Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE30635 E
Publication typeGrant
Application numberUS 06/079,847
Publication dateJun 2, 1981
Filing dateSep 28, 1979
Priority dateSep 14, 1974
Also published asDE2444100A1, DE2444100B2, DE2444100C3
Publication number06079847, 079847, US RE30635 E, US RE30635E, US-E-RE30635, USRE30635 E, USRE30635E
InventorsDieter Kuppers, Hans Lydtin, Ludwig Rehder
Original AssigneeU.S. Philips Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of producing internally coated glass tubes for the drawing of fibre optic light conductors
US RE30635 E
Abstract
In the reactive deposition of the core material from a gas which is passed through the tube onto the inner wall of the tube by means of a plasma zone, while a relative motion is effected in the axial direction between the tube and a plasma-producing device, the rate of precipitation is increased without impairing the quality of the core material coat, the reactive deposition being effected at a pressure of from 1 to 100 Torr and a temperature zone being superimposed on the plasma zone.
Images(2)
Previous page
Next page
Claims(8)
What is claimed is:
1. A method of producing internally coated glass tubes for drawing fiber optic light conductors which consists of a core and a jacket of glasses which have a mutually different refractive index, comprising the steps of introducing into a glass tube surrounded by a resonator a reactive gas mixture consisting of SiCl4 and oxygen at a pressure of about 1 to 100 Torr, adding GeCl4 to the gas mixture moving the tube relative to the resonator to form .[.a.]. non-isothermal plasma zone within the tube, and heating the tube to a temperature between 800 C.-1200 C. to form a coating free of soot-like particles and consisting of a plurality of layers of SiO2 doped with an increasing content of GeO2.
2. A method as claimed in claim 1 wherein the gas mixture consists of about 96% by volume of oxygen and 4% by volume of SiCl4.
3. A method as claimed in claim 2 wherein up to 0.4% by volume of germanium tetrachloride (GeCl4) is added to the reactive gas mixture. .Iadd.
4. A method of producing internally coated glass tubes, for drawing fibre-optic light conductors which consist of a core and a jacket of glasses which have a mutually different refractive index, comprising the steps of introducing into a glass tube surrounded by a resonator a reactive gas mixture comprising SiCl4 and oxygen at a pressure of about 1 to 100 Torr, moving the tube relative to the resonator 2 and heating the tube to a temperature between 800 C.-1200 C. while activating the resonator to form a nonisothermal plasma zone within the tube, whereby a coating free of soot-like particles and consisting of a plurality of layers of SiO2 is formed. .Iaddend. .Iadd.5. A method of producing internally coated glass tubes, as claimed in claim 4, further comprising the step of adding a dopant-forming compound to the gas mixture. .Iaddend. .Iadd.6. A method of producing internally coated glass tubes, as claimed in claim 5, wherein the dopant-forming compound is one or more compounds from the group consisting of TiCl4 AlCl3, and GeCl4. .Iaddend. .Iadd.7. A method of producing internally coated glass tubes, as claimed in claim 5 or 6 wherein the dopant-forming compound is added to the gas mixture at a constant rate. .Iaddend.
.Iadd. A method of producing internally coated glass tubes, as claimed in claim 9, wherein the dopant-forming compound is added to the gas
mixture at an increasing rate. .Iaddend. .Iadd.9. A method of producing internally coated glass tubes, as claimed in claim 5 or 6 wherein the dopant-forming compound is added to the gas mixture at a varying rate. .Iaddend. .Iadd.10. A method of producing internally coated glass tubes, as claimed in claim 9, wherein the dopant-forming compound is added to the
gas mixture at a decreasing rate. .Iaddend. .Iadd.11. A method of producing internally coated glass tubes, as claimed in claim 9, wherein the dopant-forming compound is added to the gas mixture at a rate which will produce a coating whose index of refraction increases toward a central axis of the tube. .Iaddend. .Iadd.12. A method of producing coatings on walls of glass comprising the steps of:
contacting at least a portion of the wall of the glass with a mixture of a gaseous glass-forming compound and gaseous oxygen at a pressure of about 1 to 100 Torr;
forming a plasma zone in the gas mixture in contact with the glass wall portion;
heating the glass wall portion, to a temperature which is above the temperature necessary to produce substantially stress-free coating layers on the heated tube wall portion but which is below the temperature at which there is substantial reaction of the mixture in the gas phase, to produce a nonisothermal plasma zone; and
thereby causing a heterogeneous reaction to occur on the glass wall resulting in the deposit on the glass wall of a glass coating. .Iaddend.
.Iadd.13. A method as claimed in claim 12, characterized in that the glass wall is in the form of a tube and further comprising the step of causing relative movement between the plasma zone and the tube. .Iaddend. .Iadd.14. A method as claimed in claim 13, characterized in that the coating and the gas mixture are on the inside of the tube, and the glass-forming compound is a silicon tetrahalide. .Iaddend. .Iadd.15. A method as claimed in claim 14, characterized in that the tube is heated to a temperature which is not greater than 1200 C. and not below 800 C. .Iaddend. .Iadd.16. A method as claimed in claim 15, characterized in that the plasma is formed by means of a high frequency field or a microware resonator. .Iaddend. .Iadd.17. A method as claimed in claim 16, characterized in that a dopant-forming compound is added to the gas mixture. .Iaddend. .Iadd.18. A method of producing a fiber-optic light conductor comprising the steps of:
producing an internally coated glass tube as claimed in claim 17; and
drawing the internally coated glass tube to form a a fiber-optic light conductor. .Iaddend.
Description
BACKGROUND OF THE INVENTION

