Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE28553 E
Publication typeGrant
Publication dateSep 16, 1975
Filing dateJul 24, 1974
Priority dateMay 11, 1968
Publication numberUS RE28553 E, US RE28553E, US-E-RE28553, USRE28553 E, USRE28553E
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for inhibiting corrosion and mineral deposits in water systems
US RE28553 E
Abstract  available in
Images(6)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 11 1 von Freyhold 1 Reissued Sept. 16, 1975 METHOD FOR INHIBITING CORROSION AND MINERAL DEPOSITS IN WATER SYSTEMS [75] Inventor: Helmut von Freyhold,

Dusseldorf-Oberkassel, Germany [73] Assignee: Henkel & Cie GmbH,

Dusseldorf-Holthausen, Germany [22] Filed: July 24, I974 [21] Appl. No.: 491,384

Related U.S. Patent Documents U.S. Applications: [63] Continuation of Ser. No. 821,487, May 2, 1969,

abandoned.

[52] U.S. Cl. 252/175; 21/27; 210/58; 210/59; 252/82; 252/87; 252/180 [51] Int. Cl. C23F 11/18 [58] Field of Search 252/175, 180, 82, 87, 181, 252/387, 389, 390; 21/27; 210/50, 59; 260/5024 P., 502.5

3,336,221 8/1967 Ralston 210/58 3,431,217 3/1969 Hwa I 252/389 3,451,939 6/1969 Ralston 252/181 3,505,238 4/1970 Liddell .1 252/180 Primary ExaminerBenjamin R. Padgett Assistant Examiner-Deborah L. Kyle Attorney, Agent, or FirmHammond & Littell ABSTRACT Addition to a water system a composition comprising a compound having the following formula wherein X is OH or NH and R is alkyl radical of l to 5 carbon atoms;

and a water soluble, complex-forming compound which contains at least one I: phosphonate or N-dimethylenephosphonic acid or -ph0sph0nae group. Water-soluble salts of the first-mentioned compound can also be used. Relative amounts of the compounds in the composition varies from a molar ratio of from 1:3 to 3:1, respectively. Amount of the composition to be used in water may vary from 1 mg/liter and up to 150% of the quantity of composition necessary for substantially completely converting into complexes the substances imparting hardness to the water.

14 Claims, No Drawings METHOD FOR INHIBITING CORROSION AND MINERAL DEPOSITS IN WATER SYSTEMS Matter enclosed in heavy brackets I: 1 appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

PRIOR APPLICATION This application is a streamlined continuation of copending, commonly assigned application Ser. No. 821,487 field May 2, 1969, now abandoned.

PRIOR ART Readily or sparingly soluble polymeric phosphates, such as tetrasodium pyrophosphate, pentasodium tripolyphosphate or hexametaphosphate, are generally pentasodium tripolyphosphate preventing corrosion and mineral depositions. The polymeric phosphates are usually added in less than the stoichiometric amounts. Stoichiometric amounts may, of course, be used in order to completely bind, in the form of complexes, the substances, such as the alkaline earth ions which impart hardness to water. The polymeric phosphates may also be used in order to solubilize precipitated complexes.

One disadvantage of these polymeric phosphates is their low resistance to hydrolysis, i.e., the conversion to orthophosphates, which takes place relatively quickly at elevated temperatures. For instance, in the temperature region above 60C., where the danger of mineral deposition is particularly great, the activity of the otherwise very suitable polymeric phosphates is, at least temporarily, almost completely inhibited.

It is also known that certain phosphonic acids, such as for example, hydroxyethane-l, l-diphosphonic acid or amino-tri-(methylenephosphonic acid), are good complex-forming compounds. Such compounds do not hydrolyze at the temperature in question and may also be used as complex-forming compounds in less than the stoichiometric amounts. Since these compounds have no corrosion-inhibiting effect, however, they hinder any formation of a protective layer, which again can give rise to corrosion by carbon dioxide or oxygen. If other inhibitors having corrosion-inhibiting effects are added, such as potassium, sodium or ammonium orthophosphates, and/or water-soluble Zinc salts, satisfactory results are not obtained, since these additives easily precipitate under the operating conditions.

