Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE32361 E
Publication typeGrant
Application numberUS 06/399,638
Publication dateFeb 24, 1987
Filing dateJul 19, 1982
Priority dateMay 14, 1979
Publication number06399638, 399638, US RE32361 E, US RE32361E, US-E-RE32361, USRE32361 E, USRE32361E
InventorsStephen R. Duggan
Original AssigneeMedtronic, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Implantable telemetry transmission system for analog and digital data
US RE32361 E
Abstract
An improved telemetry transmission system for transmitting electrocardiographic information, indications of the occurrence of the pacing pulse and for transmitting digitially encoded information from an implanted pacemaker, an implanted drug dispensing device, or other implanted device, to a remote receiver. Digital data transmitted by the implanted system may include all programmed parameters as well as power source status and self test indications, or other programmed digital data such as the device serial number and lot number.
Images(2)
Previous page
Next page
Claims(8)
Having described the invention by way of the above examples and general description, the subject matter in which exclusive rights are claimed is defined as follows:
1. In a telemetry system for transmitting data from at least one location within a living body to an external receiver, a transmitter comprising:
input means for receiving a signal from said location and providing an electrical signal representative of said data;
modulator means for receiving said electrical signal and generating an alternating signal having a frequency which differs from a predetermined nominal frequency by an amount determined by some characteristic of said electrical signal;
antenna means;
current source means;
capacitance means; and
switching means controlled by the alternating signal from said modulator means to connect said capacitance means to said current source means during half of the period of said alternating signal from said modulator means, and to connect said capacitance means to said antenna means during the other half of said alternating signal.
2. The invention of claim 1 wherein said antenna means is tuned to radiate damped sinusoidal signals having a frequency of approximately 10 kHz when said switching means connects to said capacitance means to said antenna means.
3. The invention of claim 1 wherein said antenna means has a resonant frequency of 175 kHz, the resonant frequency of said antenna means being reduced by the connection of said capacitance means to 10 kHz.
4. The invention of claim 1 wherein the predetermined nominal frequency of the output of said modulator means is approximately 1500 Hz.
5. The invention of claim 1 wherein said modulator means comprises a voltage controlled oscillator having a minimum current at which it may be operated and further comprising current limiting means for limiting the current delivered to power said voltage controlled oscillator to an amount slightly exceeding the minimum current at which said voltage controlled oscillator may be operated.
6. In the telemetry system of claim 1, a receiver comprising:
receiving antenna means;
band pass filter means connected to said receiving antenna means to receive a signal from said receiving antenna means and said filter delivering an output signal representative of received signals within the pass band; and
a phase lock loop circuit connected to said band pass filter to receive the output therefrom and said circuit producing a demodulated analog output signal representative of said data.
7. A telemetry system for transmitting data from at least one location within a living body to an external receiver, a transmitter comprising:
input means for receiving a signal from said location and providing an electrical signal representative of said data;
modulator means for receiving said electrical signal and generating an alternating signal having a frequency which differs from a predetermined nominal frequency by an amount determined by some characteristic of said electrical signal;
transmitting antenna means;
current source means;
capacitance means; and
switching means controlled by the alternating signal from said modulator means to connect said capacitance means to said current source means during half of the period of said alternating signal from said modulator means, and to connect said capacitance means to said transmitting antenna means during the other half of said alternating signal, said transmitting antenna means radiating a signal during said other half of said alternating signal;
a receiver comprising:
receiving antenna means adapted to receive a signal radiated by said transmitting antenna means;
band pass filter means connected to said receiving antenna means to receive a signal from said receiving antenna and said filter delivering an output signal representative of received signals within the pass band; and
a phase lock loop circuit connected to said band pass filter to receive the output therefrom and said circuit producing a demodulated analog output signal representative of said data. .Iadd.
8. A transmitter for transmitting signals from an implantable medical device which are representative of either analog or digital values comprising a signal controlled variable frequency oscillator means having a control terminal, signal application means for selectively presenting information signals representative of said digital and analog values to said control terminal to vary the frequency of said oscillator means in response thereto relative to a nominal output frequency of said oscillator means that exists when said information signals are not being supplied, tank circuit and antenna means having a predetermined ringing frequency of oscillation when pulsed with energy, and drive circuit means coupled to said oscillator means and to said tank circuit and antenna means for supplying pulses of energy to said tank circuit and antenna means at a rate that is proportional to the output frequency of said oscillator means whereupon said pulses are radiated from said tank circuit and antenna means as damped ringing signals wherein said drive circuit means comprises a storage capacitor and discharge means for discharging said capacitor into said tank circuit and antenna means at a rate proportional to the frequency of said oscillator means so as to cause bursts of energy to be expended in said tank circuit and antenna means and transmitted thereby. .Iaddend. .Iadd.9. A transmitter as claimed in claim 8 wherein said discharge means comprises switching means for controlling the charging and discharging rate of said storage capacitor under the control of the output of said oscillator means. .Iaddend. .Iadd.10. A transmitter as claimed in claim 9 wherein the frequency of said tank circuit and antenna means is higher than said nominal frequency of oscillation of said signal-controlled oscillator means. .Iaddend. .Iadd.11. A transmitter as claimed in claim 10 wherein said tank circuit and antenna means comprises inductance means and capacitance means connected in parallel and said inductance means comprises a radiation coil. .Iaddend. .Iadd.12. A transmitter as claimed in claim 8 wherein said discharge means comprises switching means for controlling the supply of energy pulses to said tank circuit and antenna means under the control of the output of said signal-controlled oscillator means. .Iaddend. .Iadd.13. A transmitter as claimed in claim 12 wherein said tank circuit and antenna means comprises inductance means and capacitance means connected in parallel and said inductance means comprises a radiation coil. .Iaddend. .Iadd.14. A transmitter as claimed in claim 12 wherein the frequency of said tank circuit and antenna means is higher than said nominal frequency of oscillation of said signal-controlled oscillator means. .Iaddend.
Description
DESCRIPTION BACKGROUND OF THE INVENTION

The present invention relates to a telemetry system for transmitting information detected by or relating to electronic devices such as implanted cardiac pacemakers or implanted medication dispensing devices to an external receiver for recording and analysis or for retransmission over phone lines to a remote location.

