Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE32818 E
Publication typeGrant
Application numberUS 06/901,250
Publication dateJan 3, 1989
Filing dateAug 27, 1986
Priority dateFeb 7, 1978
Fee statusPaid
Publication number06901250, 901250, US RE32818 E, US RE32818E, US-E-RE32818, USRE32818 E, USRE32818E
InventorsPeter J. Fernholz, James L. Copeland, Richard C. Penttila
Original AssigneeEcolab Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cast detergent-containing article and method of using
US RE32818 E
Abstract
Solid cast detergent-containing articles are produced for use in automatic washing machines. A liquid detergent composition is cast into a mold where it is allowed to solidify. The solid cast detergent, surrounded on all but its upper surface by the mold, is used in automatic washing machines having a dispensing device designed to dispense a liquid aqueous detergent formed from the solid cast detergent using an impinging liquid spray. The liquid aqueous detergent flows out of the dispensing device generally simultaneously with its formation in the dispenser. The cast detergent composition includes an alkaline hydratable chemical and optionally further includes one or more preformed cores or plugs comprising an available chlorine source, a defoamer, or the like.
Images(2)
Previous page
Next page
Claims(17)
What is claimed is:
1. A detergent-containing article of commerce comprising:
(a) a three-dimensional, solid.Iadd., .Iaddend.cast, hydrated, substantially uniform alkaline detergent .Iadd.for ware and hard surface washing .Iaddend.comprising:
(1) at least .Iadd.about .Iaddend.30% by weight of an alkaline hydratable chemical consisting essentially of alkali metal hydroxide:
(2) .Iadd.an effective amount of .Iaddend.a hardness-sequestering agent;
(3) .[.more than 15 parts by weight, per 100 parts by weight of said alkaline hydratable chemical, of.]. water of hydration, at least a portion of said water of hydration being associated with said alkali metal hydroxide.Iadd., wherein the alkali metal hydroxide and the hardness sequestering agent are present in an amount sufficient to render the cast detergent a solid at room temperature by virtue of the water of hydration.Iaddend.; and
(b) a receptacle-shaped disposble container surrounding and in contact with said solid, cast, hydrated alkaline detergent composition on all but one surface thereof.
2. An article according to claim 1 wherein said container is the mold in which said composition .[.was.]. .Iadd.is .Iaddend.cast and solidified.
3. An article according to claim 2 wherein said article further comprises a cover attached to the said receptacle-shaped container.
4. An article according to claim 1 wherein said article comprises at least one preformed core.[., said core being surrounded by and in contact with said detergent on at least one side of said core.]..
5. An article according to claim 4 wherein said preformed core comprises a material selected from the group consisting of a defoamer and a solid, available chlorine-containing component.
6. An article according to claim 5 comprising a plurality of preformed cores, at least one of which comprises a solid, available chlorine-containing component.
7. An article according to claim 5 wherein .[.a.]. said preformed core has been coated with .[.an inert barrier.]. .Iadd.a .Iaddend.film.
8. An article according to claim 1 wherein said solid, cast, hydrated, alkaline detergent composition comprises:
(a) at least about 30% by weight of a first alkaline hydratable chemical consisting essentially of an alkali metal hydroxide;
(b) a second alkaline hydratable chemical comprising a hardness-sequestering amount of an alkali metal condensed phosphate;
(c) .[.more than 5% by weight of.]. water of hydration in both discrete and continuous states of hydration, at least a portion of said water of hydration being associated with said alkali metal hydroxide;
(d) .[.up to about 15% by weight of a.]. .Iadd.an effective hardness sequestering amount of an organic .Iaddend.polyelectrolyte; and
(e) up to 5% by weight of an additive selected from the group consisting of a defoamer and a solid, available chlorine-containing compound.
9. An article according to claim 8 wherein said solid, cast, hydrated alkaline detergent composition further comprises a sodium silicate. .[.10. The detergent containing article of claim 1 wherein there is about 10 to 35 wt %, based on the hydrated alkaline detergent composition, of water of
hydration..]. 11. A method for dispensing warewashing detergent into a warewashing zone for washing alkaline detergent-resistant ware, using the cast, hydrated.Iadd., .Iaddend.alkaline detergent composition of the detergent-containing article of claim 1, comprising the following steps:
(a) placing said cast, hydrated, alkaline detergent composition in a detergent dispensing device having a spray means, in a position with respect to the horizontal and with respect to said spray means, for dispensing detergent downwardly from said detergent composition to the warewashing zone of a warewashing machine, whereby the side of the cast, hydrated alkaline detergent composition not surrounded by said receptacle-shaped container is contained within the interior of said detergent dispensing device and is oriented to provide the interior of said detergent dispensing device with essentially one unsurrounded, exposed, drainable surface of cast, hydrated, alkaline detergent composition;
(b) impinging a spray of aqueous liquid from said spray means upon said unsurrounded, exposed, drainable surface to dissolve detergent composition at a generally consistent rate and thereby form an aqueous liquid detergent containing said detergent composition in the aqueous liquid, which aqueous liquid detergent .[.rains.]. .Iadd.drains .Iaddend.downwardly from said unsurrounded, exposed, drainable surface generally simultaneously with said impinging;
(c) generally simultaneously permitting the downwardly-draining aqueous liquid detergent to flow out of said detergent dispensing device and into said warewashing zone for the purpose of washing alkaline detergent-resistant ware .[.wherein.]. .Iadd.therein.Iaddend.; and
(d) controlling the duration of said step (b), thereby controlling the amount of said aqueous liquid detergent composition flowing into said warewashing zone, thereby controlling the concentration of said detergent
composition in said warewashing zone. 12. A method according to claim 11 wherein said unsurrounded, exposed, drainable surface generally faces
toward said spray means. 13. A method according to claim 12 wherein said cast, hydrated alkaline detergent composition is placed in accordance with said step (a) in an inverted position above said spray means, such that said unsurrounded, exposed, drainable surface faces downwardly toward said
spray means. 14. A method according to claim 11 wherein, in said step (a), said cast, hydrated, alkaline detergent composition is placed in an inverted position over said spray means, and said impinging is provided by a spray oriented generally perpendicularly to said unsurrounded, exposed,
drainable surface. .Iadd.15. A detergent-containing article of commerce comprising:
(a) a three-dimensional, uniform solid cast, hydrated, alkaline warewashing detergent comprsing:
(1) at least 30% by weight of an alkaline hydratable chemical consisting essentially of alkali metal hydroxide;
(2) an effective amount of a condensed phosphate hardness-sequestering agent; and
(3) water of hydration, at least a portion of said water of hydration being associated with said alkali metal hydroxide wherein the alkali metal hydroxide and the condensed phosphate hardness sequestering agent are present in amounts sufficient to render the cast detergent solid at room temperature by virtue of said water of hydration; and
(b) a receptacle-shaped disposable container surrounding and in contact with said solid, cast, hydrated alkaline warewashing detergent composition on all but one surface thereof. .Iaddend. .Iadd.16. An article according to claim 15 wherein the container is made of a thermoplastic material and wherein the container is a mold in which said alkaline detergent was cast and solidified. .Iaddend. .Iadd.17. An article according to claim 15 wherein said article further comprises a cover attached to the said
receptacle-shaped container mold. .Iaddend. .Iadd.18. The article of claim 15 wherein the weight of the alkali detergent is at least 6 lbs. .Iaddend. .Iadd.19. The article of claim 15 wherein the hardness sequestering agent is a sodium tripolyphosphate compound. .Iaddend. .Iadd.20. An article according to claim 15 wherein said solid, cast, hydrated, alkaline detergent composition comprises:
(a) at least about 30% by weight of the alkaline hydratable chemical consisting essentially of sodium hydroxide;
(b) an effective hardness-sequestering amount of a sodium tripolyphosphate compound;
(c) an effective hardness sequestering amount of a polyelectrolyte; and
(d) up to 5% by weight of an additive selected from the group consisting of a defoamer and a solid, available chlorine-containing component; wherein the alkaline detergent is cast within the disposable container. .Iaddend.
.Iadd.21. The article of claim 20 wherein the polyelectrolyte is an organic polyelectrolyte composition. .Iaddend. .Iadd.22. A detergent-containing article of comprising a three-dimensional, uniform, solid cast, hydrated alkaline warewashing detergent comprising:
(a) at least about 30% by weight of sodium hydroxide;
(b) a second alkaline hydratable chemical comprising an effective hardness-sequestering amount of sodium tripolyphosphate;
(c) water of hydration in both discrete and continuous states of hydration;
(d) an effective hardness sequestering amount of a polyacrylate; and
(e) up to 5% by weight of an additive selected from the group consisting of a defoamer and a solid, available chlorine-containing component;
wherein the alkali metal hydroxide and the hardness sequestering agent are present in amounts sufficient to render the cast detergent a solid at room temperature by virtue of the water of hydration and the alkaline warewashing detergent is surrounded by and held in contact with a receptacle-shaped disposable thermoplastic container, on all but one
surface thereof. .Iaddend. .Iadd.23. An article according to claim 22 wherein said article further comprises a cover attached to said receptacle-shaped container. .Iaddend.
Description

.Iadd.This application is a reissue of U.S. Pat. No. 4,569,781 which issued from Ser. No. 234,940, filed Feb. 17, 1981, which is a continuation-in-part of Ser. No. 123,956, filed Feb. 25, 1980, now abandoned, which is a continuation-in-part of Ser. No. 875,784, filed Feb. 7, 1978, now abandoned. .Iaddend.

FIELD OF THE INVENTION

This invention relates .Iadd.to .Iaddend.a novel solid cast detergent-containing article which is particularly useful in institutional dishwashing machines and industrial washing machines. Another aspect of this invention relates to a method for producing the detergent-containing article. Another aspect of this invention relates to a method for using the detergent containing article. Still another aspect of this invention relates to a method of isolating reactive and incompatible components within a solid cast detergent to minimize interaction between them during manufacture, storage, or dispensing.

DESCRIPTION OF THE PRIOR ART

Conventional institutional and industrial spray washing machines employ liquid or powdered detergents which are generally added to the wash tank by means of an automatic dispenser system. All forms of such detergents, whether liquid or solid, have stability problems and other problems associated with their manufacture, dispensing, or use. These problems have been discussed extensively in prior art publications and patent literature, and it is not practical to do anything more than summarize these discussions. In the early days of the development of the solid detergents, when these detergent products were relatively low in performance compared to the products of today, the problems were less severe. However, the advent of high performance products, stimulated in part by increased aesthetic and sanitary standards and a demand for shorter wash times has generally been characterized by the development of more complex detergent compositions which are more hazardous to the user, less stable, and more difficult to dissolve in a satisfactorily uniform manner.

For example, higher performance solid detergents generally means higher alkalinity (e.g. greater concentrations of sodium hydroxide)--higher even to the point of posing safety hazards to the user. Historically, detergents used for warewashing have been relatively low in alkalinity. The extensive use of aluminum trays and utensils, the presence of soft metals in wash pump impellers and other factors generally prevented the use of high alkalinity detergents. Recently, however, there has been a trend toward the use of high alkalinity, higher performance products. This trend has been partially the result of the increased usage of stainless steel and corrosion resistant plastics in the production of utensils. In addition, the aforementioned increased standards and shorter wash times required by the increased volume of business in eating establishments have created a demand for these higher performance products. The safety hazard of highly alkaline warewashing detergents can be high enough to justify extraordinary means for minimizing contact between the user and the detergent composition.

In addition to alkali metal hydroxides (e.g. sodium hydroxide), chemicals used in high performance products, particularly for hard surface cleaning (e.g. warewashing) include phosphates, silicates, chlorine containing-compounds, defoamers and organic polyelectrolyte polymers. See U.S. Pat. No. 3,166,513, issued Jan. 19, 1965 (Mizuno et al), U.S. Pat. No. 3,535,285, issued Oct. 20, 1970 (Sabatelli et al), U.S. Pat. No. 3,579,455, issued May 18, 1971 (Sabatelli et al), U.S. Pat. No. 3,700,599, issued Oct. 24, 1972 (Mizuno et al), and U.S. Pat. No. 3,899,436, issued Aug. 12, 1975 (Copeland et al). The alkali metal hydroxides in these compositions are very effective in removing most stubborn food soils, but a source of available chlorine is usually included to control food stains, such as tea and coffee stains. The defoamer is usually included to control foam created by a proteinaceous soil and saponified fats. The use of chlorinated cyanurates as a source of available chlorine in detergents used to clean hard surfaces is disclosed in U.S. Pat. No. 3,166,513, issued Jan. 19, 1965 (Mizuno et al), U.S. Pat. No. 3,933,670, issued Jan. 20, 1976 (Brill et al), U.S. Pat. No. 3,936,386, issued Feb. 3, 1976 (Corliss et al). These patents also describe various means for obtaining storage stable chlorine bearing detergents. The use of defoamers in detergent compositions is disclosed by U.S. Pat. No. 3,048,548, issued Aug. 7, 1962 (Martin et al), U.S. Pat. No. 3,334,147, issued Aug. 1, 1967 (Brunelle et al), and U.S. Pat. No. 3,442,242, issued May 13, 1969 (Rue et al).

One problem associated with detergents containing both an active chlorine source and an organic defoamer has been a substantial loss of available chlorine in a relatively short period of time. This problem is described in a number of the above references and in the article by R. Fuchs, J. Polkowski, and Carfagno, "Agglomerated Automatic Dishwasher Detergents", Chemical Times and Trends, pages 37-42 (October, 1977). One solution to this problem has been to absorb the organic defoamer onto an inorganic carrier particle, thus "encapsulating" the defoamer, see U.S. Pat. No. 3,306,858, issued Feb. 28, 1967 (Oberle). While a chlorine stability problem is present in low alkalinity detergents containing defoamers, the problem is more acute with high alkalinity detergents because many defoamers and chlorine-containing compounds are not stable in the presence of highly alkaline chemicals such as sodium hydroxide.

