Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE33161 E
Publication typeGrant
Application numberUS 07/163,014
Publication dateFeb 6, 1990
Filing dateMar 2, 1988
Priority dateApr 29, 1982
Publication number07163014, 163014, US RE33161 E, US RE33161E, US-E-RE33161, USRE33161 E, USRE33161E
InventorsWalter E. Brown, Laurence C. Chow
Original AssigneeAmerican Dental Association Health Foundation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements
US RE33161 E
Abstract
Dental restorative compositions containing a mixture of Ca4 (PO4)2 O and at least one different calcium phosphate.
Images(1)
Previous page
Next page
Claims(30)
We hereby claim as our invention:
1. A .[.dental restorative.]. slurry .[.comprising.]. .Iadd.consisting essentially of .Iaddend.an aqueous mixture of Ca4 (PO4)2 O and at least one other calcium phosphate selected from the group consisting of CaHPO4.2H2 O.[.,.]. .Iadd.and .Iaddend.CaHPO4, .[.Ca8 H2 (PO4)6.5H2 O, α--Ca3 (PO4)2, β--Ca3 (PO4)2, and modified Ca3 (PO4)2,.]. both calcium phosphates being present in the slurry in excess such that hydroxyapatite is substantially continuously precipitated from the slurry .Iadd.at an ambient temperature.Iaddend..
2. The slurry of claim 1 wherein the other calcium phosphate is CaHPO4.2H2 O.
3. The slurry of claim 1 wherein the other calcium phosphate is CaHPO4. .[.4. The slurry of claim 1 wherein the other calcium phosphate is Ca8 H2 (PO4)6.5H2 O..]. .[.5. The slurry of claim 1 wherein the other calcium phosphate is β--Ca3
(PO4)2..]. 6. The slurry of claim 1 wherein at least one of the calcium phosphates is in crystalline, cryptocrystalline or amorphous form.
. The slurry of claim 1 further .[.comprising.]. .Iadd.including .Iaddend.up to approximately 10% by weight of additional calcium or phosphate containing compounds .Iadd.in an amount sufficient to alter the
pH of the slurry.Iaddend.. 8. The slurry of claim 7 wherein the additional calcium containing compounds .[.comprise.]. .Iadd.are selected from the group consisting of .Iaddend.CaCl2 .[.or.]. .Iadd.and
.Iaddend.Ca(C2 H3 O2)2. 9. The slurry of claim 7 wherein the additional phosphate containing compounds .[.comprise.]. .Iadd.are selected from the group consisting of .Iaddend.NaH2
PO4 .[.or.]. .Iadd.and .Iaddend.(NH4)H2 PO4. 10. The slurry of claim 1 further .[.comprising.]. .Iadd.including .Iaddend.fluoride containing compounds such that the fluoride content of the slurry is up to approximately 3.8% by weight .Iadd.in an amount sufficient to increase the rate of precipitation of hydroxyapatite from
the slurry.Iaddend.. 11. The slurry of claim 10 wherein the fluoride containing compounds .[.comprise.]. .Iadd.are selected from the group consisting of .Iaddend.CaF2, SnF2, NaF, Na2 SiF6
.[.or.]. .Iadd.and .Iaddend.NaPO3 F. 12. The slurry of claim 1 further .[.comprising.]. .Iadd.including .Iaddend.a gelling agent .Iadd.in
an amount sufficient to form an aqueous gel.Iaddend.. 13. A .[.dental restorative.]. paste .[.comprising.]. .Iadd.consisting essentially of .Iaddend.a nonaqueous mixture of a nontoxic organic solvent, Ca4 (PO4)2 O and at least one other calcium phosphate selected from the group consisting of CaHPO4.2H2 O.[.,.]. .Iadd.and .Iaddend.CaHPO4, .[.Ca8 H2 (PO4)6.5H2 O, α--Ca3 (PO4)2, β--Ca3 (PO4)2 and modified Ca3 (PO4)2, the paste being capable of hardening.]. .Iadd.which nonaqueous mixture hardens .Iaddend.into a cement upon contact with an aqueous medium .Iadd.at an ambient
temperature.Iaddend.. 14. The paste of claim 13 wherein the other calcium
phosphate is CaHPO4.2H2 O. 15. The paste of claim 13 wherein the other calcium phosphate is CaHPO4. .[.16. The paste of claim 13 wherein the other calcium phosphate is Ca8 H2 (PO4)6.5H2 O..]. .[.17. The paste of claim 13 wherein the
other calcium phosphate is β--Ca3 (PO4)2..]. 18. The paste of claim 13 wherein at least one of the calcium phosphates is in
crystalline, cryptocrystalline or amorphous form. 19. The paste of claim 13 further .[.comprising.]. .Iadd.including .Iaddend.up to approximately 10% by weight of additional calcium or phosphate containing compounds
.Iadd.in an amount sufficient to alter the pH of the paste.Iaddend.. 20. The paste of claim 19 wherein the additional calcium containing compounds .[.comprise.]. .Iadd.are selected from the group consisting of .Iaddend.CaCl2 .[.or.]. .Iadd.and .Iaddend.Ca(C2 H3
O2)2. 21. The paste of claim 19 wherein the additional phosphate containing compounds .[.comprise.]. .Iadd.are selected from the group consisting of .Iaddend.NaH2 PO4 .[.or.]. .Iadd.and
.Iaddend.(NH4)H2 PO4. 22. The paste of claim 13 further .[.comprising.]. .Iadd.including .Iaddend.fluoride containing compounds such that the fluoride content of the .[.slurry.]. .Iadd.paste .Iaddend.is up to approximately 3.8% by weight .Iadd.in an amount sufficient to increase the rate of precipitation of hydroxyapatite from the
paste.Iaddend.. 23. The paste of claim 22 wherein the fluoride containing compounds .[.comprise.]. .Iadd.are selected from the group consisting of .Iaddend.CaF2, SnF2, NaF, Na2 SiF6 .[.or.]. .Iadd.and
.Iaddend.NaPO3 F. 24. The paste of claim 13 further .[.comprising.]. .Iadd.including .Iaddend.a seed crystal compound selected from the group consisting of hydroxyapatite and fluorapatite .Iadd.in an amount
sufficient to reduce the setting time of the cement.Iaddend.. 25. The paste of claim 13 wherein the aqueous medium is humid air or a dilute
aqueous solvent. 26. A .[.dental restorative.]. powder .[.comprising.]. .Iadd.consisting essentially of .Iaddend.a mixture of Ca4 (PO4)2 O and at least one other calcium phosphate selected from the group consisting of CaHPO4.2H2 O.[.,.]. .Iadd.and .Iaddend.CaHPO4, .[.Ca8 H2 (PO4)6.5H2 O, α--Ca3 (PO4)2, β--Ca3 (PO4)2, and modified Ca3 (PO4)2,.]. the powder .[.being capable of.]. forming .[.a.]. slurry .Iadd.of claim 1 .Iaddend.upon contact with an appropriate aqueous solvent.[., the slurry being capable of substantially continuously precipitating hydroxyapatite.]. .Iadd.at an ambient
temperature.Iaddend.. 27. The powder of claim 26 wherein the solvent is
water or saliva. 28. A .[.dental restorative.]. powder .[.comprising.]. .Iadd.consisting essentially of .Iaddend.a mixture of Ca4 (PO4)2 O and at least one other calcium phosphate selected from the group consisting of CaHPO4.2H2 O.[.,.]. .Iadd.and .Iaddend.CaHPO4, .[.Ca8 H2 (PO4)6.5H2 O, α--Ca3 (PO4)2, β--Ca3 (PO4)2, and modified Ca3 (PO4)2,.]. the powder .[.being capable of forming a hardenable.]. .Iadd.hardening into a .Iaddend.cement upon contact with an appropriate aqueous solvent .Iadd.at an ambient
temperature.Iaddend.. 29. The powder of claim 28 wherein the solvent is
water or saliva. .Iadd.30. The slurry of claim 1 additionally including up to approximately 5% by weight of a high molecular weight crystal growth inhibitor selected from the group consisting of proteoglycans, glycoproteins, polylysine and protamine in an amount sufficient to inhibit
the growth of hydroxyapatite crystals. .Iaddend. .Iadd.31. The slurry of claim 1 wherein the slurry is slightly basic. .Iaddend. .Iadd.32. The slurry of claim 1 wherein the slurry is slightly acidic. .Iaddend. .Iadd.33. The slurry of claim 1 wherein the slurry is incorporated into a chewing gum. .Iaddend. .Iadd.34. The slurry of claim 1 where in the slurry
is incorporated into a toothpaste. .Iaddend. .Iadd.35. The paste of claim 24 wherein the seed crystal compound is hydroxyapatite, the hydroxyapatite being present in an amount up to 43% by weight and in an amount sufficient to reduce the setting time of the cement. .Iaddend. .Iadd.36. The paste of claim 13 additionally including up to approximately 5% by weight of a high molecular weight crystal growth inhibitor selected from the group consisting of proteoglycans, glycoproteins, polylysine and protamine in an amount sufficient to inhibit the growth of hydroxyapatite crystals. .Iaddend. .Iadd.37. The paste of claim 13 additionally including β--Ca3 (PO4)2 in an amount sufficient to achieve setting expansion of the cement. .Iaddend. .Iadd.38. The paste of claim 13 additionally including up to 1% by weight of a crystal habit modifier selected from the group consisting of Mg2+, Sr2+, citrate, phosphonates, carbonate, polyphosphates, sucrose phosphate, and phosphocitrate in an amount sufficient to achieve setting expansion of the
cement. .Iaddend. .Iadd.39. The paste of claim 13 additionally including Ca5 (PO4)2 SiO4 or silicocarnotite in an amount sufficient to improve the setting properties of the cement. .Iaddend. .Iadd.40. The paste of claim 13 wherein the nontoxic organic solvent is selected from the group consisting of glycerin, ethanol and glycol. .Iaddend. .Iadd.41. The paste of claim 13 additionally including granular sugar, the sugar being present in an amount up to 20% by weight and in an amount sufficient to form a porous cement upon removal of the sugar by application of hot water to the cement. .Iaddend. .Iadd.42. The powder of claim 28 wherein the other calcium phosphate is CaHPO4.2H2 O. .Iaddend. .Iadd.43. The powder of claim 28 wherein the other calcium phosphate is CaHPO4. .Iaddend. .Iadd.44. The powder of claim 28 wherein at least one of the calcium phosphates is in crystalline, cryptocrystalline or amorphous form. .Iaddend. .Iadd.45. The powder of claim 28 further including up to approximately 10% by weight of additional calcium or phosphate containing compounds in an amount sufficient to alter the pH of the accent. .Iaddend. .Iadd.46. The powder of claim 45 wherein the additional calcium containing compounds are selected from the group consisting of CaCl2 and Ca(C2 H3 O2)2. .Iaddend. .Iadd.47. The powder of claim 45 wherein the additional phosphate containing compounds are selected from the group consisting of NaH2 PO4 and (NH4)H2 PO4. .Iaddend. .Iadd.48. The powder of claim 28 further including fluoride containing compounds such that the fluoride content is up to approximately 3.8% by weight in an amount sufficient to increase the rate of precipitation of hydroxyapatite from the cement. .Iaddend. .Iadd.49. The powder of claim 48 wherein the fluoride containing compounds are selected from the group consisting of CaF2, SnF2, NaF, Na2 SiF6 and NaPO3 F. .Iaddend. .Iadd.50. The powder of claim 28 further including a seed crystal compound selected from the group consisting of hydroxyapatite and fluorapatite in an amount sufficient to reduce the setting time of the cement. .Iaddend. .Iadd.51. The powder of claim 50 wherein the seed crystal compound is hydroxyapatite, the hydroxyapatite being present in an amount up to 43% by weight and in an amount sufficient to reduce the setting time of the
cement. .Iaddend. .Iadd.52. The powder of claim 28 additionally including up to approximately 5% by weight of a high molecular weight crystal growth inhibitor selected from the group consisting of proteoglycans, glycoproteins, polylysine and protamine in an amount sufficient to inhibit the growth of hydroxyapatite crystals. .Iaddend. .Iadd.53. The powder of claim 28 additionally including β-Ca3 (PO4)2 in an amount sufficient to achieve setting expansion of the cement. .Iaddend. .Iadd.54. The powder of claim 13 additionally including up to 1% by weight of a crystal habit modifier selected from the group consisting of Mg2+, Sr2+, citrate, phosphonates, carbonate, polyphosphates, sucrose phosphate, and phosphocitrate in an amount sufficient to achieve setting expansion of the cement. .Iaddend. .Iadd.55. The powder of claim 28 additionally including Ca5 (PO4)2 SiO4 or silicocarnotite in an amount sufficient to improve the setting properties of the cement. .Iaddend. .Iadd.56. The powder of claim 28 additionally including granular sugar, the sugar being present in an amount up to 20% by weight and in an amount sufficient to form a porous cement upon removal of the sugar by application of hot water to the cement. .Iaddend.
Description

