Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE32449 E
Publication typeGrant
Application numberUS 06/821,650
Publication dateJun 30, 1987
Filing dateJan 23, 1986
Priority dateJun 16, 1983
Fee statusLapsed
Also published asDE3345659A1, EP0129188A2, EP0129188A3
Publication number06821650, 821650, US RE32449 E, US RE32449E, US-E-RE32449, USRE32449 E, USRE32449E
InventorsNils Claussen, Manfred Ruhle, Gunter Petzow
Original AssigneeMax-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ceramic body of zirconium dioxide (ZrO2) and method for its preparation
US RE32449 E
Abstract
A ceramic body of zirconium dioxide containing, if desired, aluminum oxide,nd partially stabilized with yttrium oxide and/or one or more rare earth oxides (e.g., cerium dioxide) and/or magnesium oxide and/or calcium oxide is partially stabilized with 0.5 to 5 mole-% of yttrium oxide and/or 5 to 12 mole-% of magnesium oxide and/or calcium oxide and/or cerium dioxide or one or more rare earth oxides, is 30 to 100% in the tetragonal lattice modification and has in the surface region a content of yttrium oxide, cerium dioxide, magnesium oxide, calcium oxide or rare earth oxide that is 1 to 20 mole-% higher than the average content, such that the body is coated with a thin, PSZ-like layer in a more highly stabilized tetragonal or with a layer that is predominantly in the cubic lattice form. For preparation, the surface of an already sintered or only presolidified compact of partially stabilized zirconium oxide is brought into intimate contact with yttrium oxide, cerium dioxide, magnesium oxide, calcium oxide and/or another rare earth powder or a zirconium dioxide powder containing at least 12 mole-% of yttrium oxide and/or other stabilizer oxides, and then annealed at 1000 to 1600 C. until a more highly stabilized tetragonal or predominantly cubic surface layer of 0.1 to 200 micrometers thickness and 2 to 20 mole-% higher content of yttrium oxide, cerium dioxide, magnesium oxide, calcium oxide or rare earth oxide has formed.
Images(5)
Previous page
Next page
Claims(13)
We claim:
1. In a ceramic body of zirconium dioxide or zirconium dioxide containing aluminum oxide, the improvement comprising said ceramic body
being partially stabilized with 0.5 to 5 mole-% of yttrium oxide, 5 to 15 mole-% magnesium oxide, calcium oxide, 5 to 15 mole-% cerium oxide, 5 to 15 mole-% of one or more rare earth dioxides or 5 to 15 mole-% of a combination thereof;
being 30 to 100% in the tetragonal lattice modification; and
having, in the surface region, a content of yttrium oxide, cerium dioxide, magnesium oxide, calcium oxide or rare earth oxide that is 2 to 20 mole-% higher than the average content in said ceramic body, such that the body is covered with a thin layer of a more highly stabilized tetragonal lattice form or one predominantly in the cubic lattice form.
2. The ceramic body of claim 1
partially stabilized with 0.5 to 5 mole-% yttrium oxide and having a content of 2 to 20 mole % higher than the average, of yttrium oxide in the surface region thereof.