In addition to the chlorine stability problem, several additional problems have existed with high performance powdered detergent compositions which have been used in institutional and industrial washing machines. One of these problems has been caused by differential solubility of the detergent components. Not all of the components of standard detergents dissolve at the same rate or have the same equilibrium solubilities. For example, a fine, soluble particle such as sodium dichloroisocyanurate dihydrate, a common source of available chlorine, may dissolve more rapidly than some hardness sequestrants or surfactants, i.e. common detergent component. Thus, when a dispenser is charged with a powdered detergent containing both of these components, the first effluent from the dispenser will usually be overrich in available chlorine while the last effluent before the dispenser is recharged will usually be poor in available chlorine.

Another type of differential solubility problem exists with many common defoamers. Many defoamers have an oily consistency and are sparingly water soluble. When detergents containing these defoamers are dispensed from a conventional water-in-reservoir dispenser, the oily defoamer floats to the top and feeds the wash tank in an erratic fashion.

Another problem may exist with a powdered detergent if its components are of different particle sizes and densities. Variations in particle size and density between components may lead to segregation during manufacturing, shipping, and handling. Even when uniform distribution can be achieved during manufacturing, handling and shipping may cause segregation. Segregation leads to non-uniformity in the composition of the detergent when it is withdrawn from the container. Agglomeration of the components has been used to minimize the segregation problem. However, the use of agglomeration usually requires recycling of any particles which are too large or too small, which can be a significant percentage of the product.

As noted previously, it is desirable for safety and convenience to minimize contact between the user and the high-performance or highly alkaline detergent composition, and such lessened contact can be one of the many benefits of automatic dispensing. In the case of liquid detergents, it is relatively easy to provide an automatic dispensing system and method. For example, liquid detergents can simply be pumped into the wash tank or reservoir directly from their shipping containers.

Solid detergents (which can be in briquette, or, most typically, in powdered form) present much more complicated automatic dispensing problems. Several approaches have been devised for .[.attaching.]. .Iadd.attacking .Iaddend.these problems--that is, for utilizing solid phase detergents without losing the benefits of automatic dispensing. In one approach, detergents used in large conveyor type machines are dispensed directly from their shipping containers by means of a dispensing system similar to that described in U.S. Pat. No. 3,595,438, issued July 27, 1971 (Daley et al). The shipping container is inverted and placed over a detergent dispenser reservoir and a water spray is used to dissolve the detergent from the drum as needed. A system for dissolving powdered detergent from a five to ten gallon capacity shipping pail is also known, see U.S. Pat. No. 4,020,865, issued May 3, 1977 (Moffat et al). In short, the solid powdered detergent in the shipping container is not in a form which normally would be introduced directly into the wash tank of the washing machine, and it is generally preferred in the art to convert the powder into a liquid, e.g. by dissolving the powder with water in a special apparatus designed to carry out the dissolving step.

The dissolving apparatus need not be physically remote from the washing machine. Indeed, it is a common practice to mount dissolving/dispensing devices directly above--or on the side wall of--the wash tank of the machine. One typically used type of machine-mounted dispenser is the so-called water-in-reservoir type. (The water-in-reservoir approach is not limited to machine-mounted dispensers, however; in machine-mounted applications, the water-in-reservoir dispenser is generally used in single tank warewashing machines.) Typically, the water-in-reservoir type of dispenser makes up a concentrated solution of detergent from the powder in the reservoir by means of swirling action or agitation provided by incoming water. The concentrated solution is delivered directly to the wash tank by gravity or through a delivery tube. The concentration of the detergent in the wash tank can be maintained at a .[.present.]. .Iadd.preset .Iaddend.level by means of a conductivity sensing controller similar to that described in U.S. Pat. No. 3,680,070, issued July 25 1972 (Nystuen).

Various other types of devices will dissolve and dispense powdered detergents and can be mounted directly on the washing machine. For example, U.S. Pat. No. 4,063,663, issued Dec. 20, 1977 (Larson et al) described a type of dispenser in which the powdered detergent is placed over a conical or hemispherical screen and an aqueous spray from beneath the screen is used to dissolve the detergent. The concentrated solution produced by the spray is collected and directed to the wash tank. The dispenser differs from the water-in-reservoir type in that there is no water standing in the powder dispenser and the bulk of the powder remains dry. Otherwise, this type of dispenser operates in a manner similar to the water-in-reservoir type.

Among the other types of powdered detergent dispensers are small dispensers which hold from four to six pounds of detergent. The hopper of such dispensers can be filled from detergent-containing drums by means of a scoop or by the use of small individual (i.e. two pound) pouches of detergent. Dispensing systems for washing systems consisting of multiple hoppers which are filled with different chemicals or mixtures of chemicals are also known.

Dispensing systems for dispensing briquettes of detergent are also known in the art. See U.S. Pat. Nos. 2,382,163, 2,382,164, 2,382,165 all issued Aug. 14, 1945 to MacMahon and U.S. Pat. No. 2,412,819, issued Dec. 17, 1946 .[.(MachMahon).]. .Iadd.(MacMahon).Iaddend.. The detergent briquettes are dispensed from a modified water-in-reservoir round, pot-shaped dispenser. The briquettes (usually three) are held in a mesh basket which forms a slot about 11/4 inches wide across the diameter of the pot. The dissolving action is provided by a stream of water directed against the lower-most briquette and from the swirling action of water around the submerged portion of the lowermost briquette. Like the water-in-dispenser type devices, water is left standing in the reservoir. This type of system has the advantage of making it visually possible to determine when the detergent dispenser reservoir needs replenishing.

The MacMahon patents also disclose detergent briquette compositions and methods of manufacturing the briquettes. The briquette compositions and the methods of manufcture which are disclosed appear to require the presence of a silicate and trisodium polyphosphate or sodium carbonate. Detergent bars or cakes comprising a significant level of an organic detergent and tripolyphosphates are also known. See U.S. Pat. No. 3,639,286 issued Feb. 1, 1972 (Ballestra et al). Compressed tablets containing detergents are also known, see U.S. Pat. No. 2,738,323, issued Mar. 14, 1956 (Tepas, Jr.) and U.S. Pat. No. 3,417,024, issued Dec. 7, 1968 (Goldwasser).

In the field of dispensing solid detergent .[.to.]. .Iadd.into .Iaddend.conventional institutional and industrial washing machines for spray cleaning of hard surfaces (e.g. warewashing), the briquette detergent approach does not appear to have attained the same degree of commercial success as powdered detergents.

When one leaves behind the field of high performance or highly alkaline detergents, one finds that a variety of dispensers and containers for ordinary soap, compressed detergent, powder, or the like have been disclosed. See, for example, U.S. Pat. Nos. 2,686,080 (Wood), issued Aug. 10, 1954 and 2,920,417 (Wertheimer) issued January, 1960.

SUMMARY OF THE INVENTION

It has now been found that the chlorine stability, differential solubility, segregation, and safety problems described above can be minimized by forming a solid cast detergent in a disposable mold and dispensing or using the detergent directly from the mold/cast detergent combination. That is, the combination of the cast detergent and the disposable mold in which it was formed provides an article of commerce capable of dispensing dissolved solids from substantially only one surface--the surface which was the free or unsupported surface in the mold. This detergent article can be designed or structured to further minimize chlorine stability and differential solubility problems, e.g. by including the chlorine source and/or the defoamer as preformed plugs or cores encased in the cast detergent composition.

Thus, the present invention involves a process for forming and a method for using a three-dimensional, solid cast detergent composition containing an alkaline hydratable solid component, at least one other solid component, and a receptacle-shaped mold surrounding and containing the detergent composition on all but one surface. The detergent composition is normally formed by mixing and heating the components in an aqueous solution, thickening the solution and preferably also cooling it, pouring the solution into a mold, and allowing the mixture to solidify, it being understood that the solidification can involve one or more physico-chemical mechanisms, including "freezing", precipitation from solution. etc. The aforementioned preformed plugs or cores of additional components can be inserted in the mixture after it has been added to a mold and before it has solidified.

The cast detergent composition is preferably left in the disposable mold in which it was cast. Alternatively, the cast detergent can be demolded and inserted in an inexpensive container or receptacle which has substantially the same configuration as the mold, since in either case the cast detergent is surrounded on all but one surface, as described previously. The thus-surrounded cast detergent is used by placing its exposed surface in a drainable position (preferably fixed) within a detergent dispensing apparatus. A fixed drainable position is one in which the aforementioned unsurrounded, exposed surface is fixed with respect to the horizontal and a potential impinging spray of liquid such that the unsurrounded, exposed surface permits gravity flow therefrom, either because of an inclination from the horizontal by a few degrees (e.g. by 10-90) or by inclination beyond 90, i.e. partial or total inversion up to and including a totally inverted or downward-facing position. A spray of liquid impinging on the drainable (inclined or inverted) surface, suitably controlled in duration, provides a draining action or gravity flow of liquid detergent which drains downward off of the drainable surface to the washing machine into which the detergent is to be dispensed. Control over the duration of impingement (hence the duration of downward flow) has the effect of controlling the concentration of detergent in the washing machine. The dispensing apparatus is not a water-in-reservoir type, since it dispenses the flow of liquid detergent about as fast as this flow is formed by the spraying action.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a partial cut-away side view of a disposable mold containing the cast detergent of this invention.

FIG. 2 is a cross sectional view of a disposable mold containing the cast detergent of this invention. The cast detergent includes a preformed plug or core comprised of an additional ingredient or ingredients.

FIG. 3 is a plan view of the article illustrated in FIG. 2.

FIG. 4 illustrates the article of FIGS. 2 and 3 placed in an apparatus for dispensing the detergent composition.

FIG. 5 is a graph comparing the chlorine recovery for a cast detergent prepared according to this invention versus a conventional powdered detergent.

FIG. 6 is a view in perspective of a solid detergent dispenser constructed according to the principles of this invention.

FIG. 7 is an exploded view in perspective of one embodiment of the cartridge-type receptacle member for holding a charge of solid block detergent as disclosed in FIG. 6.

FIG. 8 is a view in front elevation with portions thereof broken away, of the solid detergent dispenser disclosed in FIG. 1.

FIG. 9 is a sectional view of the solid detergent dispenser disclosed in FIG. 9, taken generally along the line 9--9 of FIG. 8.

DETAILED DESCRIPTION Raw Materials

One necessary component for producing cast detergent compositions of the preset invention is a hydratable chemical. The term "hydratable chemical" as used herein includes chemicals forming both discrete and continuous states of hydration and thus means a chemical which is capable of absorbing or combining with water (e.g. 0.2-20 moles of water per mole of chemical) to form either type or stage of hydration. The hydratable chemical will normally be alkaline, that is, a one weight-percent aqueous solution of the chemical will have a pH of greater than 7.0 at 23 C. Since the detergent compositions used in this invention are highly alkaline, it is preferred that the hydratable component of the composition be alkaline in nature. Hydratable chemicals useful in the practice of this invention include alkali metal hydroxides, such as sodium hydroxide and potassium hydroxide; silicates, such as sodium metasilicate; phosphates, particularly phosphates of the formula M--PO3 M--OM or the corresponding cyclic compounds ##STR1## wherein M is an alkali metal and n is a number ranging from 1 to about 60, typically less than 10 for cyclic phosphates, typical examples of such phosphates being sodium or potassium orthophosphate and alkaline condensed phosphates (i.e. polyphosphates) such as sodium or potassium pyrophosphate, sodium tripolyphosphate, sodium hexametaphosphate, etc.; carbonates such as sodium or potassium carbonate; borates, such as sodium borate; etc. Combinations of two hydratable chemicals, for example, sodium hydroxide and sodium tripolyphosphate, and combinations of alkaline condensed phosphates with organic sequestering agents and/or alkali metal hydroxides have been found to work particularly well in the practice of this invention.

A second necessary component of the detergent compositions of this invention is water. Water is used to form a uniform medium (solution or dispersion) containing the detergent components; the uniform medium being cast into a mold and solidifying by a solidification mechanism described previously. Water may be added as a separate ingredient or in combination with one of the other components, for example as an aqueous solution of 50% sodium hydroxide.

To obtain the advantages of this invention, at least two solid components are needed. If only one solid component were used, differential solubility and segregation problems would not exist and there would be few advantages to forming a cast composition. The advantages of a cast detergent composition over a conventional powdered detergent composition are described more fully hereinafter.

In addition to those components previously described, other conventional detergent components and fillers can be included. For example, it is common to include a source of available chlorine and a defoamer. Many chlorine sources can be used including chlorinated isocyanurates, such as sodium dichloroisocyanurate dihydrate, and hypochlorites, such as calcium and lithium hypochlorite. As more fully hereinafter described, when an available chlorine containing component is included in the composition of this invention it is preferably incorporated in the composition as a preformed plug or core. Defoamers are also normally included in a detergent compositions. Typically, a "defoamer" is a chemical compound with a hydrophobe/hydrophile balance suitable to reducing the stability of protein foam. The hydrophobicity can be provided by an oleophilic portion of the molecule (e.g. an aromatic alkyl or aralkyl group; an oxypropylene unit or oxypropylene chain, or other oxyalkylene functional groups other than oxyethylene, e.g. tetramethylene oxide). The hydrophilicity can be provided with oxyethylene units or chains or blocks and/or ester groups (e.g. organophosphate esters), salt-type groups, or salt-forming groups. Typically, defoamers are nonionic organic surface-active polymers having hydrophobic groups or blocks or chains and hydrophilic ester-groups, blocks, units, or chains, but anionic, cationic, and amphoteric defoamers are known. For a disclosure of nonionic defoaming surfactants, see U.S. Pat. No. 3,048,548, issued Aug. 7, 1962 (Martin et al), U.S. Pat. No. 3,334,147, issued Aug. 1, 1967 (Brunelle et al), and U.S. Pat. No. 3,442,242, issued May 13, 1969 (Rue et al). Phosphate esters are also suitable, e.g. esters of the formula RO--PO3 M--n R, wherein n is as defined previously and R is an organic group or M (as defined previously), at least one R being an organic group such as oxyalkylene chain. If a defoamer is included it may be included as a preformed plug or core, as more fully described hereinafter. If it is included as a preformed core or plug it must be a solid, or be capable of being combined with other components to form a solid, at room temperature. Wax-like materials can be used to further isolate the chlorine source or defoamer in the core from the surrounding cast article.