The invention described herein was made in the course of research partially supported by a grant from the National Institute of Dental Research.

This application is a continuation-in-part of the copending application Ser. No. 539,740, filed Oct. 6, 1983, now U.S. Pat. No. 4,518,430, which in turn is a continuation-in-part of the application, Ser. No. 373,157, filed on Apr. 29, 1982, now abandonded.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to certain combinations of sparingly soluble calcium phosphates that are unique in their application as remineralizers of caries lesions in dental enamel and partially demineralized dentin and cementum and in their application as dental cements. When used as a remineralizer the present invention not only prevents tooth decay, but can also restore the lesions caused by dental caries. The dental cements of the present invention have a variety of dental applications, but are most useful where contact between the cement and living tissue is required.

2. Description of the Prior Art

When an incipient lesion or cavity develops on the surface of a tooth, the dentist traditionally fills the cavity that forms. This procedure may prevent the decay from spreading further, but does not restore the tooth to its original state. A considerable amount of research, however, has recently been directed to the remineralization of incipient dental lesions. The object of remineralization is to deposit Ca5 (PO4)3 OH, known as hydroxyapatite, on the caries lesion such that the dental enamel incorporates the hydroxyapatite into its structure at the point of lesion. (Tooth and bone minerals are impure forms of hydroxyapatite). Thus, remineralization prevents further tooth decay and restores the tooth.

Remineralization of tooth enamel has been carried out experimentally both in vivo and in vitro. These studies have concentrated on the remineralizing properties of saliva and synthetic solutions supersaturated with respect to hydroxyapatite. Two recent articles that give a good overview of this research are Briner et al, "Significance of Enamel Remineralization", J. Dent. Res. 53:239-243 (1974); and "Silverstone, "Remineralization Phenomena", Caries Res. 11 (Supp. 1): 59-84 (1977). Additional experimental work in the areas of remineralization of calcium phosphate biomaterials may be found in Gelhard et al, "Rehardening of Artificial Enamel Lesions in vivo", Caries Res. 13: 80-83 (1979); Hiatt et al, "Root Preparation I. Obduration of Dentinal Tubules in Treatment of Root Hypersensitivity", J. Periodontal. 43: 373-380 (1972); LeGeros et al, "Apatitic Calcium Phosphates: Possible Dental Restorative Materials", IADR Abstract No. 1482 (1982); Pickel et al, "The Effect of a Chewing Gum Containing Dicalcium Phosphate on Salivary Calcium and Phosphate", Ala. J. Med. Sci. 2: 286- 287 (1965); Zimmerman et al, "The Effect of Remineralization Fluids on Carious Lesions in vitro", IADR Abstract No. 282 (1979); and U.S. Pat. Nos. 3,679,360 (Rubin) and 4,097,935 (Jarcho).

Generally, the supersaturated solutions or slurries used for remineralization experiments have been prepared from a single form of calcium phosphate. When a caries lesion is flooded with one of these supersaturated solutions, the calcium and phosphate ions in the form of precipitated hydroxyapatite remineralize the lesion. However, these solutions are impractical for use on patients for several reasons. First, the amount of calcium and phosphate ions available for remineralization in these supersaturated solutions is too low. It takes approximately 10,000 unit volumes of the usual supersaturated solution to produce one unit volume of mineral. Thus, remineralization by this method requires both an excessive volume of fluid and an excessive number of applications. The supersaturated solutions are inherently limited in this respect because they cannot maintain their supersaturated state. When the hydroxyapatite precipitates out to the point where the solution is no longer supersaturated, new supersaturated solution must be introduced or the remineralization process stops.

An example of another kind of problem is described in Levine, "Remineralization of Natural Carious Lesions of Enamel in vitro", Brit. Dent. J., 137: 132-134 (1974), where a phosphate buffer solution saturated with respect to CaHPO4.2H2 O (dicalcium phosphate dihydrate or brushite) and containing some fluoride was applied to dental enamel. To effect complete mineralization, exposure to the solution for three minutes every hour for 24 hours was necessary. Though the article suggested that this exposure could be achieved by use of two minute mouth rinses twice daily over the course of a year, this was admitted by the author to be an impractical procedure.

Another problem with single calcium phosphate slurries is that as the hydroxyapatite precipitates out of solution, the pH of the solution changes. Unless the old solution is removed from contact with the tooth material, the solution may become too acidic or alkaline and damage the dental tissue.

Another problem with known remineralization techniques is that the remineralization may stop before the lesion is completely remineralized due to build up of the remineralized tooth material in or on the outer layer of the tooth's surface. This build up occurs when the rate of remineralization is too fast and prevents the diffusion of the mineral into the deeper regions of the lesion, thus thwarting the full remineralization of the tooth.

There is a need for a method of remineralizing dental enamel that does not require excessive amounts of solution and inordinately long or frequent exposure times. Furthermore there is a need for a remineralization solution or slurry that can maintain a relatively constant pH and remain in a supersaturated state so that hydroxyapatite may be precipitated for a substantial period of time.

In the area of dental cements, the prior art shows an array of compounds. Some cements, however, irritate the pulp and are unsuitable for applications where the cement must come in contact with exposed pulp. Guide to Dental Materials and Devices, 7th Ed. (ADA 1974) p. 49. One solution to this problem is a cement made of materials similar in composition to tooth and bone mineral, since this would not irritate the living tissue.

The use of β--Ca3 (PO4)2 was suggested for pulp capping in Driskell et al, "Development of Ceramic and Ceramic Composite Devices for Maxillofacial Application", J. Biomed. Mat. Res. 6: 345-361 (1972); and the use of Ca4 (PO4)2 O was suggested by the inventors in IADR Abstract. No. 120, J. Dent. Res. 54: 74 (1975) as a possible pulp capping agent. As described in the latter, Ca4 (PO4)2 O hydrolyzes to hydroxyapatite. Therefore, use of a calcium phosphate dental cement should provide a non-irritating cement capable of setting to a hard consistency and, when desired, remineralizing the dental tissue it contacts. Such a cement would be of great benefit, for example, as a root canal or root surface cement.

Single calcium phosphate cements are incapable of setting to a hard consistency, however, and would suffer from the same drawbacks described above for single calcium phosphate remineralizers. They cannot maintain a relatively constant pH and do not have sufficient remineralization capacity. Through U.S. Pat. No. 3,913,229 (Driskell et al) discloses putty-like pastes containing α--Ca3 (PO4)2, β--Ca3 (PO4)2, CaHPO4 and mixtures thereof as pulp capping, root canal, and tooth replanting materials, it is believed that none of these pastes harden into cements. Furthermore, no remineralization properties are disclosed and it is believed that none of these pastes are capable of any substantial remineralization. Thus, there is a need for a dental cement that is non-irritating, yet has good remineralizing capacity coupled with a stable pH.

SUMMARY OF INVENTION

The potential for application of dental remineralization is vast. Approximately 5108 cavities are filled each year. If these half billion caries lesions were remineralized rather than being filled as cavities, the general dental health would be increased substantially, since remineralization results in a whole tooth. The present invention seeks to provide remineralization compositions and methods that can be practically applied under a dentist's care and thereby replace the need for filling of cavities.

