Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE30019 E
Publication typeGrant
Application numberUS 05/811,502
Publication dateJun 5, 1979
Filing dateJun 30, 1977
Priority dateJun 6, 1974
Also published asUS3892270
Publication number05811502, 811502, US RE30019 E, US RE30019E, US-E-RE30019, USRE30019 E, USRE30019E
InventorsRobert H. Lindquist
Original AssigneeChevron Research Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Production of hydrocarbons from underground formations
US RE30019 E
Abstract
A method for recovering hydrocarbons by injecting a mixture of oxidizing gas and steam into a lateral conduit in a hydrocarbon-containing formation to produce a product gas and, based on values contained in such gas, controlling the reactions between mixtures of oxidizing gas and steam and hydrocarbons in the formation to optimize the Btu value of the product gas.
Images(2)
Previous page
Next page
Claims(8)
What is claimed is:
1. A method for converting petroleum within an underground formation into combustible product gas and bringing the so-formed product gas to the Earth's surface for subsequent distribution comprising connecting at least one input well with at least one producing well by a lateral connecting hole which at least in part penetrates an underground formation containing petroleum; packing said connecting hole with a permeable material so that said connecting hole has a permeability in excess of the permeability of said underground formation; injecting oxidizing gas and steam down said input well into said lateral connecting hole to react with petroleum in said formation by partial oxidation and by thermal cracking to form a product gas containing sufficient fractions of at least one of the components carbon monoxide, hydrogen and methane to be combustible, producing said product gas from said formation through said producing well; analyzing said product gas for values of C1 and C2 hydrocarbons, carbon monoxide and carbon dioxide; and controlling the reactions within said connecting hole based on said values to optimize the Btu value of said product gas.
2. The method of claim 1 further characterized by controlling said reactions to provide a carbon monoxide-to-carbon dioxide ratio of from 1 to 2 and a C1 plus C2 hydrocarbon volume percentage of 10 percent to 30 percent of the total product gas.
3. The method of claim 2 further characterized in that the permeability of said connecting hole is at least ten times the permeability of said formation.
4. The method of claim 3 further characterized by adding a catalyst to the lateral connecting hole to assist in controlling the reactions.
5. The method of claim 3 further characterized in that a slotted tube is inserted into said lateral connecting hole.
6. A method of converting petroleum within an underground formation into combustible product gas and bringing the so-formed product gas to the earth's surface for subsequent distribution comprising connecting at least one input well with at least one producing well by a lateral connecting hole which at least in part penetrates an underground formation containing petroleum; inserting a slotted tube into said lateral connecting hole; packing said tube with a permeable material so that said tube has a permeability at least 10 times the permeability of said underground formation; injecting oxidizing gas and steam down said input well into said tube to react with petroleum in said formation by partial oxidation and by thermal cracking to form a product gas containing sufficient fractions of at least one of the components carbon monoxide, hydrogen and methane to be combustible; producing said product gas from said formation through said producing well; analyzing said product gas for values of C1 and C2 hydrocarbons, carbon monoxide and carbon dioxide; and controlling the reactions within said tube to maintain a carbon monoxide-to-carbon dioxide ratio in the range from 1 to 2 and a C1 plus C2 hydrocarbon volume percentage in the range from 10 percent to 30 percent of the total product gas.
7. The method of claim 6 further characterized in that the initial injection mixture of oxidizing gas and steam is maintained at between 1 to 3 parts oxygen and 1 to 9 parts steam and the pressure of oxidizing gas and steam injected into said tube is between 1.1 to 2 times the pressure in said formation and that back pressure between 0.5 to 0.9 times the formation pressure is held on said producing well.
8. The method of claim 7 further characterized in that the initial injection rate of said oxidizing gas and steam is maintained at a value between 8 to 9 void volumes per minute. .Iadd. 9. A method for converting hydrocarbons within an underground formation into combustible product gas and bringing the so-formed product gas to the earth's surface for subsequent distribution comprising connecting at least one input well with at least one producing well by a lateral connecting hole which at least in part penetrates an underground formation containing hydrocarbons, packing said connecting hole with a permeable material so that said connecting hole has a permeability in excess of the permeability of said underground formation; injecting oxidizing gas and steam down said input well into said lateral connecting hole to react with hydrocarbons in said formation by partial oxidation and by thermal cracking to form a product gas containing sufficient fractions of at least one of the components carbon monoxide, hydrogen and methane to be combustible, producing said product gas from said formation through said producing well; analyzing said product gas for values of C1 and C2 hydrocarbons, carbon monoxide and carbon dioxide; and controlling the reactions within said connecting hole based on said values to optimize the Btu value of said product gas. .Iaddend..Iadd. 10. The method of claim 9 further characterized by controlling said reactions to provide a carbon monoxide-to-carbon dioxide ratio of from 1 to 2 and a C1 plus C2 hydrocarbon volume percentage of 10 percent to 30 percent of the total product gas. .Iaddend..Iadd. 11. The method of claim 10 further characterized in that the permeability of said connecting hole is at least ten times the permeability of said formation. .Iaddend. .Iadd. 12. The method of claim 11 further characterized by adding a catalyst to the lateral connecting hole to assist in controlling the reactions. .Iaddend..Iadd. 13. The method of claim 11 further characterized in that a slotted tube is inserted into said lateral connecting hole. .Iaddend..Iadd. 14. A method of converting hydrocarbons within an underground formation into combustible product gas and bringing the so-formed product gas to the earth's surface for subsequent distribution comprising connecting at least one input well with at least one producing well by a lateral connecting hole which at least in part penetrates an underground formation containing hydrocarbons; inserting a slotted tube into said lateral connecting hole; packing said tube with a permeable material so that said tube has a permeability at least 10 times the permeability of said underground formation; injecting oxidizing gas and steam down said input well into said tube to react with hydrocarbons in said formation by partial oxidation and by thermal cracking to form a product gas containing sufficient fractions of at least one of the components carbon monoxide, hydrogen and methane to be combustible; producing said product gas from said formation through said producing well; analyzing said product gas for values of C1 and C2 hydrocarbons, carbon monoxide and carbon dioxide; and controlling the reactions within said tube to maintain a carbon monoxide-to-carbon dioxide ratio in the range from 1 to 2 and a C1 plus C.sub. 2 hydrocarbon volume percentage in the range from 10 percent to 30 percent of the total product gas. .Iaddend. .Iadd. 15. The method of claim 14 further characterized in that the initial injection mixture of oxidizing gas and steam is maintained at between 1 to 3 parts oxygen and 1 to 9 parts steam and the pressure of oxidizing gas and steam injected into said tube is between 1.1 to 2 times the pressure in said formation and that back pressure between 0.5 to 0.9 times the formation pressure is held on said producing well. .Iaddend..Iadd. 16. The method of claim 15 further characterized in that the initial injection rate of said oxidizing gas and steam is maintained at a value between 8 to 9 void volumes per minute. .Iaddend.
Description
BACKGROUND OF THE INVENTION