The Detergent Composition

The hydratable chemical or combination of hydratable chemicals will normally comprise at least 30%, and preferably 60%, by weight of the cast detergent composition. The water of hydration will normally comprise more than 5 weight-% (e.g. 10-35 weight-%) of the cast detergent composition. Stated another way, the water of hydration can comprise more than about 15 parts by weight per 100 parts by weight (15 phr), e.g. 25-90 phr. of the hydratable chemical or combination of chemicals. Performance-improving additives such as available chlorine producing components and defoamers will normally comprise minor amounts of the composition, that is, less than 5%. As will be explained subsequently, the cast detergent composition can also contain a polyelectrolyte.

Typical three-component compositions of this invention can be formulated from (1) a phosphate or other hardness-precipitating or hardness sequestering agent, (2) an alkali metal hydroxide, and (3) water. Typical four or five component compositions would further include a defoamer and/or a neutral inorganic salt (alkali metal halides, sulfates, etc.) and/or a chlorine source and/or a thickening agent, thixotrope, suspending agent or organic chelating or sequestering agent, or the like.

Typical detergent compositions of this invention employ a condensed alkali metal phosphate for the sequestering of hardness (Mg++ and Ca++ ions). However, organic chelating or sequestering agents (citric acid, polyelectrolytes such as the polyacrylates of molecular weight 1000-3000, etc.) have been used as alternatives to or in combination with the condensed phosphates; see, for example, U.S. Pat. No. 3,535,285, issued Oct. 20, 1970 (Sabatelli et al), U.S. Pat. No. 3,579,455, issued May 18, 1971 (Sabatelli et al), U.S. Pat. No. 3,700,599, issued Oct. 24, 1972 (Mizuno et al). As is known in the art, polyacrylates (particularly alkali metal salts of polyacrylic acid and its copolymers) can function as thickeners in aqueous systems. Cast detergent compositions of this invention can contain up to 15% by weight of polyelectrolytes, as the sole sequestering agent or in combination with alkali metal condensed phosphates.

One embodiment of the solid, cast detergent-containing article of this invention is generally shown by 1 in FIGS. 1 through 3. The article includes .Iadd.a .Iaddend.disposable container or mold 3 into which base detergent 2 was cast or allowed to solidify. During shipping, article 1 will normally include lid or cover 5. Lid or cover 5 can be made of the same or similar material as used to make mold 3. As will be explained subsequently, this material is ordinarily alkaline-resistant, non-breakable, and inexpensive. Expensive corrosion-resistant metals or plastics can be used, if provision can be made for their recycling, but "disposable" materials would normally be preferred for most institutional uses. As illustrated in FIG. 2, the cast detergent composition is surrounded by and in contact with mold 3 on all but the upper surface of the solid cast detergent. A cross-section of the solid cast detergent 2 can be more than a centimeter thick (e.g. 2-20 cm thick). The area of the upper surface can easily exceed 100 cm2, e.g. 125 cm2 to 1000 cm2 or more. Unlike compressed detergent tablets, it has been found that cast detergent blocks can be made very large--almost any desired size.

In one embodiment of this invention, cast detergent base 2 will include one or more preformed plugs or cores 6, as illustrated in FIGS. 2 and 3. At least one preformed plug will normally comprise a chlorine source. When a plurality of preformed plugs are used they will normally comprise different, incompatible ingredients. For example, one plug could comprise a chlorine source while a separate plug could comprise a defoamer. By incorporating a chlorine source in one preformed plug and a defoamer in a separate preformed plug, degradation of the chlorine source, and the resultant loss of available chlorine, which often occurs when chlorine sources and defoamers come in contact, can be minimized. Thus, by incorporating preformed plugs of incompatible ingredients in the solid, cast detergent composition of this invention, the stability problems associated with many conventional powdered detergents can be minimized. To minimize reactivity between the base detergent and any material added as preformed cores, the core material may be optionally encased in a film or material which would not react with the core material or the detergent base. This coating could be comprised of a natural wax, a synthetic wax, a phosphate ester, or the like.

Some active chlorine sources such as calcium hypochlorite have been found to react very slowly at the .[.plug-basc.]. .Iadd.plug-base .Iaddend.detergent interface and would not normally need to be encased in a film or the like. However, other chlorine sources such as sodium dichloroisocyanurate dihydrate have been found to be more reactive, in which case a protective film would be beneficial.

Mold or container 3 can be made of any alkali-resistant material which can withstand moderately elevated temperatures, e.g. 150 F., and which can be formed into and hold the desired shape. Since the mold is generally intended to be "disposable" (i.e. not intended for re-use as a mold), inexpensive materials are preferred such as thermoplastics, resin-impregnated heavy paper or cardboard, and the like. Inexpensive but fragile material such as glass or ceramics are less preferred due to handling or shipping problems, relatively flexible materials being preferred. Molds made of plastic (e.g. inexpensive thermoplastics) have been found to be particularly useful.

The solid, cast detergent-containing article of FIGS. 1-3 can be used as illustrated in FIG. 4. FIG. 4 illustrates detergent dispensing apparatus 10 which can be part of a conventional institutional or industrial washing machine (not shown). Article 1, including base detergent 2, preformed core 6, and container 3 is placed in a totally downward-facing or totally inverted position over spray means 12 which is connected to a water source 14, whereby the exposed surface of detergent 2 becomes a drainable surface. When water source 14 is turned on, spray means 12 causes water to impinge on the exposed surface of detergent 2 and core 6. The detergent and the core dissolve, creating a gravity flow of liquid aqueous detergent which flows downwardly through pipe 13 to the wash tank or washing zone of the washing machine (not shown). Detergent base 2 and preformed core 6 can be formulated to dissolve at substantially the same rate and thus supply the tank with a consistent ratio of ingredients.

By controlling the spray time the amount of detergents, and thereby the concentration of detergent, in the wash can be controlled. In other words, the liquid aqueous detergent formed as a result of the impingement of the spray on the exposed surface of detergent 2 flows by gravity into pipe 13 generally simultaneously with its formation within dispensing apparatus 10. Standing water or aqueous liquid is not permitted to accumulate within dispensing apparatus 10.

Referring to FIGS. 6 through 9 there is generally disclosed at 20 a detergent dispenser for solid detergent compositions of the block type, generally constructed according to the principles of this invention. That embodiment of the dispenser 20 illustrated in these Figures is one of the type suitable for servicing relatively smaller wash applications, wherein the detergent dispenser is generally mounted directly to the washing machine or immediately adjacent thereto, such that the concentrated detergent solution formed by the dispenser apparatus will flow by gravity into the wash tank of the washing machine proper (not illustrated).

The dispenser 20 has a housing portion 21, constructed of any suitable material capable of withstanding exposure to highly caustic detergent solutions, and is preferably configured of stainless steel or molded plastic material. The housing 21 has a generally planar back wall 21a suitable for direct engagement with and mounting to a vertical mounting surface or wall (not shown). The back wall 21a includes a plurality of mounting slots 22 formed therethrough, to enable fixed mounting of the housing 21 to a solid vertical surface such as a vertical wall of a washing machine or a vertical wall disposed adjacent a washing machine.

The housing 21 defines a substantially enclosed inner cavity 30. For ease of reference and distinguishing the various portions of the inner housing cavity 30, referring to FIG.9, the upper portion of the inner cavity will be referred to as the spray region 30a of the cavity, and the lower portion of the inner cavity 30 will be referred to as the collector or discharge region 30b thereof, it being understood that gravity flow prevents detergent liquid from standing or accumulating in the collector or discharge region 30b.

The upper portion of the housing 21 defines a mouth or access port 32 opening into the inner cavity 30. Discharge region 30b includes a hose clamp extension 35 (FIGS. 8 and 9) which defines a passageway or discharge port 34 (FIG. 8) through the housing 21 for concentrated detergent solution collected or accumulated within the discharge region 30b of the inner cavity 30 of the housing 21. The hose clamp extension 35 has a plurality of annular ribs configured for engaging the inner walls of a connecting conduit or hose (not illustrated), for directing fluid flow from the discharge port 34 (FIG. 8).

An upper front wall 21b of the housing 21 projects downwardly from the access port 32 at an inclined angle to the horizontal. In the embodiment of the invention illustrated in FIGS. 6-9, the upper front wall 21b forms an angle of approximately 60 degrees with the horizontal. The upper front wall 21b terminates at and is continuous with a first lower wall 21c of the housing 21, which is also slightly inclined with respect to the horizontal and lies in a plane generally parallel to that of the upper front wall 21b. The lower front wall 21d terminates at and is continuous with a bottom wall 21e (FIG. 9) of the housing. In FIG. 9, the bottom wall 21e is generally planar, however the bottom wall 21e could assume many different configurations (such as ramp-shaped or funnel-shaped), and is generally configured so as to direct downward any detergent solution formed within cavity 30 by the impingement action of the liquid spray from nozzle 61 (FIG. 9) on surface 100a of cast solid block detergent 100 (FIG. 9) into discharge port 34.

The back wall 21a extends between the bottom wall 21e and an upper wall, generally designated at 21f, which extends to and defines one edge of the access port 32. When viewed in cross-section as in FIG. 9, that region of the inner cavity 30 generally located between the upper front wall 21b, the first lower wall 21c and the back wall 21a and the upper wall 21f comprises the upper spray region 30a; whereas the region of the inner cavity 30 generally located between the lower front wall 21d and the back wall 21a, and extending down to the bottom wall 21e generally comprises the discharge region 30b.

The housing 21 further has a pair of oppositely disposed side walls 21g, each configured to define a flange or land region 24 extending into the inner cavity 30 in generally parallel spaced relationship to one another. The land regions 24 are disposed to extend from the access port 32 downwardly to the bottom wall 21e, and cooperatively form with the front wall 21b oppositely disposed channels or races within the inner cavity 30 for slidably retainably engaging a cartridge member 40.

One embodiment of a cartridge member 40 suitable for removable insertion within the access port 32 of the dispenser 21 is illustrated in more detail in FIG 7. Referring to FIG. 7, the cartridge 40 is basically a receptacle or container-shaped member suitable for retainably holding in fixed position relative thereto a cast solid block of solid detergent composition. The cartridge member 40 generally comprises a bottom surface 41, a lower peripheral side wall portion 42, an intermediate ledge region 43 and an upper peripheral side wall portion 44. The lower peripheral side wall portions 42 extend between the bottom surface 41 and the intermediate ledge region 43, with all except one surface of the lower peripheral side walls (that surface designated as 42a) being disposed generally perpendicular to the bottom surface 41. The non-perpendicular lower peripheral side wall portion 42a is configured to define an angle with the bottom surface 41 corresponding to the included angle defined between the upper front wall 21b and the first lower wall 21c of the dispenser housing 21 (see FIG. 9). The fourth side of the upper peripheral side wall 44a forms an included angle with the general plane of the intermediate ledge region 43 .[.substantialy.]. .Iadd.substantially .Iaddend.equal to that of the included angle formed between the lower front wall 21d and the bottom wall 21e of the dispenser housing 21 (see FIG. 10).

The 43a portion of the intermediate ledge region is somewhat wider (as measured between corresponding upper and lower peripheral side wall portions) than the width of the intermediate ledge region 43 of the other portions of the cartridge member 40. A plurality of raised land areas or mounting surfaces 45 project upwardly from the intermediate ledge region 43a, the upper surfaces respectively thereof lying generally in a common plane.

The lower peripheral side walls 42 and 42a cooperatively define with the bottom surface 41 a first receptacle-shaped container 46 for retainably holding a geometrically shaped volume or mass of cast solid detergent composition 100 (see FIG. 9). The elongated intermediate ledge region 43a defines the bottom surface of a second receptacle-shaped container, generally designated .[.at.]. .Iadd.as .Iaddend.47 (see FIGS. 7 and 9). A screen or mesh member 50 is configured for mounting to the intermediate ledge region 43 (other than at the extended intermediate ledge region 43a) and to the raised mounting surfaces 45, in spaced relationship to the underlying extended intermediate ledge region 43a, so as to overlie respectively the first and second receptable-shaped container regions 46 and 47. In the preferred embodiment of the invention, the first receptacle-shaped container 46 retainably holds a solid block of detergent composition which was cast directly into the receptacle-shaped container portion 46 of the cartridge member 40, the container portion 46 physically forms the mold in which the solid cast detergent 100 (FIG. 100) is manufactured. The retainably held charge of solid detergent 100 within the container portion 46 of the cartridge member 40 defines a broad, generally planar upper surface 100a (FIG. 9) lying generally in the same plane as the intermediate ledge region 43 or slightly therebelow. The upper detergent surface 100a is inclined from the horizontal (hence "drainable") and is disposed for exposure to spray from a nozzle means, hereinafter described in more detail.