Briefly, the present invention relates to compositions for remineralizing caries lesions. The invention concerns a combination of Ca4 (PO4)2 O (tetracalcium phosphate) and at least one other sparingly soluble calcium phosphate solid in equilibrium or quasi equilibrium with a dilute aqueous solution such that both calcium phosphates are present in excess and form a slurry. The other calcium phosphates that may be used are CaHPO4.2H2 O (dicalcium phosphate dihydrate or brushite), CaHPO4 (monetite), Ca8 H2 (PO4)6.5H2 O (octacalcium phosphate), α--Ca3 (PO4)2, β--Ca3 (PO4)2 (tricalcium phosphates), and tricalcium phosphates modified by the addition of protons or up to approximately 10% magnesium by weight (whitlockite). All combinations of these calcium phosphates can precipitate hydroxyapatite according to the present invention. To do so, however, the two calcium phosphates must be in near equilibrium with the same saturated solution; furthermore, the saturated solution must be supersaturated with respect to hydroxyapatite. If these conditions are met, the above combinations of calcium phosphates will react to form hydroxyapatite. Since the two calcium phosphates are present in excess, the solution will remain supersaturated with respect to hydroxyapatite and will continue to precipitate this basic constituent of tooth and bone.

The advantages of a combination of calcium phosphates according to the present invention as compared with solutions or slurries of a single calcium phosphate are many. Most importantly, the inventive combination of calcium phosphates in a slurry will remain supersaturated with respect to hydroxyapatite for a significant period of time. For example, a combination of tetracalcium phosphate and brushite can remain active as a remineralizer for as long as a week. Thus, a single application of this inventive slurry to a caries lesion would suffice for complete remineralization of the afflicted area. This obviates the need for repeated and lengthy exposures required by previously proposed remineralization systems.

Another significant advantage of the present invention is that the combination of sparingly soluble calcium phosphates stabilizes the pH of the system near the point of equilibrium. This prevents wide swings in pH that might injure the dental enamel or other tissue. A stable pH also permits hydroxyapatite to continue precipitating, since hydroxyapatite will not precipitate at a low pH. Furthermore, the pH of the singular point may be altered by the addition of calcium or phosphate containing compounds to the slurry. This allows the dentist to select the most beneficial pH for remineralization.

Another advantage of the present invention is that the rate of mineralization may be adjusted to the needs of the particular lesion. The addition of simple fluoride compounds will increase the rate of mineralization. Conversely, high molecular weight crystal growth inhibitors may be added to slow mineralization. These latter compounds facilitate the remineralization of the subsurface of a caries lesion by inhibiting the remineralization of the outside surface of the tooth. This allows the hydroxyapatite ions to diffuse into the lesion's subsurface and completely remineralize the cavity.

Thus, the present invention provides compositions for the remineralization of caries lesions that are practical for clinical use due to their large remineralization capacities and stable pH's. The rate and depth of remineralization may be selected by the dentist, thereby giving substantial flexibility to the remineralization process.

The present invention also concerns compounds useful as dental cements. The same combinations of calcium phosphates described above may be combined in a paste, rather than a slurry, and allowed to harden. The resulting cements are similar in composition to tooth and bone material and, therefore, are fully compatible with dental tissue. Though the cements of the present invention may be used in any application for which conventional dental cements are suitable, the cements of the present invention are particularly helpful where contact with living tissue is required. In addition, these cements provide the unique combination of remineralizing properties and hardening characteristics that would be especially desirable for a root canal or root surface cement because they are compatible with, protect and remineralize the sensitive surfaces of exposed roots.

Further objects and features of the invention will become apparent from the following description of the preferred embodiments and claims.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a plot of the solubility isotherms of Ca4 (PO4)2 O; CaHPO4.2H2 O; CaHPO4 ; Ca8 H2 (PO4)6.5H2 O; β--Ca3 (PO4)2 ; and Ca5 (PO4)3 OH at 25 C. in the ternary system of Ca(OH)2 ; H3 PO4 ; and H2 O.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The sparingly soluble calcium phosphates that are relatively stable at ambient temperatures and are, therefore, available for use in the inventive remineralizing slurries and cements include CaHPO4.2H2 O; CaHPO4 ; Ca8 H2 (PO4)6.5H2 O; α--Ca3 (PO4)2 ; β--Ca3 (PO4)2 ; tricalcium phosphates modified by protons or up to approximately 10% magnesium by weight; and Ca4 (PO4)2 O. Each of these calcium phosphates has a characteristic solubility behavior that may be represented by a plot of the total concentration of calcium ions at the point of saturation verus the pH of the solution at a constant temperature. (A plot of the total concentration of phosphate ions versus pH would be equivalent for the purposes of the present invention because the concentrations of phosphate and calcium ions in solution are linked.) The resulting curve is called an isotherm.

When the isotherms for various calcium phosphates are plotted on the same axes, their solubility behavior relative to each other may be determined. Specifically, a calcium phosphate whose isotherm lies above the isotherm of another calcium phosphate at a given pH is metastable with respect to the latter. The point where the isotherms of two calcium phosphates intersect is known as a singular point. In a solution that is saturated with respect to the two calcium phosphates, both calcium phosphates will be in equilibrium with the saturated solution at the singular point. This means that neither calcium phosphate will precipitate out of solution, but another calcium phosphate whose isotherm lies below the singular point can precipitate. The present invention relates to combinations of calcium phosphates that form signular point solutions that precipitate hydroxyapatite.

FIG. 1 is a plot of the solubility isotherms for six calcium phosphates in the ternary system comprising Ca(OH)2, H3 PO4 and H2 O at 25 C. The y-axis of FIG. 1 represents the total concentration of calcium ions in solution in moles per liter, while the x-axis represents pH. The isotherms for CaHPO4.2H2 O, CaHPO4, β--Ca3 (PO4)2 and Ca5 (PO4)3 OH are based, respectively, on the following articles: Gregory et al, "Solubility of CaHPO4.2H2 O in the System Ca(OH)2 --H3 PO4 --H2 O at 5, 15, 25 and 37.5 C.", J. Res. Nat. Bur. Stand. 74A: 461-475 (1970); McDowell et al, "Solubility Study of Calcium Hydrogen Phosphate. Ion Pair Formation", Inorg. Chem. 10: 1638-1643 (1971); Gregory et al., "Solubility of β--Ca3 (PO4)2 in the System Ca(OH)2 --H3 PO4 --H2 O at 5, 15, 25 and 37 C.", J. Res. Nat. Bur. Stand. 78A; 667-674 (1974); and McDowell et al, "Solubility of Ca5 (PO4)3 OH in the System Ca(OH)2 --H3 PO4 --H2 O at 5, 15, 25 and 37.5 C.", J. Res. Nat. Bur. Stand. 81A: 273-281 (1977). The isotherm for Ca8 H2 (PO4)6.5H2 O is based on the solubility product disclosed on Moreno et al, "Stability of Dicalcium Phosphate Dihydrate in Aqueous Solutions and Solubility of Octacalcium Phosphate", Soil Sci. Soc. Am. Proc. 21: 99-102 (1960), while the isotherm of Ca4 (PO4)2 O is based on the approximate value of the solubility product calculated by the inventors.

As can be seen from FIG. 1, not all combinations of calcium phosphates have singular points. For example, the isotherms of CaHPO4.2H2 O and CaHPO4 never cross at ambient temperature. Therefore, this pair of calcium phosphates cannot be in equilibrium with the same saturated solution at their singular point and do not fall within the scope of the present invention.

Three additional considerations limit the choice of calcium phosphates for the present invention. First, the inventive combinations of calcium phosphates must contain Ca4 (PO4)2 O in order to possess the desired remineralization properties. Second, the singular point of the two calcium phosphates must lie above the isotherm for hydroxyapatite. This insures that a solution that is saturated with respect to the two calcium phosphates at their singular point will also be supersaturated with respect to hydroxyapatite. Thus, hydroxyapatite can precipitate out of the solution and be available for remineralization. Third, the singular point for the pair of calcium phosphates should preferably not lie too far above the isotherm for CaHPO4.2H2 O, since the singular point of such a combination might be too unstable for use as a remineralizer or cement. Therefore, although β--Ca3 (PO4)2 and Ca8 H2 (PO4)6.5H2 O have intersecting isotherms, their singular point lies far above the isotherm for CaHPO4.2H2 O and is unsuitable.

The circles in FIG. 1 define singular point compositions for the various pairs of solids in solution. As can be seen from FIG. 1, the following combinations of calcium phosphates are definitely available as remineralizers and cements according to the present invention: CaHPO4.2H2 O with Ca4 (PO4); CaHPO4 with Ca4 (PO4)2 O; Ca4 (PO4)2 O with Ca8 H2 (PO4)6.5H2 O; and Ca4 (PO4)2 O with β--Ca3 (PO4)2. Additionally, there is potentially another singular point composition containing α--Ca3 (PO4)2 and Ca4 (PO4)2 O. Likewise, the isotherms of the modified tricalcium phosphates may define additional inventive compositions.

The reason that a singular point composition has such desirable properties as a remineralizer and cement is that it resists changes in the pH or composition of the solution by driving itself back to the singular point whenever the composition or pH changes. For example, if two calcium phosphates that possess a singulr point were present in excess in a solution that was more acidic than the pH of the singular point, the more basic phosphate would dissolve and cause the more acidic phosphate to precipitate. This process would continue until the pH and the composition were forced back to the singular point, where the two calcium phosphates present in excess would both be in equilibrium with the solution and neither would precipitate out of solution. The reverse process would occur if the composition started at a point more basic than the singular point pH.

When only two salts are present in the solution, the composition of the solution cannot rise above the isotherm of the more soluble salt or fall below the isotherm of the less soluble salt. Furthermore, the solution will only be in equilibrium at the singular point. However, the precipitation of a third salt, such as hydroxyapatite, may drive the composition in the direction of the third salt's isotherm. The degree of deviation depends upon the relative rates of dissolution and precipitation of the three salts.