OBJECTS OF THE INVENTION It is an object of the present invention to provide a method for treating water in order to inhibit corrosion and mineral deposition.

Another object of the invention is the treatment of water systems for inhibiting formation of broiler scale.

A further object of this invention is the treatment of a water system to inhibit corrosion and mineral deposition with a composition comprising a compound of the following formula:

DESCRIPTION OF THE INVENTION The present invention relates to the treatment of hot water systems for prevention of corrosion and mineral depositions, especially for prevention of deposition of boiler scale.

The herein method described for the prevention of corrosion and mineral deposition in a water system comprises adding to the water used in the system a compound of the formula I R ll I ll OHX in which X is OH or NH and R is an alkyl radical with l to 5 carbon atoms; and a water-soluble, complexforming compound which contains at least one N-dimethylenephosphonic acid or -phosphonate group. The compound of formula I and the water-soluble, compIex-forming compound are used in the molar ratio of I23 to 3:l and in an amount of from 1 mg per liter of water up to 1V2 times the quantity which is necessary for substantially completely converting into complexes the substances imparting hardness to the water system. Water-soluble salts of the compound of formula I are also suitable as substitutes thereof.

Examples of compounds of formula (I) are hydroxy alkane-l ,l-diphosphonic acids such as hydroxyethane-, hydroxypropane-, hydroxybutane-, hydroxypentaneand hydroxyhexane-l ,ldiphosphonic acids; or aminoethane-, aminopropane, aminobutane, aminopentaneand amino-hexane-l,l-diphonsphonic acids. Instead of the acids, the water-soluble salts, preferably the alkali metal salts, may also be used. The sodium and potassium salts, which can be easily prepared, are especially suitable.

Water-soluble complex-forming compounds, which contain at least one N-dimethylenephosphonic acid group, are compounds of formula ll in which, n represents an integer of from I to 6, and preferably from 4 to 6. Ofthis group, hexamethylenediaminotetraphosphonic acid is particularly suitable. Instead of the phosphonic acids, the water-soluble salts, such as the sodium and potassium salts may also be used. In particular, however, preferred water-soluble,

complex-forming compounds are those which correspond to formula III il -CH (Ill) Examples of above-mentioned compounds are aminotri( methylenephosphonic acid), ethylenediaminotetra( methylenephosphonic acid), and diethylenetriaminopenta( methylenephosphonic acid). Instead of the acids, the corresponding water-soluble salts, such as sodium and potassium salts, may also be used. Furthermore, mixtures of the various compounds mentioned above may also be used, if desired.

A preferred embodiment of the process employs mixtures of hydroxyethane-l ,l,diphosphonic acid and aminotri(methylenephosphonic acid), or their watersoluble salts, as complex-forming compounds, the said components being present in the molar ratio of l:3 to 3:1. The addition to water is effected in the previously stated amounts of from 1 mg per liter to lk times the amount which is necessary for the complete formation of the complexes of the hardness-imparting substances present in the system. in practice, quantities of 2 to mg per liter are generally used.

Other conventional inhibitors which can be added to hot water systems are water-soluble orthophosphates, of the type previously mentioned, such as mono-, dior trialkali metal phosphates. In many cases, it is advantageous to use sodium dihydrogen phosphate (NaH- PO Furthermore, water-soluble zinc salts, such as zinc sulphate or zinc nitrate may be added instead of the orthophosphates, however, preferably together with the alkali orthophosphates. Further inhibitors. which may also be used if desired, are alkali metal nitrites, such as potassium or, especially aodium nitrite. An addition of alkali metal silicates. such as potassium or sodium silicate, may also be made. The inhibitors are added in amounts from 0.5 to 500 mg, and preferably from l to 100 mg per liter. These inhibitors may be added in the solid or solution form. There is no diffculty in adding these products while simultaneously regulating pH of the water which is being treated in case this is desired or necessary, either by further addition of alkali or by a choice of a suitable mono-, dior tri-alkali metal phosphate.