The screen member 50 has a first generally planar portion 50a. (FIG. 7), a second generally planar portion 50b and an interconnecting wall portion 50c. The first screen portion 50a is sized to fit between the opposing upper peripheral side walls 44 and is configured for mounting to the three contiguous portions of the intermediate ledge regions 43 exclusive of ledge region 43a, for substantially overlying the first receptacle-shaped container portion 46 of the cartridge member 40. The second portion 50b of the screen member 50 lies in a plane generally parallel to and spaced above that of the first screen portion 50a, and is configured for mounting to the plurality of raised mounting surfaces 45 so as to substantially overlie the extended intermediate ledge region 43a and the second receptacle-shaped container region 47 of the cartridge member 40. The interconnecting wall portion 50c of the screen member 50a and 50b portions of the screen member 50 substantially the same as those included angles which the lower peripheral side wall portion 42a forms with the bottom surface 41 and with the intermediate ledge region 43a of the cartridge member 40. When mounted to the cartridge member 40, the interconnecting wall portion 50c of the screen member 50 forms included angles with the first and second 50a and 50b portions of the screen member 50, substantially the same as those included angles which the lower peripheral side wall portion 42a forms with the bottom surface 41 and with the intermediate ledge region 43a of the cartridge member 40. When mounted to the cartridge member 40, the interconnecting wall portion 50c of the screen member 50 lies generally co-planar with the lower peripheral side wall portion 42a, and operatively forms an extension thereof, to define with the extended intermediate ledge region 43a and the upper peripheral side wall portion 44a and those oppositely disposed portions of the upper peripheral side wall 44 lying contiguous with the extended intermediate legion region 43a, the second receptacle-shaped container 47.

The cartridge member 40 may be constructed of any suitable material that is capable of withstanding exposure to highly caustic detergent solutions, and is preferably configured of molded plastic material such as polyethylene or polypropylene. The cartridge member can be supplied with solid block detergent and sold as an article of commerce, wherein the entire cartridge member 40 or portions thereof can be discarded after the detergent charge retainably held thereby has been exhausted. When the cartridge member is a disposable item, the screen member 50 would be permanently welded or bonded to the intermediate ledge region 43 and the plurality of raised land areas 45.

Alternatively, the cartridge member 40 could be a re-usable item, possibly constructed of stainless steel, wherein the screen member 50 could be detachably secured to the underlying cartridge member 40 so as to enable re-charging of the solid block detergent retainably held by the various receptacles of the cartridge member. The screen member 50 may be of any suitable material capable of withstanding exposure to highly caustic detergent solutions, and is in the preferred embodiment, preferably constructed of a plastic material. The mesh size of the screen member 50 is configured so as to be small enough to prevent solid particles of the solid block detergent held by the receptacle-shaped containers of the cartridge member 40 from passing therethrough, yet must be large enough so as to permit relatively unobstructed passage therethrough of a pressurized spray pattern directed at the underlying exposed surfaces of the solid block detergent. In general, the mesh size of the screen member 50 should be no larger than the largest dimension of the discharge port 34, so as to prevent any solid chunks or pieces of the solid block detergent which would pass therethrough from clogging the free flow of concentrated detergent solution through the discharge port 34.

The first receptacle-shaped container 46 of the cartridge member 40 can be configured to hold the solid cast detergent composition of this invention. The second receptacle-shaped container 47 can, if desired, be configured for retainably holding a long narrow block of a second solid block detergent composition (not shown). Preferably, however, container 47 is configured to hold a plurality of pillow-shaped pieces, briquettes, tablets or pellets of detergent ingredients such as a chlorine source or a defoamer of the type described herein, particularly in those cases wherein a defoamer and/or chlorine-releasing agent plug has not been inserted into the cast detergent 100. The briquette or tablet form of the detergent ingredients retainably held by the second receptacle-shaped container 47, is illustrated at 103 in FIG. 9. It is to be understood that, in the event that a chlorine-releasing and/or defoamer plug or plugs were inserted in cast detergent 100, container 47 could be left empty.

In the embodiment of the detergent dispenser disclosed in FIGS. 6-9, the height and width of the cartridge member 40 are sized for cooperative insertion within the access port 32 of the housing 21, as illustrated in FIG. 6, whereby cartridge member 40 can be placed in a fixed pre-determined position with respect to the housing, (as indicated in FIG. 9). When disposed in such fixed, pre-determined resting position, upper detergent surface 100a (the only surface of cast solid detergent 100 which is not surrounded by the walls of cartridge member 40) is exposed to any spray which may emerge from spray-forming nozzle 61. Referring to FIGS. 9 and 6, a conduit member 60 is secured to the upper wall 21f of the housing 21 and projects therethrough into the upper spray region 30a of the inner cavity 30. The spray-forming nozzle 61 is threaded or otherwise properly secured to that end of the conduit 60 extending into the inner cavity 30 and is disposed therein, so as to project a spray pattern of pre-determined shape at substantially the entire respective exposed solid detergent block surfaces of the detergent within the various receptacle chambers of the cartridge member 40. The nozzle 61 is oriented, relative to the "fixed" position of the cartridge member 40 within the inner cavity 30, such that the longitudinal spray axis 62 from the nozzle is disposed generally perpendicular to the broad "drainable" exposed upper surface 100a of the solid block detergent volume 100. The spray nozzle may be of any suitable configuration and construction for projecting a pressurized spray of aqueous liquid (preferably water) received through the conduit 60, in a pre-determined pattern, configured to directly impinge upon substantially the entire exposed surfaces of the solid block detergent retainably held by the cartridge member 40. In the embodiment of the invention disclosed in the Figures, the particularly spray nozzle produces a "square" spray pattern (as viewed in a plane generally perpendicular to the longitudinal spray axis 62) for directing the spray pattern ejected therefrom at substantially the entire drainable exposed surface 100a as well as at the exposed surface or surfaces of the solid block detergent retainably held by the second receptacle-shaped container 47. The water supply conduit 60 passes through a siphon breaker 63 (FIG. 6) and is connected, in operation, to a suitable pressurized source of water (not shown), generally ranging between 5 and 70 psi.

A safety .[.switzh.]. .Iadd.switch .Iaddend.configuration is mounted within the housing 21 for sensing the operative position of the cartridge member 40 within the inner cavity 30, including a reed switch member 70, mounted in a fixed position by means of a mounting bracket 71 (see FIG. 9). Side wall portion 44a of the cartridge 40 contains an encapsulated magnet 72 (FIGS. 7 and 9). The positions of magnet 72 and the reed switch 70 are such that the reed switch 70 is activated by the magnetic flux of the magnet 72 only when the cartridge member 40 has been fully accepted into the inner cavity 30 of the dispenser 21 in its pre-determined fixed position (as illustrated in FIG. 9), whereby the access port 32 of the housing 21 is substantially closed by the positioned cartridge member 40. As the magnet 72 is withdrawn out of activating proximity with the reed switch 70, the reed switch changes its energization state, providing an appropriate energizing (or de-energizing) signal to a valve (not shown) to block pressurized fluid flow through the conduit 60 to the nozzle 61.

Once the cartridge member 40 is properly inserted at its fixed pre-determined position within the inner cavity 30, the masses or volumes of cast detergent or detergent ingredients retainably held by one or more of the various receptacles within the cartridge 40 are dissolved at a pre-determined rate, by the pressurized impinging flow of aqueous liquid from the nozzle 61. A pressurized source of water is provided to the nozzle 61 as commanded by appropriate control means within the washing machine proper which the detergent dispenser services. For example, for a "demand" system, an electronic control network such as described in the previously cited U.S. Pat. No. 3,680,070 to Nystuen could be used to selectively provide pressurized water to the nozzle 61. Control over the duration of the impinging flow controls the amount of detergent dispensed from surface 100a and ultimately the concentration of detergent in the wash tank of the washing machine (not shown).

Once pressurized fluid flow is applied to the nozzle 61, the nozzle generates a pressurized spray pattern of pre-determined configuration, which is uniformly directed across substantially the entire upper exposed surface 100a of the solid detergent block 100, as well as against any exposed surfaces of the solid detergent ingredients 102 or 103 contained within the second receptacle-shaped container 47. The spray pattern passes through the mesh of the screen member 50 and impinges directly upon the exposed surfaces of the retainably held solid detergent blocks, dissolving by means of the hydraulic action of the spray itself a portion of the solid detergent blocks, at their respective exposed surfaces. After striking the exposed surface 100a of the detergent block 100, the spray (now converted into an aqueous liquid detergent), drains or flows by gravity down the exposed surface 100a, dissolving by errosive action, further detergent at the exposed upper surface 100a. (The inclination from the horizontal of surface 100a facilitates gravity flow.) Upon reaching the interconnecting wall portion 50c of the screen member 50, the concentrated aqueous liquid detergent cascades over and through the solid chlorine source or defoamer pellets or tablets 103 held within the second receptacle-shaped container 47, to release a predetermined proportionate amount of chlorine or defoamer components therefrom--all of which passes (or drains) in solution as concentrated detergent solution to the lower collector or discharge region 30b of the dispenser 21. The concentrated aqueous liquid detergent solution does not accumulate in region 30b but passes by gravity through the discharge port 34 (FIG 8) within hose clamp extension 35 (FIGS. 8 and 9) into appropriate conduit means or directly into an underlying wash tank or ware-washing zone. Besides the errosive action of solution passing from the upper exposed surface 100a of the detergent mass 100, the volume of solid ingredients within the second .[.receptacle.]. .Iadd.receptacle.Iaddend.-shaped container 47 is further directly dissolved by hydraulic action from the spray projected from the nozzle 61.

This invention applies to dispenser configurations wherein the nozzle 61 is mounted below the exposed detergent surface, and the detergent surface is placed at an angle beyond 90 (i.e. rotated through 90 up to 180, which would be an inverted position in which surface 100a faced downward). In the embodiment of FIGS. 6-9, it is generally preferable to position the nozzle 61 in a position overlying the solid detergent block to be dissolved, and to place the exposed surface or surfaces of the solid block detergent at an angle with respect to the horizontal (preferably between 10 and 90), to supplement the hydraulic dissolution with the errosive dissolution caused by the solution flowing down the exposed surface(s). In a preferred embodiment of the invention disclosed in the Figures, it has been found that an inclination of the exposed detergent surface 100a of approximately 60 with the horizontal provides adequate dwell time for the downwardly flowing water, while maintaining a sufficiently small response time for the dispenser (i.e. that elapsed time after which the pressurized spray is projected from the nozzle 61 to the time in which the majority of the concentrated detergent solution produced thereby has drained downwardly from the discharge port 34).

The first lower wall 21c of the dispenser 21, as well as the upper and lower peripheral side wall portions 44a and 42a of the cartridge member 40 are inclined slightly with respect to the horizontal (when the dispenser and enclosed cartridge member 40 are mounted in operative position), to insure drainage of any liquid solutions (either the projected spray or resultant concentrated detergent solution) therefrom. Any liquid coming in contact with these surfaces is directed toward the collector region 30b of the cavity 30.

Thus, the formation of an aqueous liquid detergent due to the flow of liquid over surface 100a and/or pellets 103 is generally simultaneous with the resulting downward or gravity flow, which quickly reaches extension 35 and prevents standing water build-up. Whenever the charge of solid detergent contained within the various receptacles of the cartridge member 40 are depleted, the cartridge is rapidly replaced by slidably removing the spent cartridge from the inner cavity 30, through the access port 32, and simply replacing the spent cartridge with a fully charged cartridge member 40. As previously discussed, the disposable cartridge could be physically re-charged before replacement thereto into the housing 21. In such a re-usable cartridge application, it would be desirable to wrap the highly caustic detergent block being placed within the cartridge with a water soluble covering such as polyvinylalcohol to protect the hands of the person handling the solid detergent block used to charge the cartridge. Alternatively, the cartridge member 40 could be replaced by an appropriate retaining means forming an integral part of the housing 21 and having appropriate receptacle retaining means for retainably holding charges of solid block detergent in the required pre-determined position with respect to the nozzle spray pattern.

Method of Manufacturing Cast Detergent

While the following process is described with reference to specific components, it should be understood that other components and similar processes can be used to form a detergent solution which can be cast into a mold and will solidify upon hydration of its hydratable component. A particularly useful detergent composition of this invention is formed by heating about 20-75 parts by weight of a 40-75 weight percent aqueous solution of an alkali metal hydroxide, e.g. sodium hydroxide, to a temperature above about 55 C., preferably 65-85 C. Temperatures approaching 95 C. can also be used; see Examples 9 and 9A which follow. While other alkali metal hydroxides may be used, sodium hydroxide has been found to be particularly useful and the following method of manufacturing will be described with respect to it. Aqueous solutions of 50 weight percent sodium hydroxide are readily commercially available. Solutions containing higher weight percents of sodium hydroxide are also available (e.g. 73%) or can be produced by adding a desired amount of anhydrous sodium hydroxide to a 50 weight percent solution of sodium hydroxide. An aqueous solution of sodium hydroxide can also be prepared by mixing water and anhydrous sodium hydroxide in the desired ratio.

After the aqueous solution of sodium hydroxide reaches a temperature above 55 C., preferably above 65 C., anhydrous sodium hydroxide can be added, as illustrated in several of the Examples which follow, the preferred amount being about 8 to about 40 parts by weight, i.e. about 8 to about 40% of the weight of the total cast detergent composition. A lower temperature range (e.g. 55-70 C.) may also be used in this process, e.g. during alkali metal condensed polyphosphate addition. Typically, about 15 to about 40 parts by weight of anhydrous alkali metal condensed polyphosphate are added to the solution. It is not necessary to completely dissolve the alkali metal condensed polyphosphate, since it can be suspended in the composition. After the polyphosphate and/or optional fillers or components (the polyphosphate is a preferred ingredient), are added, the mixture can be cooled. Continuous mixing can be used during any dissolving, cooling, and thickening steps. The cooled and thickened mixture is poured into a receptacle-shaped mold to a level at least part way up the side molding surfaces. As the mixture continues to cool it will solidify to form a cast composition. Solidification is believed to be substantially due to cooling. (This invention is not bound by any theory, however.) After it has solidified, the cast detergent is surrounded by and in contact with the mold on all sides except for its upper surface which remains exposed.

After the base detergent has been poured into the mold, but before it has solidified, preformed cores or plugs such as plug 6 in FIGS. 2 and 3 may be added. When a plug is added, the base detergent is allowed to solidify around it and retain it in place. While any shape or size plug could be used, it is normally preferred that the plug extend to the entire depth of the base detergent as illustrated in FIG. 2. The plug should extend the depth of the solidified detergent so that a constant ratio of components can be maintained while the base detergent and the plug are dissolved during use.