The invention relates to recovering a gaseous product gas containing hydrocarbon values from a hydrocarbon-containing formation, and more particularly the present invention relates to injecting a mixture of oxidizing gas and steam into a lateral conduit in a partially depleted petroleum-containing formation to produce a combustible product gas, analyzing the produced product gas for values of selected gaseous components and, based on such values, controlling the reactions between the mixture of oxidizing gas and steam and the petroleum in the formation to optimize production of product gas in the formation, and recovering the product gas through a recovery well.

A major problem has been the economic recovery of hydrocarbons from reservoirs that cannot be produced economically by conventional techniques. This problem is particularly acute when it is desired to recover hydrocarbons from partially depleted heavy-oil reservoirs. Although the term "heavy oil" is only relative nomenclature and may be defined differently in different localities, it usually refers to oils with a gravity of less than 20° API.

Heretofore, many processes have been utilized in attempting to recover hydrocarbon values from such reservoirs. The application of heat to the oil by steam injection or underground combustion has been done to assist recovery. Various underground gasification processes have been suggested, particularly for use in tar sands as taught in U.S. Pat. No. 3,250,327. There is still a need, however, for a process which will economically maximize recovery of hydrocarbon values from partially depleted heavy-oil reservoirs.

BRIEF DESCRIPTION OF THE INVENTION

The present invention is directed to a method for converting petroleum within an underground formation into combustible product gas and bringing the so-formed product gas to the Earth's surface for subsequent distribution. An input well and a producing well are connected by a lateral connecting hole, which at least in part penetrates the petroleum-containing underground formation. The lateral connecting hole is packed with a permeable material so that the connecting hole has a permeability in excess that of the underground formation.

