Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUSRE32889 E
Publication typeGrant
Application numberUS 06/918,820
Publication dateMar 14, 1989
Filing dateOct 14, 1986
Priority dateAug 31, 1983
Fee statusPaid
Publication number06918820, 918820, US RE32889 E, US RE32889E, US-E-RE32889, USRE32889 E, USRE32889E
InventorsAlan E. Litke
Original AssigneeLoctite Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Thixotropic cyanoacrylate compositions
US RE32889 E
Cyanoacrylate compositions which employ fumed silicas treated with polydimethylsiloxane or trialkoxyalkylsilane are stable and exhibit an unexpectedly high thixotropic ratio. Such compositions are useful in adhesive applications or, when stabilized so as to prevent polymerizaton in contact with moisture, in latent fingerprint developing applications.
Previous page
Next page
I claim:
1. In a composition comprising an α-cyanoacrylate ester monomer and a thixotropic agent, the improvement comprising that said composition is a non-flowable gel, said thixotropic agent is present in an amount of 12% or less and is a fumed silica having a surface treated with a trialkoxyalkylsilane and the said composition has a 2.5 RPM Brookfield viscosity of about 1105 or greater.
2. A composition as in claim 1 wherein the silica surface is treated with trimethoxyoctysilane.
3. A composition as in claim 1 comprising an organic polymer dissolved in said monomer.
4. A composition as in claim 3 wherein said polymer is selected from polyvinyl acetate polymers and copolymers, polyacrylates, polymethacrylates and polycyanoacrylates.
5. A composition as in claim 1 stabilized so as to be nonpolymerizable on contact with moisture.
6. A composition as in claim 3 wherein said polymer is present at levels of between 1 and 15% by weight.
7. A composition as in claim 6 wherein said polymer is present at levels of between 3 and 10% by weight.
8. A composition as in claim 7 wherein said polymer is polymethylmethacrylate.
9. A composition as in claim 1 wherein said silica is present in an amount between about 4 and 8% by weight.
10. A composition as in claim 9 wherein said silica is present in an amount of about 6% by weight. .Iadd.
11. A composition as in claim 1 wherein the composition viscosity is about 1105. .Iaddend. .Iadd.12. A composition comprising:
an α-cyanoacrylate ester monomer; between 1 and 15% of a polymeric thickener; and
an amount less than 12% by weight of the composition of a trimethoxyoctylsilane treated fumed silica effective to form a thixotropic gel. .Iaddend. .Iadd.13. A composition comprising:
an α-cyanoacrylate ester monomer;
between 1 and 15% of a polymeric thickener; and
an amount in the range of about 4%-8% by weight of the composition of a trimethoxyoctylsilane treated silica, said amount of silica effective to form a thixotropic gel. .Iaddend. .Iadd.14. A composition comprising:
an α-cyanoacrylate ester monomer;
between 1 and 15% of a polymeric thickener; and
a trimethoxyoctylsilane treated silica having a surface area of about 150 m2 /gm in an amount, less than 12% by weight of the composition, effective to form a thixotropic gel. .Iaddend. .Iadd.15. A composition as in claim 12 wherein the polymeric thickener is polymethylmethacrylate. .Iaddend. .Iadd.16. A composition as in claim 13 wherein said polymeric thickener is polymethylmethacrylate and is present in the range of about
3%-10%. .Iaddend. .Iadd.17. A composition as in claim 16 wherein the monomer is methyl or ethyl cyanoacrylate. .Iaddend. .Iadd.18. A composition consisting essentially of:
methyl or ethyl cyanoacrylate;
between 1 and 15% by weight of the composition of polymethylmethacrylate; and
about 4-8% by weight of the composition of a trimethoxyoctylsilane treated silica. .Iaddend. .Iadd.19. A composition as in claim 18 which also includes a polymerization stabilizer. .Iaddend.