This is a continuation of application Ser. No. 610,570, filed Sept. 5, 1975, now abandoned.

The invention relates to a method for producing internally coated glass tubes, consisting of a core and a jacket of glasses which have a mutually different refractive index, by means of a reactive deposition of the coating from a gas mixture which is passed through the tube and which is brought to reaction in the tube.

The tubes produced in this manner are heated to a temperature which is suitable for drawing and thereafter drawn to such an extent that the diameter is reduced until the coating is brought to coincidence and a light conductor of the required diameter is obtained.

Light conductors consist of a light-conducting core which is embedded in a jacket of a lower refractive index. The core may, for example, consist of quartz glass which has been doped with a few percent of a metal oxide which increases the refractive index and the jacket of undoped quartz glass.

For the doping of the core glass TiO2, GeO2 and Al2 O3 may, for example, be used. In the so-called self-focussing fibre optic light conductors a parabolic change in the refractive index across the radius is obtained by means of a continuous change in the grades of doping. According to a known method such internally coated quartz glass tubes are produced in which gaseous SiCl4 and oxygen or a mixture of SiCl4, TiCl4 and oxygen are passed through a tube brought there to reaction in the gas phase by means of high frequency energization and probably precipitated at least partly as a soot-like glass coat, which must thereafter be melted or sintered. There is a danger that gases are trapped which later on might form light-scattering centers. The heat treatment makes the formation of a doping profile as required for self-focussing fibre optic light conductors difficult, owing to blurring due to diffusion.

The tube may consist of non-doped quartz glass. In this method a uniform relative motion in .Iadd.an .Iaddend.axial direction may be caused between the tube and a high frequency pulse which envelopes the tube .[.a.]..Iadd.. A .Iaddend.uniform distribution of the deposit is enhanced by the fact that the tube is rotated during the coating procedure.

SUMMARY OF THE INVENTION

It is an object of the invention to provide a method of the aforementioned kind in which the rate of deposition is relatively large, in which coatings of a good quality are obtained and .[.that.]. .Iadd.in which .Iaddend.the deposition is not the result of a homogeneous reaction in the gas phase but of a heterogeneous reaction on the wall. According to the invention this object is realized by means of a method which is characterized in that in the tube a non-isothermal plasma zone is produced for the activation of the reactive deposition while a relative motion is caused between the tube and the equipment which produces the plasma, and a temperature zone in which the tube is heated to such a temperature that the deposited coatings are stress-free is superimposed on the plasma zone and that deposition takes place at a pressure of between 1 and 100 Torr.

In this respect a non-isothermal plasma is understood to mean a zone in which the kinetic energy of the gas particles is small compared with the energy of the excited electronic states. In spite of the low translational energy, many dissociated and ionised particles are available, which are favourable for the reaction and promote it.

With the method according to the invention well-adhering, crackfree or substantially crackfree coatings are formed on the tube wall. This is probably explained by the fact that in the method according to the invention the precipitation of the doped quartz glass takes .Iadd.place .Iaddend.mainly .[.place.]. on the tube wall and no or practically no soot-like particles are formed in the gas atmosphere. However it appeared that at pressures over 100 Torr the non-isothermal plasma gradually changes into an isothermal plasma and that the reactive deposition also takes place in gas while glass soot is formed.