A mixture of oxidizing gas and steam is injected down the input well into the lateral connecting hole to react with petroleum in the formation by partial oxidation and by thermal cracking to form a product gas containing sufficient fractions of at least one of the following components, carbon monoxide, hydrogen and methane, to be combustible. The product gas is produced from the formation through the producing well. The produced product gas is analyzed for values of C1 and C2 hydrocarbons, carbon monoxide, carbon dioxide and oxygen. Based on a comparison of the values, the reactions in the formation between the mixture of oxidizing gas and steam and the petroleum are controlled to optimize the combustible fraction of the product gas.

OBJECT OF THE INVENTION

A principal object of the present invention is to maximize recovery of hydrocarbon values in gaseous form from a hydrocarbon-containing formation by controlling reactions in the formation based on values of the recovered gas.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an elevation view, partially in section, and shows the preferred form of apparatus assembled in accordance with the present invention; and

FIG. 2 is a diagram illustrating the control steps that are taken in response to the values of the gaseous components of the recovered product gas.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In accordance with the present invention and with relation to FIG. 1, a well 20 is connected to an output (producing) well 24 by means of a lateral connecting hole 26. At least the major portion of lateral connecting hole 26 starting from input well 20 is provided with a tube 28 having slots 29 which provide communication between the interior of the tube and the producing formation 18. The interior of tube 28 is packed with a material 30, such as alumina balls, sand or rock. The packing material 30 assists in supporting the tube 28 to prevent collapse and is placed in the tube in a manner to provide for permeability through the tube to be greatly in excess of the permeability of the producing formation 18. The permeability of tube 28 should be greater than the permeability of producing formation 18, and preferably the permeability of the tube should be at least 10 times as great as the permeability of formation 18.

Both input well 20 and output well 24 are cased with strings of casing 21 and 23, respectively. The lateral tube 28 is connected into the lower end of the casing string 21 and provides the only access to the producing formation 18 from well 20. The lateral tube 28 may be connected to the casing string 23 of output well 24. However, the lateral tube 28 is usually terminated in the vicinity of the output well 24 and a connecting hole is hydraulically jetted between the lower end of output well 24 and the end of lateral tube 28.

Input well 20 is arranged with wellhead equipment suitable for injecting fluids into the casing string and thence into lateral tube 28. Thus, injection tubing string 32 is joined to a steam conduit 34 extending from steam source 36. Control valve 38 controls flow of steam through conduit 34. A source of oxidizing gas 40, preferably oxygen, is also connected to the injection tubing 32 by a conduit 42. A valve 44 is used to control flow of oxygen to the input well. The output well 24 is completed to produce the gaseous products formed in accordance with the invention. A production tubing 46 is used to remove gas from the well. A suitable valve 48 is used to control such gas flow and thus the back pressure on the producing formation.

A small portion of the product gas is removed from the production tube 46 and is analyzed for values of certain produced gases. Based on a comparison of these values, the reaction in the lateral tube is controlled to provide for optimization of the combustible fraction of the product gas. A process computer is connected to receive input from the gas analysis. The computer is programmed to regulate certain of the process variables in response to values of the product gas. Thus the computer is adapted to control back pressure and gas flow from the output well 24 and to control inflow of steam and oxygen at the input well 20.

In accordance with the invention, a mixture of oxygen and steam is injected down an input well and is flowed into the formation through a lateral tube to produce product gas. Thus hydrocarbons can be recovered from heavy-oil fields by partial oxidation and thermal cracking of the hydrocarbons in situ. This cracking produces a product gas which includes carbon monoxide, hydrogen, methane, carbon dioxide and .Iadd.C1 to .Iaddend.C10 - hydrocarbons. The fuel value of the gas usually varies from 70 to 500 Btu/SCF, depending on the conditions of the reactions. In accordance with the invention, the operation is controlled to provide for maximizing the Btu value of the product gas.