Cyanoacrylate adhesives based on esters of α-cyanoacrylic acid have gained wide acceptance in recent years for a broad range of industrial and consumer uses. The cyanoacrylate esters themselves, however, are very low viscosity liquids which makes the use of unfilled compositions difficult. Such compositions often migrate from the bondline or are absorbed into porous surfaces. Accordingly, there have been developed a variety of thickened cyanoacrylate adhesive compositions which incorporate organic polymers and/or inorganic fillers to reduce adhesive migration. Examples of such compositions are described in U.S. Pat. Nos. 3,607,542; 3,896,077, 4,105,715, 4,180,913 and in Chemical Abstracts 89:117907c; 89:216475u; 91:40425c; and 92:95114b.

In the art of thickened cyanoacrylates it is sometimes desirable that the composition display thixotropic properties. Thus, under high shear conditions the composition can be processed and easily applied to the substrate but once applied, will display significantly reduced migratory tendencies. It is also well known that the inclusion of fumed silicas in many organic liquid compositions positions produces thixotropic effects. The use of such silicas has been reported in cyanoacrylate compositions.

At least certain of the prior art cyanoacrylate compositions employing fumed silicas have displayed stability problems, however. Thus U.S. Pat. No. 3,607,542 describes organically filled cyanoacrylate compositions in which fumed silica is an optional ingredient. These compositions are reportedly stable for only up to 4 hours. Furthermore, the same patent states that silica by itself does not readily mix with cyanoacrylate monomer to form a paste.

Cyanoacrylate formulations also occasionally find non-adhesive applications. Thus, for instance, the vapors of methyl and ethyl cyanoacrylates have found use for developing latent fingerprints in law enforcement applications. For such applications it would be desirable to develop a nonflowable form of cyanoacrylate monomer so that small open containers of the monomer can be placed throughout a room or automobile to release vapors without the danger of accidental monomer spillage. Desirably the thixotropic additives will also be kept to a minimum so as not to substantially reduce the monomer vapor pressure.

In certain applications it has been discovered that hydrophobic silicas produced by treatment of fumed silica with dimethyldichlorosilane can be used to give thixotropic cyanoacrylate compositions with improved stability. However, these fillers add cure retarding strong acid to the cyanoacrylate composition. Also, the thixotropic ratio of these silicas in cyanoacrylate esters (the ratio of apparent viscosity is measured under specified high and low shear conditions) is quite low. Therefore, when very high thixotropic effects are desired, such as when a pasty composition is desired, the amount of acid introduced by the silica can substantially reduce the cure time of the composition. Also, for latent fingerprint developing type applications, higher silica levels may result in lower monomer vapor pressures.

Commercially available fumed silicas are also known which have been treated with hexamethyldisilazane. It has discovered that thixotropy ratios are also very low for these materials and that at least some of these materials tend to destabilize cyanoacryalte compositions. The destabilization effect is thought to result from residual ammonia or amine in the filler.

Accordingly there exists a need for a cyanoacrylate thixotrope, stable to the cyanoacrylate monomer, which has a significantly improved thixotropy ratio over dimethyldichlorosilane or hexamethyldisilazane treated silicas, and which does not adversely affect the fixture time of adhesive formulations.


The present application relates to cyanoacrylate compositions which employ fumed silicas treated with a polydimethylsiloxane or a trialkoxyalkylsilane as a thixotropic additive. It has been unexpectedly found that such silicas when incorporated into cyanoacrylate compositions do not adversely effect the stability of the composition, display a significantly higher thixotropy ratio than the previously mentioned treated silicas and, in adhesive compositions, do not adversely effect fixture time even at levels of about 10-12% where the compositions become pasty and very difficult to stir or apply uniformly.

The inventive compositions may consist primarily of an appropriately stabilized cyanoacrylate ester monomer and the specified silica. However, it is preferred that a small amount of an organic polymer such as polymethylmethacrylate be dissolved in the monomer.

The inventive compositions are also useful in nonadhesive applications such as nonflowable latent fingerprint developing formulations.


Fumed silicas which have been found to impart desired thixotropic properties to the inventive compositions fall into two categories. The first, and most preferred, are polydimethylsiloxane treated silicas such as Cab-O-Sil N70-TS.[.™.]..Iadd..sup.™ .Iaddend., sold by the Cabot Corporation. The silica has a carbon content of 5 weight percent and a surface area of .[.70M2 /gm.]. .Iadd.70m2 /gm .Iaddend.according to the manufacturer.