The method according to the invention also enables the direct reactive deposition on a quartz wire or quartz rod which is arranged inside the tube.

With the method according to the invention deposition rates of from 2500 μm/hour can be attained. The method according to the invention makes it .[.therefore.]. possible .Iadd.therefore, .Iaddend.to obtain in an economic way a uniform deposition over long tube lengths.

In the method according to the invention a heating up of the tube (temperature zone) of greater length is superimposed on the plasma zone. The temperature shall then not be chosen that high that a homogeneous gas reaction could take place, but it must at least be chosen that high that the deposited coatings are stress-free. Heating of the tube to a temperature of between 800 C. and 1200 C., for example in the GeCl4 /oxygen system, does not or to only a small extent affect the deposition rate. In the temperature zone the consistency of the deposited coating is favourably influenced on the one hand because, at the chosen temperatures the mobility of the deposited matter is still sufficient to obtain a stress-free coat and on the other hand because the embedding of gaseous reaction products is avoided.

At temperatures which are too low, in general below 800 C. gases such as chlorine produced during the reaction may be trapped. At temperatures over 1200 C. reaction in the gas phase .Iadd.also .Iaddend.takes .[.also.]. place while soot-like particles are formed at the same time.

The plasma may be produced in any way, known in the art, for example by the inductive or capacitive coupling of a high frequency field or in a microwave resonator.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be further explained with reference to the drawing and the following examples.

In the drawing

FIG. 1 is a diagrammatic representation of a device for performing the method according to the invention;

FIG. 2 shows the attenuation of a fibre optic light conductor drawn from a tube produced according to the invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

A tube 1, for example made of quartz is moved to a heating device 2, for example an electric heating coil in the direction indicated by arrows. The heating device 2 is enveloped by a resonator 3 by means of which a plasma 4 can be produced in the gas mixture passed through the quartz tube 1.

In the reactive deposition a coating 5 is directly formed on the inner wall of the tube 1.

EXAMPLE I

The deposition of non-doped SiO2. A gas mixture consisting of SiCl4 and oxygen was passed through a quartz tube 1 (length 150 cm, outer diameter=8 mm, inner diameter=6 mm) at a throughput of 545 cm3 /minute. The mixture consisted of 7 volume % SiCl4 and 93 volume % oxygen. The pressure in tube 1 was 12 Torr. The wall temperature was kept at 1000 C. The tube 1 was passed at a speed of 0.17 cm per minute through the device, formed by heating device 2 having a length of 500 mm and resonator 3 having a length of 30 mm, while a plasma 4 was produced by a 2.45 GHz generator. An SiO2 coating having a thickness of 130 μm was formed directly on the tube wall. A gas phase reaction together with the formation of soot-like particles did not take place. The reaction efficiency in the plasma 4 is then almost 100%. The coating formed adheres well and is homogeneous. The gas mixture was measured in scm3 (standard cubic centimeters). 1 scm3 is one cm3 of the gas, where P=760 mm and T=0 C.

EXAMPLE II

The deposition of an SiO2 -coat doped with GeO2. A mixture of SiCl4 and oxygen, consisting of 4 volume % SiCl4 and 96 volume % oxygen was used to which increasing linearly with time, GeCl4 was added until the content of GeCl4 was 0.4% by volume. The pressure was 10 Torr. The wall temperature was kept at 960 C. The throughput was 40 scm3 /minute and the duration of the test was 2 hrs. A well-adhering SiO2 coat doped with GeO2 was obtained. The coating consisted of 940 single layers of an increasing GeO2 content .Iadd.toward a central axis of the tube.Iaddend.. The resonator 3 was moved forward and backward along the tube in this test at 60 cm/min.

EXAMPLE III

A mixture of 0.4 volume % AlCl3, 4 volume % SiCl4 and .Badd.95.6 volume % oxygen was passed through the quartz tube at a throughput of 42 scm3 per minute (length and diameter as in Example I). The pressure in the tube 1 was 15 Torr. The wall temperature of the tube 1 was kept at 950 C. A plasma 4 as in Example I was produced. (Power 180 W, frequency 2.45 GHz). The reaction efficiency was approximately 100%. The tube was passed through the device 2-3 at a speed of 60 cm per minute while the resonator 3 was moved forward and backward along the tube 1. A homogeneous, adhering coat 5 was obtained. The total thickness of the coating was 150 μm.

