Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE33189 E
Publication typeGrant
Application numberUS 07/409,955
Publication dateMar 27, 1990
Filing dateSep 18, 1989
Priority dateNov 19, 1981
Fee statusPaid
Publication number07409955, 409955, US RE33189 E, US RE33189E, US-E-RE33189, USRE33189 E, USRE33189E
InventorsLin-nan Lee, Russell J. Fang
Original AssigneeCommunications Satellite Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Security system for SSTV encryption
US RE33189 E
Abstract
In a secure communications system, a key number which is changed periodically, e.g. monthly, and a random number from a random number generator are combined and used as a seed to reset a PN sequence generator, with the output of the generator being used to control encryption of transmission data in a signal processor. The key is also provided to a first encipherer to encipher the random number for transmission with the encrypted data. At the receiver, the key is provided on common to a decipherer for deciphering the random number and a PN sequence generator which is periodically reset by the combination of the key and random number in the same manner as in the transmitter. The PN sequence is then used to decrypt the information. User identification codes are stored in the transmitter and are used to encipher the key, with each employing its ID code to decipher the key. The user ID codes are known only to the system operator, so that not even a particular user can know the key.
Images(1)
Previous page
Next page
Claims(28)
What is claimed is:
1. In a communications system including a transmitter and a receiver, said transmitter including a program source for providing a program signal representing program information, a transmit signal processor for encrypting said program signal in accordance with a transmit control signal and transmit means for transmitting said encrypted signal, said receiver including receive means for receiving said encrypted signal, a receiver signal processor for decrypting said encrypted signal in accordance with a receive control signal and means for receiving said decrypted signal and providing said program information, the improvement comprising:
first generator means at said transmitter for generating a first sequence of signals representing a first sequence of numbers;
key number means at said transmitter for providing a key number signal representing a key number;
second generator means at said transmitter for generating a second sequence of signals representing a second sequence of numbers, said second generator means being periodically reset by a reset signal comprising the output of said first generator means to thereby generate a plurality of sequence segments each beginning with a reset signal, the output of said second generator means comprising said transmit control signal;
means at said transmitter for enciphering said first sequence of signals with said key number signal and for providing said enciphered first signal sequence to said transmit means for transmission with said encrypted program signal;
.Iadd.means at said transmitter for enciphering said key number signal in accordance with a further signal; .Iaddend.
means at said receiver for providing said key number signal.Iadd., said means at said receiver for providing said key number signal comprising means at said receiver for providing said further signal and means at said receiver for deciphering said enciphered key number signal in accordance with said further signal.Iaddend.;
receive deciphering means at said receiver for receiving said enciphered first signal sequence and said key number, deciphering said first signal sequence in accordance with said key number and providing said deciphered first signal sequence as an output; and
receive generating means for generating a sequence of signals representing said first sequence of numbers, said receive generating means being periodically reset by a reset signal comprising the output of said receive deciphering means to thereby generate said plurality of sequence segments, said plurality of sequence segments being provided by said receive generating means to said receive signal processor as said receive control signal.
2. A communications system as defined in claim 1, .[.further comprising:
means for providing.]. .Iadd.wherein said further signal comprises .Iaddend.an identification number signal uniquely identifying said receiver.[.;
means for enciphering said key number signal with said identification signal;
means at said receiver for providing said identification number signal; and
means at said receiver for receiving said identification number signal and said enciphered key number signal and for deciphering said key number signal, said deciphered key number signal being provided to said receive deciphering means.]..
3. A communications system as defined in .[.either one of claims 1 or 2.]. .Iadd.claim 1.Iaddend., wherein each of said reset signals provided to said second generator means comprises a combination of said key number signal and a signal of said first signal sequence, and wherein each of said reset signals provided to said receive generator means comprises a combination of said key number signal and a signal of said deciphered first signal sequence.
4. A communications systems as defined in claim 3, wherein said key number signal is changed at predetermined time intervals.
5. A communications system as defined in claim 4, wherein said second generator means is a non-linear pseudorandom sequence generator.
6. A communications system as defined in claim 3, wherein a plurality of receivers receive the encrypted signal transmitted by said transmitter, each of said receivers having a corresponding unique identification number and said enciphered key number received at each receiver being enciphered with the user identification number unique to said each receiver.
7. The communications system as defined in claim 6, wherein said first signal sequence represents a substantially random number sequence.
8. In a method of providing security in a signal transmission system, said method including the steps of encrypting in accordance with an encryption control signal a progam signal representing information, transmitting said encrypted signal, receiving said encrypted signal, decrypting said received encrypted signal in accordance with a decryption control signal and providing said information represented by said decrypted signal, the improvement comprising:
generating a key number signal representing a key number;
generating a first signal sequence representing a first sequence of numbers;
generating a second signal sequence representing a second sequence of numbers, said second signal sequence being periodically reset by a reset signal comprising a signal of said first signal sequence to thereby generate a plurality of second sequence segments;
providing said second sequence segments to said transmit signal processor as said encryption control signal;
enciphering said first signal sequence with said key number and providing said enciphered first sequence to said transmitter for transmission with said encrypted signal;
.Iadd.enciphering said key number signal in accordance with a further signal;
deciphering said enciphered key number signal in accordance with said further signal at said receiver; .Iaddend.
decrypting said enciphered first sequence at said receiver in accordance with said key number signal;
generating said second sequence segments at said receiver by resetting a receive number signal generator with a reset signal comprising said deciphered first signal sequence; and
providing said second sequence segments to said receive signal processor as said decryption control signal.
9. A method as defined in claim 8, further .[.comprising:
enciphering said key number signal at said transmitter with.]. .Iadd.wherein said further signal comprises .Iaddend.a user identification number signal uniquely identifying said receiver.[.;
transmitting said enciphered key number signal to said receiver;
deciphering said enciphered key number signal at said receiver in accordance with said user identification number signal uniquely identifying said receiver; and
providing said deciphered key number signal to said deciphering means.]..
10. The method as defined in claim 9, further comprising the steps of:
combining said key number signal and a signal in said first sequence to obtain said reset signal in said transmitter; and
combining said key number signal and a signal in said deciphered first sequence in order to obtain said reset signal in said receiver.
11. The method as defined in any one of claims 8-10, further comprising the step of periodically changing said key number signal.
12. The method as defined in claim 11, wherein said second generator means in said transmitter and said generator means in said receiver each generate non-linear pseudo-random signal sequences.
13. The method as defined in claim 12, wherein said first signal sequence represents a substantially random number sequence.
14. A communications system including a transmitter and a receiver, said system comprising:
a program source at said transmitter for providing a program signal representing program information;
first generator means at said transmitter for generating a first sequence of signals representing a first sequence of numbers;
key number means at said transmitter for providing a key number signal representing a key number;
transmit signal processing means at said transmitter responsive to at least said first sequence of signals for encrypting said program signal;
enciphering means at said transmitter for enciphering said first sequence of signals with said key number signal to provide an enciphered first signal sequence;
transmit means at said transmitter for transmitting said encrypted program signal and said enciphered first signal sequence;
.Iadd.means at said transmitter for enciphering said key number signal in accordance with a further signal; .Iaddend.
means at said receiver for providing said key number signal.Iadd., said means at said receiver for providing said key number signal comprising means at said receiver for providing said further signal and means at said receiver for deciphering said enciphered key number signal in accordance with said further signal.Iaddend.;
