Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE29088 E
Publication typeGrant
Application numberUS 05/625,845
Publication dateDec 28, 1976
Filing dateOct 28, 1975
Priority dateOct 10, 1972
Publication number05625845, 625845, US RE29088 E, US RE29088E, US-E-RE29088, USRE29088 E, USRE29088E
InventorsRobert F. Shaw
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Surgical cutting instrument having electrically heated cutting edge
US RE29088 E
Abstract
A surgical cutting instrument includes an electrically heated cutting edge and a power supply system for maintaining the cutting edge at a constant high temperature for sterilizing the blade, cutting tissue, and cauterizing the incised tissue to reduce hemorrhage from the cut surfaces of the tissues (hemostasis). .Iadd.
Images(1)
Previous page
Next page
Claims(4)
I claim:
1. A surgical instrument for cutting tissue with simultaneous hemostasis, the instrument comprising:
insulating support means having .Iadd.as a portion thereof .Iaddend.a tissue-cutting edge .[.and including thereon.]. .Iadd.region and including in physical contact with said support means .Iaddend.an electrically-heatable element of electrically-conductive material disposed on said edge region defining a cutting edge to contact tissue and to conduct electrical current along a plurality of parallel current paths for directly heating the cutting edge in response to electrical signal applied thereto; and
connection means on said instrument providing electrical connections to said element for supplying electrical signal thereto to be conducted along a plurality of parallel current paths.
2. A surgical instrument as in claim 1 wherein said electrically-heatable element includes a substantially continuous conductive layer disposed adjacent the cutting edge; and
said connection means includes a pair of electrodes which are disposed in spaced relationship on opposite sides of said support means and which are connected to said conductive layer on opposite sides of the cutting edge for conducting current along a plurality of parallel current paths oriented substantially laterally across the cutting edge.
3. A surgical instrument as in claim 1 wherein:
.[.said.]. electrodes are disposed on opposite sides of said support means; and
the electrically-heatable element includes a plurality of discrete electrically-heatable elements disposed to traverse the cutting edge .[.of said support means.]. and connected at the ends thereof to electrodes on opposite sides of said support means.
4. A surgical instrument as in claim 1 wherein:
said electrically-heatable element on said support means is formed of electrically-conductive material which has positive-temperature coefficient of resistance; and
said connection means includes a source of substantially constant voltage connected to .[.said pair of.]. electrodes for maintaining the voltage across the element substantially constant as portions of said element contact tissue. .Iadd.5. A hemostatic surgical cutting blade comprising:
a cutting blade having a tissue cutting edge;
an electrically heatable element of electrically conductive material thermally connected to and at least extending along the area of the cutting edge such that said edge may be maintained within a predetermined temperature range; and
two or more electrodes disposed in spaced relationship on the cutting blade and connected to said electrically conductive material for conducting current along a plurality of parallel current paths. .Iaddend..Iadd. 6. The hemostatic surgical cutting blade claimed in claim 5 wherein said electrodes are disposd in lateral spacial relationship on opposite sides of said cutting edge for conducting current along a plurality of parallel current paths oriented substantially laterally across the cutting edge. .Iaddend..Iadd. 7. The hemostatic surgical cutting blade claimed in claim 5 wherein said electrically heatable element is further defined as comprising a plurality of discrete electrically heatable elements. .Iaddend..Iadd. 8. The hemostatic surgical cutting blade claimed in claim 5 wherein said electrically heatable element is formed from a material having a positive-temperature coefficient. .Iaddend. .Iadd. 9. The method of cutting tissue with simultaneous hemostasis comprising the steps of:
contacting the tissue to be cut with a tissue cutting edge at an elevated temperature;
establishing the elevated temperature by conducting current along a plurality of substantially parallel current paths located along said tissue cutting edge; and
increasing power dissipation in regions of the edge which are selectively cooled upon contact with tissue for maintaining the temperature of the edge within a selected range. .Iaddend..Iadd. 10. A method of cutting tissue with simultaneous hemostasis comprising:
conducting current along a plurality of substantially parallel current paths oriented laterally across a supported tissue cutting edge;
dissipating power in regions of said tissue cutting edge responsive to selective cooling of said regions by reason of contact with tissue; thereby maintaining said tissue cutting edge at a selected temperature range. .Iaddend..Iadd. 11. A method of hemostatic surgery as in claim 9 wherein:
current is conducted along a plurality of substantially parallel current paths which are discrete. .Iaddend..Iadd. 12. A method of hemostatic surgery according to claim 9 wherein:
the resistance of the parallel current paths increases with increasing temperature thereof. .Iaddend..Iadd. 13. A method of hemostatic surgery according to claim 12 wherein:
a constant voltage is impressed upon the current paths. .Iaddend.
Description
RELATED APPLICATION

This application is a reissue of Pat. 3,768,482 which matured from application 295,879 filed October 10, 1972 and which is a continuation of continuation-in-part of U.S. Pat. Application Ser. No. 63,645 filed August 13, 1970, now abandoned, which is a continuation of U.S. Pat. Application Ser. No. 681,737 filed Nov. 9, 1967, now abandoned. .Iaddend.