Adequate evaluation of the operation of implanted electronic prosthetic devices such as pacemakers is necessary to verify their proper operation and to avoid undetected premature performance degradation so that corrective steps may be taken promptly. Although some systems have been previously described which claim to have achieved adequate monitoring of one or more variables in connection with the operation of an implanted pacemaker, those systems have proven to be cumbersome in providing usable information to an external terminal.

In addition, the prior art systems have not generally attempted to solve the problems of transmitting information from a metal encased implantable device. Prior art systems have also failed to consider the compatibility of the telemetry system with a programmable pacemaker or other remotely programmed implantable device which operates at some times in response to an externally generated programming signal.

A telemetry patent, U.S. Pat. No. 4,026,305, to Tyers, relates to a telemetry system for transmitting a signal indicating the battery voltage of a pacemaker to an external monitor. The system disclosed in Tyers is not usable for transmission of electrocardiogram information or for digital data. The Tyers system uses a low pass system which includes 60 Hz and 120 Hz.

Further, the problem of minimizing the power consumption of a two-way telemetry system capable of transmission through a metal shield has not been adequately addressed.

The present invention accordingly provides a two-way telemetry system utilizing an improved ultra-low power circuit for transmission of pacemaker EKG, analog data, or stored digital data to an external terminal. The system operates to permit monitoring of the electrical activity on the lead of an implantable pacemaker without attaching external or catheter electrodes to the patient. The receiver uses a bandpass system which operates above the common noise frequencies of 60 Hz and 120 Hz.

To receive transmitted data, a receiving coil antenna is placed over the implantable pacemaker and the pacemaker is commanded by applying a programming signal to its circuitry to cause it to send out the electrogram, the pacing pulse, or other data to the remote receiver.

The transmitting circuitry of the present invention is compatible with the antenna and receiving circuitry shown in co-pending application entitled Digital Cardiac Pacemaker, filed Nov. 6, 1978, under Ser. No. 957,958, now U.S. Pat. No. 4,230,128 naming Ray S. McDonald as the inventor. That application discloses a pacemaker pulse generator which can be remotely programmed.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the present invention is hereafter described with specific reference being made to the following figures in which:

FIG. 1 is a simplified block diagram of the entire telemetry system;

FIG. 2 shows the type of damped sinusoid signals transmitted by the system;

FIG. 3 is a detailed schematic diagram of the transmitter circuitry;

FIG. 4 is a detailed schematic of the receiving circuitry.

BLOCK DIAGRAM OF TRANSMITTER

Referring now to FIG. 1, there is shown a block diagram of the implantable transmitter 10 and of the receiver 12 used therewith. The dashed line 13 generally designates the skin of the patient in which the transmitter 10 is implanted. The block diagram of the transmitter 10, which is enclosed within a sealed metallic case 13 made of titanium or some similar material. A solid state switch module 14 which receives analog data at an input 16 and digitial data at an input 18 is shown within case 13. The sources of the analog and digital data provided to inputs 16 and 18 are discussed more fully below.

The analog signal may, in cardiac pacemaker applications, be derived from any of a number of sources. Through appropriate conventional switching, analog signals indicative of the endo or myoelectrogram or pacing artifact may be provided. Typical pacing artifacts are the actual pacing pulse, a voltage indicative of the charging of the pacemaker output stage capacitor or a signal indicative if lead electrode repolarization. Any low voltage 0.1 Hz to 80 Hz bandwidth analog signal lends itself to transmission utilizing the system disclosed.

Digital data suitable for transmission is required to be in non-return to zero digital pulses shifted at 10 msec per bit. In digital pacemakers such as the one disclosed in my co-pending application, continuation-in-part Ser. No. 127,308, filed Mar. 5, 1980, entitled Multimode Adaptable, Implantable Pacemaker, data relating to the operation of the device is located in a number of memory locations as 8 data bit words. Such digital data can be readily put into asynchronous non-return to zero form with a start bit, 7 or 8 data bits, a parity bit, and a stop bit. The formatting of the data can be accomplished with commercially available UART circuits such as the CDP 1854 UART sold by RCA and other manufacturers.

The digital data input terminal 18 may also be used to generate a calibrating signal for use in calibrating the EKG channel in a recorder connected to the telemetry receiver.

Solid state switch 14 acts in response to a digital/analog control signal on terminal 20 to select either analog or digital data for transmission. Such a signal can be internally generated within a programmable digital pacemaker. The output of the solid state switch 14 is connected to the input of a voltage controlled oscillator 22 through a conductor 24. The voltage controlled oscillator 22 also receives a controlled current on conductor 26 which is regulated by a constant current source 28 driven by a voltage source 30. In the embodiment shown, the supply voltage is nominally 5 volts. Use of low threshold CMOS circuitry in the transmitter 10 would allow use of an even lower nominal voltage for the power source.