To start operations in accordance with the invention a mixture of oxygen and superheated steam is injected into a formation. The oxygen and steam mixture should contain by volume between 1 to 3 parts oxygen and 1 to 9 parts steam. Usually it is initially preferred to inject a mixture containing about 1 part oxygen to 6 parts superheated steam. The initial injection pressure should be from 1.1 to 2 times the formation pressure. Formation pressures may vary between 50 to 10,000 psi. The present invention would find its greatest utility in formations having pressures from 700 psi to 2000 psi. The injection rate is controlled to produce desirable reactions in the formation. The injection rate is conveniently calculated by determining the void volume of the lateral tube and indicating the number of volume displacements per minute desired. Five void volume replacements per minute to 12 void volume replacements per minute are useful in the process. Generally an initial injection rate of 8 to 9 void volumes per minute is preferred.

The production well is initially held at a back pressure to promote a desirable reaction in the formation. The back pressure on the producing well is normally maintained in the range 0.5 to 0.9 of the formation pressure. Initially, a high back pressure in the range of about 0.9 times the formation pressure is held on the producing well. A product gas containing hydrocarbon values is produced in the lateral tube in the formation from depleted heavy oil by partial oxidation and thermal cracking of hydrocarbons in situ. The product gas is composed of various constituents including carbon monoxide, hydrogen, methane and C1 to C10 hydrocarbons, as well as carbon dioxide. The fuel value of the product gas may vary from 70 to 500 Btu/SCF, depending upon the conditions of the reaction.

It is desirable to maximize the Btu value of the product gas. This is done by optimizing production of methane relative to carbon monoxide and hydrogen. In maximizing production of methane, the reactions are favored by lower temperatures and higher space rates (short residence time of the product gas in the high-temperature zone). The methanation reactions are exothermic and hence desirable for local heat supply. Further, methane production inhibits carbon monoxide oxidation. The permeability of the lateral tube is an important factor in providing for high methane production. The permeability of the tube is controlled by the packing. The packing serves three functions: it is a stable, high-temperature material that prevents collapse of the lateral tube in case of localized hot spots; the presence of the packing prevents a hazardous detonation from propagating as through an open tube; the packing may serve as a catalyst support surface.

The product gas constituents may be optimized by controlling the ratio of oxidizing gas to steam. The ratio of oxidizing gas to steam controls the peak temperature and influences the relative rate of the water/gas-shift reaction. The ratio of these gases is controlled continuously during the process by monitoring the composition of the produced product gas. The temperatures surrounding the combustion zone may also be monitored. If the oxidizing gas is oxygen, typical volume percent of oxygen in steam range from 75 percent to 10%, with the preferred range from 30-50 percent oxygen.

The partial pressure of gas in the connecting lateral tube also affects the composition of the product gas. During the course of the process over many months, the pressure in the formation will change relative to the initial pressure, and the desired pressure differential between the formation and the lateral tube will shift. Monitoring the product gas for optimum Btu value will cause changes to be made in the injection pressure and the back-pressure regulator at the product gas output well so that maximum utilization of the heat of reaction in producing the largest quantity of high-Btu gas is achieved. It may be desired to cycle the pressure in the lateral tube over time spans from several days down to several minutes. The cyclic effect may be desired where sand plugging problems arise or where coke laydown in the surrounding formation should be moved to a new site as the method progresses.

Catalysts or catalyst precursors are sometimes useful in the process. Vapor-phase catalysts or catalyst materials, such as metal carbonyls, organic halides and the like, may be used to control particular reactions in the lateral oxidation tube. As described in U.S. Pat. No. 2,804,146, organic chlorides are effectively used in retarding the oxidation of carbon monoxide to carbon dioxide. Injection of the catalyst materials may be done in a pulsed fashion, so that if the catalysts deactivate in the lateral tube over a period of time another pulse renews the active service, or they may be supplied continuously at low concentrations to maintain catalyst activity.

FIG. 2 is a chart illustrating the control steps, which are taken in response to the values of the gaseous components of the product gas recovered from the output well to maximize the Btu value of the product gas being formed in the lateral tube. The ratio of carbon monoxide to carbon dioxide and the volume percentage of C1 and C2 hydrocarbons to the total product gas are important. A carbon monoxide/carbon dioxide ratio of from 1 to 2 and a volume percentage of C1 and C2 hydrocarbons to total product gas of from 10 percent to 30 percent indicate that the reaction in the lateral tube is optimized and that a product gas having high Btu value is being produced. When the gas values are in these ranges, no control steps are taken.