The control of bleeding during surgery accounts for a major portion of the total time involved in an operation. The bleeding that occurs when tissue is incised obscures the surgeon's vision, reduces his precision and often dictates slow and elaborate procedures in surgical operations. Each bleeding vessel must be grasped in pincer-like clamps to stop the flow of blood and the tissue and vessel within each clamp must then be tied with pieces of fine thread. These ligated masses of tissue die and decompose and thus tend to retard healing and promote infection.

SUMMARY OF THE INVENTION

Accordingly, the present invention provides a surgical cutting instrument having a cutting edge which is electrically heated to a constant high temperature for sterilizing the blade, cutting the tissue and cauterizing the surfaces of the incision, thereby allowing surgery to be more rapidly performed. This is accomplished in accordance with the illustrated embodiment of this invention by providing electrically heated elements disposed to form the cutting edge of the blade and by providing a common constant voltage source which operates to maintain the cutting edge at a high substantially constant temperature during its use. The hot cutting edge according to the present invention decreases the amount of tissue that is damaged and reduces the tendency of the instrument to stick to the heated tissue in the incision. In one embodiment, the material used in the electrically heated cutting edge has a positive temperature coefficient of resistance. The temperature at which the cutting edge of the blade is maintained depends upon such factors as the nature of the tissue to be cut, the speed of cutting desired, the degree of tissue coagulation desired, and the non-adherence of the blade to the incised tissue and generally is maintained between 300-1,000 Centigrade for typical incisions in typical human tissue. The cutting edge includes many parallel current paths in a conductive material connected between the terminals of a constant-voltage power source. The operating temperature of the cutting edge is controlled by altering the voltage between the terminals.

The handle of the cutting instrument is thermally insulated from the blade to permit comfortable use of the instrument and the handle and blade with its electrically-heated cutting edge are detachable for easy replacement and interchangeability with blades having cutting edges of various shapes and sizes determined by the nature of the incision to be made and the tissue to be cut.

DESCRIPTiON OF THE DRAWINGS

FIGS. 1 and 2 are pictorial views of embodiments of cutting instruments according to the present invention; and

FIG. 3 is an end sectional view of the embodiment of FIG. 1 showing the heater element disposed as the cutting edge of the blade between electrodes on opposite sides thereof.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to FIGS. 1 and 3 of the drawing, there is shown the surgical cutting instrument 9 including a thin ceramic card 63 in the desired shape of a surgical cutting blade which is detachable from the handle or holder 10. An electrical heating element 61 is disposed in the region of, i.e. on or about, the cutting edge 62 of ceramic card 63 between electrodes 65 and 67 which are electrically connected to a constant voltage source through the cable 14 and the connectors 71 and 73. The element 61 may be a continuous conductive film attached to the card 63, for example, using conventional vapor-deposition processes. The material used for the element 61 may be tantalum nitride or other similar material having a positive temperature coefficient of resistance. Thus, as a portion of the element cools when in contact with tissue, the resistance of such portion of the element decreases and draws increased current from the constant voltage source 75. This localizes the portion of the element 61 in which additional power is dissipated to the portion cooled on contact with tissue. The temperature of such portions of the element may thus be maintained substantially constant as the cutting edge comes in contact with tissue being cut. Other suitable materials having positive temperature coefficients of resistance for use as the element 61 include tungsten, nickel, platinum, chromium, alloys of such metals, and the like.

In the embodiment of the present invention illustrated in FIGS. 1 and 3, the heating element 61 is laterally disposed across the cutting edge 62 of the blade-like support card 63 to form a continuum of current-conducting paths along the length of the cutting edge. These current-conducting paths of heating element 61 are all parallel-connected between the contact electrodes 65 and 67 and which are disposed on opposite sides of the support card 63. These contact electrodes may be formed of a material such as platinum or tungsten, or the like, which makes good contact with the heating element material and which does not readily oxidize at elevated operating temperatures. Alternatively, the heating element 61 may also be arranged to traverse the cutting edge 62 as discrete, closely-spaced elements 69 that are all parallel-connected between opposite-side electrodes 65 and 67 on the card 63, as shown in FIG. 2. Such discrete elements are connected on one side of the card 63 to the electrode 67 and on the other side of the card to electrode 65. In the limit, the heating elements 69, as shown in FIG. 2, may be sufficiently closely located along the cutting edge 62 in parallel connection between the opposite-side electrodes 65 and 67, as to perform substantially as a continuous conductive film, as shown in FIG. 1.