3. A method for the preparation of a ceramic body which is partially stabilized with 0.5 to 5 mole-% of yttrium oxide, 5 to 15 mole-% of magnesium oxide, calcium oxide and/or cerium oxide or one or more rare earth dioxides; is 30 to 100% in the tetragonal lattice modification; and has in the surface region a content of yttrium oxide, cerium dioxide, magnesium oxide, calcium oxide or rare earth oxide that is 2 to 20 mole-% higher than the average content, such that the body is covered with a thin layer of a more highly stabilized tetragonal lattice form of one predominantly in the cubic lattice form, comprising the steps of
placing the surface of an already sintered or only presolidified compact of partially stabilized zirconium dioxide in intimate contact with yttrium oxide, cerium dioxide, magnesium oxide, calcium oxide and/or other rare earth powder, or a zirconium dioxide powder containing at least 12 mole-% yttrium oxide and/or other stabilizer oxides, and then
annealing said sintered or presolidified compact at 1000 to 1600 C., to form a more highly stabilized tetragonal or mainly cubic surface layer of 0.1 to 200 micrometers thickness having a 2 to 20 mole-% higher content of yttrium oxide, cerium dioxide, magnesium oxide, calcium oxide or rare earth oxide than the average content in the ceramic body.
4. The method of claim 3, wherein the surface contact with yttrium oxide, cerium dioxide, magnesium oxide, calcium oxide or rare earth oxide comprises placing the ceramic body in a powder bed, spraying or pressing a powder layer onto the ceramic body or treating the ceramic body with a suspension of the powder.
5. The method of claim 3 wherein the ceramic body is a body sintered at 1350 to 1550 C. and/or hot-isostatically pressed and is formed of partially stabilized zirconium dioxide.
6. The method of claim 3 wherein the ceramic body is an unsintered compact of partially stabilized zirconium dioxide, and is sintered at 1350 to 1550 C.
7. The method of claim 3 wherein the ceramic body is a zirconium dioxide body, partially stabilized with 7 to 11 mole-% of magnesium oxide, sintered at temperatures between 1690 and 1800 C., and thereafter annealed at temperatures between 1350 and 1550 C. in contact with yttrium oxide and/or cerium oxide and/or other rare earth oxide powders for 1 to 5 hours.
8. The method of claim 3 wherein the ceramic body is a sintered compact or green body containing 2 to 4 mole-% of yttrium oxide or rare earth oxide as stabilizer.
9. The method of claim 4 wherein the ceramic body is sintered at 1350 to 1550 C. and/or hot-isostatically pressed and is formed of partially stabilized zirconium dioxide.
10. The method of claim 4 wherein the ceramic body is unsintered compact of partially stabilized zirconium dioxide, sintered at 1350 to 1550 C.
11. The method of claim 4 wherein the ceramic body is a zirconium dioxide body, partially stabilized with 7 to 11 mole-% of magnesium oxide, sintered at temperatures between 1690 and 1800 C., and thereafter annealed at temperatures between 1350 and 1550 C. in contact with yttrium oxide and/or cerium oxide and/or other rare earth oxide powders for 1 to 5 hours.
12. The method of claim 11 wherein yttrium oxide, cerium oxide or a combination thereof, is used.
13. The method of claim 4 wherein the ceramic body is a sintered compact or green body containing 2 to 4 mole-% of yttrium oxide or rare earth oxide as stabilizer.
Description

