Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE33911 E
Publication typeGrant
Application numberUS 06/847,297
Publication dateMay 5, 1992
Filing dateMar 27, 1986
Priority dateJul 13, 1983
Fee statusPaid
Publication number06847297, 847297, US RE33911 E, US RE33911E, US-E-RE33911, USRE33911 E, USRE33911E
InventorsWilfred J. Samson, Ronald J. Solar
Original AssigneeAdvanced Cardiovascular Systems, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Catheter guide wire with short spring tip and method of using the same
US RE33911 E
Abstract
Guide wire and method for insertion and use of a catheter. The guide wire has a shaft of substantially smaller diameter than the luminal opening, with a flexible coil at one end of the shaft. The guide wire is inserted into the cardiovascular system, and the catheter is advanced along the guide wire to the desired position, with the flexible coil outside the distal end of the catheter. An annular passageway is formed between the shaft and the wall of the luminal opening, and fluids are passed through this passageway while the guide wire is within the catheter. A marker of radio opaque material is provided at the distal end of the guide wire so that the position of the wire can be accurately determined even though the wire itself may be too small to be visible with a fluoroscope.
Images(1)
Previous page
Next page
Claims(16)
    We claim: .[.1. In a guide wire for use in the placement of a catheter in the cardiovascular system, an elongated shaft of relatively rigid material having proximal and distal ends and a cross-sectional area substantially smaller than the luminal opening in the catheter, a relatively flexible helical coil having proximal and distal ends, said coil having an outer diameter slightly smaller than the diameter of the luminal opening and a length substantially less than the length of the shaft, the distal end portion of the shaft extending into the coil but terminating short of the distal end of the coil, the portion of the shaft extending into the coil being tapered to provide a gradual transition in flexibility of the shaft, means for bonding the proximal end of the coil to the shaft and a flexible safety wire disposed interiorally of the coil and having one end bonded to the distal extremity of the shaft and having the other end bonded to the
  1. distal extremity of the coil..]. 2. A guide wire as in claim .[.1.]. .Iadd.17 .Iaddend.wherein the safety wire is formed as a flat ribbon
  2. having a generally rectangular cross section. 3. A guide wire as in claim .[.1.]. .Iadd.17 .Iaddend.together with a relatively smooth rounded tip
  3. disposed at the distal extremity of the coil. 4. A guide wire as in claim .[.1.]. .Iadd.17 .Iaddend.together with a radio opaque marker formed of radio opaque material carried by the shaft adjacent the distal end of the
  4. shaft. 5. A guide wire as in claim 4 wherein the radio opaque material has
  5. a density of at least 13 gm/cm3. 6. A guide wire a in claim 5 wherein the radio opaque material includes an element selected from the group consisting of gold, tantalumm, tungsten, platinum, iridium, rhenium and
  6. alloys thereof. 7. A guide wire as in claim 6 wherein the radio opaque material comprises an alloy containing on the order of 80% gold, 12%
  7. siliver, and 8% copper and zinc. 8. A guide wire as in claim .[.1.]. .Iadd.17 .Iaddend.wherein the helical coil is formed of a radio opaque
  8. material. 9. .[.In apparatus.]. .Iadd.A dilatation catheter assembly .Iaddend.for use in the cardiovascular system.[.,.]. .Iadd.of a patient comprising .Iaddend.an elongated, relatively flexible catheter having a wall defining an axially extending .[.luminal opening.]. .Iadd.lumen .Iaddend.and a guide wire extending through the .[.luminal opening.]. .Iadd.lumen .Iaddend.and having a .[.cross-sectional area.]. .Iadd.diameter .Iaddend.substantially smaller than the .[.luminal opening.]. .Iadd.lumen .Iaddend.so that fluids can pass freely between the guide wire and the wall defining the .[.luminal opening.]. .Iadd.lumen.Iaddend., said guide wire comprising an elongated shaft of relatively rigid material having proximal and distal ends and a .[.cross-sectional area.]. .Iadd.diameter .Iaddend.substantially smaller than .[.the luminal opening in the catheter.]. .Iadd.0.02 inch.Iaddend., a relatively flexible helical coil having proximal and distal ends, said coil having an outer diameter slightly smaller than .[.the diameter of the luminal opening.]. .Iadd.0.02 inch and substantially larger than the diameter of the shaft .Iaddend.and a length substantially less than the length of the shaft, the distal end portion of the shaft extending into the helical coil but terminating short of the distal end of the coil, the portion of the shaft extending into the coil being tapered to provide a gradual transition in flexibility of the shaft, means for bonding the proximal end of the coil to the shaft and a flexible safety wire disposed interiorally of the coil and having one end bonded to the distal extremity of the shaft and having the other end bonded to the distal extremity of
  9. the coil. 10. Apparatus as in claim 9 wherein the safety wire is formed as
  10. a flat ribbon having a generally rectangular cross section. 11. Apparatus as in claim 9 wherein the luminal opening has a diameter on the order of 0.020 inch, the guide wire shaft has a diameter on the order of 0.008
  11. inch, and the helical coil has a diameter on the order of 0.018 inch. 12. Apparatus as in claim 9 together with a radio opaque marker formed of radio opaque material carried by the shaft adjacent the distal end of the
  12. shaft. 13. Apparatus as in claim 12 wherein the radio opaque material has
  13. a density of at least 13 gm/cm3. 14. Apparatus as in claim 12 wherein the radio opaque material includes an element selected from the group consisting of gold, tantalum, tungsten, platinum, iridium, rhenium and
  14. alloys thereof. 15. Apparatus as in claim 12 wherein the radio opaque material comprises an alloy containing on the order of 80% gold, 12%
  15. silver, and 8% copper and zinc. 16. The apparatus of claim 12 wherein the
  16. helical coil is formed of a radio opaque material. .Iadd.17. A guide wire for use in the placement of a catheter having an inner lumen extending therein into a patient's cardiovascular system comprising:
    a) an elongated shaft of relatively rigid material having proximal and distal ends and a diameter substantially smaller than the diameter of the inner lumen;
    b) a relatively flexible helical coil having proximal and distal ends and an outer diameter slightly smaller than 0.02 inch and substantially larger than the diameter of the shaft and a length substantially less than the length of the shaft, the distal end portion of the shaft being tapered to provide a gradual transition in flexibility of the shaft and the tapered portion and extending into the coil but terminating short of the distal end of the coil;
    c) means for bonding the proximal end of the coil to the shaft; and
    d) a flexible safety wire disposed interiorly of the coil and having one end bonded to the distal extremity of the shaft and having the other end bonded to the distal extremity of the coil. .Iaddend.
Description