receiver deciphering means at said receiver for receiving said enciphered first signal sequence and said key number, deciphering said first signal sequence in accordance with said key number and providing said deciphered first signal sequence as an output; and
receive generating means at said receiver responsive to at least said output of said receive deciphering means for receiving and decrypting said encrypted program signal to obtain said program signal.
15. A communications system as defined in claim 14, wherein said transmit signal processing means includes encryption means for encrypting said program signal in accordance with an encryption control signal, and second generator means at said transmitter for generating a second sequence of signals representing a second sequence of numbers, said second generator means being periodically reset by a reset signal comprising at least the output of said first generator means to thereby generate a plurality of sequence segments each beginning with a reset signal, the output of said second generator means comprising said encryption control signal.
16. A communications system as defined in claim 15, wherein said reset signal comprises a combination of said key number signal and the output of said first generator means.
17. A method of providing security in a signal transmission system between a transmitter and a receiver, said method comprising the steps of:
providing a program signal representing information;
generating a first sequence of signals representing a first sequence of numbers;
providing a key number signal representing a key number;
encrypting said program signal in accordance with at least said first sequence of signals;
enciphering said first sequence of signals with said key number signal to provide an enciphered first signal sequence;
transmitting said encrypted program signal and said enciphered first signal sequence to said receiver;
.Iadd.enciphering said key number signal in accordance with a further signal; .Iaddend.
providing said key number signal at said receiver .Iadd.by deciphering said enciphered key number signal in accordance with said further signal.Iaddend.;
deciphering said first signal sequence at said receiver in accordance with said key number to obtain a deciphered first signal sequence; and
decrypting said encrypted program signal at said receiver in accordance with at least deciphered first signal sequence to obtain said program signal.
18. A method as defined in claim 17, wherein said step of encrypting said program signal in accordance with at least said first sequence of signals comprises the steps generating a second sequence of signals representing a second sequence of numbers, said second sequence of signals comprising a plurality of sequence segments each beginning with a reset signal, said reset signal comprising at least said first signal sequence, .[.said.]. .Iadd.and .Iaddend.encrypting said program signal in accordance with said second sequence of signals.
19. A method as defined in claim 18, wherein said reset signal comprises a combination of said key number signal and said first sequence of signals. .Iadd.20. In a communications system including a transmitter and a receiver, said transmitter including a program source for providing a program signal representing program information, a transmit signal processor for encrypting said program signal in accordance with a transmit control signal and transmit means for transmitting said encrypted signal, said receiver including receive means for receiving said encrypted signal, a receiver signal processor for decrypting said encrypted signal in accordance with a receive control signal and means for receiving said decrypted signal and providing said program information, the improvement comprising:
first generator means at said transmitter for generating a first sequence of signals representing a first sequence of numbers;
key number means at said transmitter for providing a key number signal representing a key number;
second generator means at said transmitter for generating a second sequence of signals representing a second sequence of numbers, said second generator means being periodically reset by a reset signal comprising the output of said first generator means to thereby generate a plurality of sequence segments each beginning with a reset signal, the output of said second generator means comprising said transmit control signal;
means at said transmitter for enciphering said first sequence of signals with said key number signal and for providing said enciphered first signal sequence to said transmit means for transmission with said encrypted program signal;
means at said receiver for providing said key number signal;
receive deciphering means at said receiver for receiving said enciphered first signal sequence and said key number, deciphering said first signal sequence in accordance with said key number and providing said deciphered first signal sequence as an output; and
receive generating means for generating a sequence of signals representing said first sequence of numbers, said receive generating means being periodically reset by a reset signal comprising the output of said receive deciphering means to thereby generate said plurality of sequence segments, said plurality of sequence segments being provided by said receive generating means to said receive signal processor as said receive control signal;
said communications system further comprising:
means for providing an identification number signal uniquely identifying said receiver;
means for enciphering said key number signal with said identification number signal;
means at said receiver for providing said identification number signal; and
means at said receiver for receiving said identification number signal and said enciphered key number signal and for deciphering said key number signal, said deciphered key number signal being provided to said receive
deciphering means. .Iaddend. .Iadd.21. A communications system as defined in claim 20, wherein each of said reset signals provided to said second generator means comprises a combination of said key number signal and a signal of said first signal sequence, and wherein each of said reset signals provided to said receive generator means comprises a combination of said key number signal and a signal of said deciphered first signal sequence. .Iaddend. .Iadd.22. A communications system as defined in claim 21, wherein said key number signal is changed at predetermined time intervals. .Iaddend. .Iadd.23. A communications system as defined in claim 22, wherein said second generator means is a non-linear pseudorandom sequence generator. .Iaddend. .Iadd.24. A communications system as defined in claim 21, wherein a plurality of receivers receive the encrypted signal transmitted by said transmitter, each of said receivers having a corresponding unique identification number and said enciphered key number received at each receiver being enciphered with the user identification number unique to said each receiver. .Iaddend. .Iadd.25. A communications system as defined in claim 24, wherein said first signal sequence represents a substantially random number sequence. .Iaddend. .Iadd.26. In a method of providing security in a signal transmission system, said method including the steps of encrypting in accordance with an encryption control signal a program signal representing information, transmitting said encrypted signal, receiving said encrypted signal, decrypting said received encrypted signal in accordance with a decryption control signal and providing said information represented by said decrypted signal, the improvement comprising:
generating a key number signal representing a key number;
generating a first signal sequence representing a first sequence of numbers;
generating a second signal sequence representing a second sequence of numbers, said second signal sequence being periodically reset by a reset signal comprising a signal of said first signal sequence to thereby generate a plurality of second sequence segments;
providing said second sequence segments to said transmit signal processor as said encryption control signal;
enciphering said first signal sequence with said key number and providing said enciphered first sequence to said transmitter for transmission with said encrypted signal;
decrypting said said enciphered first sequence at said receiver in accordance with said key number signal;
generating said second sequence segments at said receiver by resetting a receive number signal generator with a reset signal comprising said deciphered first signal sequence;
providing said second sequence segments to said receive signal processor as said decryption control signal;
said method further comprising:
enciphering said key number signal at said transmitter with a user identification signal uniquely identifying said receiver;
transmitting said enciphered key number signal to said receiver;
deciphering said enciphered key number signal at said receiver in accordance with said user identification number signal uniquely identifying said receiver; and
providing said deciphered key number signal to said deciphering means.
.Iaddend. .Iadd.27. The method as defined in claim 26, further comprising the steps of:
combining said key number signal and a signal in said first sequence to obtain said reset signal in said transmitter; and
combining said key number signal and a signal in said deciphered first sequence in order to obtain said reset signal in said receiver. .Iaddend.
.Iadd.28. The method as defined in any one of claims 26 or 27, further comprising the step of periodically changing said key number signal. .Iaddend. .Iadd.29. The method as defined in claim 28, wherein said second generator means in said transmitter and said generator means in said receiver each generate non-linear pseudo-random signal sequences. .Iaddend. .Iadd.30. The method as defined in claim 29, wherein said first signal sequence represents a substantially random number sequence. .Iaddend. .Iadd.31. A communications system including a transmitter and a receiver, said system comprising:
a program source at said transmitter for providing a program signal representing program information;
first generator means at said transmitter for generating a first sequence of signals representing a first sequence of numbers;
key number means at said transmitter for providing a key number signal representing a key number;