For the purposes of remineralization, it would be undesirable if the solution's composition deviated too close to the isotherm of hydroxyapatite since this would lower the rate of precipitation of hydroxyapatite. However, since the two calcium phosphates are present in excess, the relative rate of precipitation for hydroxyapatite is likely to be small when compared to the dissolution and precipitation rates of the other two calcium phosphates, and the composition will remain in the vicinity of the singular point. Thus, a slurry containing excessive amounts of two calcium phosphates having a singular point can remain approximately at the pH and composition of the singular point despite the constant production and precipitation of hydroxyapatite. It is this feature of the present invention that permits a remineralizing slurry or paste to remain active as a remineralizer for a substantial period of time without great shifts in pH or composition.

The combinations of calcium phosphates listed above all react to form hydroxyapatite. Since Ca4 (PO4)2 O is the most basic calcium phosphate of the present invention, any of the remaining calcium phosphates that are more acidic than hydroxyapatite can react directly with tetracalcium phosphate to form hydroxyapatite. For example,

Ca4 (PO4)2 O+CaHPO4.2H2 O=Ca5 (PO4)3 OH+2H2 O;

Ca4 (PO4)2 O+CaHPO4 =Ca5 (PO4)3 OH;

3Ca4 (PO4)2 O+Ca8 H2 (PO4)6.5H2 O=4Ca5 (PO4)3 OH+4H2 O;

and

Ca4 (PO4)2 O+2Ca3 (PO4)2 [α,β, or modified]+H2 O=2Ca5 (PO4)3 OH.

Unexpectedly, it has been discovered by the inventors that Ca4 (PO4)2 O is a necessary ingredient for the inventive compositions to be effective remineralizing agents.

The reaction approximated by 5Ca8 H2 (PO4)6.5H2 O=8Ca5 (PO4)3 OH+6H3 PO4 +17H2 O, is of particular interest for remineralization, because under many conditions the rate of formation of octacalcium phosphate appears to be much greater than the rate of formation of hydroxyapatite. Since octacalcium phosphate can hydrolyze in situ to hydroxyapatite, the formation of Ca8 H2 (PO4)6.5H2 O followed by hydrolysis to hydroxyapatite may be a particularly efficacious method for the production of hydroxyapatite in remineralizing solutions. The only known combinations of calcium phosphates that definitely can form octacalcium phosphate as a precursor to hydroxyapatite are Ca4 (PO4)2 O with CaHPO4.2H2 O and CaHPO4 since their singular points both lie above the isotherm for Ca8 H2 (PO4)6.5H2 O.

The inventive combinations may also be used as densitizing agents due to their remineralization properties. Since clogging of the dental tubules reduces the pain sensitivity of the dental tissue, the remineralization promoted by the inventive compositions also tends to desensitize the remineralized tissue.

The pH range of the inventive system may be predetermined by choosing a pair of calcium phosphates with an appropriate singular point pH. For example, if a pH around 7.5 is desired, one could use the combination of CaHPO4.2H2 O and Ca4 (PO4)2 O. The pH of any slurry or paste may be further altered by the addition of up to approximately 10% by weight of simple calcium or phosphate containing compounds. These compounds change the pH of the singular point by altering the Ca/P ratio of the solution. Since the chemical potentials of Ca(OH)2 and H3 PO4 have been shown to be invariant in the presence of additional components at a given singular point [see Brown, "Solubilities of Phosphates and Other Sparingly Soluble Compounds", from Griffith et al, Environmental Phosphorous Handbook (John Wiley & Sons, New York 1973)], the ratio (Ca2+)/(H+)2 is constant at a given singular point, where the parentheses denote ion activities. Thus, the addition of an acidic compound, such as HCl, CaCl2, or Ca(C2 H3 O2)2, will increase the ionic activity of Ca2+, increase the Ca/P ratio of the singular point and cause the singular point to move to a lower pH. Similar considerations hold for the addition of basic compounds. Examples of suitable base and phosphate containing compounds are NaH2 PO4 and (NH4)H2 PO4.

The rate of remineralization may also be adjusted. The addition of simple or complex fluoride compounds such that the fluoride content of the slurry or paste is up to approximately 3.8% by weight will increase the rate of precipitation of hydroxyapatite and decrease solubility, thereby providing a control on the body's ability to resorb the material. Examples of possible fluoride additives are CaF2, SnF2, NaF, Na2 SiF6, and Na2 PO3 F. Though rapid mineralization is beneficial under some circumstances, it may cause the remineralization of the outside surface of an incipient caries lesion and prevent the remineralization of the subsurface region of the lesion. A moderately slow remineralization rate would allow all parts of the lesion to be healed. The particular calcium phosphates used will affect the rate of remineralization. In addition, particle size is a factor since as particle size increases, the rate of mineralization decreases. Generally the particle size for remineralization slurries should be greater than 5 um. Thus, to remineralize a deep lesion, a slow remineralizing slurry could be applied to the tooth by means of a bite block sponge, periodontal pack, cement or rigid gel.

It is also possible to facilitate internal remineralization by etching the surface of the tooth such that the remineralizing slurry can contact more of the lesion's surface at once. Another solution to the problem of incomplete internal remineralization is the application of high molecular weight crystal growth poisons or inhibitors onto the tooth surrface. Examples of such growth inhibitors are proteoglycans, glycoproteins, polylysine, and protamine. Concentrations of up to approximately 5% by weight may be added to the remineralizing slurry. These inhibitors prevent the growth of hydroxyapatite crystals at the surface of the tooth but do not tend to diffuse into the interior of the tooth. Accordingly, they inhibit the remineralization of the caries lesion's surface and prevent the blockage of the channels necessary for the diffusion of calcium and phosphate ions into the subsurface lesion.

All of the combinations of calcium phosphates described above may be used as dental cements. The two main differences between the inventive remineralizers and the inventive cements are particle size and solid-to-liquid ratio. For use as cements, the selected calcium phosphates should be ground to a finer particle size, preferably less than 5 μm. Additionally, calcium phosphate particles are combined with much less solution so that a paste is formed rather than a slurry. The paste then hardens to a bone-like consistency.

Porous cements that are especially useful as bone implants or protheses may be prepared by combining the calcium phosphates with a highly water soluble material, such as granular sugar, and subjecting the mixture to pressure sufficient to form a compact mass. The water necessary for the inventive reaction is usually contained in the calcium phosphates themselves. However, a small amount of water may be added to the mixture before pressure is applied in order to facilitate the setting of the cement. The resulting mass is then placed into hot water such that the highly water soluble material is removed. A porous cement remains that is readily permeated by organic bone tissue.

In order to improve the flow properties of the inventive dental cement pastes, it is desirable to incorporate glycerin, ethanol, glycol or some other nontoxic organic solvent into the paste. Since the cement mixture ingredients are inert to glycerin, a nonaqueous paste containing Ca4 (PO4)2 O and another calcium phosphate in glycerin will not harden or set. Thus, such a water free glycerin-based paste can be stably preserved in a moisture-free sealed tube for several months. However, when the glycerin paste is exposed to humid air or to water, setting occurs quite rapidly. Additionally, the glycerin serves as a vehicle for the inventive combinations and produces desirable flow properties for the paste such that the paste may be injected or delivered through a fine orifice or tubing. Thus glycerin aids such operations as the delivery of the inventive pastes into root canals using a one millimeter syringe fitted with an 18 gauge needle. The glycerin eventually leaches out of the set or hardened cement.

The cements of the present invention may be used in place of any of the cements known in the prior art as: (i) cavity bases and liners to protect the pulp; (ii) materials for capping exposed pulps; (iii) materials to replace or promote regeneration of bone mineral lost due to periodontal disease; (iv) direct filling materials that have physical properties similar to enamel and are adhesive to enamel and dentin; (v) a cement to build up alveolar ridges in edentulous patients; (vi) an endodontic filling material for root canals; (vii) a material to cement retention pins; (viii) a material for filling sockets after a tooth extraction; (ix) a replacement of bone that has been removed surgically or lost due to trauma; (x) a cement for implanting or replanting teeth; (xi) a luting cement in densitry and orthopedic surgury; (xii) an investment mold material; (xiii) a material which will promote bone mineral growth in its vicinity; (xiv) a remineralizing polish for use in place of pumice; and (xv) a root cement for remineralizing and densitizing of exposed root surfaces. Since the inventive cements are fully compatible with living tissue, they are especially advantageous where contact with dental tissue is necessary. in addition, the cements possess remineralization capabilities. Thus, the discussion above with respect to the use of the inventive compositions as remineralizers is fully applicable to their use as cements.

The strength and hardness of the present cements can be controlled by the particle size of the calcium phosphates, the presence of hydroxyapatite or Ca5 (PO4)3 F (fluorapatite) as seed or matrix crystals, and by the use of crystal habit modifiers. These last compounds promote the growth of more needle-like apatitic crystals in the cement. It is believed that a particle size of 1 μm would result in a very strong cement.

The setting time of the present cements may be reduced by adding a sizable amount of hydroxyapatite or fluorapatite seed crystals to the paste as these compounds facilitate crystal formation. This may also increase the hardness of the cement and minimize shrinkage or expansion during set. The addition of Ca5 (PO4)2 SiO4 or silicocarnotite may also improve the setting properties of the cements. Of course, it may be desirable to have some setting expansion when the paste is used in a cavity preparation in order to promote adhesion to the cavity wall. Such expansion may be achieved by the addition of β--Ca3 (PO4)2 or up to 1% by weight of crystal habit modifiers, such as Mg2+, Sr2+, citrate, phosphates, carbonate, polyphosphates, sucrose phosphate and phosphocitrate. These modifiers adsorb onto the specific sites of the crystal surfaces during growth, thereby affecting the morphology of the crystals. Additionally, appropriate combinations of varying or "gap-graded" particle sizes would promote setting expansion.

It has also been determined that when fluoride compounds are added to the liquid or solid phase, the setting time may be reduced further for the same seed crystal content.