This invention pertains generally to the insertion of catheters into the cardiovascular system, and more particularly to a guide wire and method for inserting and using a catheter.

Guide wires heretofore utilized in the insertion of catheters into the cardiovascular system have included an elongated wire core surrounded by a helically wrapped outer wire of smaller diameter than the luminal openings of the catheters with which they are employed. With dilation catheters for use in the coronary vessels and catheters of relatively small diameter (e.g., 0.020 inch or less), the guide wire is only slightly smaller than the luminal opening, and the guide wire must be removed before any fluid is passed through the catheter. It has generally not been possible to make the guide wire smaller because it might not have sufficient torsional rigidity to permit it to be steered into the cardiovascular system. In addition, the smaller wire might puncture the wall of the artery or other surrounding tissue.

Another problem which catheters of relatively small diameter is determining the position of the guide wire. Larger guide wires are generally visible with a fluoroscope or other radiographic instrument, but with the smaller catheters, the guide wires may be too small to be seen in this manner.

It is in general an object of the invention to provide a new and improved guide wire and method for the insertion and use of catheters into the cardiovascular system.

Another object of the invention is to provide a guide wire and method of the above character in which the guide wire remains in the catheter while the catheter is in use.

These and other objects are achieved in accordance with the invention by providing a guide wire having an elongated shaft of relatively rigid material and a helical coil at the distal end of the shaft. The guide wire is inserted into the cardiovascular system, and the catheter is advanced along the guide wire to the desired position, with the helical coil outside the distal end of the catheter. The shaft of the guide wire is substantially smaller than the luminal opening of the catheter, and fluids are passed through the luminal opening while the guide wire is still in place. A marker of radio opaque material is provided at the distal end of the guide wire so that the position of the wire can be accurately determined even though the wire itself may be too small to be visible with a fluoroscope.

FIG. 1 is a side elevational view of a catheter and a guide wire incorporating the invention.

FIG. 2 is an enlarged fragmentary centerline sectional view of the distal end portion of the guide wire in the embodiment of FIG. 1.

FIG. 3 is a fragmentary elevational view of the tip portion of the guide wire of FIG. 1, illustrating the manner in which the tip can be shaped to facilitate insertion into a given artery.