transmit signal processing means at said transmitter responsive to at least said first sequence of signals for encrypting said program signal;
enciphering means at said transmitter for enciphering said first sequence of signals with said key number signal to provide an enciphered first signal sequence;
transmit means at said transmitter for transmitting said encrypted program signal and said enciphered first signal sequence;
means at said receiver for providing said key number signal;
receive deciphering means at said receiver for receiving said enciphered first signal sequence and said key number, deciphering said first signal sequence in accordance with said key number and providing said deciphered first signal sequence as an output; and
receive generating means at said receiver responsive to at least said output of said receive deciphering means for receiving and decrypting said encrypted program signal to obtain said program signal;
wherein said transmit signal processing means includes encryption means for encrypting said program signal in accordance with an encryption control signal, and second generator means at said transmitter for generating a second sequence of signals representing a second sequence of numbers, said second generator means being periodically reset by a reset signal comprising at least the output of said first generator means to thereby generate a plurality of sequence segments each beginning with a reset signal, the output of said second generator means comprising said encryption control signal; and
wherein said reset signal comprises a combination of said key number signal
and the output of said first generator means. .Iaddend. .Iadd.32. A method of providing security in a signal transmission system between a transmitter and a receiver, said method comprising the steps of:
providing a program signal representing information;
generating a first sequence of signals representing a first sequence of numbers;
providing a key number signal representing a key number;
encrypting said program signal in accordance with at least said first sequence of signals;
enciphering said first sequence of signals with said key number signal to provide an enciphered first signal sequence;
transmitting said encrypted program signal and said enciphered first signal sequence to said receiver;
providing said key number signal at said receiver;
deciphering said first signal sequence at said receiver in accordance with said key number to obtain a deciphered first signal sequence; and
decrypting said encrypted program signal at said receiver in accordance with at least said deciphered first signal sequence to obtain said program signal;
wherein said step of encrypting said program signal in accordance with at least said first sequence of signals comprises the steps of generating a second sequence of signals representing a second sequence of numbers, said second sequence of signals comprising a plurality of sequence segments each beginning with a reset signal, said reset signal comprising at least said first signal sequence, and encrypting said program signal in accordance with said second sequence of signals; and
wherein said reset signal comprises a combination of said key number signal
and said first sequence of signals. .Iaddend. .Iadd.33. A communications system as defined in claim 1, wherein said further signal is fixed during normal operation of said system. .Iaddend. .Iadd.34. A communications system as defined in claim 1, wherein said key number signal is periodically changed. .Iaddend. .Iadd.35. A communications system as defined in claim 34, wherein said key number signal changes at a rate slower than the signals of said first sequence of signals. .Iaddend. .Iadd.36. A method as defined in claim 8, wherein said further signal is fixed during normal operation of said system. .Iaddend. .Iadd.37. A method as defined in claim 8, wherein said step of generating said key number signal comprises periodically changing said key number signal. .Iaddend.
.Iadd.38. A method as defined in claim 37, wherein said key number signal is changed at a rate slower than the signals of said first sequence of signals. .Iaddend. .Iadd.39. A communications system as defined in claim 14, wherein said further signal is fixed during normal operation of said system. .Iaddend. .Iadd.40. A communications system as defined in claim 14, wherein said key number signal is periodically changed. .Iaddend. .Iadd.41. A communications system as defined in claim 40, wherein said key number signal changes at a rate slower than the signals of said first sequence of signals. .Iaddend. .Iadd.42. A method as defined in claim 17, wherein said further signal is fixed during normal operation of said system. .Iaddend. .Iadd.43. A method as defined in claim 17, wherein said step of generating said key number signal comprises periodically changing said key number signal. .Iaddend. .Iadd.44. A method as defined in claim 43, wherein said key number signal is changed at a rate slower than the signals of said first sequence of signals. .Iaddend. .Iadd.45. A communications system including a transmitter and a receiver, said system comprising:
a program source at said transmitter for providing a program signal representing program information:
first generator means at said transmitter for generating a first sequence of signals representing a first sequence of numbers common to all receivers receiving said program information;
key number means at said transmitter for providing a key number signal representing a key number common to all receivers receiving said program information;
transmit signal processing means at said transmitter responsive to at least said first sequence of signals for encrypting said program signal;
enciphering means at said transmitter for enciphering said first sequence of signals with said key number signal to provide an enciphered first signal sequence;
transmit means at said transmitter for transmitting said encrypted program signal and said enciphered first signal sequence;
means at said receiver for providing said key number signal;
receive deciphering means at said receiver for receiving said enciphered first signal sequence and said key number, deciphering said first signal sequence in accordance with said key number and providing said deciphered first signal sequence as an output; and
receive generating means at said receiver responsive to at least said output of said receive deciphering means for receiving and decrypting said encrypted program signal to obtain said program signal. .Iaddend.
.Iadd. A method of providing security in a signal transmission system between a transmitter and a receiver, said method comprising the steps of:
providing a program signal representing information;
generating a first sequence of signals representing a first sequence of numbers common to all receivers receiving said information;
providing a key number signal representing a key number common to all receivers receiving said information;
encrypting said program signal in accordance with at least said first sequence of signals;
enciphering said first sequence of signals with said key number signal to provide an enciphered first signal sequence;
transmitting said encrypted program signal and said enciphered first signal sequence to said receiver;
providing said key number signal at said receiver;
deciphering said first signal sequence at said receiver in accordance with said key number to obtain a deciphered first signal sequence; and
decrypting said encrypted program signal at said receiver in accordance with said first signal sequence to obtain said program signal. .Iaddend. .Iadd.47. A communications system including a transmitter and a receiver, said system comprising:
a program source at said transmitter for providing a program signal representing program information;
first generator means at said transmitter for generating a first sequence of signals representing a first sequence of numbers changing at least several times per minute;
key number means at said transmitter for providing a key number signal representing a key number;
transmit signal processing means at said transmitter responsive to at least said first sequence of signals for encrypting said program signal;
enciphering means at said transmitter for enciphering said first sequence of signals with said key number signal to provide an enciphered first signal sequence;
transmit means at said transmitter for transmitting said encryted program signal and said enciphered first signal sequence;
means at said receiver for providing said key number signal;
receive deciphering means at said receiver for receiving said enciphered first signal sequence and said key number, deciphering said first signal sequence in accordance with said key number and providing said deciphered first signal sequence as an output; and
receive generating means at said receiver responsive to at least said output of said receive deciphering means for receiving and decrypting said encrypted program signal to obtain said program signal. .Iaddend.
.Iadd. A communications system according to claim 47, wherein the numbers in said first sequence of numbers change approximately once per second. .Iaddend. .Iadd.49. A method of providing security in a signal transmission system between a transmitter and a receiver, said method comprising the steps of:
providing a program signal representing information;
generating a first sequence of signals representing a first sequence of numbers changing at least several times per minute;
providing a key number signal representing a key number;
encrypting said program signal in accordance with at least said first sequence of signals;
enciphering said first sequence of signals with said key number signal to provide an enciphered first signal sequence;
transmitting said encrypted program signal and said enciphered first signal sequence to said receiver;
providing said key number signal at said receiver;
deciphering said first signal sequence at said receiver in accordance with said key number to obtain a deciphered first signal sequence; and
decrypting said encrypted program signal at said receiver in accordance with said first signal sequence to obtain said program signal. .Iaddend.
.Iadd.50. A method according to claim 49, wherein the numbers in said first sequence of numbers change approximately once per second. .Iaddend.
Description