Finely granular zirconium dioxide bodies partially stabilized with yttrium oxide, cerium dioxide and/or other rare earth oxides, and coarsely granular zirconium dioxide bodies partially stabilized with magnesium oxide or calcium oxide pertain to the polycrystalline ceramics which have the highest strengths and resistance to fracture which have been measured up to now. The chief reason for this lies in the tension-induced transformation of the tetragonal lattice modification to the monoclinic room-temperature modification. For example, bodies containing yttrium oxide are sintered, hot-pressed or hot-isostatically pressed ("hipped") usually with an yttrium oxide content between 1 and 6 mole-%, either in the tetragonal monophasic field or in the cubic/tetragonal two-phase region, at temperatures between 1400 and 1550 C. Their structure then consists of a fine-grained (0.1-1.0 micrometer), tetragonal content (up to 100%) and somewhat coarser, cubic grains (1-10 micrometers) (3.5-6.0 mole-% for high yttrium oxide contents). To increase the hardness and modulus of elasticity the bodies can contain aluminum oxide in larger amounts.

Zirconium oxide bodies containing magnesium oxide or calcium oxide are usually sintered in the cubic monophasic region at temperatures between 1690 and 1800 C.; they are therefore more coarse-grained (50 to 70 micrometers).

The decisive disadvantage of these super-strong ceramic bodies, especially those containing yttrium oxide, is that they lose their strength drastically after relatively long heat treatment at temperatures between 200 and 550 in air; this loss of strength is greatly accelerated with increasing atmospheric humidity or high steam pressure (O. T. Masaki, K. Kobayashi, Proc. Ann. Meeting Jap. Ceram. Soc. 1981). Even in warm, aqueous solutions, degradation of the bodies can occur. The reason for this is not yet understood. It is assumed, however, that the mechanical tensions of the tetragonal bodies are removed by tension crack corrosion at the grain boundaries, and thus a transformation to the monoclinic form occurs, or that other diffusion-controlled mechanisms cause martensite nuclei to form at the surface and thus initiate the transformation that ultimately results in the destruction of the bodies.

This decisive disadvantage makes the new class of the so-called TZP ceramics (TZP: Tetragonal Zirconia Polycrystals. A bibliography on TZP ceramics is contained in the book, "Science and Technology of Zirconia II", Advances in Ceramics, Vol. 11, 1984) suitable for use in air only for application temperatures up to about 200 C., although such ceramics would offer substantial advantages for use in internal combustion engines. This phenomenon would also be disadvantageous for use as a bioceramic (hip joint replacement).

Conventional zirconium dioxide ceramics partially stabilized with magnesium oxide (Mg-PSZ), when exposed to heat for long periods at somewhat higher temperatures (700 to 1000 C., have a similar disadvantage. On account of the rapid diffusion or vaporization rate of magnesium oxide, surface degradation occurs, especially in a slightly reducing atmosphere.

Surprisingly, it has now been found--and the invention is based on it--that in sintered specimens which have been heat treated in a milieu rich in yttrium oxide, cerium oxide, magnesium oxide or calcium oxide, e.g., a powder bed of yttrium oxide or magnesium oxide, this degradation process does not occur, or occurs to a lesser degree.

The invention is therefore based on the problem of reducing or eliminating the above-described loss of strength or surface degradation in ceramic bodies of zirconium dioxide.

The problem is solved by a ceramic body partially stabilized with yttrium oxide and/or cerium oxide and/or one or more rare earth oxides and/or magnesium oxide and possibly containing aluminum oxide, which is characterized by being partially stabilized with 0.5 to 5 mole-% of yttrium oxide and/or 2 to 12 mole-% of magnesium oxide and/or calcium oxide and one or more rare earth oxides (e.g., cerium oxide), is 30 to 100% in the tetragonal lattice modification, and has in the surface region a content of yttrium oxide or rare earth oxide and/or magnesium oxide and/or calcium oxide, such that the body is covered by a thin layer that is mostly in the cubic lattice form or in a more highly stabilized tetragonal lattice form. It is obvious that a partially stabilized cubic layer can be transformed by tempering (peak aging) at temperatures commonly used in PSZ (1100-1420 C.) to a PSZ-like layer (i.e., cubic grains having tetragonal segregations).

The term, "thin surface layer," in the sense of the invention, is to be understood to mean a layer with a thickness of 0.1 to 200 micrometers, preferably 0.3 to 30 micrometers. The body on the basis of zirconium dioxide in accordance with the invention is prepared by firing it in a milieu which is rich in yttrium oxide, cerium oxide, magnesium oxide, calcium oxide and/or rare earth oxides. The invention is explained hereinbelow on the basis of the use of yttrium oxide, cerium oxide, magnesium oxide and calcium oxide. It is to be understood, however, that it applies likewise to other rare earth oxides. This surface stabilization or annealing is likewise advantageous for conventional zirconia ceramics partially stabilized with magnesium oxide or calcium oxide.

To prepare the ceramic body in accordance with the invention, it is possible to set out either from the finished sintered or hipped ceramic or from a green body presolidified at relatively low temperature (e.g., room temperature). The ceramic or the green body is now provided with a surface of yttrium oxide, cerium oxide, magnesium oxide, calcium oxide, etc., either in the form of a pressed-on layer of powder or of a slip containing yttrium oxide or magnesium oxide, which can be sprayed on, for example, or applied in the form of a bath for impregnating the surface. The bodies thus treated are then fired or sintered at temperatures between 1000 and 1600 C., the length of the treatment being able to be between about 10 minutes and about 100 hours. The desired surface stabilization is also achieved to special advantage by firing or sintering the ceramic or green body in a powder bed of yttrium oxide and/or cerium oxide and/or magnesium oxide and/or calcium oxide. Those conditions are preferred in which the desired diffusion is achieved in the shortest possible time, while at the same time achieving a PSZ-like layer.