In each of the illustrated embodiments, the electrodes 65 and 67 and heating elements 61 or 69 may be conductive material which is vapor-deposited in the desired interconnected patterns on a suitable electrically-insulating ceramic card 63. Alternatively, the electrodes and heater elements may be etched to shape on a card 63 whose side surfaces and edges are coated with the selected conductive materials.

In each of these embodiments, the electrodes 65, 67 are connected through conductors 14 and suitable electrical connectors 71, 73 mounted in the handle 10 to a source 75 of substantially constant voltage. This source 75 may be a conventional, well-regulated power supply or other low-output impedance supply which is capable of delivering the total current required by all portions of heating element 61 (or by all discrete elements 69) while maintaining the voltage between electrodes 65 and 67 substantially constant. In this way, each portion of heating element 61 (or discrete element 69) which cools down when placed in contact with tissue during surgical use decreases in resistance between electrodes (for positive temperature coefficient of resistance). With constant voltage applied to the electrodes, the cooled regions draw correspondingly more current and dissipate more power in the cooled region, thereby tending to maintain the heating element all along the cutting edge at the preselected operating temperature. The operating temperature of the cutting edge is thus selected by altering the value of the constant voltage supplied by source 75. To assure substantially uniform operating temperature over the length of the cutting edge 62, the heating element 61 (or the discrete elements 69 closely spaced about the edge) may have substantially uniform resistance per unit area. The ceramic card 63 may be formed of high thermal conductivity material such as aluminum oxide, or the like, to assure more uniform operating temperature along the length of the cutting edge.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1735271 *Mar 14, 1928Nov 12, 1929Sutten H GroffDiathermy knife
US1794296 *Aug 24, 1927Feb 24, 1931Hyams Mortimer NSurgical instrument
US1930214 *Mar 23, 1931Oct 10, 1933Charles Wappler FrederickSurgical electrode
US2012938 *Nov 27, 1934Sep 3, 1935Beuoy George HElectrical caponizing knife
US2917614 *Sep 18, 1957Dec 15, 1959Caliri Vincent JCauterizing device
US3234356 *May 7, 1963Feb 8, 1966Raymond F BabbElectrically heated medical implement
US3526750 *Jun 2, 1967Sep 1, 1970William J SiegelThermal tool
US3584190 *Feb 27, 1970Jun 8, 1971Texas Instruments IncSelf-regulating heat applicator
US3648001 *Dec 11, 1969Mar 7, 1972Karl D MillsCompact hand held switching device with insertable switching means
US3662755 *Aug 8, 1969May 16, 1972Leybold Heracus Gmbh & Co KgCryo-scalpel
US3826263 *Aug 7, 1972Jul 30, 1974R ShawElectrically heated surgical cutting instrument
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5373840 *Oct 2, 1992Dec 20, 1994Knighton; David R.Endoscope and method for vein removal
US5693052 *Sep 1, 1995Dec 2, 1997Megadyne Medical Products, Inc.Comprising thermoconductive inorganic chromium coatings for transferring radio frequency energy; nonsticking at high current density
US5766166 *Feb 21, 1996Jun 16, 1998Enable Medical CorporationBipolar Electrosurgical scissors
US5772576 *Dec 11, 1995Jun 30, 1998Embro Vascular L.L.C.For removing cylindrical tissue structures from human or animal bodies
US5843080 *Oct 16, 1996Dec 1, 1998Megadyne Medical Products, Inc.Bipolar instrument with multi-coated electrodes
US6179837Mar 7, 1995Jan 30, 2001Enable Medical CorporationBipolar electrosurgical scissors
US6350264Oct 23, 2000Feb 26, 2002Enable Medical CorporationBipolar electrosurgical scissors
US6391029Sep 29, 2000May 21, 2002Enable Medical CorporationBipolar electrosurgical scissors