If the gas values are such that an optimum reaction is not taking place in the lateral tube, certain control measures are taken to promote an optimum reaction. Thus, if the volume percentage of C1 and C2 hydrocarbons to total product gas remains at a desirable level, i.e., 10 percent to 30 percent, and the ratio of carbon monoxide to carbon dioxide falls to less than 1, the ratio of oxygen to steam is decreased while the differential pressure in the lateral tube is maintained. If the ratio of carbon monoxide to carbon dioxide goes above 2, which is an unlikely occurrence except at start-up or upset, then the inlet pressure is increased and the oxygen-to-steam ratio is increased. The product gas is continuously analyzed to determine what effect these control steps have on the reaction occurring in the tube to see if the reaction is being optimized.

If, on the other hand, the carbon monoxide-to-carbon dioxide ratio remains at a value of from 1 to 2 and the volume percent of C1 plus C2 hydrocarbons to total product gas varies to above 30 percent, the inlet pressure of the oxygen-steam mixture is reduced and the oxygen-to-steam ratio is increased. If the C1 plus C2 percentage falls below 10 percent, the residence time of the gas is too long. Therefore, the space rate of the mixture is increased by raising the input pressure and reducing the output pressure.

If both the carbon monoxide-to-carbon dioxide ratio and the volume percent of C1 plus C2 to total product gas vary from optimum conditions, certain control steps are taken in accordance with the invention to produce an optimum reaction in the lateral tube. FIG. 2 is used to determine what control steps are required, depending on the values of the product gas. The control measures of FIG. 2 have been demonstrated over a formation pressure range of from 700 to 2000 psi. They are believed to be substantially controlling over the entire range of formation pressures of the invention.

A demonstration was conducted to illustrate the advantage of the present invention at very low pressure, on the order of 15 psi. The process was conducted in a 6-foot diameter reactor sphere insulated and externally heated to represent an isothermal zone of a California oil field. The reactor was loaded with 10,300 pounds of mixed foundary sand that simulated the characteristics of oil sand. The permeability of the sand after water saturation and crude saturation at 145° F. varied between 900-1000 millidarcies. The characteristics of the California crude used are shown in the following table.

                                  TABLE 1__________________________________________________________________________Special Analysis of a California Crude Oil          DISTILLATES                          WholeVapor Line Cut Point               at 300-                      400-                          500-                              650-                                  (700)                                      RESIDUA  DryTemperatures, ° F.               300                  400 500 650 (700)                                  1000                                      1000+                                           650+                                               Crude__________________________________________________________________________Yield, vol. % from crude               1.2                  3.6 7.4 13.4                              5.1 25.6                                      43.7 74.4                                               100.0Yield at start of cut               0.0                  1.2 4.8 12.2                              25.6                                  30.7                                      56.3 25.6                                               0.0Yield at end of cut 1.2                  4.8 12.2                          25.6                              30.7                                  56.3                                      100.0                                           100.0                                               100.0Gravity, ° API               50.5                  41.3                      34.0                          26.2                              23.0                                  16.9                                      3.6  9.0 14.4Sulfur, wt.%                                        0.92Paraffins           21.5                  18.0                      8.8Naphthebes          74.0                  40.6                      23.2Dinaphthenes           29.3                      34.7Trinaphthenes              9.3Subtotal Naphthenes 74.0                  69.9                      67.2Alkylbenzenes       4.5                  8.7 4.8Indanes, tetralins     3.3 12.3Benzodinaphthenes          1.8Naphthalenes               4.6Benzoindanes, benzotetralins                      0.5Subtotal aromatics  4.5                  12.0                      24.0Viscosity, Csts          at 100° F.                    1036          at 130° F.                    272          at 210° F.           3790 640          at 275° F.           330  99.2Mid boiling point by Sun.TBP Dist.              370 471 594 744 843Ramsbottom carbon, wt. %                   22.3__________________________________________________________________________

A simulated slotted tube extended as a diameter midway through the reactor. Eight rows of slots 0.01 inch wide by 1 inch long were cut on 11/2 inch centers in the middle 4 feet of 5/8 inch-OD by 0.035 inch-wall Type 316 stainless steel tube. Centered in this tube was a 1/4 inch-diameter incoloy-sheathed tubular heating element with 1320 watts rated capacity. The annulus between this heating element and the tube was filled with 1/8 inch-diameter alundum balls. Small blocks of Boise sandstone 2 inches square by 7 inches long with 5/8 inch holes through their centers were slipped over the slotted portions of the tubes. These sandstone blocks served to prevent sand plugging on the slotted liner tube.