The second category of silicas usable in the inventive compositions are trialkoxyalkylsilanes. An example is Aerosil R805.[.™.]..Iadd..sup.™ .Iaddend., an experimental product available from Degussa Corporation. Aerosil R805.[.™.]. .Iadd..sup.™ a trimethoxyoctylsilane treated silica having a surface area of 150 m2 /gm.

The superior thixotropic performance of the inventive cyanoacrylate compositions is best obtained at silica levels of about 4-8%. These properties were demonstrated by comparative testing of an ethyl cyanoacrylate formulation containing 6% of a 0.4-0.5 million mw polymethylmethacrylate and 6% hydrophobic silica. The composition was stabilized with 5 ppm methanesulfonic acid (MSA) approximately 2500 ppm hydroquinone and 5 ppm SO2. The formulations were prepared with the aforementioned Cab-O-Sil N70-TS.[.™.]. .Iadd..sup.™ .Iaddend.and Aerosil R805.[.™.]. .Iadd..sup.™ well as two hexamethyldisilazane treated silicas (Tellenox 500.[.™.]. .Iadd..sup.™ .Iaddend.solb by Tulco, Inc. and Wacker HDK 2000.[.™.]. .Iadd..sup.™ .Iaddend.sold by Wacker-Chemie) and three-dimethyldichlorosilane treated silicas (Aerosils R972.[.™.]..Iadd..sup.™ .Iaddend., R974.[.™.]. .Iadd..sup.™ .Iaddend.and R976.[.™.]..Iadd..sup.™ .Iaddend., all sold by Degussa). Table I gives the results of comparative Brookfield viscosity and acid level (calculated as ppm MSA) determinations.

                                  TABLE I__________________________________________________________________________              Brookfield Viscosity              2.5 RPM 20 RPM              helipath                      helipath                              Ratio                                  TotalComp.    Silica         (spindle)                      (spindle)                              2.5/20                                  Acid__________________________________________________________________________A   Cab-O-Sil N70-TS .[.™.]..Iadd..sup.™.Iaddend.              2.9  105 (TE)                      4.2  104 (TE)                              6.9 27B   Aerosil R805 .[.™.]..Iadd..sup.™.Iaddend.              1.4  105 (TE)                      2.8  104 (TE)                              5.0 32C   Tellenox 500 .[.™.]..Iadd..sup.™.Iaddend.              4.4  104 (TE)                      2.1  104 (TE)                              2.1 26D   Wacker HDK2000 .[.™.]..Iadd..sup.™.Iaddend.              3.3  102 (TA)                      3.0  102 (TA)                              1.1 29E   Aerosil R972 .[.™.]..Iadd..sup.™.Iaddend.              1.2  104 (TC)                      3.8  103 (TC)                              3.2 38F   Aerosil R974 .[.™.]..Iadd..sup.™.Iaddend.              2.1  104 (TC)                      5.2  103 (TC)                              4.0 40G   Aerosil R976 .[.™.]..Iadd..sup.™.Iaddend.              2.6  104 (TC)                      8.1  103 (TC)                              3.2 39__________________________________________________________________________

As can be seen from the table, compositions A and B, which are within the invention, show much higher low shear viscosity and substantially higher thixotropic ratios than compositions C-G which are not within the invention. It was also observed that, when unagitated, compositions A and B were nonflowable gels whereas compositions C-G were all ungelled and pourable.

Compositions similar to formulation E but compounded with sufficient Aerosil R972.[.™.]..Iadd..sup.™ produce non-flowable gels comparable to those of compositions A and B in Table I have been prepared and have been observed to require longer fixture times than those of compositions A and B. This is believed to result from increased strong acid imparted by the dimethyldichlorosilane treated silica. The significantly higher acid numbers of compositions E-G is evidence that the dichlorosilane treated silicas do contribute strong acid to the cyanoacrylate formulations.