The output of the voltage controlled oscillator 22 is connected to control the operation of a further solid state switch 32 through conductor 34. Solid state switch 32 receives a controlled current through conductor 36. The controlled current is supplied by a current regulating circuit 38 which is in turn connected to voltage source 30. The output of the solid state switch 32 is connected to an antenna coil 40 across which is connected a capacitor 42.

The magnitude of the voltage at output of the solid state switch 14 linearly modulates the free running frequency of the voltage controlled oscillator or VCO 22 as a function of the input voltage. In the preferred embodiment shown, the free running frequency of VCO 22 is 1500 Hz and the modulation scale factor is 10 Hz per millivolt. The 1500 Hz free running frequency was selected to correspond to the center of the band width of a standard telephone system, and the scale factor was selected for compatibility with typical 20 mvolt EKG signals.

The output of voltage controlled oscillator 22 on line 34 is used to control the action of the solid state switch 32. When the voltage controlled oscillator 22 has a low output voltage representative of a logic zero, switch 32 is in the position shown in FIGS. 1 and 3, and connected to receive current from the constant current source 38 and charge capacitor 44. In the specific embodiment shown, the increase of voltage across capacitor 44 during the charging cycle is typically in the vicinity of 18 millivolts. When the output of the voltage controlled oscillator 22 is a high voltage corresponding to a logic 1, the solid state switch 32 switches to the other position connecting the capacitor 44 to dump its energy into the tuned parallel combination of capacitor 42 and the antenna coil 40.

It should be pointed out that capacitor 42 tunes antenna coil 40 to the resonant frequency of input programming pulses as discussed in the above-identified Digital Cardiac Pacemaker patent application to Ray S. McDonald. Thus, the antenna coil functions not only as a transmitting antenna as described herein, but also as a receiving antenna when switch 32 is in a position to charge capacitor 44.

The tuned combination of capacitors 42 and 44 and coil 40 oscillates at a resonant frequency of 10 kHz. It is important to limit the damped sinusoid frequency F1 to approximately 10 kHz or less to minimize the attenuation of the signal by the titanium case used to enclose the antenna and circuitry. The damping factor of the equivalent parallel tuned circuit comprising capacitors 42 and 44 and conductor 40 should not exceed 0.2 to assure oscillation of the tuned circuit.

The damped sinusoidal voltage created across antenna 40 is important in the operation of the telemetry system and creates a distinct advantage in performance over systems, such as Tyers, which drive the transmitting antenna with a fixed level voltage. In the present invention, use of a damped sinusoidal voltage across antenna 40 creates an electromagnetic field whose maximum strength occurs at the frequency F1, which in the preferred embodiment occurs at a frequency of approximately 10 kHz. In contrast, a fixed voltage impressed across an antenna such as 40 would cause the maximum energy to be concentrated at zero frequency and diminish at higher frequencies in accordance with an envelope of sine F divided by F as is commonly known in the art. All things being equal, a receiver such as 12 which detects this radiated energy must be tuned to a very low frequency to recover the transmitted energy. This is undesirable since the prevalent noise frequencies of 60 Hz and 120 Hz are included in the frequencies.

In the preferred embodiment discussed, a receiver such as 12 which is receiving radiated evergy from an antenna driven with damped sinusoidal voltage would be tuned at a frequency F1 of 10 kHz to avoid reception of the noise frequencies of 60 and 120 Hz. Use of damped sinusoidal frequency modulated signals as disclosed thereby results in a desirable noise-free operation and a more cost-effective system since costly noise filters are not necessary.

FIG. 2 illustrates the nature of the voltage waveform across the antenna coil 40 as a function of time. The frequency F1 is the 10 kHz resonant frequency of the antenna 40, its associated capacitor 42 and capacitor 44, while the frequency F2 represents the 1.5 kHz frequency modulated signal which appears at the output of the voltage controlled oscillator 22.

SCHEMATIC OF TRANSMITTER

FIG. 3 is a detailed schematic of the transmitter circuitry 10 shown in FIG. 1 with the components which are shown in FIG. 1 similarly numbered. The analog input at terminal 16 is connected to the input terminal of solid state switch 14 through a DC blocking capacitor 46 which has a sufficiently large capacitance to provide a low frequency response sufficient to pass a 0.1 Hz sine wave and large enough to prevent distortion of an EKG signal due to differentiation.

The signal after passing through blocking capacitor 46, is connected to the input terminals of the solid state switch 14. The indicated terminal designations for solid state switches 14 and 44 and the terminals for the voltage controlled oscillator 22 are all as specified by the manufacturer. Switch 14 operates to connect either the analog input received at terminal 16 or the digital input received at terminal 18 to the input of terminal 9 of the voltage controlled oscillator 22.

Switch 47 is shown in FIG. 3 with its wiper tied to terminals 3 and 6 of switch 14, which are grounded when an analog input is selected. When a digital input signal or a calibration signal is to be received at terminal 18, switch 47 is moved to position B with terminals 3 and 6 tied to a positive voltage. Switch 47 or an associated logic signal such as 20, shown in FIG. 1, can be generated by the prosthetic device control logic to cause the transmitter to select a digital or analog input. Alternatively, switch 47 can be actuated from outside of the body in which the transmitter is implanted by using a magnetic reed switch to switch between input signals.

In the specific circuit shown in FIG. 3, the digital input port 18 is connected to an N channel transistor switch module 14. When the voltage at terminal 18 is high, the transistor 48 places a low impedance path across resistor 50, and the voltage change across resistor 50 which is caused by the switching of transistor 48, is coupled through a capacitor 52 through the solid state switch 14.