The analytical train consisted of an oxygen analyzer, a carbon monoxide analyzer and a carbon dioxide analyzer. The mass flow of gas to the reactor was monitored with a mass flowmeter. Twenty-four thermocouple points were displayed sequentially on a recorder. Periodic samples were taken of the gas and liquid products for later analysis. During start-up, approximately 800 watts of heat was applied to the sheathed heater while adding oxygen and steam at 15 psig mass flow rate of 10 liters/minute. Within 1 hour the temperature 1 foot downstream from the opening of the first slot in the lateral tube reached 600° F., and the carbon monoxide was noted in the product gas. Within 3 hours temperatures reached 1500° F. and the heater was shut off. The run was continued for 72 hours. A typical gas composition consisted of 7 percent methane, 1.7 percent ethane, 12 percent carbon monoxide, 2 percent hydrogen, with the balance carbon dioxide. Condensate sample yield analysis is shown in Table II.

                                  TABLE II__________________________________________________________________________Detailed Coposition Summary (Volume Percent)Carbon    Normal    Iso- Naph-    Aro-                      Unclassi-                               Cyclo-                                    Cyclo-No. Paraffin    paraffin         thenes              Olefins                  matics                      fied Totals                               Pentanes                                    Hexanes__________________________________________________________________________3   0.07 0.00 0.00 0.03                  0.00                      0.00 0.10                               0.00 0.004   0.14 0.03 0.00 0.16                  0.00                      0.00 0.33                               0.00 0.005   0.34 0.23 0.08 0.68                  0.00                      0.00 1.33                               0.08 0.006   0.52 0.83 1.16 0.73                  0.25                      0.00 3.50                               0.75 0.417   0.46 1.72 3.25 1.12                  0.00                      0.00 6.56                               3.25 0.008   0.00 0.00 0.00 0.05                  0.00                      22.71                           22.77                               0.00 0.009   0.00 0.00 0.00 0.00                  0.00                      27.73                           27.73                               0.00 0.0010  0.00 0.00 0.00 0.00                  0.00                      17.25                           17.25                               0.00 0.0011  0.00 0.00 0.00 0.00                  0.00                      13.73                           13.73                               0.00 0.0012  0.00 0.00 0.00 0.00                  0.00                      6.72 6.72                               0.00 0.00Total    1.53 2.81 4.49 2.78                  0.25                      88.14                           100.00                               4.08 0.41Calculated Properties         RVP          1.84         Gravity, °API                      56.5-                           Specific Gravity 0.7525         Carbon/Hydrogen Ratio                      5.93         No. of Compounds                      58         Average Molecular Weight                      124.4__________________________________________________________________________
SUMMARY OF THE INVENTION

The present invention provides a method for converting petroleum within an underground formation into combustible product gas and bringing the so-formed product gas to the surface. An input well and a producing well are connected by a lateral connecting hole, which at least in part penetrates the petroleum-containing underground formation. A tube is positioned in the lateral connecting hole and the tube is packed with a permeable material so that the tube has a permeability in excess of that of the underground formation.

A mixture of oxidizing gas and steam is injected down the input well into the lateral connecting tube to react with petroleum in the formation by partial oxidation and by thermal cracking to form a product gas containing sufficient fractions of at least one of the components carbon monoxide, hydrogen and methane to be combustible. The product gas is produced from the formation through the producing well. The produced product gas is analyzed for values of C1 and C2 hydrocarbons, carbon monoxide, carbon dioxide and oxygen. Based on a comparison of the values, the reactions in the formation between the mixture of oxidizing gas and steam and the petroleum are controlled to optimize the combustible fraction of the product gas.