US6428468Jun 5, 2000Aug 6, 2002Cardiothoracic Systems, Inc.Apparatus and method for vein removal
US6464701Sep 29, 2000Oct 15, 2002Enable Medical CorporationBipolar electrosurgical scissors
US6506200Mar 14, 2000Jan 14, 2003Origin Medsystems, Inc.Tissue separation cannula and method
US7001404Jan 9, 2003Feb 21, 2006Origin Medsystems, Inc.Tissue separation cannula and method
US7066875Jun 7, 2002Jun 27, 2006Cardio Thoracic Systems, Inc.Apparatus and method for vein removal
US7214180Jan 6, 2003May 8, 2007Origin Medsystems, Inc.Method for cardiac restraint
US7264587Jan 17, 2003Sep 4, 2007Origin Medsystems, Inc.Endoscopic subxiphoid surgical procedures
US7288096Feb 18, 2003Oct 30, 2007Origin Medsystems, Inc.Apparatus for placement of cardiac defibrillator and pacer
US7384423Oct 8, 2002Jun 10, 2008Origin Medsystems, Inc.Tissue dissection method
US7398781Aug 9, 2000Jul 15, 2008Maquet Cardiovascular, LlcMethod for subxiphoid endoscopic access
US7526342Oct 29, 2003Apr 28, 2009Maquet Cardiovascular LlcApparatus for endoscopic cardiac mapping and lead placement
US7597698Jul 10, 2003Oct 6, 2009Maquet Cardiovascular LlcApparatus and method for endoscopic encirclement of pulmonary veins for epicardial ablation
US7867163Dec 12, 2008Jan 11, 2011Maquet Cardiovascular LlcInstrument and method for remotely manipulating a tissue structure
US7938842Oct 5, 1999May 10, 2011Maquet Cardiovascular LlcTissue dissector apparatus
US7972265Jul 21, 2004Jul 5, 2011Maquet Cardiovascular, LlcDevice and method for remote vessel ligation
US7981133Dec 21, 2007Jul 19, 2011Maquet Cardiovascular, LlcTissue dissection method
US8241210Jan 4, 2008Aug 14, 2012Maquet Cardiovascular LlcVessel retractor
US8292879Dec 24, 2009Oct 23, 2012Domain Surgical, Inc.Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool
US8292888Apr 22, 2002Oct 23, 2012Tyco Healthcare Group LpBipolar or ultrasonic surgical device
US8323278Sep 26, 2011Dec 4, 2012Soulor Surgical, Inc.Apparatus for treating a portion of a reproductive system and related methods of use
US8372066Dec 24, 2009Feb 12, 2013Domain Surgical, Inc.Inductively heated multi-mode surgical tool
US8377052Dec 24, 2009Feb 19, 2013Domain Surgical, Inc.Surgical tool with inductively heated regions
US8414569Dec 24, 2009Apr 9, 2013Domain Surgical, Inc.Method of treatment with multi-mode surgical tool
US8419724Dec 24, 2009Apr 16, 2013Domain Surgical, Inc.Adjustable ferromagnetic coated conductor thermal surgical tool
US8425503Jul 26, 2012Apr 23, 2013Domain Surgical, Inc.Adjustable ferromagnetic coated conductor thermal surgical tool
US8430870Dec 24, 2009Apr 30, 2013Domain Surgical, Inc.Inductively heated snare
US8460331Apr 22, 2011Jun 11, 2013Maquet Cardiovascular, LlcTissue dissector apparatus and method
US8491578Dec 24, 2009Jul 23, 2013Domain Surgical, Inc.Inductively heated multi-mode bipolar surgical tool
US8506561Dec 24, 2009Aug 13, 2013Domain Surgical, Inc.Catheter with inductively heated regions
US8523850Dec 24, 2009Sep 3, 2013Domain Surgical, Inc.Method for heating a surgical implement
US8523851Dec 24, 2009Sep 3, 2013Domain Surgical, Inc.Inductively heated multi-mode ultrasonic surgical tool
US8523852Dec 24, 2009Sep 3, 2013Domain Surgical, Inc.Thermally adjustable surgical tool system
US8523890Sep 12, 2012Sep 3, 2013Covidien LpBipolar or ultrasonic surgical device
US8608738Aug 22, 2011Dec 17, 2013Soulor Surgical, Inc.Apparatus for treating a portion of a reproductive system and related methods of use
US8617151Dec 6, 2012Dec 31, 2013Domain Surgical, Inc.System and method of controlling power delivery to a surgical instrument
USRE36043 *Jan 11, 1996Jan 12, 1999Embro Vascular, L.L.C.Endoscope and method for vein removal
Classifications
U.S. Classification606/29, 30/140
International ClassificationA61B18/14, A61B18/08
Cooperative ClassificationA61B18/082, A61B2018/00119, A61B18/1402
European ClassificationA61B18/14B, A61B18/08B