.Iadd.This is a continuation of application No. 07/192,014 filed May 9, 1988, now abandoned seeking Reissue of U.S. Pat. No. 4,484,027. .Iaddend.

BACKGROUND OF THE INVENTION

The present invention is related to the confidentiality of television signal transmissions, and more particularly to the protection of TV signal transmissions from unauthorized reception. The environment in which the present invention may be widely applicable, and in the context of which the invention will be described herein, is that of subscriber television and TV program distribution.

Subscriber television systems are becoming increasingly widespread wherein TV signals are sent out via a cable network or over the air and are intended for reception and viewing by only those subscribers who have paid a monthly fee. With the increase in subscriber television systems has also come an increase in the number of people attempting to receive and display the premium television programs without payment. Thus, there is a need for more sophisticated security techniques for preventing such unauthorized reception.

Many existing subscriber television systems utilize, directly or indirectly, signals transmitted via satellite, and it is becoming quite common for non-paying individuals to receive and display the premium television programs via television receive only (TVRO) antennas, thus resulting in a substantial loss of revenue for the distributors of the subscription television programs. In addition, various direct satellite broadcast television systems are currently being proposed wherein subscription television programs will be broadcast directly via satellite to individual subscriber homes. These subscription satellite television (SSTV) systems will be quite vulnerable to unauthorized reception, and an effective security technique is therefore highly desirable.

The purpose of a security subsystem for an SSTV system is to protect the distributor's business interest and, accordingly, the following objectives should be achieved:

(1) To prevent a non-subscriber from receiving intelligible video and audio signals by using a regular home television set;

(2) To prevent a delinquent subscriber from receiving intelligible video and audio signals by using the SSTV decoder;

(3) To prevent a legitimate subscriber from receiving intelligible video and audio signals of unsubscribed SSTV channels or programs;

(4) To discourage an average technician from building his own receiver capable of obtaining acceptable quality video and audio signals;

(5) To discourage a small unauthorized business concern from manufacturing and marketing devices which are capable of receiving and displaying acceptable quality video and audio signals from the SSTV channels; and

(6) To allow a legitimate subscriber to receive and display high quality video and audio signals from the subscribed channels or programs.

It would also be highly desirable to achieve the above objectives at a reasonable cost.

A number of security systems for CATV exist, most of which involve the suppression or removal of the horizontal sync pulses from the video signal before transmission, and the recovery of the sync pulses at the receive end. These techniques will prevent people without the sync recovery circuits from receiving and displaying the programs and may therefore achieve objectives (1) and (6) above, but .[.those.]. .Iadd.these .Iaddend.security systems do not achieve objectives (2) and (3) and, since sync recovery circuits are relatively easily designed and manufactured, also do not satisfy objectives (4) and (5).

More sophisticated techniques may include additional intelligence in the subscriber's decoder box, including the capability of receiving commands from a control center which are specifically addressed to an individual subscriber and are used to turn on or off some or all of the channels. These more sophisticated security techniques may succeed in achieving objectives (1)-(3) and (6), but still do not satisfy objectives (4) and (5). For example, most of these techniques involve the checking of a password, and a particular channel is turned on only if the password is matched. This could be relatively easily by-passed by modifying the subscriber's decoder box or building a separate box with all of the necessary features except the on/off switch. Further, subscribers may also be able to tamper with the decoder box to receive more programs than are actually paid for.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a security subsystem for a subscription television system wherein all of the above-mentioned objectives (1)-(6) are achieved.

It is a further object of this invention to provide such a security subsystem of minimal cost and complexity.

These and other objects are achieved according to the present invention by using a cryptographic technique for scrambling and descrambling of the video signals. The scrambling and descrambling techniques utilize a "key" which is changed on a regular basis and is sent only to paid subscribers, and even this "key" is sent in a different encrypted form to each subscriber so that delinquent subscribers cannot learn the current key from others.

A record is kept of unique user ID codes corresponding to each subscriber, and in a transmitter according to the preferred embodiment of this invention, the key is ciphered with each subscriber's unique ID code prior to sending the key to that subscriber. A random number generator in the transmitter generates a new random number at regular intervals, for example, every second, and this number is combined with the key, and the combined number is then used as a seed to reset a PN sequence generator every second. This PN sequence generator will thus generate a PN sequence with a random seed in one-second segments, and the segmented PN sequence is supplied to a signal processor where it is used to scramble the audio and video program signals. The random number generator is also ciphered with the key and the enciphered random number is continually transmitted with the scrambled video signal.

At the receiver, the enciphered key, which has been sent either via satellite or mail, is deciphered in the receiver utilizing the particular subscriber's unique ID code, which ID code is internal to the receiver and is unknown to the subscriber. The deciphered key is then in turn used to decipher the enciphered random number received with the scrambled program signal. The deciphered key and random number are then combined as in the transmitter, and the combined signal is used to continually reset a PN sequence generator identical to that in the transmitter so that a segmented PN sequence will be generated in the reciver which is identical to that generated in the transmitter, and this segmented PN sequence can then be used to descramble the received signal. The descrambled signal will then be supplied to the subscriber television set.

BRIEF DESCRIPTION OF THE DRAWING

The invention will be more clearly understood with reference to the following description in conjunction with the accompanying drawing wherein the single FIGURE is a block diagram of the essential components of the SSTV security system according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The drawing illustrates a functional block diagram of the SSTV security system according to this invention. The SSTV transmitter will typically include or have access to a billing system computer 10 which will store subscriber information including a list of paid subscribers and their corresponding unique user ID codes. This information may typically be stored in a user data base 12 within the computer. Also within the computer will be a register 14 or the like containing a key which will be changed on a regular basis, e.g. monthly. In preparation for sending this "key of the month" to each current subscriber, the key is enciphered in an encipherer 16 with the user ID code unique to that particular current subscriber, and the enciphered key is then sent to the subscriber.

The transmitter includes a pseudo-random number (PN) sequence generator 18 and a random number generator 20. The random number generator 20 periodically generates a new random number, e.g. once every second, and the outputs of the random number generator 20 and key register 14 are combined and loaded into the PN sequence generator 18 to periodically reset or "seed" the PN sequence generator 18 in a manner well known in the art. Each seeding of the sequence generator 18 will begin a new segment of the PN sequence. The program signal from source 22 is supplied to a signal processor 24 where it is encrypted with the segmented PN sequence from generator 18. The encryption technique used may be any one of a variety of well known techniques and need not be discussed in detail herein. The encrypted, or scrambled, signal is then provided to a transmitter 26 for transmission over link 100 to the various subscriber receivers.