FIG. 2 shows the total attenuation in dB per km as a function of the wavelength in micrometer of a fiber optic light conductor which was obtained by drawing at 1900 C. of an internally coated tube according to Example II. The core diameter was 25 μm and the fiber diameter was 100 μm. The difference in the refractive indexes were approximately 5 o/oo.

By means of the method according to the invention a coating profile which has a certain refractive index in proportion to the doping can be obtained as shown above at a progressive change of the doping share. When a suitable profile is chosen the tube forms in an ideal manner a basic product for the production of monomode, multimode and self-focussing fiber optics.

.Iadd.Dopant-forming compounds which may be used in the method according to the invention are, for example, GeCl4, TiCl4, and AlCl3 which oxidize to form the dopants GeO2, TiO2, and Al2 O3, respectively.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3484276 *Jul 21, 1966Dec 16, 1969Philips CorpApparatus for and method of providing a melted insulating coating on the inner surface of a tubular article
US3711262 *May 11, 1970Jan 16, 1973Corning Glass WorksMethod of producing optical waveguide fibers
US3932162 *Jun 21, 1974Jan 13, 1976Corning Glass WorksMethod of making glass optical waveguide
US3934061 *Jul 18, 1973Jan 20, 1976Corning Glass WorksMethod of forming planar optical waveguides
US3938974 *Apr 22, 1974Feb 17, 1976Macedo Pedro BMethod of producing optical wave guide fibers
US3957474 *Apr 17, 1975May 18, 1976Nippon Telegraph And Telephone Public CorporationMethod for manufacturing an optical fibre
US3961926 *Dec 27, 1974Jun 8, 1976International Telephone And Telegraph CorporationDoping silica, vaporizing a germanium halide, oxidation
US4011006 *Dec 17, 1975Mar 8, 1977Bell Telephone Laboratories, IncorporatedGeO2 -B2 O3 -SiO2 Optical glass and lightguides
CA622011A *Jun 13, 1961Lumalampan AbProducing oxide coatings on glass surfaces
Non-Patent Citations
Reference
1Powell, C. F., et al., Vapor Deposition The Electrochemical Society, John Wiley and Son, Inc., New York (1966), p. 424.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4966614 *Feb 16, 1988Oct 30, 1990U.S. Philips Corp.Method of and device for manufacturing optical fibers
US5133794 *Jul 11, 1991Jul 28, 1992U.S. Philips Corp.Method of manufacturing optical fibres
US5188648 *Oct 16, 1991Feb 23, 1993U.S. Philips Corp.Method of manufacturing optical fibres
US6574994 *Jun 18, 2001Jun 10, 2003Corning IncorporatedMethod of manufacturing multi-segmented optical fiber and preform
US6764714Jun 11, 2002Jul 20, 2004Southwest Research InstituteMethod for depositing coatings on the interior surfaces of tubular walls
US6802190 *Dec 11, 2002Oct 12, 2004Lucent Technologies Inc.Method of fabricating a GRIN fiber
US7052736Mar 23, 2004May 30, 2006Southwest Research InstituteMethod for depositing coatings on the interior surfaces of tubular structures
US7092611Aug 28, 2002Aug 15, 2006Draka Fibre Technology B.V.Method for manufacturing a bar-shaped preform as well as a method for manufacturing optical fibres from such a bar-shaped preform
US7351480Oct 24, 2003Apr 1, 2008Southwest Research InstituteVapor deposition; uniform coating
US7526177Jul 3, 2007Apr 28, 2009Draka Comteq B.V.Fluorine-doped optical fiber
US7587111Apr 9, 2007Sep 8, 2009Draka Comteq B.V.Single-mode optical fiber
US7623747Nov 6, 2006Nov 24, 2009Draka Comteq B.V.Single mode optical fiber
US7689093Mar 27, 2009Mar 30, 2010Draka Comteq B.V.Fluorine-doped optical fiber
US7734135Apr 7, 2003Jun 8, 2010Draka Comteq B.V.Method and device for manufacturing optical preforms, as well as the optical fibres obtained therewith