EXAMPLE 1

Ca4 (PO4)2 O and another calcium phosphate having a singular point with Ca4 (PO4)2 O at an appropriate pH are selected. Their singular point should not lie too far above the isotherm for CaHPO4.2H2 O and must lie above the isotherm for hydroxyapatite. The calcium phosphates selected may be prepared by the methods described in McDowell et al, "Solubility Study of Calcium Hydrogen Phosphate. Ion-Pair Formation", Inorg. Chem. 10: 1638-1643 (1971); Gregory et al, "Solubility of β--Ca3 (PO4)2 in the System Ca(OH)2 --H3 PO4 --H2 O at 5, 15, 25 and 37 C.", J. Res. Nat. Bur. Stand. 78A: 667-674 (1974); Moreno et al, "Stability of Dicalcium Phosphate Dihydrate in Aqueous Solutions and Solubility of Octacalcium Phosphate", Soil Sci. Soc. Am. Proc. 21: 99-102 (1960); Brown et al, "Crystallography of Tetracalcium Phosphate", J. Res. Nat. Bur. Stands. 69A: 547-551 (1965); and Patel et al, "Solubility of CaHPO4.2H2 O in the Quaternary System Ca(OH)2 --H3 PO4 --NaCl--H2 O at 25 C.", J. Rest. Nat. Bur. Stands. 78A: 675-681 (1974). The calcium phosphates may be in crystalline, cryptocrystalline, finely divided, or amorphous form.

Each of the selected, solid calcium phosphates is then ground to the desired particle size. Generally for remineralization slurries, the particle size should be greater than 5 μm, since this size prolongs the remineralization potential of the slurry by slowing the remineralization rate. Larger particle size both slows the reaction rate and retards the setting or hardening of the slurry.

The ground calcium phosphates are then mixed in excess in a dilute aqueous solution that is either slightly acidic or slightly basic to form a slurry. Alternatively, gelling agents such as carboxylmethyl cellulose may be added to the slurry such that an aqueous gel is formed. Examples of appropriate acidic solutions are water and H3 PO4 or HCl, while examples of appropriate basic solutions are water and Ca(OH)2 or KOH. The slurry may be applied to the affected area by means of a bite block sponge, periodontal pack, cement, or rigid gel. Also the slurry may be applied by burnishing, spatulation or packing and covering by various mechanical means. Additionally, the slurry may be allowed to harden and thereby act as its own cement for holding the remineralizer against the afflicted area.

Alternatively, the above remineralizing combinations may be incorporated into chewing gum formulations by blending the solid and liquid phases with a chewing gum base in the manner practiced in the industry. Similarly, the solid and liquid phases may be combined with the common ingredients of toothpaste. In these cases the particle size of the calcium phosphates should be such as to avoid grittiness. Another alternative is to apply the above remineralizing combinations as a dry powder. The remineralizing properties of the powder are then activated by the addition of an appropriate aqueous solvent, such as water or saliva.

In addition, four groups of compounds may be added to the liquid phase of the remineralization slurry. Alternatively, these compounds can be added to the dry powder remineralizing combinations. First, fluoride compounds, such as CaF2, SnF2, NaF, Na2 SiF6, or Na2 PO3 F, may be added to increase the rate of mineralization. Second, calcium and phosphate containing compounds, such as CaCl2, Ca(C2 H3 O2)2, NaH2 PO4, or (NH4)H2 PO4, may be added to modify the Ca/P ratio and pH of the solution's singular point. Third, high molecular weight crystal growth inhibitors may be added to facilitate the complete remineralization of the subsurface caries lesions. Fourth, a gelling agent may be added.

EXAMPLE 2

Ca4 (PO4)2 O and CaHPO4.2H2 O are ground to an approximate mean particle size of 40 μm. Two grams of an equimolar mixture of the two solids is combined with 20 ml of a 5 mM H3 PO4 solution and mixed to form a slurry. The slurry is then placed on a caries lesion by means of a bite block sponge. This slurry will maintain a pH in the vicinity of 7.4 and precipitate hydroxyapatite for almost one week.

EXAMPLE 3

To form a dental cement, Ca4 (PO4)2 O and at least one other calcium phosphate selected from the group consisting of CaHPO4.2H2 O, CaHPO4, Ca8 H2 (PO4)6.5H2 O, α--Ca3 (PO4)2, β--Ca3 (PO4)2, and modified Ca3 (PO4)2 are ground to a uniform particle size of less than 5 μm so that the setting time will be reasonable. If some setting expansion is required, "gap-graded" particle sizes may be used. The calcium phosphates are then combined with the dilute aqueous solutions of Example 1 to form a paste. This paste is then applied by an appropriate means to the affected area. For example, if the cement is to be used as an endodontic filling material, the paste may be applied by injection or packed with a plugger. Alternatively, the calcium phosphates are combined with a nonaqueous medium such as glycerin, ethanol or glycol to form a paste. These nonaqueous pastes will harden upon exposure to the dilute aqueous solutions of Example 1 or humid air. Alternatively, the combined calcium phosphates may be applied as a dry powder that will form a hardenable paste upon contact with an appropriate aqueous solvent such as water or saliva.

To modify the remineralization properties of the cement, the additives described in Example 1 may be added to the liquid or solid phase. In addition, crystal habit modifiers may be added to induce more needle-like growth of apatitic crystals. The setting time for a given cement may be reduced by adding hydroxyapatite or fluorapatite seed crystals. The inclusion of fluoride compounds will further reduce the setting time. Silicocarnotite may improve the setting properties of the cement.

Setting expansion and shrinkage may be reduced by adding a sizeable amount of hydroxyapatite to the paste. Conversely, some setting expansion may be encouraged by the addition of β--Ca3 (PO4)2 or crystal habit modifiers.

EXAMPLE 4

Specimens 1-5 shown in Table I were prepared as follows. The two calcium phosphates and hydroxyapatite seed were all ground to a mean particle size of 5 μm. One gram of a mixture containing equimolar amounts of the two calcium phosphates and the appropriate weight percent of Ca5 (PO4)3 OH was mixed with 0.5 ml of the appropriate H2 PO4 solution. All of the specimens were stirred into pastes, allowed to harden, and were soaked in H2 O at 37 C. for twenty-four hours. The compressive strengths in pounds per square inch were then determined as shown in Table I.

EXAMPLE 5

Specimens 6-9 shown in Table II were prepared by grinding Ca4 (PO4)2 O, CaHPO4.2H2 O, and Ca5 (PO4)3 OH to a mean particle size of 5 μm. One gram of a mixture containing equimolar amounts of Ca4 (PO4)2 O and CaHPO4.2H2 O and the appropriate weight percent of Ca5 (PO4)3 OH was mixed with 0.5 ml of 20 mM H3 PO4 to form a paste. This paste was then allowed to harden. The setting times as a function of apatite seed content are shown in Table II.

EXAMPLE 6

To form a porous cement of increased strength, Ca4 (PO4)2 O and CaHPO4.2H2 O are ground to a mean particle size of 5 μm. Two grams of a mixture containing equimolar amounts of the two calcium phosphates and 0.5 gram of granular sugar (or another highly water soluble material) are mixed and placed in a mold. Usually addition of water to the mixture is not needed but a small amount may be added in some instances to facilitate the setting reaction. Up to 80,000 pounds per square inch of pressure is applied to the cement mixture using a press for two minutes. The specimen, which is made into a compact mass by the process, is placed in boiling water to extract the water soluble granules and to complete the setting process. The resulting porous materials can be used as protheses which can be invaded more readily by organic bone tissue.

It should be understood that the foregoing disclosure emphasizes certain specific embodiments of the invention and that all modifications or alternatives equivalent thereto are within the spirit or scope of the invention.

                                  TABLE 1__________________________________________________________________________COMPRESSIVE STRENGTHS OF EXPERIMENTAL CEMENTS               Ca5 (PO4)3 OH, Wt. %                                  Compressive StrengthSpecimenCalcium Phosphates               Seed Content                          Solution                                  (PSI)1__________________________________________________________________________1    CaHPO4.2H2 O + Ca4 (PO42)O               0           5 mM H3 PO4                                  4390  860(3)2    CaHPO4.2H2 O + Ca4 (PO4)2 O               0          20 mM H3 PO4                                  4560  520(3)3    CaHPO4 + Ca4 (PO4)2 O               0          20 mM H3 PO4                                  4960  650(3)4    CaHPO4 + Ca4 (PO4)2 O               2.7        20 mM H3 PO4                                  4280  940(2)5    CaHPO4 + Ca4 (PO4)2 O               9.6        20 mM H3 PO4                                   4578  1010(2)__________________________________________________________________________ 1 Compressive strengths are shown as mean value  standard deviation. The number of samples is shown in parenthesis