The random number from generator 20 is enciphered with the key of the month in an encipherer 28, and the enciphered random number is transmitted with the scrambled video signal over the link 100.

At the receiver, a register 30 or the like internal to the subscriber TV receiver contains a subscriber-specific secret user ID code which is set prior to installation and is stored in the user data base 12 of the billing computer at the transmitter. Thus, when the subscriber receiver receives the enciphered key or when the user receives the enciphered key by mail and enters the enciphered key into the receiver, a decipherer 32 in the receiver deciphers the enciphered key with the secret user ID code specific to that particular subscriber, and the deciphered key is provided to a decipherer 34. A receiver 36 separates the scrambled signal from the enciphered random number received over link 100 and provides the enciphered random number to the decipherer 34 where it is deciphered with the key received from the decipherer 32. The deciphered random number and key are then combined and loaded into the PN sequence generator 38 to reset or "seed" the sequence generator in the same manner as in the transmitter, to thereby result in the same segmented PN sequence as was used for scrambling in the SSTV transmitter signal processor 24. This segmented PN sequence is then provided to signal processor 40 where it is used to descramble the received program signal. The descrambled signal is then provided to the subscriber television set 42.

The above-described security system provides a novel technique for generating and synchronizing a segmented pseudo-random number (PN) sequence, and a secure key distribution method. The segmented PN sequence generated is used to control the video and audio signal processors that scramble and descramble the program signals. Since a different segmented PN sequence will be generated by each distinct key, the scrambling sequence is different for each key, and by periodically changing the key the scrambling and descrambling sequences will change. Thus, it is not possible for anyone without exact knowledge of the current key to descramble the received program signal with or without a descrambling device.

For each given duration of time, a particular channel is scrambled by a PN sequence that is generated by a randomly selected number and the key of the month. To prevent subscribers of different channels from exchanging the keys among themselves, it is essential that the key for a given channel distributed to each subscriber look different, and this accomplished by enciphering the key with each subscriber's unique user ID code. In this way, although a single key is provided by the register 14 at any one time, a different key is required by each subscriber. It is only when the subscriber-specific key is entered into the receiver that the true key of the month contained in register 14 can be provided to the decipherer 34 and sequence generator 38, and the deciphering of this true key of the month in the decipherer 32 is performed internally of the subscriber receiver and without the subscriber's knowledge.

An important feature of any security system is that a legitimate subscriber must be capable of obtaining synchronization within a short period of time. In the system according to the present invention, the PN sequence used for scrambling and descrambling the signal in signal processors 24 and 40, respectively, is separated into short segments each of which is seeded by the combination of the key of the month and a random number which changes, for example, once every second. Thus, assuming that a legitimate subscriber does have his appropriate key, the time required to acquire synchronization will be substantially equal to the duration of each random number so that synchronization can be acquired rapidly in case of loss of sync due to power outages, rainstorms, changing of channels, etc.

The individual components in the security system according to the present invention are known in the art and need not be described in detail herein since the internal details of these components do not constitute a part of the present invention. The encipherers used to encipher the key of the month and the random number can be two different encipherers, but for the sake of hardware simplicity at the receive side, and consequent cost savings in mass production of the subscriber receivers, it is preferable that the same encipherers be used. The encipherer may employ any enciphering method as long as it has a sufficiently high level of security.

The PN sequence generator can be any general PN sequence generator as long as it also has sufficient security strength, e.g. a properly selected non-linear feedback shift register may suffice.

The random number generator in the transmitter may be a well known thermal noise generator which generates "true" random numbers, or it may be a pseudo-random number generator similar to the sequence generator 18, implemented in a well known manner with digital electronics or computer software. Similarly, the technique for combining the key of the month and the random number generator to produce the "seed" for the PN sequence generators 18 and 38 is not critical, with the simplest technique being a bit-by-bit modulo-2 addition of the two numbers.

In general, each of the functional blocks in the drawing can be implemented with existing techniques, with system complexity and cost and security strength depending on the particular implementation of each of the functional blocks.

The transformation of the simple cipherer is specified by a variable which is different for each channel or special program, and is changed every month.

The user ID code 30 within each subscriber set may be a set of binary switches or a bit pattern programmed into a read-only memory in a sealed box to prevent the subscriber from seeing or changing the number.

The use of a simple cipherer in addition to the non-linear feedback shift-register may seem to increase the system complexity unnecessarily. However, since only a small amount of data, namely the "seed", need be handled each time, and since the statistical properties of the cipherer do not impact to the output of the PN sequence generator, the cipherer can be very simple. One possible approach, for example, is a ROM table of random bits with or without cipher feedback. The use of this simple cipherer greatly simplifies the problem of cryptosynchronization and key distribution, and therefore reduces the overall system complexity.