For the preparation of the ceramic body itself, the body can be performed either by mixing the oxides, or by wet chemical methods such as sol gel, coprecipitation, spray reaction of aqueous solutions, or from fine, homogeneous powders obtained by fusion and prealloyed with yttrium oxide, cerium oxide, magnesium oxide and/or calcium oxide, and then sintering or hipping, or sintered and then hipped, at temperatures generally between 1350 and 1550 C. The finished ceramic is then, as mentioned above, coated with yttrium oxide, cerium oxide, magnesium oxide, calcium oxide, etc., or fired in a corresponding powder bed, until the surface layer enriched with yttrium, cerium, magnesium, or calcium oxide etc. is formed.

When a stabilizer-rich coating is applied to a green body, the body is commonly preformed at a low pressure, say of about 100 MPa, and then pressed again at higher pressure, e.g., 200 to 650 MPa. In most cases, however, the preferred method is the sintering of the pressed body or the firing of a finish-sintered and processed body in a powder bed containing magnesium oxide or yttrium oxide and/or cerium oxide.

The ceramic bodies of the invention, in comparison to specimens prepared under otherwise equal conditions but without the above-described surface treatment, in a treatment for accelerated aging, consisting of four hours of firing at temperatures between 250 C. and 400 C. at steam pressures of 4 to 15 bar, show scarcely any effect.

In X-ray examination, in the case of the ceramic bodies of the invention, only the cubic and tetragonal reflections of the body subjected to the accelerated aging are detectable after this treatment, while the specimens used for comparison show strong monoclinic reflections which are an indication of incipient degradation. The best results were obtained when the thin surface layer was produced by firing the ready-sintered samples in magnesium oxide, yttrium oxide, cerium oxide or calcium oxide powder, or by treatment with yttrium oxide powder or a zirconium powder containing at least 12 mole-% of yttrium oxide, the surface layer being pressed onto the zirconium oxide compacts stabilized by a small addition (0.5 to 5, preferably 2 to 4 mole-%) of yttrium oxide, or being applied as an aqueous suspension of powder and sintered. But, no matter how the surface layer is produced, an important condition for the achievement of the protective action of the stabilizer-containing coating is very close contact with the surface of the zirconium oxide specimen to be heated or sintered.

The thin, generally 0.5 to 30 micrometers deep, stabilizer-rich zirconium oxide surface layer which is formed by the treatment of the invention, appears to constitute a protection against long-term thermal disintegration. This layer can also contain aluminum oxide for fining the grain. Presumably other rare earth oxides produce a similarly positive effect, as previously mentioned. On account of the extremely slow diffusion of yttrium oxide into zirconium oxide at temperatures below 1000 C., this layer represents primarily a thermally stable protection for TZP ceramics, but also for conventional zirconium oxide partially stabilized with magnesium or calcium (Mg-, Ca-PSZ).

The following examples further explain the invention.

EXAMPLE 1

Samples of reaction-sprayed powders (EDS powders: Evaporation Decomposition of Solutions, Am. Ceram. Soc. Bull 50 (1977) 1023) which contained 2 mole-% of yttrium oxide and 1.5 vol.-% of aluminum oxide, and had been ground for 4 hours in water in an attrition mill with alumina balls containing silica and spray dried, were isostatically pressed at 630 MPa and sintered in air for 2 hours at 1450 C. The X-ray reflections thereafter indicated a predominantly tetragonal structure (grain size approx. 0.4 micrometers). Flexural test samples indicate, in the polished surface state, a strength of 920 MPa (type I) and, after 36 h of firing at 1350 C. in an yttria powder bed, a strength of 810 MPa (type II). After all of the samples were cooked in the autoclave at 400 C. for 4 hours at 4 bar steam pressure, the strength of type I was only 420 MPa, while type II showed a strength of 740 MPa.