The advantages of the method reside in that no hydrolysis of the complex-forming compounds occurs and therefore, the agents are active for a very long duration. Furthermore the combination with the other components and the complex-forming compounds enables the desired formation of a protective layer to take place. The premature precipitation of the inhibitors, such as phosphates and zinc salts, in the pH range from 7 to 10, does not take place.

In the following Examples, the percentages are on weight basis, in absence of other designation.

EXAMPLE I lron sheets of dimensions 100 X 50 X 0.5 mm were suspended in 1 liter of water containing the particular additive, amount of which is indicated in the table below. The water had a total hardness of l4.3 (German hardness), pH of 6,9, carbonate hardness of 8.7 (German hardness), oxygen at 5.33 mg per liter, corrosive carbonic acid at 8.44 mg per liter, and chloride ions at about 190 mg per liter. The temperature was maintained at C. The solution which was renewed every 6 hours, was moderately agitated by stirring. After 24 hours, the sheets were examined and their deposit of rust and change in weight were compared. The results are tabulated below: The abbreviations used are ATMP (for aminotri-(methylenephosphonic acid), and HEDP for hydroxyethane-l,l-diphosphonic acid in the form of its disodium salt. The experiments were repeated several times.

No of Amount Additive Result expt. rug/liter l 500 Na HpO, with decreasing phosphate concentration during the experiment, there was increasing corrosion, pitting considerable erosion Loss in wt, 80 to I60 mg/IOO cm*.

2 6 ATMP Erosion of the metal without rust deposition. Loss in wt. 20 to 60 mg/IOO cm".

3 60 ATMP Considerable erosion without rust deposition. Loss in wt., mg/IOO cm.

4 l0 HEDP Erosion of the metal without rust deposition. Loss in wt., 20 to 60 mg/IOO cm*.

5 l()() HEDP Considerable erosion without rust deposition. boss in wt, lUt) mg/ lOO cm2.

6 50 ATMP Considerable erosion without 50 HEDP rust deposition. boss in wt.,

about 100 mg/lOO cm'*.

7 40 NaJiPO No surface corrosion. Change in weight of the sheets,

4 ATMP 0.5 mg/lOO cm". Turbid solution.

8 4(1 Na HPO, No surface corrosion. Change in weight of the sheets.

6 HEDP U.5 mg/IOO cm. Turbid solution.

9 40 Na HPQ, No surface corrosion. Change in weight of the sheets,

2 HEDP (J.5 mg/lOU cm. No turbidity 2 ATMP of the solution even with renewed solution which had carbonate hardness of 10 and pH of 9. No separation of scale on the sheet ll) 4|) Na HPO No corrosion. Change in weight of the sheets,

2 ATMP turbidity in the solution.

zinc n itratc EXAMPLE 2 To each cubic meter of water present in a hot water system maintained at temperature 80C and having a total hardness of 30 (German hardness), 1 kg of a so- 5 lution was added of the following composition.

Na HPO .2H,O 44 HEDF (free acid] 3.6% ATM? 3.5% Zinc nitrate 2% Water 46.9%

During this treatment, the pH value of the water was adjusted to 9.5. No corrosion occured in neither the galvanized pipe system, the heating unit, nor in the non-ferrous metal valves. Furthermore, no turbidity of the water was observed during a period of 6 weeks.

EXAMPLE 3 To each cubic meter of water of Example 2 was added [.2 kg of a solution of the following composition:

NaH PO .2H- O 25% HEDP (free acid) 9% ATM? 9% Zinc nitrate 2% Water 55% EXAMPLE 4 120 g of the solution described in Example 2 was added per cubic meter of the water in a cooling circuit exposed to evaporation losses. This water had a total hardness of 203 (German hardness), carbonate hardness of 14 (German hardness), corrosive carbonic acid at 4.5 mg per liter oxygen at 2.0 mg per liter, and chloride ions at 260 mg per liter. During the 6-week test period, no new encrustations were formed. After each 14 days, a small amount of sludge had to be removed from the system (caused by evaporation losses of wa ter 55 Various modifications of the herein described method for inhibiting corrosion and mineral deposition in a water system may be made without departing from the spirit and the scope thereof, and it is to be understood that the invention is to be limited only as defined by the appended claims.