An alternative method of including a separately formed plug or plugs could consist of using a mold comprising one or more smaller molds positioned within the larger mold. The large mold would be filled with the cast detergent base while the smaller mold or molds would contain separate compositions such as a source of available chlorine or a defoamer. The compositions could be cast into the smaller mold or preformed as a plug and "pressed" into the mold.

The present invention will be further understood by reference to the following specific Examples which are illustrative of the composition, form and method of producing the solid, cast detergent-containing article of this invention. It is to be understood that many variations of composition, form and method of producing the cast detergent would be apparent to those skilled in the art. The following Examples, wherein parts and percentages are by weight unless otherwise indicated, are only illustrative.

EXAMPLE 1

An 8.8 pound batch (approximately 4000 grams) of a solid cast detergent of this invention was prepared using the following procedure.

Fifty-five parts by weight of a 50 weight percent aqueous solution of sodium hydroxide were added to a laboratory mixer provided with a stirring means and a heating means. The 50% sodium hydroxide solution was heated to approximately 55-60 C. Nine parts by weight of anhydrous sodium hydroxide were added to the solution. The solution was stirred until the anhydrous sodium hydroxide was completely dissolved. The addition of the anhydrous sodium hydroxide had the effect of forming an approximate 57 weight percent aqueous solution of sodium hydroxide.

Thirty six parts of anhydrous sodium tripolyphosphate were added to the solution and the solution was mixed. The tripolyphosphate did not completely dissolve but was held in suspension by mixing. Mixing was continued without heating until the solution began to thicken, which was approximately 10-15 minutes after the addition of the tripolyphosphate.

After the mixture had thickened but while it was still pourable, six pounds (about 2700 grams) were poured into a receptacle-shaped mold such as mold 3 in FIGS. 1-3, consisting of a slightly tapered cylindrical plastic container measuring about 61/2 inches (about 16.5 cm) at the major diameter (the open end) and about 51/2 inches (about 14 cm) at the minor diameter and about 41/2 inches (about 11.5 cm) in depth. The mixture was allowed to harden in the mold which took approximately 5 minutes.

The composition of the final cast product (in weight %) was approximately:

______________________________________36.5%        sodium hydroxide27.5%        water36.0%        sodium tripolyphosphate100.0%______________________________________

While this product can be used as a detergent without additional additives, additional components can be included as illustrated in the following Examples.

EXAMPLE 2

A product with the same composition as that described in Example 1, with the exception that 1 part by weight of the 50% sodium hydroxide was replaced with 1 part by weight of a defoamer, was produced. The defoamer was added following the addition of the sodium tripolyphosphate and was kept uniformly dispersed by continuous mixing until the mixture was poured in the mold. At the time it was poured the mixture was sufficiently viscous so that a uniform dispersion was maintained.

The composition of the final cast product (in weight %) was approximately:

______________________________________36%          sodium hydroxide27%          water36%          sodium tripolyphosphate1%           defoamer100%______________________________________
EXAMPLE 3

A mixture was prepared according to the procedure described in Example 1. 53.57 parts of 50% sodium hydroxide, 8.77 parts of anhydrous sodium hydroxide. and 35.06 parts of anhydrous sodium tripolyphosphate were used. The mixture was then poured into the mold described in Example 1. Before the mixture completely solidified 2-6 parts of a preformed circular "plug" measuring about 1 inch in diameter (about 2.5 cm) and about 31/2 inches (about 9 cm) in length, comprising a source of available chlorine, was placed approximately in the center of the mold. The length of the plug was such that it extended from the bottom of the mold to the surface of the mixture. The mixture was then allowed to harden around the plug.

The composition of the solidified cast detergent (in weight %) was:

______________________________________35.5%        sodium hydroxide26.8%        water36.1%        sodium tripolyphosphate2.6%         chlorine plug100.0%______________________________________

The available chlorine containing plug was prepared by forming a composition consisting of:

______________________________________59.7    parts calcium hypochlorite-65%   available chlorine (HTH  from   Olin-Matieson)14.4    parts Veegum  WG (from R. T. Vanderbitt   Company, Inc.)25.9    parts dendritic sodium chloride100.0______________________________________

"Veegum" is a trademark for inorganic suspending agents.

After the three ingredients were mixed, plugs measuring about 1 inch (about 2.5 cm) in diameter and about 31/2 inches (about 9 cm) in length, were made by filling an appropriate size cylindrical die with the composition and subjecting the die to about 2,000 psi in a hydraulic press.

Plugs containing available chlorine were produced following the same procedure from the two following compositions:

______________________________________A.    100      parts Lithium Hypochlorite 35% available          chlorineB.    51.4     parts sodium dichloroisocyanurate          dihydrate 14.4     parts Veegum   WG 34.2     parts dendritic sodium chloride 100.0    parts total______________________________________

Plugs produced from these formulas were also found to perform satisfactorily in the article of this invention.

EXAMPLE 4

This Example was designed to illustrate how plug 6 of FIGS. 2 and 3 could be further isolated from the base detergent. One plug was made from each of the following formulas by compression molding at about 2000 psi mold pressure.

______________________________________41.0 g (59.9%)  calcium hypochlorite-65%           availabe chlorine10.0 g (14.3%)  Veegum  WG18.0 g (25.8%)  dendritic salt69.9 g (100%)41.5 g (59.7%)  sodium dichloroisocyanurate           dihydrate10.0 g (14.4%)  Veegum  WG18.0 g (25.9%)  dendritic salt69.5 g (100%)______________________________________

Both plugs were dipped in melted paraffin wax which was held at just above its melting point of 56.5 C. so that a very thin coating of paraffin wax was formed on the sides and one end of the plug. The wax was allowed to cool and harden. The plugs were then inserted into the cast detergent base of Example 2 following the procedure of Example 3. No visual indication of any reaction at the plug-detergent base interface was noted with either of these plugs.

EXAMPLE 5

A mixture was prepared following the procedure described in Example 2. 52.57 parts of 50% sodium hydroxide, 8.77 parts of anhydrous sodium hydroxide, 35.06 parts of anhydrous sodium tripolyphosphate and 1 part defoamer were used. The mixture was then poured into the mold described in Example 1. Before the mixture completely solidified, 2.6 parts of a chlorine containing plug similar to those described in Example 3 was added as described in Example 3.

The composition of the solidified cast detergent was:

______________________________________35.0%        sodium hydroxide26.3%        water35.1%        sodium tripolyphosphate1.0%         defoamer2.6%         chlorine plug100.0%______________________________________
EXAMPLE 6

A solid cast detergent of the same formula as that described in Example 5 was produced. However, instead of mixing the defoamer with the base detergent it was added in the form of a plug. Thus, two plugs were used, one comprising a defoamer and the other comprising a source of available chlorine. The two plugs were placed near the center of the mold after the detergent was added, but before it solidified.

The composition of the solidified cast detergent was:

______________________________________35.0%        sodium hydroxide26.3%        water35.1%        sodium tripolyphosphate1.0%         defoamer plug2.6%         chlorine plug100.0%______________________________________

The defoamer plug was prepared by heating together 60 parts of a viscous (at room temperature) polyoxyalkylene glycol and 40 parts of a solid mixture of mono- and di-alkyl phosphate esters until the phosphate esters melted and then mixing until the mixture .[.as.]. .Iadd.was .Iaddend.uniform. The solution was then poured into a cylindrical mold and allowed to cool and form a solid plug at room temperature.

Similar plugs were produced following essentially the same procedure using: 50 parts of a polyethylene glycol, 25 parts of a polyoxyalkylene glycol, and 25 parts of a mixture of mono- and di-alkyl phosphate esters.

EXAMPLE 7

A solid cast detergent was produced using the same formula and procedure as described in Example 2 except that the 1 part of defoamer was added as a plug similar to those described in Example 6.

EXAMPLE 8

Approximately 6 pounds of a solid cast detergent of this invention were prepared using the following procedure, 40 parts of anhydrous sodium metasilicate and 39 parts of a 10 weight percent aqueous solution of sodium hydrochlorite were added to a laboratory mixer provided with a stirring means and a heating means. The solution was heated to approximately 55-60 C. Twenty parts of anhydrous sodium tripolyphosphate were added to the solution and the solution mixed without heating until it began to thicken. After the mixture had thickened but while it was still pourable it was poured into a mold consisting of the dimensions described in Example 1. Before the mixture completely solidified, 1 part of a defoamer plug similar to those described in Example 6 was added following the previously described procedure.

The composition of the solidified cast detergent was

______________________________________40%          sodium metasilicate35%          water20%          sodium tripolyphosphate4%           sodium hypochlorite1%           defoamer plug100%______________________________________
EXAMPLE 9

This example was designed to illustrate that the sodium tripolyphosphate component of the previous Examples can be formed in-situ by reacting sodium trimetaphosphate with sodium hydroxide via the following reaction: ##STR2##

Approximately 2200 ml of 50% aqueous sodium hydroxide was added to a stainless steel, jacketed beaker equipped with a "Lightning" stirrer. Following the addition the temperature was 70 F. (21 C.). Next 1440 g of powdered trimetaphosphate was added slowly. As the temperature of the mixture approached 100 F. (38 C.), cooling was applied. The remainder of the trimetaphosphate was added incrementally until the entire 1440 grams had been added. During the addition a maximum temperature of 200 F. (93 C.) was reached.

Upon sitting for several minutes the mixture formed a solid which could have been cast into a mold and used as the solid, cast detergent of this invention.

EXAMPLE 9A

This Example illustrates that chlorinated trisodium phosphate may be used as the chlorine source. A solid cast detergent having the following composition was prepared:

______________________________________36.0%        caustic soda27.0%        water36.0%        sodium tripolyphosphate1.0%         defoamer100.0%______________________________________

The above mixture was prepared using the procedure as described for Example 2. The mixture was poured (about 2360 g) into the mold which had a removable 2 inch diameter cylinder placed in the center. After the mixture had solidified, the 2 inch diameter cylinder was removed leaving a hollow cylindrical cavity. This hollow cavity was filled with about 340 grams of molten chlorinated trisodium phosphate. The chlorinated trisodium phosphate solidified upon cooling below its melting point. Some reaction occurred at the interface of the plug. It is believed that this reaction may be reduced significantly allowing the cast detergent to cool thoroughly before the chlorinated trisodium phosphate was poured and/or coating the cavity surface with an inert barrier such as, for example, paraffin wax or mixed mono and dialkyl esters of polyphosphoric acid or like materials.

EXAMPLE 10

This Example was designed to illustrate the production of a non-phosphate solid, cast detergent. Forty parts of 50% aqueous sodium hydroxide was heated to 150 F. (65.5 C.) in a jacketed stainless steel beaker equipped with a stirrer. .[.Twnety.]. .Iadd.Twenty .Iaddend.parts of anhydrous sodium hydroxide were added and the mixture was stirred until a molten solution was formed. Twenty-five parts of liquid silicate (RU silicate from Philadelphia Quartz) having an SiO2 /Na2 O ratio of 2.54 was added and resulted in the temperature of the mixture increasing to about 200 F. (93 C.). The mixture was cooled to about 150 F. (65 C.) and 15 parts of sodium polyacrylate were added slowly while stirring continued.

The mixture was poured into a plastic container where it solidified upon cooling.

EXAMPLE 11

The purpose of this Example is to compare the consistency of available chlorine recovery from a cast detergent-containing article produced according to the instant invention and a conventional, prior art, powdered detergent. The prior art formula used consisted of a mixture of sodium tripolyphosphate, sodium dichloroisocyanurate (a chlorine source), sodium metasilicate, and sodium hydroxide. Sodium dichloroisocyanurate comprised approximately 2.8% of the formula. The cast detergent-containing article used was produced by the process and using the formula described in Example 5. The chlorine source was present in the form of a plug situated approximately in the center of the cast base detergent. The cast detergent containing article was dispensed from an apparatus similar to the one illustrated in FIG. 4. The prior art formula was dispensed from a water-in-reservoir dispenser of the type illustrated in FIG. 1 of U.S. Pat. No. 3,680,070, issued July 25, 1972 (Nystuen).

Samples of the effluent from the dispensers were collected periodically and titrated for alkalinity to the phenolphthalein end point with hydrochloric acid and titrated for available chlorine with sodium thiosulfate using the conventional iodometric titration. The influent water temperature to both dispensers was about 71 C. (160 F.).

The amount of detergent present in the effluent was determined by the alkalinity of the effluent. The "chlorine recovered-percent of theoretical" (CRPT) was then calculated from the formula: ##EQU1## The results are illustrated in FIG. 5. FIG. 5 shows that the solid cast detergent of this invention provides very uniform chlorine recovery when compared to a prior art formulation. It is theorized that the differential solubility of the components of the prior art powdered detergent is responsible for the more erratic chlorine recovery shown by the prior art detergent.

EXAMPLE 12

This Example was designed to determine the effect of segregation during the manufacture of a conventional, prior art, powdered detergent. Since there should be no segregation with the solid cast detergent of this invention, (since all the components are physically locked in place) any significant segregation with a powdered detergent would represent a disadvantage of the powdered detergent.

The conventional powdered detergent used was the same as that described in Example 11. This powdered detergent is commonly packaged in two-pound packages. Seven two-pound packages from the same production batch were selected at random for analysis. Ideally each of the packages should contain the same percentage of each of the four ingredients.

The contents of each of the packages were weighed and the entire contents dissolved in an appropriate quantity of water in a 30 gallon drum to give a 1% weight/volume solution. This eliminated any variation due to the possibility of different amounts of detergent being present in different packages. A 100 ml sample was withdrawn from each drum and titrated for available chlorine with sodium thiosulfate using the standard iodometric titration. The results were as follows:

______________________________________Sample No.  Percent Available Chlorine______________________________________1           1.632           2.003           1.534           1.565           1.546           1.967           1.65______________________________________

As indicated, the percentage of available chlorine varied from 1.53 to 2.00. This variation is in part due to segregation during mixing and packaging of the powdered detergent. This segregation is probably one factor leading to the variation in chlorine delivery illustrated in FIG. 5.