Although certain preferred embodiments of the invention have been described in detail, the invention is not meant to be limited to only these embodiments but rather by the scope of the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2695163 *Dec 9, 1950Nov 23, 1954Stanolind Oil & Gas CoMethod for gasification of subterranean carbonaceous deposits
US3032102 *Mar 17, 1958May 1, 1962Phillips Petroleum CoIn situ combustion method
US3044545 *Oct 2, 1958Jul 17, 1962Phillips Petroleum CoIn situ combustion process
US3048225 *Aug 28, 1959Aug 7, 1962Phillips Petroleum CoCatalytic in situ combustion
US3145772 *Sep 13, 1962Aug 25, 1964Gulf Research Development CoTemperature controlled in-situ combustion process
US3171479 *Apr 30, 1962Mar 2, 1965Pan American Petroleum CorpMethod of forward in situ combustion utilizing air-water injection mixtures
US3227211 *Dec 17, 1962Jan 4, 1966Phillips Petroleum CoHeat stimulation of fractured wells
US3250327 *Apr 2, 1963May 10, 1966Socony Mobil Oil Co IncRecovering nonflowing hydrocarbons
US3298434 *May 27, 1964Jan 17, 1967Graham Thomas TGasification of coal
US3344856 *Mar 18, 1965Oct 3, 1967Deutsche Erdoel AgProcess for the extraction of liquid and solid bitumens from underground deposits
US3386508 *Feb 21, 1966Jun 4, 1968Exxon Production Research CoProcess and system for the recovery of viscous oil
US3454365 *Feb 18, 1966Jul 8, 1969Phillips Petroleum CoAnalysis and control of in situ combustion of underground carbonaceous deposit
US3628929 *Dec 8, 1969Dec 21, 1971Cities Service Oil CoMethod for recovery of coal energy
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588503Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732796 *Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6880635 *Apr 24, 2001Apr 19, 2005Shell Oil CompanyIn situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US7040397Apr 24, 2002May 9, 2006Shell Oil CompanyThermal processing of an oil shale formation to increase permeability of the formation
US7055600 *Apr 24, 2002Jun 6, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7770643Oct 10, 2006Aug 10, 2010Halliburton Energy Services, Inc.Hydrocarbon recovery using fluids
US7809538Jan 13, 2006Oct 5, 2010Halliburton Energy Services, Inc.Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7832482Oct 10, 2006Nov 16, 2010Halliburton Energy Services, Inc.Producing resources using steam injection
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7942203Jan 4, 2010May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US20020029881 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US20020029882 *Apr 24, 2001Mar 14, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US20020029884 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US20020029885 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation using a movable heating element
US20020033253 *Apr 24, 2001Mar 21, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using insulated conductor heat sources
US20020033255 *Apr 24, 2001Mar 21, 2002Fowler Thomas DavidIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US20020033256 *Apr 24, 2001Mar 21, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US20020033257 *Apr 24, 2001Mar 21, 2002Shahin Gordon ThomasIn situ thermal processing of hydrocarbons within a relatively impermeable formation
US20020033280 *Apr 24, 2001Mar 21, 2002Schoeling Lanny GeneIn situ thermal processing of a coal formation with carbon dioxide sequestration
US20020034380 *Apr 24, 2001Mar 21, 2002Maher Kevin AlbertIn situ thermal processing of a coal formation with a selected moisture content
US20020035307 *Apr 24, 2001Mar 21, 2002Vinegar Harold J.In situ thermal processing of a coal formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020036083 *Apr 24, 2001Mar 28, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US20020036084 *Apr 24, 2001Mar 28, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US20020036089 *Apr 24, 2001Mar 28, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation using distributed combustor heat sources
US20020036103 *Apr 24, 2001Mar 28, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a coal formation by controlling a pressure of the formation
US20020038705 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20020038706 *Apr 24, 2001Apr 4, 2002Etuan ZhangIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US20020038708 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a coal formation to produce a condensate
US20020038709 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20020038710 *Apr 24, 2001Apr 4, 2002Maher Kevin AlbertIn situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US20020038711 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020038712 *Apr 24, 2001Apr 4, 2002Vinegar Harold J.In situ production of synthesis gas from a coal formation through a heat source wellbore
US20020039486 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US20020040173 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US20020040177 *Apr 24, 2001Apr 4, 2002Maher Kevin AlbertIn situ thermal processing of a hydrocarbon containig formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020040779 *Apr 24, 2001Apr 11, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture containing olefins, oxygenated hydrocarbons, and/or aromatic hydrocarbons
US20020040781 *Apr 24, 2001Apr 11, 2002Keedy Charles RobertIn situ thermal processing of a hydrocarbon containing formation using substantially parallel wellbores