I claim:

1. A method for inhibiting corrosion and mineral deposition in a water system comprising the steps of adding to said water system from I mg./liter of said water up to l /2 times the quantity which is necessary for substantially completely converting into complexes the substances imparting hardness to said water, of a composition comprising a first compound selected from the group consisting of a diphosphonic compound of the formula 0 ll 1 ll OH x OH wherein X is OH or NH and R is an alkyl of l to 5 car bon atoms, water soluble salts of said diphosphonic compound, and a mixture of said diphosphonic compound and said water-soluble salts thereof; and a second compound selected from the group consisting of water-soluble, complex forming compounds containing at least one radical selected from the group consisting of phosphonates and] N-dimethylenephosphonic acid radicals, water soluble salts thereof and mixtures of said compounds and their water soluble salts; said first and second compounds are present in said composition in molar ratio of from 1:3 to 3:] and from 0.5 to 500 mg./liter of water of an inhibitor selected from the group consisting of (A) water-soluble orthophosphates, water soluble zinc salts and mixtures thereof and (B) alkali metal silicates, alkali metal nitrites, and mixture thereof.

2. Method of claim 1 wherein said second compound is selected from the group consisting of compounds having the following formulas:

wherein n represents an integer from I to 6; and R and R which can be the same or different, represent a radical selected from the group consisting of (--PO H and 3. Method of claim 2 wherein n is an integer from 4 to 6.

4. Method of claim 2 wherein amount of said composition added to said water is from 2 to 20 mg./1iter.

I: 5. Method of claim 2 wherein said composition is added to said water in the amount of 2 to 20 mgjliter] 6. Method of claim 2 wherein said composition also includes 1 to I00 mg./liter of water of an inhibitor se- 5 lected from the group consisting of disodium hydrogen phosphate, zinc sulfate, zinc nitrate, potassium nitrite, sodium nitrite, and mixtures thereof.

7. The method of claim 1 wherein the first compound is selected from the group consisting of lhydroxyethyane-l l -diphosphonic acid, water-soluble salts thereof and mixtures of said acid and its watersoluble salts and the second compound is selected from the group consisting of amino tri(methylene phosphonic acid), water soluble salts thereof and mixtures of said acid and its water soluble salts.

8. Method of claim I wherein said inhibitor is present in an amount of l to 100 mg./liter of water.

9. A composition for inhibiting corrosion and mineral deposition in water systems comprising a first compound selected from the group consisting of a diphosphonic acid of formula wherein X is selected from the group consisting of OH and NH and R is an alkyl of l to 5 carbon atoms, water soluble salts thereof and mixtures of said acid and its water soluble salts and a second compound selected from the group consisting of water-soluble, complex forming compounds containing at least one member selected from the group consisting of [phosphonates and] N-dimethylenephosphonic acid radicals, water soluble salts thereof and mixtures of said compounds and their water-soluble salts; said first and second compounds are present in said composition in molar ratio of from l:3 to 3: l; and an inhibitor selected from the group consisting of (A) water-soluble orthophosphates, water-soluble zinc salts, and mixtures thereof and (B) alkali metal silicates, alkali metal nitrites, and mixtures thereof.

10. A composition for inhibiting corrosion and mineral deposition in water systems comprising a first compound selected from the group consisting of lhydroxyethane' l l -diphosphonic acid, water-soluble salts thereof and mixtures of said acid and its water soluble salts; a second compound selected from the group consisting of amino tri(methylene phosphonic acid), water-soluble salts thereof and mixtures of said acid and its water-soluble salts, said first and second compounds being present in said composition in molar ratio of 1:3 to 3:1; and an inhibitor selected from the group consisting of (A) water-soluble orthophosphates, water-soluble zinc salts and mixtures thereof and (B) alkali metal silicates, alkali metal nitn'tes and mixtures thereof.