When solid state switch 14 is in position B to receive digital input data from terminal 18, a path through the switch is provided from the constant current cirucit 70 used to provide input bias to the voltage controlled oscillator 22. The bias circuit 70 provides a current of approximately 0.5 microamperes along conductor 54. Since in the preferred embodiment, bias resistors 56 and 58 have a total impedence of approximately 1.5 megohms, and resistor 50 has a resistance of approximately 20 K ohms, the switching of transistor 48 across resistor 50 does not measurably alter the input bias to the voltage controlled oscillator 22 unless the switch of the solid state switch 14 is in position B as shown to select digital data.

The ten millivolt voltage swing across resistor 50 is transmitted through capacitor 52 and switch 14 to the input of the voltage controlled oscillator 22 with a rapid rise time. The digital input can thus be used to calibrate an EKG recorder receiving the signal from the transmitter to provide an output signal indicative of a 10 mv input signal.

FIG. 3 also shows a current regulator 28 connected to the power supply 30. In the preferred embodiment shown, the current regulator comprised of PNP transistors 60 and 62 and resistors 64 and 66 is adjusted to provide a constant current of approximately 3.5 microamperes nominal from the collector of transistor 62. Variable resistor 66 is used to adjust the current delivered.

The output of current regulator 28 is delivered to the positive supply voltage terminal of the voltage controlled oscillator 22 and further to the current regulator 70 comprised of transistors 72 and 74 and resistors 76 and 78 which establish a controlled current output from the collector of transistor 74 of 0.5 microamps nominal as a bias current to the input of the voltage controlled oscillator 22. Capacitor 80 is connected to the output of the current regulator 28 to smooth the supply voltage applied to the voltage controlled oscillator 22. Capacitor 81 is connected between pins 6 and 7 of VCO 22, while resistor 83 is connected between pin 11 and ground.

The regulation and limiting of the current delivered to the voltage controlled oscillator 22 limits the current consumption of the oscillator to a value preset by the constant current source to prevent voltage controlled oscillator 22 from drawing excessive current. By limiting the current supplied to voltage controlled oscillator 22 and to the output switch 32 to an amount slightly above the minimum current at which they will operate the current drain can be minimized and held constant as the voltage 22 of the voltage source 30 decays with time. Since the minimum operating voltage at which devices can operate varies between devices, it is not practical to minimize the current drawn by the various circuits by adjusting the voltage of voltage source 30.

The output of voltage controlled oscillator 22 at pin 4 of oscillator 22 is a 50 percent duty cycle, frequency modulated 1500 Hz square wave, which is converted to a damped 10 kHz damped sinusoid by the output stage 32 of the transmitter 10 as described below.

Current source 38, which is comprised of transistors 82 and 84 and resistors 86 and 87, supplies a regulated 13 microampere charging current to a 0.22 microfarad capacitor 44 through solid state switch 32 when the switch is in position A as shown in FIG. 3. Since the switch 32 is driven from conductor 32 by the 50 percent duty cycle output of VCO 22, the average current is 6.5 microamperes nominal. The current from current regulator 38 charges capacitor 44 to approximately 18 millivolts during the half period of the 1500 Hertz drive signal from the voltage controlled oscillator output 34 when the voltage is low.

During the half period when the VCO 22 has a logic one at its output terminal 4, the switch in solid state switch 32 is in the B position, which turns the field effect transistor 92 on, providing a low impedance path for capacitor 44 to discharge the energy stored in the previous half cycle into the parallel combination of capacitor 42 and antenna 40. The action of dumping the stored charge in capacitor 44 into the parallel combination of capacitor 42 and inductor antenna 40 causes the antenna voltage to oscillate as a damped sinusoid whose frequency and amplitude are readily controlled by the selection of capacitor values 42 and 44, inductance and resistance of antenna 40 and the charging current from current source 38 according to formulae known to those skilled in the art. The capacitance of capacitor 42 and the inductance of antenna 40 are selected to resonate at a frequency of 175 K Hertz, which is the receiving frequency of the antenna of the device disclosed in the above-identified patent application for Digital Cardiac Pacemaker of Ray S. McDonald.

In the preferred embodiment shown, capacitor 42 has a capacitance of 330 picofarads, capacitor 44 has a value of 0.22 microfarads, and the inductance of the antenna 40 is approximately one millihenry. Since capacitor 44 is much larger than capacitor 42, inductor 94 and capacitor 42 resonate as they receive the stored energy in capacitor 90 as a damped sinusoid at 10 kilohertz. The frequency of the damped sinusoidal oscillation is controlled primarily by capacitor 44 and inductor 40, while the repetition rate of the pulses is determined by the VCO 22. Note also, that when a switch 32 is in position A, the solid state switch 32 and the field effect transistor 92 are connected in such a way as to isolate capacitor 44 from the parallel tuned circuit consisting of capacitor 42 and inductor 40. This design allows the inductor 40 and capacitor 42 to function as a receiving parallel tuned circuit without appreciable attenuation caused by other components in the circuit. Inductor antenna 40 therefore functions not only as a transmitting antenna, but also as a receiving antenna, which may be connected to receiving circuitry at terminal 43, thereby achieving benefits of lower cost and fewer components by having a dual function. A suitable receiving circuit is shown in the McDonald application identified above.

The transmitter 10, when not in operation, does not place a load on antenna 40 which has a significant effect on its ability to receive externally transmitted information at 175 kHz. Tests of the unit indicate that the loading of the transmitter on the antenna is less than 0.5 db when the transmitter is not active.

RECEIVER CIRCUITRY

Referring again to FIG. 1, a block diagram of the receiver section 12 is shown. The receiver consists of an antenna section 100 and a tuning capacitor 102 which are connected to a band pass filter 103 which delivers its signal to a phase lock loop circuit 104 which provides its output signal to an amplifier 106 which drives a loud speaker 108 or some other indicating means.