Suitable alternatives for the scrambling of the program signals include conventional scrambling techniques such as on-off switching, randomly inverting lines, fields or frames, and delaying horizontal lines or fields by certain randomly fixed steps. In any case, the technique used will require the generation of a PN sequence which must be synchronized at both the transmit and receive sides.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3238297 *Dec 5, 1957Mar 1, 1966Zenith Radio CorpSubscription television system
US3649915 *Jun 22, 1970Mar 14, 1972Bell Telephone Labor IncDigital data scrambler-descrambler apparatus for improved error performance
US3659046 *May 13, 1969Apr 25, 1972Sits Soc It Telecom SiemensMessage scrambler for pcm communication system
US3717206 *Nov 2, 1970Feb 20, 1973Skiatron Elect & TeleScrambled television
US3733431 *Mar 10, 1971May 15, 1973 Electronic communication apparatus employing encripted signal distribution
US3769448 *Sep 28, 1971Oct 30, 1973Optical Systems CorpAudio encoding/decoding system for catv
US3801732 *Nov 22, 1971Apr 2, 1974Reeves JMethod and apparatus for scrambled television
US3824332 *Feb 18, 1972Jul 16, 1974Horowitz IPay television system
US3826863 *Feb 9, 1973Jul 30, 1974Oak Industries IncSubscription television system using audio and video carrier reversal
US3852519 *Oct 20, 1972Dec 3, 1974Optical Systems CorpVideo and audio encoding/decoding system employing suppressed carrier modulation
US3857997 *Mar 8, 1973Dec 31, 1974Oak Industries IncCable converter with phase lock loop techniques
US3911204 *Jun 25, 1973Oct 7, 1975Murray K GordonTelephone addressed closed circuit television converter system
US3911216 *Dec 17, 1973Oct 7, 1975Honeywell Inf SystemsNonlinear code generator and decoder for transmitting data securely
US3914534 *Oct 29, 1973Oct 21, 1975Magnavox CoMethods and apparatus for scrambling and unscrambling premium television channels
US3916091 *Jan 31, 1973Oct 28, 1975Columbia Pictures Ind IncElectronic communications system for supplementary video program distribution
US3919462 *Aug 15, 1973Nov 11, 1975System Dev CorpMethod and apparatus for scrambling and unscrambling communication signals
US3934079 *Oct 26, 1973Jan 20, 1976Jerrold Electronics CorporationBilateral communications system for distributing commerical and premium video signaling on an accountable basis
US3936593 *Aug 5, 1974Feb 3, 1976Gte Laboratories IncorporatedScrambler and decoder for a television signal
US3956615 *Jun 25, 1974May 11, 1976Ibm CorporationTransaction execution system with secure data storage and communications
US3982062 *Jul 26, 1973Sep 21, 1976Jerrold Electronics CorporationVideo encription system
US3996418 *Sep 2, 1975Dec 7, 1976Gte Laboratories IncorporatedScrambler and decoder for secure television system
US3997718 *Nov 11, 1974Dec 14, 1976The Magnavox CompanyPremium interactive communication system
US3999005 *Dec 26, 1974Dec 21, 1976Ecom CorporationSecure transmission of AM or FM signals
US4024574 *Feb 26, 1975May 17, 1977Teleglobe Pay Tv System Inc.Validation method and apparatus for pay television systems
US4025948 *Feb 25, 1975May 24, 1977Teleglobe Pay-Tv System, Inc.Coding system for pay television apparatus
US4034402 *Jul 1, 1974Jul 5, 1977Hughes Aircraft CompanyVideo scrambling system
US4058830 *Jun 3, 1976Nov 15, 1977Yves Maurice GuinetOne way data transmission system
US4068264 *Jul 19, 1976Jan 10, 1978Teleglobe Pay-Tv System, Inc.Pay television system utilizing binary coding
US4070693 *Mar 10, 1977Jan 24, 1978Westinghouse Electric CorporationSecure television transmission system
US4075660 *Jul 23, 1975Feb 21, 1978Teleglobe Pay-Tv System, Inc.Pay television system with synchronization suppression
US4081831 *Apr 8, 1976Mar 28, 1978Twin County Trans-Video, Inc.High security subscription television system employing real time control of subscriber's program reception
US4081832 *Jun 8, 1976Mar 28, 1978Pay Television CorporationPay television system, method and apparatus
US4091413 *Jan 17, 1977May 23, 1978Herman Richard ESecurity system for pay-TV channel
US4091417 *Feb 23, 1977May 23, 1978Teleglobe Pay-Tv System, Inc.Decoder mode validation apparatus for pay television systems
US4104486 *Jun 29, 1976Aug 1, 1978Martin John RSystem for accumulating data over nondedicated telephone lines
US4109281 *Apr 14, 1977Aug 22, 1978Pioneer Electronic CorporationTerminal device for catv
US4112464 *May 11, 1977Sep 5, 1978Oak Industries Inc.Subscription TV decoder logic system
US4115807 *Nov 1, 1976Sep 19, 1978Pires H GeorgeTelephone billing apparatus for a subscription television system
US4118669 *Oct 15, 1976Oct 3, 1978Premier Cablevision, LimitedRemote disconnect-reconnect tap for cable television systems
US4126762 *May 4, 1976Nov 21, 1978Martin John RMethod and system for accumulating data over nondedicated telephone lines
US4130833 *Apr 11, 1977Dec 19, 1978Teleglobe Pay-Tv System, Inc.Pay television system
US4148063 *Apr 28, 1977Apr 3, 1979Teleglobe Pay-Tv System, Inc.Method and apparatus for encoding audio signals in television systems
US4161751 *May 19, 1977Jul 17, 1979Ost Clarence SHigh-security cable television access system
US4163254 *Feb 14, 1977Jul 31, 1979Block Robert SMethod and system for subscription television billing and access
US4200770 *Sep 6, 1977Apr 29, 1980Stanford UniversityCryptographic apparatus and method
US4225884 *Jun 30, 1978Sep 30, 1980Telease, Inc.Method and system for subscription television billing and access
US4292650 *Oct 29, 1979Sep 29, 1981Zenith Radio CorporationStv Subscriber address system
US4310720 *Mar 31, 1978Jan 12, 1982Pitney Bowes Inc.Computer accessing system
US4317957 *Mar 10, 1980Mar 2, 1982Marvin SendrowSystem for authenticating users and devices in on-line transaction networks
US4323921 *Jan 23, 1980Apr 6, 1982Etablissement Public De Diffusion Dit "Telediffusion De France"System for transmitting information provided with means for controlling access to the information transmitted
US4337483 *Jan 31, 1980Jun 29, 1982Etablissement Public De Diffusion Dit "Telediffusion De France"Text video-transmission system provided with means for controlling access to the information
US4354201 *Jun 11, 1980Oct 12, 1982Etablissement Public De Diffusion Dit: Telediffusion De FranceTelevision system with access control
US4365110 *Jun 5, 1979Dec 21, 1982Communications Satellite CorporationMultiple-destinational cryptosystem for broadcast networks
US4388643 *Apr 6, 1981Jun 14, 1983Northern Telecom LimitedMethod of controlling scrambling and unscrambling in a pay TV system
US4398216 *Sep 19, 1980Aug 9, 1983Telease, Inc.Multiple signal transmission method and system, particularly for television
US4405942 *Mar 3, 1982Sep 20, 1983Telease, Inc.Method and system for secure transmission and reception of video information, particularly for television
US4410911 *Jul 14, 1982Oct 18, 1983Telease, Inc.Multiple signal transmission method and system, particularly for television
US4484027 *Nov 19, 1981Nov 20, 1984Communications Satellite CorporationSecurity system for SSTV encryption
US4528589 *Feb 1, 1984Jul 9, 1985Telease, Inc.Method and system for subscription television billing and access