EXAMPLE 2

Samples of a powder which was prepared and treated as in Example 1, but contained only 2 mole-% of yttrium oxide by volume, were formed as in Example 1. An aqueous suspension of yttria powder was applied to the cylindrical compacts and some of it penetrated into the surface pores; then the coated compacts (type I) were sintered at 1500 C. for 2 hours, and then subjected to the autoclaving described in Example 1, together with identical samples with no coating (type II). After this treatment, type I showed only tetragonal and cubic X-ray reflections, but type II showed tetragonal and large monoclinic X-ray reflections which indicates the thermal degradation of the uncoated samples.

EXAMPLE 3

Samples from the powder of Example 1 were isostatically pressed at a pressure of 100 MPa, and then sprayed with a suspension of 12 mole-% zirconia powder containing 12 mole-% of yttrium oxide (coating thickness approx. 40 to 200 micrometers), then pressed again isostatically at 630 MPa, and sintered as in Example 1. After the autoclaving treatment (as in Example 1), no thermal degradation of the surface could be detected.

EXAMPLE 4

Samples in accordance with Example 2 were coated with the same suspension, but this time with the addition of 20% alumina by volume, and otherwise treated as in Example 1. Here, again, no degradation could be detected after the heat treatment in the autoclave.

EXAMPLE 5

50 volume-percent of alumina powder (Pechinee Ugine Kuhlman, A6) [was added] to the powder from Example 1 and ground in the attrition mill as in Example 1. Isostatically pressed cylinders (approx. 11 cm diameter) were sintered at 1500 C., some with (type I) and some without (type II) a slip of 50 wt.-% of yttrium oxide and 50 wt.-% of cerium oxide. Then type I contained on the polished surface only tetragonal zirconium oxide plus aluminum oxide (measured by X-ray analysis), while type II additionally contained cubic forms. After autoclaving as in Example 8, with only 8 bar of steam pressure, the surface of type I had a high content of monoclinic zirconium oxide, while type II showed no measurable change.

EXAMPLE 6

A coprecipitated zirconia powder containing 2.2 mole-% of yttrium oxide was pressed isostatically at 620 MPa; the samples were then sintered in air for 2 hours at 1500 C. The bodies thus prepared contained exclusively tetragonal grains of an average size of 0.4 micrometers (material type A). A similarly made commercial material with 3 mole-% of yttrium oxide contained approximate 80% of tetragonal grains (approximately 0.4 micrometers) and approximately 20% cubic grains (about 5 micrometers) (material type B).

Material types A and B were subjected to an autoclave test with a steam pressure of 5 bar at 250 C. for 2 hours, and both types degrade greatly, i.e., show mostly monoclinic reflections at the surface; type A was even completely decomposed.

Types A and B were then fired each for 2 hours in powder beds of yttrium oxide, cerium oxide, titanium oxide, magnesium oxide and calcium oxide, at different temperatures. The heat treatment temperatures and the results of the autoclave test that followed are listed in Table 1. From this it appears that, with the exception of titanium oxide, all the other oxides have a positive effect, especially at higher temperatures. A firing in a magnesium oxide powder bed is effective even at relatively low temperatures (1120 C.).

Types A and B, in the form of unsintered compacts, were sintered for 2 h at 1500 C. in powder beds of yttrium oxide, cerium oxide, calcium oxide and magnesium oxide (in air). The above-described autoclave test again showed no surface degradation.