A more detailed schematic of the circuitry of the receiving section 12 is shown in FIG. 4. The antenna in a preferred embodiment is wound from 1500 turns of #30 AWG wire in a loop having a diameter of approximately 10 centimeters. The inductance of the coil is approximately 0.396 henrys, and the coil was tuned with a shunt capacitor 102 to resonate at 10 kHz.

The antenna output is connected through a coupling capacitor 110 and a resistor 112 to the input of the first stage 114 of the band pass amplifier shown in FIG. 1, as block 103. Each stage of the amplifier provides independent control of low frequency cutoff and high frequency cutoff frequencies and provides a single order or six decibels per octave attenuation beyond the respective cutoff frequencies. The low frequency break point is determined by the values of resistor 112 and capacitor 110 while the high pass break point is determined by feed back resistor 116 and capacitor 118 for the first amplifier 114. Similarly, the low frequency break point is determined by the values of resistor 122 and capacitor 120 while the high frequency break point is determined by the values of resistor 126 and its stray capacitance for amplifier stage 124.

The particular advantage of the band pass amplifier configuration shown in FIG. 4 is that the amplifier's pulse response does not produce an oscillatory output because the poles of the amplifier Bode plot are always real rather then imaginary. This characteristic of the band pass amplifier is important in the disclosed receiver, since the received information signal from the transmitter is a damped sinusoid pulse.

The output of amplifier 114 is connected through a capacitor 120 and a resistor 122 to the input of the second band pass amplifier stage 124 which has a feed back resistor 126 connected between its output and its noninverting input terminals. The output of the second stage 124 of the band pass amplifier 103 is connected through a capacitor 128 to the input terminal of the phase lock loop circuit 104 and to one end of a grounded resistor 130.

The phase lock loop circuit is connected in an FM demodulation circuit arrangement. When the input 2 to the phase lock loop circuit 104 is grounded, the output frequency at terminals 4 and 5 is 1500 Hz. The pin designations are those indicated by the manufacturer. The FM demodulator circuit and its characteristics are described in further detail in Signetic Analog Manual, dated 1976, at Page 623.

Resistor 132 is an adjustable resistor used to set the phase lock loop circuit at 1500 Hz with its input at terminal 2 grounded. The oscillator output of the phase lock loop 104 is connected to a resistor 140 which provides the base drive to a grounded emitter NPN transistor 142, which in turn, drives a loud speaker or similar transducer 144 through a resistor 146. The capture range of the VCO as configured in FIG. 4 is plus or minus 434 Hz, while the lock range is plus or minus 2 kHz. Since the transmitter 10 has a voltage controlled oscillator scale factor of 10 Hz per millivolt deviation, the receiver circuit has the ability to receive an EKG signal of plus or minus 43 millivolts.

The output stage, including transistor 142, amplifies the 1500 Hertz FM square wave at the output of the voltage controlled oscillator to drive a small transducer 144 such as a one inch speaker which can then be positioned near a conventional telephone handset to transmit the 1500 Hz frequency modulated signal to a remote EKG machine or a digital data recorder.

Speaker 144 is connected to a telephone to transmit the frequency modulated signal over telephone lines, a receiver such as the Model 9401 Teletrace R receiver manufactured by Medtronic, Inc. can be used to demodulate the signal and provide an EKG trace. Alternatively, an analog signal representation can be directly obtained from the phase lock loop circuit on terminal 148.

Digital data can be received and converted to non-return to zero pulses which may then be decoded into numerals and characters using known terminal devices.

The preferred embodiment of the telemetry system disclosed above has been found to work well with the following values or part designations.