EXAMPLE 13

This Example was designed to compare the chlorine stability of cast detergents of this invention containing a chlorine source directly in the base detergent with cast detergents of this invention which incorporate a chlorine source as a core or plug, such as those described in Example 3. Three different chlorine sources were used: sodium dichloroisocyanurate dihydrate (NaDCC-2H2), lithium hypochlorite (LiOCl), and calcium hypochlorite (Ca[OCl]2). All of the compositions were produced following the procedure of Example 1 with the chlorine source being added directly to the mixture following the addition of the sodium tripolyphosphate in one case and the chlorine being added as a plug in the other. In the third case the chlorine source plug was dipped in a paraffin wax (m.p. 52.5 F.) and in a fourth case the chlorine source plug was dipped in mono and dialkyl ester of polyphosphoric acid, a wax like solid (m.p. 150-160 F.). The formula used and the available chlorine remaining after various storage times at room temperature are shown in Table I.

As indicated by Table I, when the chlorine source is added directly as a component of the cast detergent most of the chlorine is lost within 24 hours. However, when the chlorine source is added directly as a component of the cast detergent most of the chlorine is lost within 24 hours. However, when the chlorine source is incorporated into the cast detergent as a preformed core or plug, excellent chlorine stability results with Ca(OCl)2 and lithium hypochlorite but not with NaDCC-2H2 O. When the chlorine source plug was coated with a film of paraffin wax or a waxy mono and dialkyl ester of polyphosphoric acid the best stabilities were obtained.

                                  TABLE I__________________________________________________________________________       CHLORINE SOURCE ADDED DIRECTLY       TO DETERGENT            CHLORINE SOURCE ADDED AS PLUGComponents* Ca(OCl)2              LiOCl  NaDCC--2H2 O                               Ca(OCl)2                                       LiOCl   NaDCC--2H2__________________________________________________________________________                                               ONaOH - 50%  52.4   51.0   52.2      52.57   52.57   52.57NaOH Anhyd  9.0    9.0    9.0       8.77    8.77    8.77STP         36.0   36.0   36.0      35.06   35.06   35.06Defoamer    1.0    1.0    1.0       1.00    1.00    1.00Ca(OCl)2       1.6    --     --        2.60    --      --NaDCC--2H2 O       --     --     1.8       --      --      2.60Li(OCl) - 35%       --     3.0    --        --      3.33    --.[.Percent Avaiable.]..Iadd.Percent Available.Iaddend.       3.5    17.4   3.5       --      --      --Chlorine remainingafter 24 hoursPercent Available       --     --     --        --      --      --Chlorine remainingafter 2 daysPercent Available       --     --     --        --      60      1.5Chlorine remainingafter 15 daysPercent Available       --     --     --         98     --      --Chlorine remainingafter 29 days__________________________________________________________________________CHLORINE STABILITY       CHLORINE SOURCE ADDED AS PLUG                               CHLORINE SOURCE .[.ADDD.]. .Iadd.ADDED                               .Iaddend. AS PLUG       BUT COATED WITH PARAFFIN                               BUT COATED WITH PE-053Components* CaOCl  LiOCl  NaDCC--2H2 O                               CaOCl   LiOCl   NaDCC--2H2__________________________________________________________________________                                               ONaOH - 50%  52.57  52.57  52.57     52.57   52.57   52.57NaOH Anhyd  8.77   8.77   8.77      8.77    8.77    8.77STP         35.06  35.06  35.06     35.06   35.06   35.06Defoamer    1.00   1.00   1.00      1.00    1.00    1.00Ca(OCl)2       2.60   --     --        2.60    --      --NaDCC--2H2 O       --     --     2.60      --      --      2.60Li(OCl) - 35%       --     3.33   --        --      3.33    --Percent Available       --     --     --        --      --      --Chlorine remainingafter 24 hoursPercent Available       --     --     --        --      --      --Chlorine remainingafter 29 daysPercent Available       100    99     100       --      --      --Chlorine remainingafter 15 daysPercent Available       --     --     --        100     99      100Chlorine remainingafter 2 days__________________________________________________________________________ *Components shown in parts by weight. These products essentially same as Product of Example 5.
EXAMPLE 14

The purpose of this Example was to compare the uniformity of delivery of defoamer from: (A) a conventional powdered detergent (Score TM, a commercial product of Economics Laboratory, Inc.); a cast detergent (product of Example 5); and (C) a cast detergent incorporating the defoamer as a core or plug (product of Example 6). All three of the formulations contained 1% by weight of defoamer. The (A) conventional detergent and (B) the product of Example 5 contained the same defoamer; (C) the product of Example 6 contained the blend of two defoamers described in Example 6 (the blend was used to obtain a solid product which could be molded into a plug).

All tests were conducted in a Hobart C-44 (trademark) single tank dishwashing machine. A C-11 Dispenser (trademark of Economics Laboratory, Inc.), a water-in-reservoir type dispenser, was used to dispense product (A) (the conventional powdered detergent). The Hobart C 44 (trademark) machine was equipped with a dispenser similar to that illustrated in FIG. 4 for dispensing the solid .[.oast.]. .Iadd.cast .Iaddend.detergent products (B) product of Example 5) and (C) (product of Example 6), Both dispensers were contolled by a conductivity base controller of the type described in U.S. Pat. No. 3,680,070, issued July 25, 1972 (Nystuen). The controller was set to maintain a 0.2% concentration of detergent in the wash tank. The water temperature was about 140 F. (65 C.) for all of the tests.

Defoamers are included in detergents for spray-wash machines to control foam created by food soils. Foam in a wash tank leads to entrapment of air in the wash solution being recirculated through the machine and results in a reduction in mass and kinetic energy which leads to poor soil removal. Excess foam in a wash tank causes a loss in water pressure which can be measured by a manometer connected to the wash manifold upstream from the water pump. Egg is a common foam-causing food soil and was selected for use in this test.

The C-11 Dispenser originally holds about four pounds of powdered detergent and thus four pounds of conventional detergent (A) were used in the test. Products (B) and (C) were approximately six pounds each and were of the configuration described in Example 1 and illustrated in FIGS. 1-4.

The pressure (in inches of water) was recorded when the dispenser was freshly charged, when about one-half of the detergent had been dispensed, and when about four fifths of the detergent had been depensed. Manometer readings were taken on the freshly charged detergent: (1) with water alone, (2) after the detergent was added. (3) five minutes after 115 grams of egg were added, and (4) five minutes after an additional 100 grams of egg were added.

Between the "Freshly Charged" test and the "Detergent 1/2 Spent" test, the fill valve was opened to deliver 2 gallons of water per minute for dilution to simulate normal dilution of the wash tank by rinse water which is diverted to the wash tank to freshen the wash water. The conductivity controller dispensed detergent as required to maintain a 0.2% concentration of detergent in the wash tank. When about one-half of the detergent originally in the dispensers was left, manometer readings were taken and the two egg additions described above repeated with readings being taken five minutes after each addition. The same procedure was repeated after about one-fifth of the detergent originally present was left in the dispensers (four-fifths spent).

The "Detergent 1/2 Spent" test was somewhat more severe than the "Freshly Charged" test and, likewise, the "Detergent 4/5 Spent" test was somewhat more severe than the "Detergent 1/2 Spent " test, due to the cumulative concentration of egg soil resulting because the wash tank was not drained between tests.

The results of these tests are summarized in Table II.

                                  TABLE II__________________________________________________________________________            FRESHLY CHARGED                        DETERGENT 1/2 SPENT                                     DETERGENT 4/5 SPENT            Wash Pressure                     %  Wash Pressure                                 %   Wash Pressure                                               %            (inches of water)                     Loss                        (inches of water)                                 Loss                                     (inches of water)                                               Loss__________________________________________________________________________(A)   Conventional Powdered   Detergent   Water alone:  43       -- --       --  --        --   Detergent added:            43       -- 42.5     --  41.0      5.0   5 minutes after 115 g.            38       12 26.0     40  25.0      42   egg added:   5 minutes after additional            28       35 22.0     48  *         --   100 g. egg added:(B)   Defoamer in Cast Detergent   (Product of Example 5)   Water alone:  42       -- --       --  --        --   Detergent added:            42       -- 43       --  42.5      --   5 minutes after 115 g.            42       0  43        0  41.0      3.0   egg added:   5 minutes after additional            42       0  30       30  29.0      32   100 g. egg added:(C)   Defoamer as Plug in Cast   Detergent (Product of   Example 6)   Water added:  42.5     -- --       --  --        --   Detergent added:            42.5     -- 42       --  42.5      --   5 minutes after 115 g.            42.5     0  42        0  41.0      0   egg added:   5 minutes after additional            42.5     0  42        0  41.0      3.5   100 g. egg added:__________________________________________________________________________ *Test was stopped due to excessive foam to avoid damage to pump and motor

The data in Table II indicates that Product (C) the product of Example 6 with the defoamer included as a plug) had the highest and most consistent wash pressures and that Product (B) (the product of Example 5 with the defoamer included in the cast detergent) had higher and more consistent wash pressures than Product (A) (the conventional powdered detergent). The higher and more consistent wash pressures indicate more uniform defoamer delivery.