US20020043365 *Apr 24, 2001Apr 18, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020043367 *Apr 24, 2001Apr 18, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020043405 *Apr 24, 2001Apr 18, 2002Vinegar Harold J.In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US20020046832 *Apr 24, 2001Apr 25, 2002Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US20020046837 *Apr 24, 2001Apr 25, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US20020046838 *Apr 24, 2001Apr 25, 2002Karanikas John MichaelIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US20020046839 *Apr 24, 2001Apr 25, 2002Vinegar Harold J.In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US20020049358 *Apr 24, 2001Apr 25, 2002Vinegar Harold J.In situ thermal processing of a coal formation using a distributed combustor
US20020050352 *Apr 24, 2001May 2, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to control product composition
US20020050353 *Apr 24, 2001May 2, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US20020050356 *Apr 24, 2001May 2, 2002Vinegar Harold J.In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US20020050357 *Apr 24, 2001May 2, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US20020052297 *Apr 24, 2001May 2, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US20020053429 *Apr 24, 2001May 9, 2002Stegemeier George LeoIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US20020053432 *Apr 24, 2001May 9, 2002Berchenko Ilya EmilIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US20020053435 *Apr 24, 2001May 9, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US20020053436 *Apr 24, 2001May 9, 2002Vinegar Harold J.In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US20020056551 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020057905 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020062051 *Apr 24, 2001May 23, 2002Wellington Scott L.In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US20020062052 *Apr 24, 2001May 23, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US20020062959 *Apr 24, 2001May 30, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US20020062961 *Apr 24, 2001May 30, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation and ammonia production
US20020066565 *Apr 24, 2001Jun 6, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US20020074117 *Apr 24, 2001Jun 20, 2002Shahin Gordon ThomasIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US20020084074 *Sep 24, 2001Jul 4, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020096320 *Apr 24, 2001Jul 25, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US20020104654 *Apr 24, 2001Aug 8, 2002Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US20020108753 *Apr 24, 2001Aug 15, 2002Vinegar Harold J.In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US20020117303 *Apr 24, 2001Aug 29, 2002Vinegar Harold J.Production of synthesis gas from a hydrocarbon containing formation
US20020191968 *Apr 24, 2001Dec 19, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US20030006039 *Apr 24, 2001Jan 9, 2003Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US20030019626 *Apr 24, 2001Jan 30, 2003Vinegar Harold J.In situ thermal processing of a coal formation with a selected hydrogen content and/or selected H/C ratio
US20030024699 *Apr 24, 2001Feb 6, 2003Vinegar Harold J.In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US20030051872 *Apr 24, 2001Mar 20, 2003De Rouffignac Eric PierreIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US20030062154 *Apr 24, 2001Apr 3, 2003Vinegar Harold J.In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030062164 *Apr 24, 2001Apr 3, 2003Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20030066644 *Apr 24, 2001Apr 10, 2003Karanikas John MichaelIn situ thermal processing of a coal formation using a relatively slow heating rate
US20030075318 *Apr 24, 2001Apr 24, 2003Keedy Charles RobertIn situ thermal processing of a coal formation using substantially parallel formed wellbores
US20030085034 *Apr 24, 2001May 8, 2003Wellington Scott LeeIn situ thermal processing of a coal formation to produce pyrolsis products
US20030100451 *Apr 24, 2002May 29, 2003Messier Margaret AnnIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US20030141065 *Apr 24, 2001Jul 31, 2003Karanikas John MichaelIn situ thermal processing of hydrocarbons within a relatively permeable formation
US20030164234 *Apr 24, 2001Sep 4, 2003De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US20030164238 *Apr 24, 2001Sep 4, 2003Vinegar Harold J.In situ thermal processing of a coal formation using a controlled heating rate
US20040015023 *Apr 24, 2001Jan 22, 2004Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US20040069486 *Apr 24, 2001Apr 15, 2004Vinegar Harold J.In situ thermal processing of a coal formation and tuning production
US20040108111 *Apr 24, 2001Jun 10, 2004Vinegar Harold J.In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US20060175061 *Apr 11, 2006Aug 10, 2006Crichlow Henry BMethod for Recovering Hydrocarbons from Subterranean Formations
WO2010019657A1 *Aug 12, 2009Feb 18, 2010Linde AktiengesellschaftBitumen production method
Classifications
U.S. Classification166/250.15, 166/270, 166/252.2, 166/50, 166/261
International ClassificationE21B43/30, E21B43/243
Cooperative ClassificationE21B43/243, E21B43/305
European ClassificationE21B43/243, E21B43/30B