              TABLE II______________________________________SETTING TIME AS A FUNCTION OFHYDROXYAPATITIC SEED CONTENTFOR EXPERIMENTAL CEMENTS                       Setting time1Specimen Ca5 (PO4)3 OH Content, Wt. %                       Min.______________________________________6         0                 227        24                 118        34                  99        43                 8______________________________________ 1 The setting times were measured according to American Dental Association Specification No. 9
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3679360 *Jun 26, 1970Jul 25, 1972NasaProcess for the preparation of brushite crystals
US3787900 *Jun 9, 1971Jan 29, 1974Univ Iowa Res FoundArtificial bone or tooth prosthesis material
US3913229 *Feb 25, 1974Oct 21, 1975Miter IncDental treatments
US4097935 *Jan 31, 1977Jul 4, 1978Sterling Drug Inc.Polycrystalline ceramic oxides, fillers for dental compositions, prosthetics
US4497075 *Mar 1, 1982Feb 5, 1985Mitsubishi Mining & Cement Co., Ltd.Calcium hydroxy phosphate compound
US4599085 *Feb 1, 1984Jul 8, 1986Neodontics, Inc.Bone implant member for prostheses and bone connecting elements and process for the production thereof
DE2008010A1 *Feb 20, 1970Aug 26, 1971 Bone and teeth substitutes
JP5858041A * Title not available
Non-Patent Citations
Reference
1"NASA and Dentistry"(1977).
2Briner et al., "Significance of Enamel Remineralization," J. Dent. Res. 11 (Supp. 1): 59-84 (1974).
3 *Briner et al., Significance of Enamel Remineralization, J. Dent. Res. 11 (Supp. 1): 59 84 (1974).
4Brown and Chow, "Singular Points in the Chemistry of Teeth," IADR Abstract No. 120 (1975).
5 *Brown and Chow, Singular Points in the Chemistry of Teeth, IADR Abstract No. 120 (1975).
6Brown et al, "Crystallography of Tetracalcium Phosphate," J. Res. Nat. Bur. Stands. 69A: 547-551 (1965).
7 *Brown et al, Crystallography of Tetracalcium Phosphate, J. Res. Nat. Bur. Stands. 69A: 547 551 (1965).
8Brown, "Solubilities of Phosphates and Other Sparingly Soluble Compounds," from Griffith et al, Environmental Phosphorous Handbook (John Wiley & Sons, New York, 1976.
9 *Brown, Solubilities of Phosphates and Other Sparingly Soluble Compounds, from Griffith et al, Environmental Phosphorous Handbook (John Wiley & Sons, New York, 1976.
10Driskell et al., "Development of Ceramic and Ceramic Composite Devices for Maxillofacial Application," J. Biomed. Mat. Res. 6: 345-361 (1972).
11 *Driskell et al., Development of Ceramic and Ceramic Composite Devices for Maxillofacial Application, J. Biomed. Mat. Res. 6: 345 361 (1972).
12Gelhard et al, "Rehardening of Artificial Enamel Lesions in vivo," Caries Res. 13:80-83 (1979).
13 *Gelhard et al, Rehardening of Artificial Enamel Lesions in vivo , Caries Res. 13:80 83 (1979).
14Gregory et al, "Solubility of --Ca3 (PO4)2 in the System Ca(OH)2 --H3 PO4 --H2 O at 5, 15, 25 and 37[C," J. Res. Nat. Bur. Stand. 78A: 667-674 (1974).
15Gregory et al, "Solubility of CaHPO4.2H2 O in the System Ca(OH)2 --H3 PO4 --H2 O at 5, 15, 25, and 37.5 [C.," J. Res. Nat. Bur. Stand. 74A: 461-475 (1970).
16 *Gregory et al, Solubility of Ca 3 (PO 4 ) 2 in the System Ca(OH) 2 H 3 PO 4 H 2 O at 5, 15, 25 and 37 C, J. Res. Nat. Bur. Stand. 78A: 667 674 (1974).
17 *Gregory et al, Solubility of CaHPO 4 .2H 2 O in the System Ca(OH) 2 H 3 PO 4 H 2 O at 5, 15, 25, and 37.5 C., J. Res. Nat. Bur. Stand. 74A: 461 475 (1970).
18 *Guide to Dental Material and Devices, 7th Ed. (ADA 1974), pp. 49 66.
19Guide to Dental Material and Devices, 7th Ed. (ADA 1974), pp. 49-66.
20Hiatt et al, "Root Preparation I. Obturation of Dentinal Tubules in Treatment of Root Hyper-Sensitivity," J. Periodontal. 43: 373-380 (1972).
21 *Hiatt et al, Root Preparation I. Obturation of Dentinal Tubules in Treatment of Root Hyper Sensitivity, J. Periodontal. 43: 373 380 (1972).
22LeGeros et al, "Apatitic Calcium Phosphates: Possible Dental Restorative Materials,"IADR Abstract No. 1482 (1982).
23 *LeGeros et al, Apatitic Calcium Phosphates: Possible Dental Restorative Materials, IADR Abstract No. 1482 (1982).
24Levine, "Remineralisation of Natural Carious Lesions of Enamel in vitro," Brit. Dent. J., 137: 132-134 (1974).
25 *Levine, Remineralisation of Natural Carious Lesions of Enamel in vitro, Brit. Dent. J., 137: 132 134 (1974).
26McDowell et al, "Solubility of Ca5 (PO4)3 OH in the System Ca(OH)2 --H3 PO4 --H2 O at 5, 15, 25 and 37.5[C," J. Res. Nat. Bur. Stand. 81A: 273-281 (1977).
27 *McDowell et al, Solubility of Ca 5 (PO 4 ) 3 OH in the System Ca(OH) 2 H 3 PO 4 H 2 O at 5, 15, 25 and 37.5 C, J. Res. Nat. Bur. Stand. 81A: 273 281 (1977).
28McDowell et al., "Solubility Study of Calcium Hydrogen Phosphate. Ion Pair Formation," Inorg. Chem. 10: 1638-1643 (1971).
29 *McDowell et al., Solubility Study of Calcium Hydrogen Phosphate. Ion Pair Formation, Inorg. Chem. 10: 1638 1643 (1971).
30Moreno et al, "Stability of Dicalcium Phosphate Dihydrate in Aqueous Solutions and Solubility of Octacalcium Phosphate," Soil Sci. Soc. Am. Proc. 21: 99-102 (1960).
31 *Moreno et al, Stability of Dicalcium Phosphate Dihydrate in Aqueous Solutions and Solubility of Octacalcium Phosphate, Soil Sci. Soc. Am. Proc. 21: 99 102 (1960).
32 *NASA and Dentistry (1977).
33Patel et al, "Solubility of CaHPO4.2H2 O in the Quaternary System Ca(OH)2 --H3 PO4 --NaCl--H2 O at 25[C," J. Rest. Nat. Bur. Stands. 78A: 675-681 (1974).
34 *Patel et al, Solubility of CaHPO 4 .2H 2 O in the Quaternary System Ca(OH) 2 H 3 PO 4 NaCl H 2 O at 25 C, J. Rest. Nat. Bur. Stands. 78A: 675 681 (1974).
35Pickel et al, "The Effect of a Chewing Gum Containing Dicalcium Phosphate on Salivary Calcium and Phosphate," Ala J. Med. Sci. 2: 286-287 (1965).
36 *Pickel et al, The Effect of a Chewing Gum Containing Dicalcium Phosphate on Salivary Calcium and Phosphate, Ala J. Med. Sci. 2: 286 287 (1965).
37Silverstone, "Remineralization Phenomena," Caries Res. 11 (Supp. 1): 59-84 (1977).
38 *Silverstone, Remineralization Phenomena, Caries Res. 11 (Supp. 1): 59 84 (1977).
39Zimmerman et al, "The Effect of Remineralization Fluids on Carious Lesions in vitro," IADR Abstract No. 282 (1979).
40 *Zimmerman et al, The Effect of Remineralization Fluids on Carious Lesions in vitro, IADR Abstract No. 282 (1979).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5068100 *Nov 14, 1990Nov 26, 1991The Procter & Gamble CompanyAnticalculus compositions
US5128169 *Jan 2, 1991Jul 7, 1992Sumitomo Chemical Company, LimitedSedimentation; biological implants
US5145520 *Aug 22, 1990Sep 8, 1992Kyoto UniversityGlass powder having silica and calcium oxide as essential components and aqueous ammonium phosphate hardener; for teeth, bones
US5258044 *Jan 30, 1992Nov 2, 1993Etex CorporationElectrophoretic deposition of calcium phosphate material on implants
US5336264 *Jul 23, 1992Aug 9, 1994Norian CorporationSitu prepared calcium phosphate composition and method
US5401783 *Nov 24, 1993Mar 28, 1995American Dental Association Health FoundationWith acrylate polymers, dental bonding
US5427768 *Jun 23, 1993Jun 27, 1995American Dental Association Health FoundationPreventing the tooth cavity by applying the mixed solution on detal tissue to deposit calcium phosphate and release carbon dioxide
US5437857 *Aug 9, 1993Aug 1, 1995American Dental Association Health FoundationA deposited apatite is formed on teeth in situ after applying a mixed solution of amorphous calcium compound and a material forming amorphous calcium phosphate, calcium phosphate fluoride or calcium carbonate phosphate
US5460803 *Aug 26, 1992Oct 24, 1995American Dental Association Health FoundationMethods and compositions for mineralizing and fluoridating calcified tissues
US5476647 *Sep 13, 1993Dec 19, 1995American Dental Association Health FoundationComplex calcium and fluoride containing mouth rinses, dentifrices, and chewable tablets
US5496399 *Aug 23, 1994Mar 5, 1996Norian CorporationReacting an acidic phosphate source with a basic calcium source and stopping the reaction prior to completion by removing water
US5522893 *Mar 12, 1993Jun 4, 1996American Dental Association Health FoundationCalcium phosphate hydroxyapatite precursor and methods for making and using the same
US5525148 *Sep 24, 1993Jun 11, 1996American Dental Association Health FoundationSelf-setting calcium phosphate cements and methods for preparing and using them
US5534244 *May 6, 1994Jul 9, 1996Tung; Ming S.Applying to teeth compounds which will form strontium containing apatite, dentistry
US5542973 *Dec 9, 1994Aug 6, 1996The American Dental Association Health FoundationBioresorbable; useful for bone and tooth repair
US5545254 *Dec 9, 1994Aug 13, 1996The American Dental Association Health FoundationFree of calcium oxide
US5550172 *Feb 7, 1995Aug 27, 1996Ethicon, Inc.Utilization of biocompatible adhesive/sealant materials for securing surgical devices
US5650176 *Dec 29, 1995Jul 22, 1997Etex CorporationHeat treatment for decarbonation and dehydration of calcium phosphate precipitate to form apatite