It was noted that the defoamer incorporated in the powdered detergent (A) floated to the top and formed an oily film in the water-in-reservoir dispenser. It is believed that this resulted in slug-feeding of the defoamer instead of uniform delivery. In contrast, with the solid cast detergent of this invention, both the detergent and defoamer are dispensed simultaneously which helps assure uniform dispensing of the defoamer.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US404354 *Dec 3, 1888May 28, 1889 Katie htjber
US871612 *Jan 2, 1904Nov 19, 1907Vincent Blumhardt NesfieldSterilizing-tablet.
US1325361 *Jan 27, 1919Dec 16, 1919 ce tippecanoe city
US1380388 *May 22, 1919Jun 7, 1921American Safety RazorStick of shaving-soap
US1580576 *Mar 9, 1925Apr 13, 1926Edmund WeidnerPerfumed soap cake
US1949264 *Mar 17, 1930Feb 27, 1934R M Hollingshead CoMethod of making soap solution
US2031853 *Apr 24, 1933Feb 25, 1936Armour & CoPackaging molten soap
US2083076 *Nov 5, 1934Jun 8, 1937Coal Treating & Equipment CompMethod for dissolving deliquescent material
US2120807 *Jun 29, 1937Jun 14, 1938Joseph ParisiDevice for soaping flowing water
US2138943 *Jun 23, 1937Dec 6, 1938Raymond E MarquisAlkali solution dispenser for dish washing machines
US2164092 *Jun 12, 1936Jun 27, 1939Hall Lab IncProcess of preparing solid alkaline compounds
US2238969 *May 10, 1938Apr 22, 1941John R WareDishwashing apparatus
US2308612 *Jul 23, 1941Jan 19, 1943Milk Plant Specialties CorpDissolving apparatus
US2333433 *Feb 28, 1940Nov 2, 1943Gelatin Products CompanyApparatus and process for making capsules
US2339396 *Aug 14, 1940Jan 18, 1944Harvey Leo MMaterial dispensing means
US2370609 *Apr 28, 1941Feb 27, 1945Economics LabConcentration cell and temperature compensator
US2371720 *Aug 9, 1943Mar 20, 1945Turco Products IncAdmixing and dispensing method and device
US2382163 *Jan 31, 1942Aug 14, 1945 Detergent briquette
US2382164 *Jan 31, 1942Aug 14, 1945 Detergent briquette
US2382165 *Jan 31, 1942Aug 14, 1945 Detergent briquette
US2387945 *Jul 29, 1944Oct 30, 1945Antiseptol Company IncDispensing apparatus
US2412819 *Jul 21, 1945Dec 17, 1946Mathieson Alkali Works IncDetergent briquette
US2477998 *Mar 9, 1945Aug 2, 1949Mccowan Thomas BBar soap dispenser
US2604386 *Dec 19, 1950Jul 22, 1952Clayton Manufacturing CoDetergent dissolving apparatus
US2613922 *Jan 13, 1950Oct 14, 1952Gatchet Francis LSolution mixing and distributing apparatus
US2641506 *Mar 30, 1950Jun 9, 1953Lowthers Frank JSoap container and dispenser
US2646189 *Apr 11, 1949Jul 21, 1953Wickesberg Alfred WMelting and dispensing apparatus
US2686080 *Dec 12, 1950Aug 10, 1954Soapsudzer IncProcess of impregnating a liquid with a substance miscible therewith
US2698022 *Dec 30, 1948Dec 28, 1954Gen Aniline & Film CorpDispenser for liquid detergents
US2738323 *Jul 10, 1952Mar 13, 1956Olin MathiesonChemical feeder
US2788328 *Dec 26, 1952Apr 9, 1957 Cleansing composition
US2802724 *Apr 5, 1956Aug 13, 1957Johnson Tom RCombined dry chemical dissolver and feeder
US2804432 *Jan 12, 1950Aug 27, 1957Bonewitz Paul WProcess of making particles of caustic soda and caustic potash impregnated with gluconic acid
US2820701 *Jun 28, 1954Jan 21, 1958Leslie Donald JApparatus for chlorination
US2920417 *Jan 22, 1958Jan 12, 1960Sylvia T WertheimerDetergent-solution dispensing container
US2987483 *Jul 2, 1956Jun 6, 1961Pennsalt Chemicals CorpCleaning composition
US3048548 *May 26, 1959Aug 7, 1962Economics LabDefoaming detergent composition
US3070316 *Jun 16, 1961Dec 25, 1962Edouard MivilleSoap and water mixing valve
US3092515 *Sep 14, 1959Jun 4, 1963Research CorpMoving-bed liquid-solid contactor and operation thereof
US3156536 *May 23, 1961Nov 10, 1964Pechiney Prod Chimiques SaWasher mixer apparatus
US3166512 *Apr 6, 1961Jan 19, 1965Economics LabStable, solid chlorinated caustic product containing available chlorine and method of preparation thereof
US3166513 *Apr 4, 1963Jan 19, 1965Economics LabStable detergent composition
US3174934 *Apr 24, 1961Mar 23, 1965Monsanto CoHydration of sodium tripolyphosphate
US3178067 *Mar 19, 1963Apr 13, 1965Anderson Clayton & CoApparatus for the conversion of a solid material to a liquid state and metering thereof
US3253741 *Jan 21, 1965May 31, 1966Wesley Mfg CoCar wash device
US3271317 *Dec 24, 1963Sep 6, 1966Wyandotte Chemicals CorpSilicated sodium hydroxide
US3272899 *Apr 3, 1964Sep 13, 1966Hagan Chemicals & Controls IncProcess for producing a solid rinse block
US3273586 *Feb 24, 1964Sep 20, 1966 Detergent feed systems
US3279995 *May 31, 1963Oct 18, 1966Allen F ReidShaped pellets
US3291576 *Dec 24, 1963Dec 13, 1966Wyandotte Chemicals CorpProduction of hydrated sodium hydroxide
US3306858 *Jun 17, 1965Feb 28, 1967Economics LabProcess for the preparation of storage stable detergent composition
US3307744 *Oct 18, 1965Mar 7, 1967Pennsalt Chemicals CorpMethod and apparatus for automatic control of cleaning solution concentrations in vehicle washing system
US3319637 *Jul 11, 1966May 16, 1967Intercontinental Chem CorpMeans for monitoring and maintaining concentration of depletable work solutions
US3322507 *Jun 11, 1963May 30, 1967Union Carbide CorpApparatus for dissolving solid polymeric substances in a solvent
US3322674 *Jun 26, 1964May 30, 1967Jack FriedmanLaundry package
US3334147 *Feb 28, 1962Aug 1, 1967Economics LabDefoaming and surface active compositions
US3382178 *Feb 1, 1965May 7, 1968Petrolite CorpStable alkaline detergents
US3390093 *Jun 1, 1965Jun 25, 1968Monsanto CoDetergent compositions containing hydrated alkali metal tripolyphosphates
US3399676 *Feb 12, 1965Sep 3, 1968Jack E. MclaughlinLiquid dispensing apparatus for use in body treatment
US3417024 *Mar 24, 1967Dec 17, 1968Lever Brothers LtdTreated phosphates
US3441511 *Dec 20, 1965Apr 29, 1969Wyandotte Chemicals CorpAlkali metal hydroxide-containing agglomerates
US3442242 *Jun 5, 1967May 6, 1969Algonquin Shipping & TradingStopping and manoeuvering means for large vessels
US3491028 *Jun 3, 1969Jan 20, 1970Grace W R & CoChlorine stable machine dishwashing composition
US3535258 *Dec 4, 1967Oct 20, 1970Grace W R & CoMachine dishwashing composition and process
US3556982 *Jun 26, 1968Jan 19, 1971Atlantic Richfield CoCombination additive for tar sand processing
US3574561 *Jul 24, 1969Apr 13, 1971Us NavyOxygen generator system utilizing alkali metal peroxides and superoxides
US3579455 *Aug 2, 1968May 18, 1971Grace W R & CoMachine dishwashing compositions containing sodium polyacrylate
US3595438 *Jan 6, 1969Jul 27, 1971Economics LabAutomatic detergent dispenser system
US3639286 *May 28, 1968Feb 1, 1972Triberti DomenicoSynthetic detergent in bar or cake form and the method to manufacture same
US3649545 *Jan 15, 1970Mar 14, 1972Lion Fat Oil Co LtdSynthetic detergent in masses and their manufacturing methods
US3680070 *May 25, 1970Jul 25, 1972Economics LabElectronic control means for dispensing apparatus
US3687613 *Oct 27, 1970Aug 29, 1972Combustion EngMethod and apparatus for preparing an additive for introduction to a gas scrubber
US3700599 *Sep 25, 1970Oct 24, 1972Economics LabComposition for mechanically cleaning hard surfaces
US3727889 *Mar 8, 1971Apr 17, 1973Chapman Chem CoMixing method and apparatus
US3789011 *Jul 1, 1971Jan 29, 1974Ideal Soap CoContinuous process for producing transparent soap having pearlescent qualities
US3816427 *Mar 14, 1973Jun 11, 1974W LoeligerApparatus for continuously dissolving pulverulent material in a liquid
US3850344 *Jul 28, 1972Nov 26, 1974Calgon CorpInverted drum feeder for powdered detergent
US3856932 *Dec 16, 1969Dec 24, 1974May MTablet of a chlorine releasing solid compound
US3899436 *Nov 10, 1972Aug 12, 1975Economics LabMachine dishwashing detergent having a reduced condensed phosphate content
US3933670 *Nov 12, 1973Jan 20, 1976Economic Laboratories, Inc.Phosphate salt
US3936386 *Aug 6, 1973Feb 3, 1976Fmc CorporationDishwashing compositions containing chlorinated isocyanurate
US3937399 *Aug 4, 1975Feb 10, 1976Tesco Chemicals, Inc.Jet action chemical feeding method
US4014808 *Sep 4, 1975Mar 29, 1977Tennant CompanyBuilders, wetting agents, flocculants
US4020865 *Oct 3, 1975May 3, 1977Economics Laboratory, Inc.Remote powder detergent dispenser
US4063663 *Dec 15, 1975Dec 20, 1977Economics Laboratory, Inc.Powdered detergent dispenser
US4147650 *Oct 25, 1977Apr 3, 1979Chemed CorporationSlurried detergent and method
US4209864 *May 21, 1979Jul 1, 1980International Flavors & Fragrances Inc.Cleanser and/or sanitizer and aroma emitting attachment for toilets and process for using same
US4294280 *Jul 10, 1979Oct 13, 1981Tom Milton DApparatus for producing and dispensing detergent solutions
US4318891 *Feb 2, 1981Mar 9, 1982Kim Seung GAutomatic toilet bowl cleaner
US4426362 *Sep 14, 1981Jan 17, 1984Economics Laboratory, Inc.Solid block detergent dispenser
US4438010 *Mar 26, 1982Mar 20, 1984International Flavors & Fragrances Inc.Soap tablet including perfume-containing plastic core and process for preparing same
US4469613 *Feb 23, 1983Sep 4, 1984International Flavors & Fragrances Inc.Sustained release of perfume
CA715310A *Aug 10, 1965Rylands Brothers LtdMachines for securing a wire or like tie or strap around a coil or bundle
EP0003769A1 *Feb 6, 1979Sep 5, 1979Economics Laboratory, Inc.Cast detergent-containing article and method of making and using
GB687075A * Title not available
Non-Patent Citations
Reference
1"Ecolab Detergent Control and Application Equipment", Models C-11 and C-15, C-11, C-4.
2"Ecolab-Detergent Concentrated Tank for Use with the Solu-Matic Z4 and Powdered Detergents", Models C-8, C-33.
3"Klenzade Detergent Bricks", Formulas KDB-3 and KDB-4 (1958).
4"Warhead-Chlorinated Brick Detergents", Model C-14, Warhead Brick Dispenser.
5 *Ecolab Detergent Concentrated Tank for Use with the Solu Matic Z4 and Powdered Detergents , Models C 8, C 33.
6 *Ecolab Detergent Control and Application Equipment , Models C 11 and C 15, C 11, C 4.
7Fuchs, Polkowski, Cargano, "Agglomerated Automatic Dishwasher Detergents", Chemical Times and Trends, pp. 37-42 (Oct., 1977).
8 *Fuchs, Polkowski, Cargano, Agglomerated Automatic Dishwasher Detergents , Chemical Times and Trends, pp. 37 42 (Oct., 1977).
9 *Klenzade Detergent Bricks , Formulas KDB 3 and KDB 4 (1958).
10 *Warhead Chlorinated Brick Detergents , Model C 14, Warhead Brick Dispenser.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4964185 *Nov 18, 1988Oct 23, 1990Ecolab Inc.Chemical solution dispenser apparatus and method of using
US5016790 *Dec 19, 1989May 21, 1991Ecolab Inc.Apparatus and method for dispensing a detergent solution
US5061392 *Feb 7, 1990Oct 29, 1991Dubois Chemicals, Inc.Mixing aqueous solution of potassium tripolyphosphate with water soluble builders; used in warewashing machines
US5078301 *Apr 26, 1990Jan 7, 1992Ecolab Inc.Dispensing aqueous solution of wash chemicals
US5133892 *Oct 17, 1990Jul 28, 1992Lever Brothers Company, Division Of Conopco, Inc.Machine dishwashing detergent tablets
US5194230 *Dec 2, 1991Mar 16, 1993Ecolab Inc.Solid product static brake for solid block chemical dispensers
US5234615 *Apr 9, 1992Aug 10, 1993Ecolab Inc.Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
US5318713 *Jun 8, 1992Jun 7, 1994Binter Randolph KSolid detergent composition with multi-chambered container
US5366706 *Apr 19, 1993Nov 22, 1994Winbro Group, Ltd.Cake-like detergent and method of manufacture
US5393502 *Sep 7, 1993Feb 28, 1995International Purification Systems, Inc.Solubilizing apparatus
US5447648 *Apr 5, 1994Sep 5, 1995Ecolab Inc.For dishwashers, sorbitan fatty acid ester, sucrose fatty acid ester, polyglycerol fatty acid ester
US5474698 *Dec 30, 1993Dec 12, 1995Ecolab Inc.Stable uniform mixtures of alkali metal hydroxides, silicates, carbonates or organic bases with sequestering agents, urea and water of hydration, in blocks
US5482641 *Sep 2, 1993Jan 9, 1996Fleisher; HowardStratified solid cast detergent compositions and methods of making same
US5534178 *Dec 12, 1994Jul 9, 1996Ecolab Inc.Perforated, stable, water soluble film container for detersive compositions
US5536479 *Oct 17, 1994Jul 16, 1996International Purification Systems, Inc.Solubilizing apparatus
US5573698 *Nov 5, 1992Nov 12, 1996Ecopack Gmbh & Co.Returnable container containing detergent, cleaning agent, disinfectant and/or preservative
US5655563 *Dec 19, 1994Aug 12, 1997Ecolab Inc.Dispensing apparatus with line pressure diverter
US5670467 *Apr 19, 1995Sep 23, 1997Fleisher; HowardStratified solid cast detergent compositions
US5670473 *Jun 6, 1995Sep 23, 1997Sunburst Chemicals, Inc.Solid cleaning compositions based on hydrated salts
US5674831 *May 4, 1995Oct 7, 1997Ecolab Inc.Method of making urea-based solid cleaning compositions
US5698513 *Sep 24, 1996Dec 16, 1997Ecolab Inc.Urea-based solid cleaning compositions free from or containing minor amounts of water
US5738135 *Jun 21, 1995Apr 14, 1998Ecolab Inc.Dispensing apparatus with line pressure diverter
US5759988 *Nov 22, 1996Jun 2, 1998Ecolab Inc.Stable hygroscopic detergent article
US5797986 *Nov 14, 1996Aug 25, 1998Ecolab Inc.Floor cleaning method
US5830839 *May 29, 1996Nov 3, 1998Sunburst Chemicals, Inc.Solid detergents with active enzymes and bleach
US5846499 *Feb 27, 1996Dec 8, 1998Sunburst Chemicals, Inc.Air induction bowl for use with a detergent dispenser
US6180592Mar 24, 1999Jan 30, 2001Ecolab Inc.Used for removing organic hydrophobic soils, such as oily or greasy soils, from laundry item and/or from hard surface such as engine part and/or from skin; includes an ethoxylate component and fatty acid ester component
US6240953Apr 13, 1999Jun 5, 2001Sunburst Chemicals, Inc.Multiple cleaning chemical dispenser