______________________________________Resistors          Ohms______________________________________50                 20K56                 1.3 M58                 200K64, 78, 86         10 M66                 100K variable in series              with 75K fixed76                 820K83, 112, 122, 130  100K116                2.2 M126                47 M132                10K variable140                15K146                10087                 100K variableCapacitors         Microfarads42                 0.00033044                 0.2246, 80             1.0102118                0.000005110, 120           0.00020052, 128            0.1134                0.47136                .00181                 0.000170138                0.047Transistors60, 62, 72, 74, 82,and 84             2N379948                 3N17192                 2N6661142                2N2222Circuitsswitch 14          TA 6178 RCAswitch 32          CD 4007 RCAvoltage controlledoscillator 22      CD 4046 RCAamplifiers 114, 124              LM 318 Nationalphase lock loop 104              NE 565 Signetics______________________________________
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2812427 *Dec 28, 1953Nov 5, 1957Alexander FPassive radio communication system
US3603881 *Mar 1, 1968Sep 7, 1971Del Mar Eng LabFrequency shift telemetry system with both radio and wire transmission paths
US3662758 *Jun 30, 1969May 16, 1972Mentor CorpStimulator apparatus for muscular organs with external transmitter and implantable receiver
US3698398 *Nov 6, 1970Oct 17, 1972American Optical CorpRate-scanning pacer for treatment of tachycardia
US3872455 *Nov 13, 1972Mar 18, 1975Monitron IndPhysiological measurement display system
US3888260 *Apr 26, 1974Jun 10, 1975Univ Johns HopkinsRechargeable demand inhibited cardiac pacer and tissue stimulator
US3942535 *Jul 26, 1974Mar 9, 1976G. D. Searle & Co.Rechargeable tissue stimulating system
US3952750 *Apr 25, 1974Apr 27, 1976Mieczyslaw MirowskiCommand atrial cardioverting device
US3997848 *Nov 26, 1975Dec 14, 1976The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationLinear phase demodulator including a phase locked loop with auxiliary feedback loop
US4026305 *Jun 26, 1975May 31, 1977Research CorporationLow current telemetry system for cardiac pacers
US4041954 *May 7, 1975Aug 16, 1977Kabushiki Kaisha Daini SeikoshaSystem for detecting information in an artificial cardiac pacemaker
US4142533 *Oct 28, 1976Mar 6, 1979Research CorporationMonitoring system for cardiac pacers
US4172459 *Oct 17, 1977Oct 30, 1979Medtronic, Inc.Cardiac monitoring apparatus and monitor
US4223679 *Feb 28, 1979Sep 23, 1980Pacesetter Systems, Inc.Telemetry means for tissue stimulator system
US4236523 *Nov 6, 1978Dec 2, 1980Medtronic, Inc.Frequency to voltage converter for cardiac communication system
Non-Patent Citations
Reference
1"A Totally Implantable Multi--Channel Telemetry System Using Custom Integrated Circuits", Knutti, et al, pp. 63-66.
2"An Inductively Powered Implantable Multichannel Telemetry System For Cardiovascular Data", McCutcheon, et al. pp. 71-74; BIOTELEMETRY III, Academic Press, Inc., N.Y. 1976.
3"Single Frequency RF Powering", Ko, et al, pp. 67-70.
4 *A Totally Implantable Multi Channel Telemetry System Using Custom Integrated Circuits , Knutti, et al, pp. 63 66.
5 *An Inductively Powered Implantable Multichannel Telemetry System For Cardiovascular Data , McCutcheon, et al. pp. 71 74; BIOTELEMETRY III, Academic Press, Inc., N.Y. 1976.
6 *Single Frequency RF Powering , Ko, et al, pp. 67 70.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4976681 *Apr 27, 1988Dec 11, 1990Aries Medical, Inc.Pacer interface device
US5345362 *Apr 29, 1993Sep 6, 1994Medtronic, Inc.Portable computer apparatus with articulating display panel
US5496353 *Sep 23, 1993Mar 5, 1996Grandjean; Pierre A.End-of-life indication system for implantable pulse generator
US5720771 *Aug 2, 1995Feb 24, 1998Pacesetter, Inc.Method and apparatus for monitoring physiological data from an implantable medical device
US6290646Apr 16, 1999Sep 18, 2001CardiocomApparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US6402689Sep 29, 1999Jun 11, 2002Sicel Technologies, Inc.Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors
US6411851Nov 4, 1999Jun 25, 2002Medtronic, Inc.Implantable medical device programming apparatus having an auxiliary component storage compartment
US6454705Sep 21, 1999Sep 24, 2002CardiocomMedical wellness parameters management system, apparatus and method
US6558321Aug 11, 2000May 6, 2003Dexcom, Inc.Systems and methods for remote monitoring and modulation of medical devices
US6820019 *Jul 31, 1999Nov 16, 2004Medtronic, Inc.Device and method for determining and communicating the remaining life of a battery in an implantable neurological tissue stimulating device
US6897788Apr 17, 2002May 24, 2005Motorola, Inc.Wireless system protocol for telemetry monitoring
US6931327Aug 1, 2003Aug 16, 2005Dexcom, Inc.System and methods for processing analyte sensor data
US6947795Oct 1, 2001Sep 20, 2005Transoma Medical, Inc.Frame length modulation and pulse position modulation for telemetry of analog and digital data
US6963770Apr 24, 2003Nov 8, 2005North Carolina State UniversityMethods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors
US6963771Sep 4, 2003Nov 8, 2005North Carolina State UniversityMethods, systems, and associated implantable devices for radiation dose verification for therapies used to treat tumors
US6987965Oct 22, 2002Jan 17, 2006Motorola, Inc.Programmable wireless electrode system for medical monitoring
US7001359Mar 16, 2001Feb 21, 2006Medtronic, Inc.Implantable therapeutic substance infusion device with active longevity projection
US7010340Feb 15, 2002Mar 7, 2006North Carolina State UniversityMethods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors
US7011814Apr 22, 2002Mar 14, 2006Sicel Technologies, Inc.Systems, methods and devices for in vivo monitoring of a localized response via a radiolabeled analyte in a subject
US7171166Oct 21, 2005Jan 30, 2007Motorola Inc.Programmable wireless electrode system for medical monitoring
US7171252Mar 29, 2000Jan 30, 2007Sicel Technologies, Inc.Methods, computer program products, and devices for calibrating chronically tissue implanted sensors using chronically tissue
US7197357Nov 30, 2001Mar 27, 2007Life Sync CorporationWireless ECG system
US7215991Mar 24, 2003May 8, 2007Motorola, Inc.Wireless medical diagnosis and monitoring equipment