Both hexamethyldisilazine treated silicas had impractically low thixotropic ratios as shown by Table I. Furthermore, at least one of the hexamethyldisilazane treated silicas .[.appars.]. .Iadd.appears destabilize cyanoacrylate monomers. Formulation C, which utilizes the Tellenox 500.[.™.]. .Iadd..sup.™ .Iaddend.silica polymerized in less than one day in a sealed tube at 82 C. while compositions A, B and D-G all lasted at least 15 days under the same conditions.

It is preferred that the cyanoacrylate compositions of the invention include a minor amount of dissolved organic polymer. Suitable polymers include polyacrylates and polymethacrylates, polycyanoacrylates such as poly(ethyl cyanoacrylate), and poly(vinyl acetate) polymers and copolymers. The organic polymers are preferably included witin the range of approximately 1-15% of the composition by weight. Preferably, the organic polymers are included in the range of 3-10%. The inclusion of the organic polymer is recommended in order to prevent or significantly diminish the settling out of the silica from the inventive compositions. The compositions containing dissolved polymer are also observed to produce higher viscosities at equivalent silica concentrations and to recover thixotropic behavior faster after agitation than without dissolved polymers.

Other additives, conventional within the cyanoacrylate formulation art, may be included within the compositions of the invention without departing from the teaching hereof. Examples of such additives need not be specified since they are within the skill of those working in the art.

As mentioned above, it would be desirable for latent fingerprint developing applications to have a nonflowable form of cyanoacrylate with high vapor pressure. Gel compositions of the invention which have been stabilized to the point where they will not polymerize on contact with moisture are especially useful for such applications. The gel form pevents spillage and the over-stabilization guards against bonding of fingers ("finger-stick") are other articles. A typical such formulation includes 88% methylcyanoacrylate stabilized with 0.2% methane sulfonic acid and 2500 hydroquinone, 6% polymethylmethacrylate and 6% polydimethylsiloxane treated silica.