US4531020 *Jul 23, 1982Jul 23, 1985Oak Industries Inc.Multi-layer encryption system for the broadcast of encrypted information
US4531021 *Aug 13, 1984Jul 23, 1985Oak Industries Inc.Two level encripting of RF signals
US4600942 *Nov 27, 1984Jul 15, 1986Telease, Inc.Secure coding and decoding system and method for television program signals
GB2050021A * Title not available
Non-Patent Citations
Reference
1F. Heinrich, "The Network Security Center: A System Level Approach to Computer Security", National Bureau of Standards Special Publication 500-21, vol. 1, Jan. 1978.
2 *F. Heinrich, The Network Security Center: A System Level Approach to Computer Security , National Bureau of Standards Special Publication 500 21, vol. 1, Jan. 1978.
3I. Ingemarson et al, "Encryption and Authentication in On-Board Processing Satellite Communication Systems," IEEE Transactions on Communications, vol. COM-29, No. 11, Nov. 1981, pp. 1684-1687.
4 *I. Ingemarson et al, Encryption and Authentication in On Board Processing Satellite Communication Systems, IEEE Transactions on Communications, vol. COM 29, No. 11, Nov. 1981, pp. 1684 1687.
5J. Everton, "Adaptation of the Basic Hierarchy for Encryption Key Management to Serve Applications With Conflicting Requirements," IEEE, 1979, pp. 186-191.
6 *J. Everton, Adaptation of the Basic Hierarchy for Encryption Key Management to Serve Applications With Conflicting Requirements, IEEE, 1979, pp. 186 191.
7M. Sendrow, "A Method of Authentication in EFT Networks Using DES Without Downline Loading of Working Keys," 1980, IEEE, pp. 168-175.
8 *M. Sendrow, A Method of Authentication in EFT Networks Using DES Without Downline Loading of Working Keys, 1980, IEEE, pp. 168 175.
9S. Kent, "Encryption-Based Protection Protocols for Interactive User-Computer Communication," NTIS Technical Report 162, May 1976.
10S. Kent, "Security Requirements and Protocols for a Broadcast Scenario," IEEE Transactions on Communications, vol. COM-29, No. 6, Jun. '81, pp. 778-786.
11 *S. Kent, Encryption Based Protection Protocols for Interactive User Computer Communication, NTIS Technical Report 162, May 1976.
12 *S. Kent, Security Requirements and Protocols for a Broadcast Scenario, IEEE Transactions on Communications, vol. COM 29, No. 6, Jun. 81, pp. 778 786.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5029207 *Feb 1, 1990Jul 2, 1991Scientific-Atlanta, Inc.External security module for a television signal decoder
US5029208 *Mar 5, 1990Jul 2, 1991Nec CorporationCipher-key distribution system
US5185796 *May 30, 1991Feb 9, 1993Motorola, Inc.Encryption synchronization combined with encryption key identification
US5195136 *Sep 30, 1991Mar 16, 1993Motorola, Inc.Method and apparatus for data encryption or decryption
US5237610 *Mar 29, 1991Aug 17, 1993Scientific-Atlanta, Inc.Independent external security module for a digitally upgradeable television signal decoder
US5237611 *Jul 23, 1992Aug 17, 1993Crest Industries, Inc.Encryption/decryption apparatus with non-accessible table of keys
US5355409 *Mar 15, 1993Oct 11, 1994Matsushita Electric Industrial Co., Ltd.Scramble codec and a television receiver incorporating the same
US5455862 *Dec 2, 1993Oct 3, 1995Crest Industries, Inc.Apparatus and method for encrypting communications without exchanging an encryption key
US5555308 *Nov 10, 1994Sep 10, 1996Angelika R. LevienEncryption of signals to insure viewership of commercials
US5627892 *Apr 19, 1995May 6, 1997General Instrument Corporation Of DelawareShared communication network
US5727065 *Jun 2, 1997Mar 10, 1998Hughes ElectronicsDocument delivery system
US5764771 *Jun 13, 1996Jun 9, 1998Thomson Multimedia S.A.Method for processing a digital signal in a so-called secure communication system and use of this method for access control and/or binary signature
US6215873Apr 3, 2000Apr 10, 2001Hughes Electronics CorporationAdapter for connecting computer to satellite antenna
US6292568Jan 19, 2000Sep 18, 2001Scientific-Atlanta, Inc.Representing entitlements to service in a conditional access system
US6307937May 1, 2000Oct 23, 2001Hughes Electronics CorporationMethod and apparatus for an adapter card providing conditional access in a communication system
US6331979Sep 25, 2000Dec 18, 2001Hughes Electronics CorporationMethod and apparatus for connecting computer to satellite antenna
US6337911Mar 9, 1998Jan 8, 2002Hughes Electronics CorporationDeferred billing, broadcast, electronic document distribution system and method
US6381227Jan 21, 1997Apr 30, 2002Gilat Florida Inc.Frame relay protocol-based multiplex switching scheme for satellite mesh network
US6424714Aug 18, 1998Jul 23, 2002Scientific-Atlanta, Inc.Method and apparatus for providing conditional access in connection-oriented interactive networks with a multiplicity of service providers
US6424717Dec 16, 1999Jul 23, 2002Scientific-Atlanta, Inc.Encryption devices for use in a conditional access system
US6510519Jun 14, 2001Jan 21, 2003Scientific-Atlanta, Inc.Conditional access system
US6516412Mar 16, 2001Feb 4, 2003Scientific-Atlanta, Inc.Authorization of services in a conditional access system
US6526508Dec 26, 2000Feb 25, 2003Scientific-Atlanta, Inc.Source authentication of download information in a conditional access system
US6560340Jan 28, 2000May 6, 2003Scientific-Atlanta, Inc.Method and apparatus for geographically limiting service in a conditional access system
US6587561Feb 4, 1999Jul 1, 2003Nds Ltd.Key delivery in a secure broadcasting system
US6625130Feb 8, 2002Sep 23, 2003Gilat Satellite Networks, Ltd.Frame relay protocol-based multiplex switching scheme for satellite mesh network
US6728878Aug 6, 2001Apr 27, 2004Hughes Electronics CorporationDeferred billing, broadcast, electronic document distribution system and method
US6744892Mar 3, 2003Jun 1, 2004Scientific-Atlanta, Inc.Method and apparatus for geographically limiting service in a conditional access system
US6771617May 14, 2003Aug 3, 2004Gilat Satellite Networks, Ltd.Frame relay protocol-based multiplex switching scheme for satellite mesh network
US6937729Aug 16, 2001Aug 30, 2005Scientific-Atlanta, Inc.Representing entitlements to service in a conditional access system
US6971008Nov 5, 2002Nov 29, 2005Scientific-Atlanta, Inc.Authorization of services in a conditional access system
US7113926 *Mar 24, 2000Sep 26, 2006Canon Kabushiki KaishaSecure media on demand system whereby charge is determined in part from the periodicity of an encryption key
US7158058Jul 20, 2004Jan 2, 2007Marvell International Ltd.Method and apparatus for generating a seed set in a data dependent seed selector
US7191341Jan 23, 2003Mar 13, 2007Broadcom CorporationMethods and apparatus for ordering data in a cryptography accelerator
US7224798Jul 30, 2003May 29, 2007Scientific-Atlanta, Inc.Methods and apparatus for providing a partial dual-encrypted stream in a conditional access overlay system
US7302415Jan 3, 2000Nov 27, 2007Intarsia LlcData copyright management system
US7321572Jun 30, 2004Jan 22, 2008Gilat Satellite Networks, Ltd.Frame relay protocol-based multiplex switching scheme for satellite mesh network
US7346160Apr 22, 2004Mar 18, 2008Michaelsen David LRandomization-based encryption apparatus and method
US7383447Jul 25, 2005Jun 3, 2008Intarsia Software LlcMethod for controlling database copyrights