US5683461 *Dec 29, 1995Nov 4, 1997Etex CorporationInjectable paste
US5782971 *Mar 19, 1997Jul 21, 1998Norian CorporationComposition of amorphous calcium phosphate, additional calcium source, physiologically acceptable aqueous liquid; repair of damaged hard tissue
US5820632 *Apr 1, 1994Oct 13, 1998Norian CorporationPrepared calcium phosphate composition and method
US5846312 *Jul 1, 1997Dec 8, 1998Norian CorporationStorage stable calcium phosphate cements
US5858333 *Aug 7, 1998Jan 12, 1999Enamelon, Inc.Cationic part containing calcium salt and anionic part containing phosphate salt
US6214368 *May 20, 1996Apr 10, 2001Etex CorporationUseful as bone substitute material for treatment of bone disorders and injuries
US6277151Feb 13, 1998Aug 21, 2001Etex CorporationUsing in vivo an amorphous, hydrated calcium phospate in an aqueous solution of a paste or putty consistency; having a biocompatibility with the cartilage-forming cell or precursor; hardening
US6287341Mar 6, 1998Sep 11, 2001Etex CorporationMixing a reactive amorphous calcium phosphate, a second calcium phosphate that has a calcium to phosphate ratio of >or =1.67, and a physiological liquid in the amount to provide a paste or putty; introducing into an implant site
US6312467Sep 2, 1998Nov 6, 2001Iowa State University Research Foundation, Inc.Method of restructuring bone
US6331312Mar 2, 1998Dec 18, 2001Etex CorporationPreparing a calcium deficient apatitic calcium phosphate, implantable bioceramics, synthetic bone graft material,
US6334891Apr 1, 1999Jan 1, 2002Norian CorporationCompositions comprised of dahllite, analogs thereof, or otherwise carbonate-substituted forms of hydroxyapatite; bioresorbable support structure, filler, or prosthesis
US6364909Aug 24, 1999Apr 2, 2002Iowa State University Research Foundation, Inc.Method of restructuring bone
US6494611Jan 26, 2001Dec 17, 2002Howmedica Osteonics Corp.Apparatus for mixing a liquid and dry powdered components
US6521264 *Mar 17, 1999Feb 18, 2003TeknimedMethod for preparing a biomaterial based on hydroxyapatite, resulting biomaterial and surgical or dental use
US6541037Oct 16, 1996Apr 1, 2003Etex CorporationDelivery vehicle
US6544290Feb 13, 1998Apr 8, 2003Etex CorporationCell seeding of ceramic compositions
US6547866Oct 30, 2000Apr 15, 2003Howmedica Osteonics Corp.Porous calcium phosphate cement
US6558709Jan 5, 2001May 6, 2003Howmedica Osteonics Corp.Calcium phosphate composition and method of preparing same
US6592251Jan 26, 2001Jul 15, 2003Howmedica Osteonics Corp.Cement mixing and dispensing device
US6626912Nov 20, 2001Sep 30, 2003Stryker Trauma GmbhProcess for mixing and dispensing a flowable substance
US6670293Sep 9, 2002Dec 30, 2003Howmedica Osteonics Corp.Porous calcium phosphate cement
US6719793Mar 25, 2002Apr 13, 2004Iowa State University Research Foundation, Inc.Method of restructuring bone
US6793725Jan 23, 2002Sep 21, 2004Ada FoundationPremixed calcium phosphate cement pastes
US6849275Jan 10, 2003Feb 1, 2005Howmedica Osteonics Corp.Calcium phosphate composition and method of preparing same
US6953594Nov 23, 2001Oct 11, 2005Etex CorporationMethod of preparing a poorly crystalline calcium phosphate and methods of its use
US6972130Oct 16, 1997Dec 6, 2005Etex Corporationmixtures of crystal structured hydroxyapatite, drugs and/or biological cells, having biocompatibility and bioresorption, for use in drug delivery
US7066999Sep 17, 2004Jun 27, 2006Calcitec, Inc.Heat treatment; controlling temperature; using mixture of wetting agents and calcium phosphate powder
US7083749 *Feb 17, 2005Aug 1, 2006Calcitec, Inc.Dual function prosthetic bone implant and method for preparing the same
US7083750 *Mar 3, 2005Aug 1, 2006Calcitec, Inc.Method for making a porous calcium phosphate article
US7094282Apr 16, 2003Aug 22, 2006Calcitec, Inc.Calcium phosphate cement, use and preparation thereof
US7097792Feb 10, 2005Aug 29, 2006Calcitec, Inc.Dual function prosthetic bone implant and method for preparing the same
US7097793 *Mar 3, 2005Aug 29, 2006Calcitec, Inc.Method for making a porous calcium phosphate article
US7115222Feb 10, 2005Oct 3, 2006Calcitec, Inc.Dual function prosthetic bone implant and method for preparing the same
US7118695 *Feb 17, 2005Oct 10, 2006Calcitec, Inc.Dense cortical portion bearing the majority of load and a porous cancellous portion allowing a rapid blood/body fluid penetration and tissue ingrowth; made of a hardened calcium phosphate cement having a major apatitic phase
US7118705Aug 5, 2003Oct 10, 2006Calcitec, Inc.impregnating an article molded from a paste of calcium phosphate cement (CPC) in a liquid for a period of time, so that the compressive strength of the CPC block is significantly improved after removing from the liquid
US7119038Mar 3, 2005Oct 10, 2006Calcitec, Inc.Method for making a porous calcium phosphate article
US7122057Apr 12, 2002Oct 17, 2006Therics, LlcMatrix of interconnected ceramic particles; porous portion with controlled packing; constructed of hydroxyapatite, tricalcium phosphate and/or demineralized bone; porous biostructure is infused with a bioresorbable, nonresorbable, or dissolvable material
US7122138 *Feb 10, 2005Oct 17, 2006Calcitec, Inc.Dual function prosthetic bone implant and method for preparing the same
US7122139 *Feb 17, 2005Oct 17, 2006Calcitec, Inc.Dual function prosthetic bone implant and method for preparing the same
US7122140 *Feb 17, 2005Oct 17, 2006Calcitec, Inc.Dual function prosthetic bone implant and method for preparing the same
US7128856 *Feb 10, 2005Oct 31, 2006Calcitec, Inc.Dense cortical portion bearing majority of load, a porous cancellous portion allowing a rapid blood/body fluid penetration and tissue ingrowth; made of a hardened calcium phosphate cement having a major apatitic phase
US7150879May 11, 2000Dec 19, 2006Etex CorporationNeutral self-setting calcium phosphate paste
US7156915May 18, 2005Jan 2, 2007Calcitec, Inc.Tetracalcium phosphate (TTCP) with surface whiskers and method of making same
US7157027 *Feb 10, 2005Jan 2, 2007Calcitec, Inc.Dual function prosthetic bone implant and method for preparing the same
US7160381May 18, 2005Jan 9, 2007Calcitec, Inc.Forming basic calcium phosphate whiskers or fine crystals on the surface of Ca4(PO4)20 particles by treating with a whisker-inducing solution and heating up to 1000 degrees C. to form a fast-setting, bioresorbable calcium phosphate cement
US7160382May 19, 2005Jan 9, 2007Calcitec, Inc.Contacting tetracalcium phosphate having basic calcium phosphate crystal whiskers on their surface with a setting solution to form a paste; placing the paste in a form; and allowing the paste to harden
US7163651Feb 19, 2004Jan 16, 2007Calcitec, Inc.Method for making a porous calcium phosphate article
US7169373Feb 6, 2004Jan 30, 2007Calcitec, Inc.Tetracalcium phosphate (TTCP) having calcium phosphate whisker on surface and process for preparing the same
US7182895Feb 10, 2005Feb 27, 2007Calcitec, Inc.Dual function prosthetic bone implant and method for preparing the same
US7182928May 19, 2005Feb 27, 2007Calcitec, Inc.Calcium phosphate cements made from (TTCP) with surface whiskers and process for preparing same
US7182937Oct 10, 2001Feb 27, 2007Block Drug Company, Inc.Reducing dentinal hypersensitivity and remineralizing exposed dentinal surface and open dentinal tubules, comprising a non-aqueous carrier and a desensitizing amount of a desensitizing/remineralizing agent which consists of water
US7186294May 25, 2005Mar 6, 2007Calcitec, Inc.Heat treatment; controlling temperature; using mixture of wetting agents and calcium phosphate powder
US7201797May 25, 2005Apr 10, 2007Calcitec, Inc.Heat treatment; controlling temperature; using mixture of wetting agents and calcium phosphate powder
US7204876May 19, 2005Apr 17, 2007Calcitec, Inc.Calcium phosphate cements made from (TTCP) with surface whiskers and process for preparing same
US7214265May 13, 2005May 8, 2007Calcitec, Inc.Injectable calcium phosphate cements and the preparation and use thereof
US7258734May 13, 2005Aug 21, 2007Calcitec, Inc.Injectable calcium phosphate cements and the preparation and use thereof
US7258735Jul 7, 2005Aug 21, 2007Calcitec, Inc.Heat treatment; controlling temperature; using mixture of wetting agents and calcium phosphate powder
US7270705Sep 14, 2004Sep 18, 2007Jiin-Huey Chern LinMethod of increasing working time of tetracalcium phosphate cement paste
US7279038May 25, 2005Oct 9, 2007Calcitec, Inc.Process for affecting the setting and working time of bioresorbable calcium phosphate cements
US7294187 *Sep 15, 2004Nov 13, 2007Ada Foundationhydroxyapatite from acid calcium salt solution; repair bone, tooth defects
US7416602Apr 8, 2005Aug 26, 2008Howmedica Leibinger, Inc.Calcium phosphate cement
US7459018Dec 20, 2005Dec 2, 2008Howmedica Leibinger Inc.Injectable calcium phosphate cement
US7473678Jun 23, 2005Jan 6, 2009Biomimetic Therapeutics, Inc.Platelet-derived growth factor compositions and methods of use thereof