11. A composition for inhibiting corrosion and mineral deposition in water systems comprising a first compound selected from the group consisting of hydroxyethane-l,i-diphosphonic acid, water soluble salts thereof and mixtures of said acid and its watersoluble salts, a second compound selected from the group consisting of amino tri(methylenephosphonic acid), water-soluble salts thereof and mixtures of said acid and its water-soluble salts and as a third compound disodium hydrogen phosphate, said first and second compounds being present in said composition in molar ratio of from 1:3 to 3:l.

12. A composition of claim 11 which includes an inhibitor selected from the group consisting of watersoluble orthophosphates, water-soluble zinc salts and mixtures thereof.

13. A method for inhibiting corrosion and mineral deposition in a water system comprising the steps of adding to the water system from l mg./liter of said water up to 1 /2 times the quantity which is necessary for substantially completely converting into complexes the substances imparting hardness to water, of a composition comprising a first compound selected from the group consisting of l-hydroxyethane-l ,l-diphosphonic acid, water-soluble salts thereof and mixtures of said acid and its water-soluble salts; a second compound selected from the group consisting of amino tri( methylene phosphonic acid), water soluble salts thereof and mixtures of said acid and its water soluble salts. said first and second compounds being present in said composition in molar ratio of 1:3 to 3:1; and from 0.5 to 500 mg./liter of water of an inhibitor selected from the group consisting of (A) water-soluble orthophosphates, water-soluble zinc salts and mixtures thereof and (B) alkali metal silicates, alkali metal nitrites, and mixtures thereof.

14. The method of claim 13 wherein the amount of said composition added to said water is 2 to 20 mg./liter.

15. The method of claim 14 wherein the composition includes l to mg. of disodium hydrogen phosphate.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. Re 28,553 Da Segtember 16. 1975 Invent0 Helmut von Freihold It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

On the cover sheet, Item [6 should be Appl. No. 162,649

Filed: July 14, 197l-; and

Under Item [63] insert "[30] Foreign Application Priority Data May 11, 1961: Germany-- Column 3, line 51, "aodium" should be --sodium--.

Signed and Sealed this A ms 1:

RUTI'I C. MASON C. MARSHALL DANN A main; Offirer Commissioner ufPamm and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3214454 *Jul 5, 1962Oct 26, 1965Henkel & Compagnie G M B HProcess of forming metal ion complexes
US3234124 *Oct 18, 1962Feb 8, 1966Monsanto CoSequestration of metal ions
US3303139 *Jun 2, 1965Feb 7, 1967Henkel & Cie GmbhAminophosphonic acids and their derivatives as complex formers for metal ions
US3336221 *Nov 5, 1964Aug 15, 1967Calgon CorpMethod of inhibiting precipitation and scale formation
US3431217 *Sep 22, 1966Mar 4, 1969Grace W R & CoOrganic phosphorous acid compound-chromate corrosion protection in aqueous systems
US3451939 *Apr 13, 1966Jun 24, 1969Calgon CorpThreshold compositions and methods
US3505238 *Nov 4, 1968Apr 7, 1970Calgon C0RpMethods and compositions for inhibiting scale in saline water evaporators
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5683588 *Sep 21, 1995Nov 4, 1997Betzdearborn Inc.Stabilization of catalyzed aqueous sulfite and bisulfite ion solutions
US5801133 *May 8, 1995Sep 1, 1998Buckman Laboratories International Inc.Dicarboxylic acid, tricarboxylic acid, hydroxyethylidene-bis-phosphonic acid, fragrance, surfactant, water
US6180056 *Dec 10, 1998Jan 30, 2001Buckman Laboratories International Inc.Method and compositions for minimizing biological and colloidal fouling
EP0245557A2 *Nov 14, 1986Nov 19, 1987Texaco Development CorporationStabilized antifreeze/coolant composition containing borate and silicate corrosion inhibitors
Classifications
U.S. Classification252/175, 252/180, 510/469, 510/531, 422/15, 210/700
International ClassificationC02F5/10, C23F11/10, C02F5/14, C23F11/167, C23F11/08
Cooperative ClassificationC23F11/08, C02F5/145, C23F11/1676
European ClassificationC02F5/14B, C23F11/167D, C23F11/08