US6288020Mar 14, 2000Sep 11, 2001Huish Detergents, Inc.Compositions containing α-sulfofatty acid esters and methods of making and using the same
US6362150 *Nov 12, 1998Mar 26, 2002Corporation CressidaHydrated matrix
US6365568 *Apr 7, 1994Apr 2, 2002Ecolab Inc.Process for manufacturing solid cast silicate-based detergent compositions and resultant product
US6369021May 7, 1999Apr 9, 2002Ecolab Inc.For cleaning dishes
US6387870Mar 29, 1999May 14, 2002Ecolab Inc.Polyethylene glycol, metal compound mixture as hardener
US6395702Jul 16, 2001May 28, 2002Sunburst Chemicals, Inc.Uniform dispersion of anionic and nonionic surfactants
US6395703Dec 1, 2000May 28, 2002Sunburst Chemicals, Inc.Solid detergents with active enzymes and bleach
US6410495Oct 19, 2000Jun 25, 2002Ecolab Inc.Solidified mixture of sodium carbonate and alklai metal silicate
US6423280Oct 29, 1998Jul 23, 2002Ecolab Inc.Dishwasher with rinsing
US6432906Nov 12, 1996Aug 13, 2002Ecolab Inc.Solid acid cleaning block and method of manufacturing
US6436893 *Oct 18, 2000Aug 20, 2002Ecolab Inc.Detergent comprising alkali metal carbonate, surfactant, sequestrant comprising organic phosphonate and inorganic condensed phosphate
US6440910Nov 17, 2000Aug 27, 2002Ecolab Inc.Ethoxylate component and a fatty acid ester component.
US6475969Mar 16, 2001Nov 5, 2002Sunburst Chemicals, Inc.Comprising waxy substance and active chlorine source; for detergents
US6489278Jan 13, 1997Dec 3, 2002Ecolab Inc.Combination of a nonionic silicone surfactant and a nonionic surfactant in a solid block detergent
US6503879Mar 15, 2001Jan 7, 2003Ecolab Inc.Containing organic phosphonate and inorganic phosphate
US6525015Apr 8, 2002Feb 25, 2003Ecolab Inc.Source of alkalinity and a blend of nonionic surfactants that enhances cleaning starchy soils; blend includes an alkyl polyglycoside surfactant and a silicone, especially a polyethersiloxane, surfactant
US6583094Nov 8, 2000Jun 24, 2003Ecolab Inc.Stable solid block detergent composition
US6608023Feb 6, 2002Aug 19, 2003Ecolab Inc.Solid pot and pan detergent
US6632291Mar 23, 2001Oct 14, 2003Ecolab Inc.Methods and compositions for cleaning, rinsing, and antimicrobial treatment of medical equipment
US6638902Feb 1, 2001Oct 28, 2003Ecolab Inc.Stable solid enzyme compositions and methods employing them
US6645924Apr 9, 2001Nov 11, 2003Ecolab Inc.Dissolving solids in water; washing vehicles
US6649586Jan 30, 2003Nov 18, 2003Ecolab Inc.Alkaline blend of nonionic surfactants including an alkyl polyglycoside and polyethersiloxane copolymer; enhances removal of starch, waxy fat, and protein from dishes and glassware
US6653266Dec 13, 2000Nov 25, 2003Ecolab Inc.An organic sequestrant that can cooperate in the formation of the binding agent containing an organo phosphonate or an organoamino acetate and water and alkali metal carbonate hydrate as binding agent; solid alkaline detergent
US6660707Jun 24, 2002Dec 9, 2003Ecolab Inc.Stable solid block metal protecting warewashing detergent composition
US6664219Nov 17, 2000Dec 16, 2003Ecolab Inc.Benzyl capped linear alcohol ethoxylate and polyethersiloxane copolymer enhanced waxy fatty soil removing capacity
US6673765Apr 17, 2000Jan 6, 2004Ecolab Inc.Mixing anionic, cationic, nonionic or amphoteric surfactants, hardeners, metal carbonates and water in extruders, then solidifying to form ductile detergents used for cleaning, rinsing, sanitization, deodorizing, laundering or lubrication
US6689305Jan 14, 1994Feb 10, 2004Ecolab Inc.Irradiating bed of raw material particles in container with radiation penetrable walls with subinfrared electromagnetic radiation of sufficient energy to cause temperature to rise, then cooling, to transform particles into unitary macrosolid
US6730653Jun 1, 2000May 4, 2004Ecolab Inc.Method for manufacturing a molded detergent composition
US6737028May 25, 2000May 18, 2004Sunburst Chemicals, Inc.Container for flowable composition generated by impinging solvent spray on casting supported therein, having inclined side portion with cross-section decreasing from bottom to mouth, disposable in inverted position in solution dispenser
US6767884Oct 28, 2003Jul 27, 2004Ecolab Inc.Detergent composition including nonionic surfactant blend, hardness sequestering agent, binding agent to provide composition as solid, effective soil removing amount of source of alkalinity comprising alkali metal carbonate
US6773668Apr 17, 2000Aug 10, 2004Ecolab, Inc.Detergent dispenser
US6777383Mar 27, 2002Aug 17, 2004Sunburst Chemicals, Inc.Laundering with homogeneous, storage stable material con-taining nonionic surfactant, peroxide bleaching agent and active enzyme in block form
US6812202Nov 18, 2003Nov 2, 2004Ecolab Inc.Alkaline detergent, surfactant blend
US6831054May 8, 2003Dec 14, 2004Ecolab Inc.Stable solid block detergent composition
US6835706Jan 7, 2003Dec 28, 2004Ecolab Inc.Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal
US6924257Nov 10, 2003Aug 2, 2005Ecolab Inc.Dissolving blocks of cleaning compounds in reservoirs having heaters, using water to form solutions used for cleaning
US6956019Jul 19, 2004Oct 18, 2005Ecolab Inc.Combination of a nonionic silicone surfactant and a nonionic surfactant in a solid block detergent
US7037886Nov 30, 2001May 2, 2006Ecolab Inc.Method for manufacturing a molded detergent composition
US7087569Nov 14, 2003Aug 8, 2006Ecolab Inc.Stable solid block metal protecting warewashing detergent composition
US7094746Dec 10, 2004Aug 22, 2006Ecolab Inc.dimensionally stable alkaline solid block warewashing detergent uses an E-form binder comprising a nonhydrated alkali metal carbonate, an organic sequestrant, and a mono-hydrated alkali metal carbonate binder
US7135448Jul 2, 2003Nov 14, 2006Ecolab Inc.Warewashing composition for use in automatic dishwashing machines, comprising a mixture of aluminum and zinc ions
US7153820Aug 13, 2001Dec 26, 2006Ecolab Inc.Solid detergent composition and method for solidifying a detergent composition
US7196044Jun 25, 2004Mar 27, 2007Ecolab, Inc.detergents including cleaning compounds, an alkaline source, and corrosion inhibitors, used for cleaning utensils and kitchenware in dishwahers
US7196045Feb 2, 2006Mar 27, 2007Ecolab Inc.Warewashing composition comprising a corrosion inhibitor with Al and Zn ions
US7199095Aug 18, 2005Apr 3, 2007Ecolab Inc.Alkaline detergent composition of surfactants, a hardness sequestering agent, binding agent to provide the detergent composition as a solid, an organic phosphate compound, sodium carbonate, and water; and a source of alkalinity; removal of waxy-fatty soil
US7231928 *May 20, 2003Jun 19, 2007Whirlpool CorporationHousehold dishwasher with bulk wash aid dispenser
US7250086Dec 8, 2003Jul 31, 2007Ecolab Inc.Method of using a solid rinse additive dispenser for dispensing a use solution in a dishwashing machine
US7279455Nov 6, 2003Oct 9, 2007Ecolab, Inc.Mixture of sheeting agent and antifoam agents
US7341987Nov 14, 2003Mar 11, 2008Ecolab Inc.Binding agent for solid block functional material
US7423005Nov 20, 2003Sep 9, 2008Ecolab Inc.Binding agent for solidification matrix
US7442679Apr 15, 2004Oct 28, 2008Ecolab Inc.Binding agent for solidification matrix comprising MGDA
US7452853Aug 7, 2006Nov 18, 2008Ecolab Inc.detergents including cleaning compounds, an alkaline source, and corrosion inhibitors, used for cleaning utensils and kitchenware in dishwahers
US7521412May 25, 2007Apr 21, 2009Ecolab Inc.a phosphate-free mixture of sodium sulfate, urea, water, sheeting agents comprising etherified polyoxyalkylene glycols and antifoam agents comprising a polyethylene gylycol or ethylene oxide-propylene oxide coploymer, used for rinsing substrate surfaces
US7524803Jan 30, 2007Apr 28, 2009Ecolab Inc.Warewashing composition for use in automatic dishwashing machines comprising an aluminum/zinc ion mixture
US7598218Sep 16, 2008Oct 6, 2009Ecolab Inc.Method of forming a binding agent for solidification matrix
US7638473Oct 13, 2008Dec 29, 2009Ecolab Inc.Warewashing composition for use in automatic dishwashing machines, and methods for manufacturing and using
US7674763Nov 7, 2008Mar 9, 2010Ecolab Inc.Method for manufacturing a molded detergent composition
US7759299Jul 24, 2006Jul 20, 2010Ecolab Inc.Warewashing composition for use in automatic dishwashing machines
US7763576Jan 4, 2008Jul 27, 2010Ecolab Inc.such as polyacrylic acid or polymaleic acid, sodium bicarbonate, and water; phosphorus-free; dimensional stability
US7829516Nov 12, 2009Nov 9, 2010Ecolab Usa Inc.Warewashing composition comprising a Zn/Al corrosion inhibitor for use in automatic dishwashing machines
US7858574Jun 8, 2010Dec 28, 2010Ecolab Usa Inc.Diluting a corrosion resistant washing detergent with water containing a cleaning agent containing a surfactant, alkaline source, a corrosion inhibitor for reducing corrosion of a glass, sorce of water soluble aluminum ions, source of water soluble calcium or magnesium ions; zinc-free; washing glass
US7883584Apr 17, 2009Feb 8, 2011Ecolab Usa Inc.a phosphate-free mixture of sodium sulfate, urea, water, sheeting agents comprising etherified polyoxyalkylene glycols and antifoam agents comprising a polyethylene gylycol or ethylene oxide-propylene oxide coploymer, used for rinsing substrate surfaces
US7888303Jan 4, 2008Feb 15, 2011Ecolab Inc.Mixture of methacrylate, sodium carbonate and water; hydration
US7893012May 4, 2007Feb 22, 2011Ecolab Inc.Solid cleaning mixture of methacrylate, water, antifoam agents, careboxylate, sodium carbonate, metasilicate and surfactant
US8063010Jul 15, 2005Nov 22, 2011Ecolab Usa Inc.Solid detergent composition and methods for manufacturing and using
US8093200Feb 15, 2007Jan 10, 2012Ecolab Usa Inc.Sodium isononanoate branched fatty acid disintegrator in solid detergent briqutte; sodium carbonate solidification agent; sodium hydroxide; slurried, extruded, cast; enhanced dissolution rate; improved detersive action
US8138138Jul 8, 2010Mar 20, 2012Ecolab Usa Inc.Solidification matrix using a polycarboxylic acid polymer
US8192553May 26, 2010Jun 5, 2012Ecolab Usa Inc.Pot and pan soaking composition
US8198228Jan 4, 2008Jun 12, 2012Ecolab Usa Inc.Solidification matrix using an aminocarboxylate
US8309509Dec 8, 2011Nov 13, 2012Ecolab Usa Inc.Fast dissolving solid detergent
US8324147May 14, 2012Dec 4, 2012Ecolab Usa Inc.Fast drying and fast draining solid rinse aid consisting essentially of a quaternary non-ionic surfactant mixture
US8338352Jan 24, 2011Dec 25, 2012Ecolab Usa Inc.Solidification matrix
US8367600May 24, 2012Feb 5, 2013Ecolab Usa Inc.Dimensionally stable solid rinse aid
US8383570May 24, 2012Feb 26, 2013Ecolab Usa Inc.Enhanced melting point rinse aid solid compositions with synergistic preservative
US8389464Feb 14, 2012Mar 5, 2013Ecolab Usa Inc.Solidification matrix using a polycarboxylic acid polymer
US8399393May 3, 2010Mar 19, 2013Ecolab Usa Inc.Combination of soluble lithium salt and soluble aluminum or silicate salt as a glass etching inhibitor
US8450264Oct 16, 2012May 28, 2013Ecolab Usa Inc.Fast drying and fast draining rinse aid
US8530403Nov 20, 2009Sep 10, 2013Ecolab Usa Inc.Solidification matrix using a maleic-containing terpolymer binding agent
US8567161May 12, 2010Oct 29, 2013Ecolab Usa Inc.Wetting agents for aseptic filling
US8603408 *Jun 16, 2011Dec 10, 2013Ecolab Usa Inc.Apparatus for control of on site mixing of solid peroxide source and catalyst
US8642530Apr 5, 2013Feb 4, 2014Ecolab Usa Inc.Fast drying and fast draining rinse aid
US8697625Oct 12, 2012Apr 15, 2014Ecolab Usa Inc.Fast dissolving solid detergent
US8758699Oct 29, 2013Jun 24, 2014Ecolab USA, Inc.Apparatus for control of on site mixing of solid peroxide source and catalyst
US8759269Jul 19, 2010Jun 24, 2014Ecolab Usa Inc.Solidification matrix including a salt of a straight chain saturated mono-, di-, and tri- carboxylic acid
US8772221Sep 5, 2012Jul 8, 2014Ecolab Usa Inc.Solidification matrices using phosphonocarboxylic acid copolymers and phosphonopolyacrylic acid homopolymers
US20130294978 *May 3, 2012Nov 7, 2013Reynato MarianoChemical dissolving dispenser
EP0314890A2 *Aug 24, 1988May 10, 1989Ecolab Inc.Dispenser for an article comprising a water soluble bag containing a pelletized functional material, and methods for its use
EP0353408A2 *May 19, 1989Feb 7, 1990Ecolab Inc.Non-filming high performance solid floor cleaner
EP2617804A1Jan 21, 2008Jul 24, 2013Ecolab Inc.Fast dissolving solid detergent
EP2677023A2Oct 17, 2008Dec 25, 2013Ecolab Inc.Pressed, waxy, solid cleaning compositions and methods of making them
WO1995018211A1 *Nov 22, 1994Jul 6, 1995Ecolab IncMethod of making a solid alkaline cleaning composition
WO1995018213A1 *Dec 13, 1994Jul 6, 1995Ecolab IncMethod of making highly alkaline solid cleaning compositions
WO1995018215A1 *Dec 20, 1994Jul 6, 1995Ecolab IncStable hygroscopic detergent article
WO2009050684A2Oct 17, 2008Apr 23, 2009Ecolab IncPressed, waxy, solid cleaning compositions and methods of making them
WO2009087541A1Dec 30, 2008Jul 16, 2009Ecolab IncSolidification matrix using an aminocarboxylate
Classifications
U.S. Classification510/225, 134/29, 134/57.00D, 137/268, 510/445, 510/438, 206/524.5, 510/380, 510/439, 239/310, 422/261, 510/231, 422/278, 422/263, 134/25.1, 134/36, 422/264
International ClassificationC11D17/00, C11D17/04, A47L15/44, B01F1/00
Cooperative ClassificationC11D17/0052, B01F1/0027, C11D17/041, A47L15/4436
European ClassificationC11D17/00H2, C11D17/04B, B01F1/00F2, A47L15/44C
Legal Events
DateCodeEventDescription
Aug 11, 1997FPAYFee payment
Year of fee payment: 12
Aug 2, 1993FPAYFee payment
Year of fee payment: 8
Aug 2, 1989FPAYFee payment
Year of fee payment: 4
Apr 23, 1987ASAssignment
Owner name: ECOLAB INC.
Free format text: CHANGE OF NAME;ASSIGNOR:ECONOMICS LABORATORY, INC.,;REEL/FRAME:004706/0547
Effective date: 19861121