US7517539Oct 16, 1997Apr 14, 2009Etex CorporationMethod of preparing a poorly crystalline calcium phosphate and methods of its use
US7799754Feb 9, 2007Sep 21, 2010Biomimetic Therapeutics, Inc.Compositions and methods for treating bone
US7892346Oct 28, 2008Feb 22, 2011Howmedica Osteonics Corp.Injectable calcium phosphate cement
US7892347Dec 17, 2009Feb 22, 2011Howmedica Osteonics Corp.Injectable calcium phosphate cement
US7943573Feb 9, 2009May 17, 2011Biomimetic Therapeutics, Inc.Methods for treatment of distraction osteogenesis using PDGF
US7976874May 13, 2005Jul 12, 2011Jiin-Huey Chern LinInjectable calcium phosphate cements and the preparation and use thereof
US7985414Jan 19, 2006Jul 26, 2011Warsaw Orthopedic, Inc.Allograft composite of a biodegradable polyurethane based on a polyisocyanate and an optionally hydroxylated biomolecule to form a matrix for embedded reinforcement of bone and/or bone substitutes; resorbable polymers having osteopromotive/osteopermissive properties; no undesirable immune response
US8002843Feb 4, 2004Aug 23, 2011Warsaw Orthopedic, Inc.Allograft composite of a biodegradable polyurethane based on a polyisocyanate and an optionally hydroxylated biomolecule to form a matrix for embedded reinforcement of bone and/or bone substitutes; resorbable polymers having osteopromotive/osteopermissive properties; no undesirable immune response
US8012210Jan 11, 2005Sep 6, 2011Warsaw Orthopedic, Inc.Implant frames for use with settable materials and related methods of use
US8106008Nov 5, 2007Jan 31, 2012Biomimetic Therapeutics, Inc.Compositions and methods for arthrodetic procedures
US8114841Nov 17, 2006Feb 14, 2012Biomimetic Therapeutics, Inc.Maxillofacial bone augmentation using rhPDGF-BB and a biocompatible matrix
US8147860Dec 6, 2005Apr 3, 2012Etex CorporationPorous calcium phosphate bone material
US8216359Apr 14, 2005Jul 10, 2012Etex CorporationDelayed-setting calcium phosphate pastes
US8221781Apr 12, 2004Jul 17, 2012Etex CorporationOsteoinductive bone material
US8232327Nov 12, 2009Jul 31, 2012Howmedia Osteonics CorpTetra calcium phosphate based organophosphorus compositions and methods
US8273803Dec 8, 2011Sep 25, 2012Howmedica Osteonics Corp.Tetra calcium phosphate based organophosphorus compositions and methods
US8282396May 3, 2010Oct 9, 2012Ada FoundationCalcium-containing restoration materials
US8349796Mar 15, 2011Jan 8, 2013Biomimetic Therapeutics Inc.Methods for treatment of distraction osteogenesis using PDGF
US8388626Nov 8, 2006Mar 5, 2013Warsaw Orthopedic, Inc.Methods of employing calcium phosphate cement compositions and osteoinductive proteins to effect vertebrae interbody fusion absent an interbody device
US8425893Jul 13, 2011Apr 23, 2013Warsaw Orthopedic, Inc.Polyurethanes for osteoimplants
US8454988Jan 23, 2008Jun 4, 2013Etex CorporationOsteoinductive bone material
US8492335Feb 22, 2011Jul 23, 2013Biomimetic Therapeutics, LlcPlatelet-derived growth factor compositions and methods for the treatment of tendinopathies
US8518383Feb 2, 2007Aug 27, 2013Wm. Wrigley Jr. CompanyOral care products comprising buffer systems for improved mineralization/remineralization benefits
US8545858Apr 3, 2012Oct 1, 2013Etex CorporationPorous calcium phosphate bone material
US8728536Mar 30, 2006May 20, 2014Etex CorporationChemotherapeutic composition using nanocrystalline calcium phosphate paste
US8740987Dec 20, 2004Jun 3, 2014Warsaw Orthopedic, Inc.Tissue-derived mesh for orthopedic regeneration
US8765189May 11, 2012Jul 1, 2014Howmedica Osteonic Corp.Organophosphorous and multivalent metal compound compositions and methods
US8771719Aug 12, 2003Jul 8, 2014Warsaw Orthopedic, Inc.Synthesis of a bone-polymer composite material
EP0639366A1 *Aug 19, 1993Feb 22, 1995Kingstar Technology Limited (Uk)Hydroxyapatite cement as bone or tooth replacement
EP1439153A1 *Jan 13, 2004Jul 21, 2004Howmedica Osteonics Corp.Calcium phosphate cement precursors
EP2033598A1Nov 21, 2007Mar 11, 2009DePuy-Biotech GmbhCalcium phosphate based delivery of growth and differentiation factors to compromised bone
EP2223698A1Oct 12, 2005Sep 1, 2010Biomimetic Therapeutics, Inc.Platelet-derived growth factor compositions and method of use thereof
EP2260860A1Jun 6, 2002Dec 15, 2010Wyeth LLCCalcium phosphate delivery vehicles for osteoinduktive proteins
EP2266634A2Nov 29, 2004Dec 29, 2010Ada FoundationRapid-hardening calcium phosphate cement compositions
EP2308500A1Oct 12, 2005Apr 13, 2011Biomimetic Therapeutics, Inc.Platelet-derived growth factor compositions and methods of use thereof
EP2308501A1Oct 12, 2005Apr 13, 2011Biomimetic Therapeutics, Inc.Platelet-derived growth factor compositions and methods of use thereof
EP2374471A1Sep 10, 2004Oct 12, 2011Wyeth LLCInjectable hardenable calcium phosphate pastes for delivery of osteogenic proteins
WO1994002411A1 *Jul 15, 1993Feb 3, 1994Amp MedicalMethod for preparing phosphocalcium hydroxyapatite, use thereof for bone or tooth filling or for moulding parts, and products used therein
WO1994020064A1 *Sep 15, 1993Sep 15, 1994American Dental AssCalcium phosphate hydroxyapatite precursor and methods for making and using the same
WO1996006041A1 *Aug 3, 1995Feb 29, 1996Norian CorpStorage stable calcium phosphate cements
WO1996025914A1 *Feb 24, 1995Aug 29, 1996American Dental AssCarbonated solutions for treating, mineralizing and fluoridating calcified tissues and methods for their use
WO2002030381A1 *Oct 10, 2001Apr 18, 2002Block Drug CoAnhydrous dentifrice formulations for the delivery of incompatible ingredients
WO2002058835A1 *Jan 16, 2002Aug 1, 2002Howmedica Osteonics CorpApparatus for mixing a liquid and dry powered components
WO2005074453A2 *Nov 29, 2004Aug 18, 2005Ada FoundationRapid-hardening calcium phosphate cement compositions
WO2005077049A2 *Feb 10, 2005Aug 25, 2005Jean-Michael BoulerMacroporous, resorbable and injectible calcium phosphate-based cements (mcpc) for bone repair, augmentation, regeneration, and osteoporosis treatment
WO2006030054A1Aug 11, 2005Mar 23, 2006Univ Catalunya PolitecnicaInjectable, self-setting calcium phosphate foam
WO2006044334A2Oct 12, 2005Apr 27, 2006Biomimetic Therapeutics IncPlatelet-derived growth factor compositions and methods of use thereof
WO2012129234A1Mar 20, 2012Sep 27, 2012Endo Pharmaceuticals Inc.Urethral anastomosis device and method
WO2014047061A1Sep 17, 2013Mar 27, 2014Endo Pharmaceuticals Inc.Urethral anastomosis device
Classifications
U.S. Classification423/308, 433/26, 433/212.1, 433/199.1, 423/311, 433/201.1, 106/35, 106/690, 501/1, 606/76
International ClassificationA61Q11/00, A61L24/02, A61L27/12, A61K8/24, C01B25/32
Cooperative ClassificationA61K6/0067, C01B25/327, A61K6/033, A61L27/12, A61K2800/594, A61K6/0008, A61L2430/12, A61Q11/00, A61K6/0675, A61L24/02, A61K8/24
European ClassificationA61L24/02, C01B25/32K, A61K6/033, A61Q11/00, A61K8/24, A61L27/12
Legal Events
DateCodeEventDescription
Jan 28, 2002ASAssignment
Owner name: HOWMEDICA OSTEONICS CORPORATION, MICHIGAN
Owner name: HOWMEDICAL LEIBINGER, INC., MICHIGAN
Owner name: PHYSIOTHERAPY ASSOCIATES, INC., MICHIGAN
Owner name: SMD CORPORATION, MICHIGAN
Owner name: STRYKER CORPORATION, MICHIGAN
Owner name: STRYKER FAR EAST, INC., MICHIGAN
Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION);REEL/FRAME:012539/0557
Effective date: 20020124
Owner name: STRYKER FOREIGN HOLDCO, INC., MICHIGAN
Owner name: STRYKER INTERNATIONAL, INC., MICHIGAN
Owner name: STRYKER PUERTO RICO INC., MICHIGAN
Owner name: STRYKER SALES CORPORATION, MICHIGAN
Owner name: STRYKER TECHNOLOGIES CORPORATION, MICHIGAN
Owner name: HOWMEDICA OSTEONICS CORPORATION 2725 FAIRFIELD ROA
Owner name: HOWMEDICAL LEIBINGER, INC. 2725 FAIRFIELD ROAD KAL
Owner name: PHYSIOTHERAPY ASSOCIATES, INC. 2725 FAIRFIELD ROAD
Owner name: SMD CORPORATION 2725 FAIRFIELD ROAD KALAMAZOO MICH
Owner name: STRYKER CORPORATION 2725 FAIRFIELD ROAD KALAMAZOO
Owner name: STRYKER CORPORATION 2725 FAIRFIELD ROADKALAMAZOO,
Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A. (F/K/A BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION) /AR;REEL/FRAME:012539/0557
Owner name: STRYKER FAR EAST, INC. 2725 FAIRFIELD ROAD KALAMAZ
Owner name: STRYKER FOREIGN HOLDCO, INC. 2725 FAIRFIELD ROAD K
Owner name: STRYKER INTERNATIONAL, INC. 2725 FAIRFIELD ROAD KA
Owner name: STRYKER PUERTO RICO INC. 2725 FAIRFIELD ROAD KALAM
Owner name: STRYKER SALES CORPORATION 2725 FAIRFIELD ROAD KALA
Owner name: STRYKER TECHNOLOGIES CORPORATION 2725 FAIRFIELD RO
Mar 22, 1999ASAssignment
Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA
Free format text: SECURITY AGREEMENT;ASSIGNORS:STRYKER CORPORATION;STRYKER FAR EAST, INC.;REEL/FRAME:014137/0212
Effective date: 19981204
Free format text: SECURITY INTEREST;ASSIGNORS:STRYKER CORPORATION;STRYKER FAR EAST, INC.;STRYKER INTERNATIONAL INC.;AND OTHERS;REEL/FRAME:009817/0001
Mar 8, 1999ASAssignment
Owner name: STRYKER TECHNOLOGIES CORPORATION, MICHIGAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOWMEDICA INC.;REEL/FRAME:009781/0191
Effective date: 19981202