US7889960May 6, 2009Feb 15, 2011Draka Comteq B.V.Bend-insensitive single-mode optical fiber
US7899293Sep 4, 2009Mar 1, 2011Draka Comteq, B.V.Single-mode optical fiber
US7995889Nov 19, 2009Aug 9, 2011Draka Comteq, B.V.Single mode optical fiber
US8031997Nov 10, 2009Oct 4, 2011Draka Comteq, B.V.Reduced-diameter, easy-access loose tube cable
US8041167Nov 9, 2009Oct 18, 2011Draka Comteq, B.V.Optical-fiber loose tube cables
US8041168Nov 10, 2009Oct 18, 2011Draka Comteq, B.V.Reduced-diameter ribbon cables with high-performance optical fiber
US8081853Nov 9, 2009Dec 20, 2011Draka Comteq, B.V.Single-fiber drop cables for MDU deployments
US8103143Feb 28, 2011Jan 24, 2012Draka Comteq, B.V.Single-mode optical fiber
US8131125Feb 11, 2011Mar 6, 2012Draka Comteq, B.V.Bend-insensitive single-mode optical fiber
US8145025May 6, 2009Mar 27, 2012Draka Comteq, B.V.Single-mode optical fiber having reduced bending losses
US8145026Nov 9, 2009Mar 27, 2012Draka Comteq, B.V.Reduced-size flat drop cable
US8145027May 6, 2010Mar 27, 2012Draka Comteq, B.V.Microbend-resistant optical fiber
US8165439Nov 9, 2009Apr 24, 2012Draka Comteq, B.V.ADSS cables with high-performance optical fiber
US8252387 *Dec 10, 2007Aug 28, 2012Ofs Fitel, LlcMethod of fabricating optical fiber using an isothermal, low pressure plasma deposition technique
US8265442Nov 10, 2008Sep 11, 2012Draka Comteq, B.V.Microbend-resistant optical fiber
US8385705Mar 26, 2012Feb 26, 2013Draka Comteq, B.V.Microbend-resistant optical fiber
US8428414Mar 26, 2012Apr 23, 2013Draka Comteq, B.V.Single-mode optical fiber having reduced bending losses
US8467650Oct 19, 2010Jun 18, 2013Draka Comteq, B.V.High-fiber-density optical-fiber cable
US8600206Nov 6, 2009Dec 3, 2013Draka Comteq, B.V.Reduced-diameter optical fiber
US8662011 *May 1, 2008Mar 4, 2014Draka Comteq B.V.Apparatus for carrying out plasma chemical vapour deposition and method of manufacturing an optical preform
US8798423May 25, 2012Aug 5, 2014Draka Comteq, B.V.Single-mode optical fiber
US8798424Jun 8, 2012Aug 5, 2014Draka Comteq B.V.Single-mode optical fiber
US20110308461 *Aug 17, 2010Dec 22, 2011Walton Scott GElectron Beam Enhanced Nitriding System (EBENS)
DE3720029A1 *Jun 16, 1987Dec 29, 1988Philips PatentverwaltungProcess for the production of optical fibres
EP0117009A1Feb 20, 1984Aug 29, 1984Philips Electronics N.V.Method of making a solid preform for drawing optical fibres
EP0129291A1 *Jun 13, 1984Dec 27, 1984Philips Electronics N.V.Method of and device for manufacturing optical fibres
EP0132011A2 *Jul 11, 1984Jan 23, 1985Philips Patentverwaltung GmbHProcess for producing fibre light guides
EP0270157A1 *Nov 5, 1987Jun 8, 1988Philips Electronics N.V.Apparatus for coating the inside of a tube with glass
EP0295745A2 *Jun 9, 1988Dec 21, 1988Philips Patentverwaltung GmbHMethod for making optical fibers
EP2527893A1May 27, 2011Nov 28, 2012Draka Comteq BVSingle mode optical fiber
EP2533082A1Jun 9, 2011Dec 12, 2012Draka Comteq BVSingle mode optical fiber
EP2541292A1Jul 1, 2011Jan 2, 2013Draka Comteq BVMultimode optical fibre
WO2009062131A1Nov 9, 2008May 14, 2009Draka Comteq BvMicrobend- resistant optical fiber
Classifications
U.S. Classification427/573, 138/145, 427/255.18, 427/575, 204/164, 427/167, 65/417, 427/237, 427/231, 427/255.24, 138/177, 385/124, 427/255.19, 65/391
International ClassificationC03B37/018, G02B6/00
Cooperative ClassificationC03B37/0183
European ClassificationC03B37/018B2B2
Legal Events
DateCodeEventDescription
May 5, 1998ASAssignment
Owner name: PLASMA OPTICAL FIBRE B.V., NETHERLANDS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:U.S. PHILIPS CORPORATION;REEL/FRAME:009207/0784
Effective date: 19980430