From the foregoing it can be seen that the invention is not limited by the specific examples set forth above, the invention being limited only as set forth in the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3464950 *Dec 24, 1964Sep 2, 1969Wacker Chemie GmbhSiloxane elastomers
US3607542 *Sep 12, 1969Sep 21, 1971Fred LeonardUnderwater adhesive process
US3658749 *Jun 16, 1970Apr 25, 1972Celanese CorpModified oxymethylene polymers
US3663501 *Jun 11, 1970May 16, 1972Johnson & JohnsonAdhesive cement
US3839065 *Apr 8, 1968Oct 1, 1974Johnson & JohnsonAdhesive cement
US3896077 *Nov 30, 1970Jul 22, 1975George BrandesUnderwater adhesive
US3915922 *Mar 20, 1973Oct 28, 1975Kanegafuchi Chemical IndPolyvinyl chloride composition
US3940362 *May 25, 1972Feb 24, 1976Johnson & JohnsonCross-linked cyanoacrylate adhesive compositions
US4076685 *Jan 26, 1973Feb 28, 1978Ashland Oil, Inc.Cyanoacrylate foundry binders and process
US4102945 *Jul 11, 1977Jul 25, 1978Loctite (Ireland) LimitedFilled cyanoacrylate adhesive compositions
US4105715 *Jul 11, 1977Aug 8, 1978Loctite (Ireland) LimitedCyanoacrylate adhesive paste compositions
US4130913 *Aug 18, 1977Dec 26, 1978Schlage Lock CompanyDoor closer
US4180911 *Sep 16, 1977Jan 1, 1980Applied Science CorporationMethod for direct bonding of orthodontic structures to teeth using flouride pretreatment
US4180913 *Nov 14, 1977Jan 1, 1980Lion Hamigaki Kabushiki Kaishaα-Cyanoacrylate dental material and method of preparation
US4247708 *Jan 24, 1979Jan 27, 1981Toyo Soda Manufacturing Co., Ltd.Method for rendering fine oxide powder hydrophobic
US4320047 *Nov 13, 1980Mar 16, 1982The B. F. Goodrich CompanyCurable thixotropic epoxy/amine terminated liquid polymer compositions
CA662626A *May 7, 1963Gen ElectricProcess for treating fillers
GB1392763A * Title not available
JPH107993A * Title not available
Non-Patent Citations
1"Instant Krazy Glue" Brochure, 2 pp., 1985, Krazy Glue Inc., N.Y. 10010.
2 *Chemical Abstracts, vol. 89: 2164754, p. 51.
3 *Chemical Abstracts, vol. 91: 40 424c, p. 40.
4 *Chemical Abstracts, vol. 92: 95 114b, p. 31.
5 *Chemical Abstsracts, vol. 89: 117907c, p. 547.
6 *Instant Krazy Glue Brochure, 2 pp., 1985, Krazy Glue Inc., N.Y. 10010.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5326845 *Dec 14, 1992Jul 5, 1994Dap Products Inc.Moisture curable silicone-urethane copolymer sealants
US5334630 *Aug 30, 1991Aug 2, 1994Bp Chemicals LimitedThixotropic compositions
US5922783 *Feb 27, 1997Jul 13, 1999Loctite CorporationRadiation-curable, cyanoacrylate-containing compositions
US6183593Dec 23, 1999Feb 6, 2001Closure Medical Corporation1,1-disubstituted ethylene adhesive compositions containing polydimethylsiloxane
US6310166Aug 12, 1999Oct 30, 2001Closure Medical CorporationSterilized cyanoacrylate solutions containing thickeners
US6353268Mar 22, 1999Mar 5, 2002Micron Technology, Inc.Semiconductor die attachment method and apparatus
US6433096Jun 22, 2001Aug 13, 2002Closure Medical CorporationSterilized cyanoacrylate solutions containing thickeners
US6488944Dec 22, 2000Dec 3, 2002Closure Medical Corporation1, 1-disubstituted ethylene adhesive compositions containing polydimethylsiloxane
US6607631Sep 8, 2000Aug 19, 2003Closure Medical CorporationAdhesive compositions with reduced coefficient of friction
US6646354Apr 24, 1998Nov 11, 2003Micron Technology, Inc.Adhesive composition and methods for use in packaging applications
US6673192Sep 25, 1997Jan 6, 2004Loctite CorporationMulti-amine compound primers for bonding of polyolefins with cyanoacrylate adhesives
US6699928Aug 29, 2001Mar 2, 2004Micron Technology, Inc.Adhesive composition for use in packaging applications
US6709896Aug 30, 2000Mar 23, 2004Micron Technology, Inc.Methods for use in packaging applications using an adhesive composition
US6743858Apr 12, 2002Jun 1, 2004Closure Medical CorporationSterilized cyanoacrylate solutions containing thickeners
US6822052May 24, 2001Nov 23, 2004Henkel CorporationToughened cyanoacrylate adhesives containing alkene-acrylate copolymers and method for production
US6833196Jun 24, 2002Dec 21, 2004Henkel CorporationAcrylic-toughened cyanoacrylate compositions
US6861115May 18, 2001Mar 1, 2005Cabot CorporationInk jet recording medium comprising amine-treated silica
US6867241Jan 31, 2002Mar 15, 2005Henkel CorporationRadiation-curable, cyanoacrylate-containing compositions
US6964992May 16, 2002Nov 15, 2005Cabot CorporationInk jet recording medium comprising amine-treated silica
US7064155Jan 31, 2003Jun 20, 2006Henkel CorporationLuminescing and/or fluorescing radiation-curable, cyanoacrylate-containing compositions
US8192731Oct 25, 2005Jun 5, 2012Loctite (R&D) LimitedThickened cyanoacrylate compositions
U.S. Classification523/212, 524/850, 525/295, 524/533
International ClassificationC09J4/06, C09J4/00
Cooperative ClassificationC09J4/00, C09J4/06
European ClassificationC09J4/06, C09J4/00
Legal Events
Apr 15, 1996FPAYFee payment
Year of fee payment: 12
May 20, 1992REMIMaintenance fee reminder mailed
Mar 31, 1992FPAYFee payment
Year of fee payment: 8