US7397918May 16, 2001Jul 8, 2008Nds LimitedDynamically shifting control word
US7434043Jan 23, 2003Oct 7, 2008Broadcom CorporationCryptography accelerator data routing unit
US7447914Jul 16, 1997Nov 4, 2008Intarsia Software LlcMethod for controlling database copyrights
US7496198Dec 6, 2005Feb 24, 2009Cisco Technology, Inc.Partial dual encrypted stream utilizing program map tables
US7515712Mar 25, 2005Apr 7, 2009Cisco Technology, Inc.Mechanism and apparatus for encapsulation of entitlement authorization in conditional access system
US7568110Jan 23, 2003Jul 28, 2009Broadcom CorporationCryptography accelerator interface decoupling from cryptography processing cores
US7583626Jun 20, 2006Sep 1, 2009Gilat Satellite Networks, Ltd.Multiplex switching scheme for communications network
US7600131Jul 6, 2000Oct 6, 2009Broadcom CorporationDistributed processing in a cryptography acceleration chip
US7693508Aug 20, 2001Apr 6, 2010Qualcomm IncorporatedMethod and apparatus for broadcast signaling in a wireless communication system
US7730323Nov 6, 2006Jun 1, 2010Makoto SaitoControlling database copyrights
US7730324Nov 2, 2001Jun 1, 2010Makoto SaitoMethod for controlling database copyrights
US7801817Jul 20, 2006Sep 21, 2010Makoto SaitoDigital content management system and apparatus
US7805399Apr 24, 2007Sep 28, 2010Pinder Howard GMethods and apparatus for providing a partial dual-encrypted stream in a conditional access overlay system
US7808404Jan 2, 2007Oct 5, 2010Marvell International Ltd.Method and apparatus for generating a seed set in a data dependent seed selector
US7827109Dec 13, 2001Nov 2, 2010Makoto SaitoDigital content management system and apparatus
US7916865Jun 2, 2008Mar 29, 2011Nds LimitedDynamically shifting control word
US7979354Aug 31, 2006Jul 12, 2011Intarsia Software LlcControlling database copyrights
US7986785Aug 29, 2006Jul 26, 2011Intarsia Software LlcData management
US7995760 *Jun 5, 2002Aug 9, 2011Nokia CorporationMethod for ensuring data transmission security, communication system and communication device
US7996670Jul 6, 2000Aug 9, 2011Broadcom CorporationClassification engine in a cryptography acceleration chip
US8024810Jul 3, 2006Sep 20, 2011Intarsia Software LlcMethod and apparatus for protecting digital data by double re-encryption
US8068472Sep 1, 2009Nov 29, 2011Gilat Satellite Networks, LtdMultiplex switching scheme for communications network
US8077679Oct 24, 2001Dec 13, 2011Qualcomm IncorporatedMethod and apparatus for providing protocol options in a wireless communication system
US8095785Feb 3, 2009Jan 10, 2012Defreese Darryl LAuthentication of entitlement authorization in conditional access systems
US8098818Jul 7, 2003Jan 17, 2012Qualcomm IncorporatedSecure registration for a multicast-broadcast-multimedia system (MBMS)
US8121292 *Feb 26, 2002Feb 21, 2012Qualcomm IncorporatedMethod and apparatus for scrambling information bits on a channel in a communications system
US8295484Dec 9, 2005Oct 23, 2012Broadcom CorporationSystem and method for securing data from a remote input device
US8352373Jan 28, 2003Jan 8, 2013Intarsia Software LlcData copyright management system
US8396216Jan 13, 2009Mar 12, 2013Howard G. PinderPartial dual-encryption using program map tables
US8407782Mar 26, 2002Mar 26, 2013Intarsia Software LlcData copyright management
US8448254Nov 1, 2010May 21, 2013Intarsia Software LlcDigital content management system and apparatus
US8542830Jun 25, 2003Sep 24, 2013Anthony J. WasilewskiMethod for partially encrypting program data
US8548166Jun 25, 2003Oct 1, 2013Anthony J. WasilewskiMethod for partially encrypting program data
US8554684Jul 11, 2011Oct 8, 2013Intarsia Software LlcControlling database copyrights
US8577033Jun 25, 2003Nov 5, 2013Anthony J. WasilewskiMethod for partially encrypting program data
US8595502May 25, 2006Nov 26, 2013Intarsia Software LlcData management system
US8713400Jan 6, 2010Apr 29, 2014Qualcomm IncorporatedMethod and system for reduction of decoding complexity in a communication system
US8718279Jun 16, 2004May 6, 2014Qualcomm IncorporatedApparatus and method for a secure broadcast system
US8724803Sep 1, 2004May 13, 2014Qualcomm IncorporatedMethod and apparatus for providing authenticated challenges for broadcast-multicast communications in a communication system
US8730999Jun 18, 2010May 20, 2014Qualcomm IncorporatedMethod and system for reduction of decoding complexity in a communication system
US20120063597 *Sep 15, 2010Mar 15, 2012Uponus Technologies, Llc.Apparatus and associated methodology for managing content control keys
USRE36181 *Nov 8, 1996Apr 6, 1999United Technologies Automotive, Inc.Pseudorandom number generation and crytographic authentication
USRE39166 *May 4, 1993Jul 11, 2006Scientific-Atlanta, Inc.External security module for a television signal decoder
USRE41657Jun 13, 2002Sep 7, 2010Makoto SaitoData management system
USRE42163Jun 1, 2006Feb 22, 2011Intarsia Software LlcData management system
USRE42921Aug 2, 2004Nov 15, 2011Lg Electronics Inc.Copy prevention method and apparatus for digital video system
USRE42922Jan 24, 2005Nov 15, 2011Lg Electronics Inc.Copy prevention method and apparatus for digital video system
USRE42950Dec 17, 2003Nov 22, 2011Lg Electronics Inc.Copy prevention method and apparatus for digital video system
USRE42951Nov 5, 2004Nov 22, 2011Lg Electronics Inc.Copy prevention method and apparatus for digital video system
USRE43599Feb 1, 2007Aug 21, 2012Intarsia Software LlcData management system
USRE43993Jul 17, 2007Feb 12, 2013Lg Electronics Inc.Method and apparatus for scrambling and/or descrambling digital video data and digital audio data using control data
USRE44068 *Jul 17, 2007Mar 12, 2013Lg Electronics Inc.Method and apparatus for descrambling digital video data and digital audio data using control data
USRE44106Jan 7, 2009Mar 26, 2013Lg Electronics IncCopy prevention method and apparatus of a digital recording/reproducing system
USRE44121Jan 7, 2009Apr 2, 2013Lg Electronics Inc.Copy prevention method and apparatus of a digital recording/reproducing system
EP0560345A1 *Mar 10, 1993Sep 15, 1993Matsushita Electric Industrial Co., Ltd.A scramble code and a television receiver incorporating the same
WO1994003003A1 *May 4, 1993Feb 3, 1994Crest IndEncryption/decryption apparatus with non-accessible table of keys
WO1995026086A1 *Mar 18, 1994Sep 28, 1995Thomson Consumer ElectronicsData decryption apparatus in a subscription television signal receiving system
WO1999007145A1 *Jul 31, 1998Feb 11, 1999Scientific AtlantaVerification of the source of program of information in a conditional access system
WO2005006643A1 *Jul 8, 2004Jan 20, 2005Qualcomm IncMethod and apparatus for security in a data processing system
Classifications
U.S. Classification380/239, 380/47, 380/262
International ClassificationH04N7/167
Cooperative ClassificationH04N7/1675
European ClassificationH04N7/167D
Legal Events
DateCodeEventDescription
May 17, 1996FPAYFee payment
Year of fee payment: 12
Oct 8, 1993ASAssignment
Owner name: COMSAT CORPORATION, MARYLAND
Free format text: CHANGE OF NAME;ASSIGNOR:COMMUNICATIONS SATELLITE CORPORATION;REEL/FRAME:006711/0455
Effective date: 19930524
Mar 19, 1992FPAYFee payment
Year of fee payment: 8