US7272428May 16, 2003Sep 18, 2007Motorola, Inc.Wireless electrocardiograph system and method
US7276029Aug 1, 2003Oct 2, 2007Dexcom, Inc.System and methods for processing analyte sensor data
US7378056Nov 7, 2001May 27, 2008Sicel Technologies, Inc.Circuits for in vivo detection of biomolecule concentrations using fluorescent tags
US7418297Jul 28, 2005Aug 26, 2008Transoma Medical, Inc.Frame length modulation and pulse position modulation system
US7491942Jun 10, 2004Feb 17, 2009Sicel Technologies, Inc.Single-use internal dosimeters for detecting radiation in fluoroscopy and other medical procedures/therapies
US7495224Jun 10, 2004Feb 24, 2009Sicel Technologies, Inc.Single-use external dosimeters for use in radiation therapies and related methods and systems
US7510699Feb 17, 2004Mar 31, 2009Sicel Technologies, Inc.In vivo fluorescence sensors, systems, and related methods operating in conjunction with fluorescent analytes
US7557353Nov 25, 2002Jul 7, 2009Sicel Technologies, Inc.Single-use external dosimeters for use in radiation therapies
US7577475Sep 19, 2005Aug 18, 2009CardiocomSystem, method, and apparatus for combining information from an implanted device with information from a patient monitoring apparatus
US7583990Apr 14, 2008Sep 1, 2009Dexcom, Inc.System and methods for processing analyte sensor data
US7599726Apr 14, 2008Oct 6, 2009Dexcom, Inc.System and methods for processing analyte sensor data
US7637868Jan 11, 2005Dec 29, 2009Dexcom, Inc.Composite material for implantable device
US7657297May 3, 2004Feb 2, 2010Dexcom, Inc.Implantable analyte sensor
US7736318 *Sep 19, 2005Jun 15, 2010Cardiocom, LlcApparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US7756568Jun 9, 2005Jul 13, 2010North Carolina State UniversityMethods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors
US7769431May 2, 2006Aug 3, 2010North Carolina State UniversityMethods, systems, and associated implantable devices for detecting radiation in patients undergoing treatment for cancer
US7774145Jan 18, 2006Aug 10, 2010Dexcom, Inc.Transcutaneous analyte sensor
US7778680Aug 1, 2003Aug 17, 2010Dexcom, Inc.System and methods for processing analyte sensor data
US7778692May 2, 2006Aug 17, 2010North Carolina State UniversityMethods, systems, and associated implantable devices for detecting radiation in patients undergoing treatment for cancer
US7783333Mar 10, 2005Aug 24, 2010Dexcom, Inc.Transcutaneous medical device with variable stiffness
US7787937Jul 20, 2005Aug 31, 2010North Carolina State UniversityMethods, systems, and associated implantable devices for detecting radiation in patients undergoing treatment for cancer
US7797028Apr 14, 2008Sep 14, 2010Dexcom, Inc.System and methods for processing analyte sensor data
US7811231Dec 26, 2003Oct 12, 2010Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US7826981Jan 18, 2005Nov 2, 2010Dexcom, Inc.System and methods for processing analyte sensor data
US7885697Mar 10, 2005Feb 8, 2011Dexcom, Inc.Transcutaneous analyte sensor
US7905833Jun 21, 2005Mar 15, 2011Dexcom, Inc.Transcutaneous analyte sensor
US7914450May 3, 2010Mar 29, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7920906Mar 9, 2006Apr 5, 2011Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US7923694May 29, 2009Apr 12, 2011Sicel Technologies, Inc.Single-use external dosimeters for use in radiation therapies
US7925321Mar 23, 2010Apr 12, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7927274Jul 29, 2008Apr 19, 2011Dexcom, Inc.Integrated receiver for continuous analyte sensor
US7933639Mar 23, 2010Apr 26, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7935057Jan 14, 2009May 3, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7945451Mar 7, 2002May 17, 2011Cardiocom, LlcRemote monitoring system for ambulatory patients
US7955261Mar 23, 2010Jun 7, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7959569Mar 23, 2010Jun 14, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7966054Jun 10, 2004Jun 21, 2011Sicel Technologies, Inc.Disposable single-use external dosimeters for detecting radiation in fluoroscopy and other medical procedures/therapies
US7976492Aug 6, 2009Jul 12, 2011Dexcom, Inc.Integrated delivery device for continuous glucose sensor
US7979104May 26, 2010Jul 12, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7983749Jul 10, 2003Jul 19, 2011Cardiac Pacemakers, Inc.Cardiac rhythm management system with time-dependent frequency response
US7986986Mar 23, 2010Jul 26, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7998071Oct 14, 2009Aug 16, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8000901Aug 9, 2010Aug 16, 2011Dexcom, Inc.Transcutaneous analyte sensor
US8005524Mar 24, 2010Aug 23, 2011Dexcom, Inc.Signal processing for continuous analyte sensor
US8005525Oct 14, 2009Aug 23, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8010174Aug 22, 2003Aug 30, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8052601Aug 20, 2008Nov 8, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US8060173Aug 1, 2003Nov 15, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US8073519Oct 14, 2009Dec 6, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8073520May 25, 2010Dec 6, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8115635Nov 24, 2009Feb 14, 2012Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8128562Oct 14, 2009Mar 6, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8148696Jan 26, 2009Apr 3, 2012SNC Holdings Corp.Single-use external dosimeters for use in radiation therapies and related devices and computer program products
US8150488Oct 14, 2009Apr 3, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8160669Apr 11, 2007Apr 17, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8160671Sep 1, 2010Apr 17, 2012Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8167801Mar 25, 2010May 1, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8187183Oct 11, 2010May 29, 2012Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8195265Feb 9, 2011Jun 5, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8206297Dec 16, 2009Jun 26, 2012Dexcom, Inc.System and methods for processing analyte sensor data
US8216139Sep 23, 2009Jul 10, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8223021Nov 24, 2009Jul 17, 2012Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8229536May 27, 2010Jul 24, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8233958Oct 12, 2009Jul 31, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8233959Sep 1, 2006Jul 31, 2012Dexcom, Inc.Systems and methods for processing analyte sensor data