              TABLE 1______________________________________Sintering in a powder bed, followed by autoclave test for 2hours, 5 bar steam pressure, 250 C.Powder bed  Yttrium  Cerium   Titanium                           Magnesium                                   CalciumSintering  oxide    oxide    oxide  oxide   oxidetempera-  Type of Materialture C.  A      B     A    B   A    B   A     B   A    B______________________________________1120   -      -     -    -   -    -   -     -   -    o1220   -      o     o    o   -    -   -     o   +    +1320   o      +     o    +   -    -   +     +   +    +1420   +      +     +    +   -    o   +     +   +    +______________________________________
EXAMPLE 7

A conventional zirconia partially stabilized with magnesia (Mg-PSZ), containing 3.3 wt.-% of magnesium oxide, was subjected to a solution anneal in air at 1700 C. for 2 hours, followed by rapid cooling to room temperature, and was then subjected to two hours of sintering at 1420 C. in yttria powder. While the monoclinic content at the surface in the untreated (as-received) sample increased, after 100 hours in a slightly reducing atmosphere at 920 C., from originally 15% to 32%, the monoclinic content in the sample sintered in yttria was below the measurable range, i.e., less than 4%.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4067745 *Oct 24, 1975Jan 10, 1978Commonwealth Scientific And Industrial Research OrganizationCalcia-partially-stabilized zirconia
US4298385 *Jul 14, 1980Nov 3, 1981Max-Planck-Gesellschaft Zur Forderung Wissenschaften E.V.Dispersion of ceramic particles in ceramic matrix of a different density; microcracks; toughness
US4322249 *Jul 14, 1980Mar 30, 1982Max Planck GesellschaftHeat resistance
US4354912 *Jan 18, 1980Oct 19, 1982Robert Bosch GmbhSolid electrochemical sensor
US4419311 *Jul 6, 1981Dec 6, 1983Nils ClaussenProduction of high-strength ceramic bodies of alumina and unstabilized zirconia with controlled microfissures
US4421861 *May 19, 1980Dec 20, 1983Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V.High-strength and temperature-change resistant ceramic formed body, especially of mullite, its production and use
DE2904069A1 *Feb 3, 1979Aug 7, 1980Bosch Gmbh RobertFestelektrolyt fuer elektrochemische anwendungen und verfahren zur herstellung desselben
EP0067327A1 *May 25, 1982Dec 22, 1982Kabushiki Kaisha ToshibaCeramic engine part with improved abrasion resistance
WO1983004247A1 *May 27, 1983Dec 8, 1983Commw Scient Ind Res OrgZirconia ceramic materials and method of making same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5017532 *May 12, 1989May 21, 1991CsirSintered ceramic product
US5047373 *Mar 24, 1989Sep 10, 1991Corning IncorporatedPartially stabilized zirconium oxide, hafnium oxide or their solid solutions; noncracking; composites
US5258031 *Dec 14, 1992Nov 2, 1993Danek MedicalIntervertebral disk arthroplasty
US5350927 *Jun 17, 1992Sep 27, 1994Mitech Scientific Corp.Radiation emitting ceramic materials and devices containing same
US5358913 *Aug 18, 1993Oct 25, 1994Eastman Kodak CompanyZirconium oxide as primary oxide and a secondary oxide of magnesium, calcium, yttrium or scandium
US5409415 *Jun 29, 1993Apr 25, 1995Nikkato Corp.Shot method
US5425773 *Apr 5, 1994Jun 20, 1995Danek Medical, Inc.Intervertebral disk arthroplasty device
US5472720 *Oct 16, 1992Dec 5, 1995Mitec Scientific CorporationSterilization, preservation
US5562738 *Jan 12, 1995Oct 8, 1996Danek Medical, Inc.Intervertebral disk arthroplasty device
