2010Hazardguard Safety Wire IncorporatedElectrical cable having indicating malfunction means therein
Classifications
U.S. Classification174/110.00R, 148/438, 427/120, 428/372, 428/401, 148/437, 428/379, 148/440, 428/461, 174/110.0SR
International ClassificationH01B1/02, H01B7/02
Cooperative ClassificationH01B1/023, H01B7/02
European ClassificationH01B1/02B, H01B7/02
Legal Events
DateCodeEventDescription
Feb 21, 1989ASAssignment
Owner name: SOUTHWIRE COMPANY, GEORGIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SOUTHWIRE TECHNOLOGY, INC.;REEL/FRAME:005091/0198
Effective date: 19890210
Sep 16, 1987ASAssignment
Owner name: SOUTHWIRE TECHNOLOGY, INC., CARROLLTON, GEORGIA, A
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SOUTHWIRE COMPANY, (A GA. CORP.);REEL/FRAME:004765/0692
Effective date: 19870126