US8249684Sep 1, 2010Aug 21, 2012Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8251906Apr 15, 2009Aug 28, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8255041Feb 3, 2011Aug 28, 2012Lifesync CorporationWireless ECG system
US8257259Oct 16, 2008Sep 4, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8260393Jun 13, 2007Sep 4, 2012Dexcom, Inc.Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US8265725Oct 12, 2009Sep 11, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8275437Mar 23, 2007Sep 25, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8282549Dec 8, 2004Oct 9, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8282550Jul 29, 2008Oct 9, 2012Dexcom, Inc.Integrated receiver for continuous analyte sensor
US8285354Mar 23, 2010Oct 9, 2012Dexcom, Inc.System and methods for processing analyte sensor data
US8287453Nov 7, 2008Oct 16, 2012Dexcom, Inc.Analyte sensor
US8290559Oct 24, 2008Oct 16, 2012Dexcom, Inc.Systems and methods for processing sensor data
US8290561Sep 23, 2009Oct 16, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8290562May 3, 2010Oct 16, 2012Dexcom, Inc.System and methods for processing analyte sensor data
US8292810Jan 27, 2011Oct 23, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8311749May 26, 2011Nov 13, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8321149Jun 29, 2011Nov 27, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8332008Mar 23, 2010Dec 11, 2012Dexcom, Inc.System and methods for processing analyte sensor data
US8346338Jan 27, 2011Jan 1, 2013Dexcom, Inc.System and methods for replacing signal artifacts in a glucose sensor data stream
US8358210Nov 24, 2009Jan 22, 2013Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8369919Oct 24, 2008Feb 5, 2013Dexcom, Inc.Systems and methods for processing sensor data
US8374667Oct 16, 2008Feb 12, 2013Dexcom, Inc.Signal processing for continuous analyte sensor
US8380290Jun 25, 2010Feb 19, 2013North Carolina State UniversityImplantable devices for dynamic monitoring of physiological and biological properties of tumors
US8386004Sep 7, 2011Feb 26, 2013Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8390455Nov 24, 2009Mar 5, 2013Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8394021Oct 1, 2007Mar 12, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8412301Feb 9, 2011Apr 2, 2013Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8417312Oct 24, 2008Apr 9, 2013Dexcom, Inc.Systems and methods for processing sensor data
US8417338Feb 1, 2012Apr 9, 2013Medtronic, Inc.System and method for monitoring power source longevity of an implantable medical device
US8419650Feb 12, 2009Apr 16, 2013Cariocom, LLCDownloadable datasets for a patient monitoring system
US8423113Oct 24, 2008Apr 16, 2013Dexcom, Inc.Systems and methods for processing sensor data
US8428678May 16, 2012Apr 23, 2013Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8428679Mar 26, 2010Apr 23, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8435179Jan 27, 2011May 7, 2013Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8438038Dec 23, 2003May 7, 2013Cardiocom, LlcWeight loss or weight management system
US8442610Aug 21, 2008May 14, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8463350May 14, 2010Jun 11, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8469886Sep 23, 2009Jun 25, 2013Dexcom, Inc.Signal processing for continuous analyte sensor
US8491474Jan 27, 2011Jul 23, 2013Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8515516Mar 10, 2005Aug 20, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8542122Jan 17, 2013Sep 24, 2013Abbott Diabetes Care Inc.Glucose measurement device and methods using RFID
US8548551May 14, 2010Oct 1, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8548553Jun 22, 2012Oct 1, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8560037Mar 26, 2010Oct 15, 2013Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US8562558Jun 5, 2008Oct 22, 2013Dexcom, Inc.Integrated medicament delivery device for use with continuous analyte sensor
US8565849May 14, 2010Oct 22, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8571625May 14, 2010Oct 29, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8579816Jan 7, 2010Nov 12, 2013Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US8588882Dec 16, 2009Nov 19, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8611978Jan 7, 2010Dec 17, 2013Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US8622903May 25, 2012Jan 7, 2014Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8622905Dec 11, 2009Jan 7, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8657745Oct 16, 2008Feb 25, 2014Dexcom, Inc.Signal processing for continuous analyte sensor
US8657747Apr 5, 2011Feb 25, 2014Dexcom, Inc.Systems and methods for processing analyte sensor data
US8672845Mar 25, 2010Mar 18, 2014Dexcom, Inc.Systems and methods for processing analyte sensor data
US8676287Dec 11, 2009Mar 18, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8700117Dec 8, 2009Apr 15, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8721585Mar 30, 2012May 13, 2014Dex Com, Inc.Integrated delivery device for continuous glucose sensor
US8747315Sep 23, 2009Jun 10, 2014Dexcom. Inc.Signal processing for continuous analyte sensor
US8761856Apr 27, 2012Jun 24, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8771184May 4, 2007Jul 8, 2014Body Science LlcWireless medical diagnosis and monitoring equipment
US8771187May 31, 2011Jul 8, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8774888Jan 20, 2010Jul 8, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8777853Apr 4, 2012Jul 15, 2014Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8788006Dec 11, 2009Jul 22, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8788007Mar 8, 2012Jul 22, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8788008May 31, 2011Jul 22, 2014Dexcom, Inc.System and methods for processing analyte sensor data
Classifications
U.S. Classification600/508, 607/27, 128/903, 607/32
International ClassificationG08C19/12, A61N1/372, A61B5/00
Cooperative ClassificationA61N1/3727, A61B5/0031, G08C19/12
European ClassificationA61B5/00B9, G08C19/12, A61N1/372D8M
Legal Events
DateCodeEventDescription
May 20, 1985ASAssignment
Owner name: MEDTRONIC INC., 3055 OLD HIGHWAY EIGHT, PO BOX 145
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DUGGAN, STEPHEN R.;REEL/FRAME:004403/0386
Effective date: 19850516