US5683481 *Aug 20, 1996Nov 4, 1997Eastman Kodak CompanyMethod of making core shell structured articles based on alumina ceramics having spinel surfaces
US5702448 *Jul 5, 1995Dec 30, 1997Buechel; Frederick F.Prosthesis with biologically inert wear resistant surface
US5707911 *Jun 6, 1995Jan 13, 1998Mitech Scientific Corp.Infrared radiation generating ceramic compositions
US5723393 *Mar 6, 1997Mar 3, 1998Eastman Kodak CompanyZirconia ceramic article
US5726110 *Mar 6, 1997Mar 10, 1998Eastman Kodak CompanyZirconia-alumina ceramic article
US5849068 *May 1, 1997Dec 15, 1998Dentsply G.M.B.H.Dental prosthesis
US5854158 *Jun 11, 1997Dec 29, 1998Matsushita Electric Works, Ltd.ZrO2 based ceramic material and method of producing the same
US5865850 *Mar 10, 1997Feb 2, 1999Johnson & Johnson Professional, Inc.Coated load bearing surface for a prosthetic joint
US5868796 *Aug 12, 1997Feb 9, 1999Buechel; Fredrick F.Prosthesis with biologically inert wear resistant surface
US5879407 *Jul 17, 1997Mar 9, 1999Waggener; Herbert A.Wear resistant ball and socket joint
US6179874Apr 23, 1999Jan 30, 2001Cauthen Research Group, Inc.Articulating spinal implant
US6352788 *Feb 22, 2000Mar 5, 2002General Electric CompanyImpact resistance
US6387132 *Nov 30, 1998May 14, 2002Ceramtec Ag Innovative Ceramic EngineeringArtificial joint of a prosthesis
US6440168Sep 2, 1999Aug 27, 2002Sdgi Holdings, Inc.Articulating spinal implant
US6679915Feb 28, 2000Jan 20, 2004Sdgi Holdings, Inc.Articulating spinal implant
US6846328Apr 18, 2003Jan 25, 2005Sdgi Holdings, Inc.Articulating spinal implant
US7083651Mar 3, 2004Aug 1, 2006Joint Synergy, LlcSpinal implant
US7115144Mar 2, 2004Oct 3, 2006Joint Synergy, LlcSpinal implant
US7195644Feb 15, 2005Mar 27, 2007Joint Synergy, LlcBall and dual socket joint
US7205662Feb 26, 2004Apr 17, 2007Symmorphix, Inc.Dielectric barrier layer films
US7238628May 20, 2004Jul 3, 2007Symmorphix, Inc.Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
US7262131Sep 16, 2005Aug 28, 2007Symmorphix, Inc.Dielectric barrier layer films
US7270681Jan 20, 2004Sep 18, 2007Warsaw Orthopedic, Inc.Articulating spinal implant
US7361192Apr 22, 2005Apr 22, 2008Doty Keith LSpinal disc prosthesis and methods of use
US7378356Mar 16, 2002May 27, 2008Springworks, LlcCouples pulsed DC at a particular frequency to the target through a filter which filters effects of a bias power applied to the substrate, protecting the pulsed DC power supply.
US7381657Oct 1, 2004Jun 3, 2008Springworks, LlcBiased pulse DC reactive sputtering of oxide films
US7404877 *Nov 8, 2002Jul 29, 2008Springworks, LlcIsotactic pressing of zirconia/yttria powder; plasma vapor deposition; for annealing of surface films
US7413998Sep 16, 2005Aug 19, 2008Springworks, LlcBiased pulse DC reactive sputtering of oxide films
US7469558Jul 10, 2001Dec 30, 2008Springworks, LlcAs-deposited planar optical waveguides with low scattering loss and methods for their manufacture
US7491239Aug 18, 2005Feb 17, 2009Joint Synergy, LlcInterior insert ball and dual socket joint
US7544276Sep 16, 2005Jun 9, 2009Springworks, LlcBiased pulse DC reactive sputtering of oxide films
US7799080Sep 29, 2006Sep 21, 2010Doty Keith LSpinal disc prosthesis and methods of use
US7838133Sep 2, 2005Nov 23, 2010Springworks, LlcLow-temperature, physical vapor deposition of barium strontium titanate by pulsing a target with direct current through a narrow band rejection filter alternating voltage between positive/ negative; providing substrate with a radio frequency bias power corresponding to the rejection filter; capacitors
US7927722 *Jul 30, 2004Apr 19, 2011United Technologies CorporationDispersion strengthened rare earth stabilized zirconia
US7959769Nov 7, 2006Jun 14, 2011Infinite Power Solutions, Inc.Deposition of LiCoO2
US7993773Aug 21, 2009Aug 9, 2011Infinite Power Solutions, Inc.Electrochemical apparatus with barrier layer protected substrate
US8021778Aug 23, 2005Sep 20, 2011Infinite Power Solutions, Inc.Electrochemical apparatus with barrier layer protected substrate
US8045832Apr 6, 2005Oct 25, 2011Springworks, LlcMode size converter for a planar waveguide
US8062708Sep 26, 2007Nov 22, 2011Infinite Power Solutions, Inc.Masking of and material constraint for depositing battery layers on flexible substrates
US8074472Jul 31, 2007Dec 13, 2011Zircoa Inc.Grinding beads and method of producing the same
US8076005Mar 22, 2007Dec 13, 2011Springworks, LlcEnergy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
US8105466Jul 27, 2005Jan 31, 2012Springworks, LlcBiased pulse DC reactive sputtering of oxide films
US8197781Nov 5, 2007Jun 12, 2012Infinite Power Solutions, Inc.Sputtering target of Li3PO4 and method for producing same
US8236443Mar 16, 2007Aug 7, 2012Infinite Power Solutions, Inc.Metal film encapsulation
US8260203Sep 10, 2009Sep 4, 2012Infinite Power Solutions, Inc.Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8268488Jan 23, 2009Sep 18, 2012Infinite Power Solutions, Inc.Thin film electrolyte for thin film batteries
US8350519Apr 2, 2009Jan 8, 2013Infinite Power Solutions, IncPassive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8394522Apr 29, 2008Mar 12, 2013Infinite Power Solutions, Inc.Robust metal film encapsulation
US8404376Apr 21, 2010Mar 26, 2013Infinite Power Solutions, Inc.Metal film encapsulation
US8431264Jul 25, 2008Apr 30, 2013Infinite Power Solutions, Inc.non-rechargeable device; made of CFx (carbon fluoride) material; positive cathode greater than about 0.5 mu m and less than about 200 mu m thick; electrolyte less than about 10 mu m thick; negative anode less than about 30 mu m thick; heat resistance
US8445130Nov 17, 2006May 21, 2013Infinite Power Solutions, Inc.Hybrid thin-film battery
US8508193Oct 7, 2009Aug 13, 2013Infinite Power Solutions, Inc.Environmentally-powered wireless sensor module
US8518581Jan 9, 2009Aug 27, 2013Inifinite Power Solutions, Inc.Thin film encapsulation for thin film batteries and other devices
US8535396Aug 21, 2009Sep 17, 2013Infinite Power Solutions, Inc.Electrochemical apparatus with barrier layer protected substrate
US8599572Sep 1, 2010Dec 3, 2013Infinite Power Solutions, Inc.Printed circuit board with integrated thin film battery
US8636876Dec 7, 2005Jan 28, 2014R. Ernest DemarayDeposition of LiCoO2
US8728285May 20, 2004May 20, 2014Demaray, LlcTransparent conductive oxides
EP0631995A1Jun 24, 1994Jan 4, 1995Dentsply GmbHDental prosthesis
WO2014101997A1 *Dec 23, 2013Jul 3, 2014Straumann Holding AgBody made of a ceramic material
WO2014101998A1 *Dec 23, 2013Jul 3, 2014Straumann Holding AgBody made of a ceramic material with a surface region comprising a calcium-containing phase
Classifications
U.S. Classification501/103, 264/662, 428/701, 501/105, 427/201, 501/104, 501/152
International ClassificationC04B35/486, C04B41/50, C04B41/87, C04B35/488
Cooperative ClassificationC04B41/87, C04B35/4885, A61L27/047, C04B2111/0025, C04B35/486, C04B41/5042, C04B41/009, C04B2111/00836
European ClassificationC04B41/00V, C04B41/50P48, C04B35/488A, C04B41/87, C04B35/486, A61L27/04R
Legal Events
DateCodeEventDescription
Jun 27, 1993LAPSLapse for failure to pay maintenance fees
Dec 20, 1988FPAYFee payment
Year of fee payment: 4