FIG. 4 is an enlarged, fragmentary centerline sectional view of another embodiment of a guide wire incorporating the invention.

In FIG. 1, the guide wire 11 is illustrated in connection with a catheter 12 having a proximal end 13 and a distal end 14. The catheter comprises an elongated tubular body of relatively flexible material having an axially etending luminal opening or passageway 16, with a connector fitting 17 at the proximal end of the tubular body. The catheter can be of any desired type, for example, a dilation catheter having a inflatable balloon toward the distal end thereof.

Guide wire 11 comprises an elongated, relatively rigid shaft 21 having a proximal end 22 and a distal end 23, with a relatively flexible helical coil or spring 24 extending axially from the distal end of the shaft. The cross-sectional area of the shaft is substantially smaller than the luminal opening of the catheter so that fluids can pass freely between the shaft and the wall of the luminal opening, and the outer diameter of the helical winding is greater than the diameter of the shaft but small enough to pass through the luminal opening. In one presently preferred embodiment for use with a catheter having a luminal opening of 0.020 inch, for example, the shaft has a diameter on the order of 0.008 inch and the helical coil has an outer diameter on the order of 0.018 inch. The coil is relatively short compared to the overall length of the guide wire, and shaft 21 is substantially longer than the coil. In one presently preferred embodiment, for example, the guide wire has an overall length on the order of 175 cm, and the helical coil has a length on the order of 4 cm.

Shaft 21 and helical coil 24 are each fabricated of a suitable material such as stainless steel wire, and in the embodiment of FIG. 1 the distal end portion of the shaft is tapered to provide a gradual transition in flexibility between the very flexible coil and the stiffer shaft. In this particular embodiment, the tapered portion of the shaft extends all the way to the distal end of the coil, but it can terminate before the end, if desired.

The coil and shaft are bonded together by suitable means such as brazing, welding or soldering, as indicated at 29, in the region of the overlap. If desired, the bond can be made with a radio opaque material to make the tip of the wire visible to a fluoroscope or other conventional radiographic instrument. The radio opaque material preferably has a density of at least 13 gm/cm3, and suitable materials include gold, tantalum, tungsten, platinum, iridium, rhenium and alloys of these materials. One presently preferred material is an alloy containing on the order of about 80% gold, 12% silver, and 8% copper and zinc. If desired, coil 24 itself can be fabricated of a radio opaque material such as tungsten, tantalum, platinum, gold or an alloy thereof to make the entire coil visible to a fluoroscope.

A relatively smooth, rounded tip 31 is provided at the distal end of helical coil to facilitate insertion of the wire into the cardiovascular system without damage to the surrounding tissue. If the embodiment illustrated, this tip comprises a plug which is inserted partially into the distal end portion of coil 24 and heated to form a bond with the coil and the tip of shaft 21. This plug can also be fabricated of a radio opaque material to make the tip visible to a fluoroscope or other radiographic instrument. Alternatively, the rounded tip can be formed by fusing the distal end of the wire forming the helical coil into the desired rounded shape.

In the embodiment of FIG. 1, connections to the proximal ends of guide wire 11 and catheter 12 are made through a side arm adapter 36 having an axially extending body 37 and a side arm 38 which extends at an angle from the body. The connector fitting 17 at the proximal end of the catheter is connected to one end of the adapter body by suitable connector 39, and the luminal opening of the catheter is in fluid communication with the chamber formed within the adapter. The guide wire extends axially through the adapter body, and a control knob 41 is affixed to the end of the wire beyond the adapter. An O-ring assembly 42 provides a fluid-tight seal about the guide wire at the rear of the adapter body while permitting the wire to be rotated within the body. Communication with the passageway of the catheter is provided through side arm 38, and suitable appliances can be connected to the side arm for introducing fluids into or receiving fluids from the catheter.

Operation and use of the guide wire, and therein the method of the invention, are as follows. The guide wire is inserted into the luminal opening of the catheter, and the guide wire and the catheter are inserted together into the cardiovascular system, with helical coil 24 extending from the distal end of the catheter. The guide wire and catheter can be inserted either directly into the system or through a guiding catheter, as desired. The torsional rigidity of shaft 21 permits the guide wire to be turned or steered by rotating control knob 41, and the flexibility of coil 24 facilitates movement of the wire into the artery or other passageway in the body without damage to the surrounding tissue. The position of the wire is determined by monitoring the radio opaque marker or markers at the distal end with a fluoroscope or other radiographic instrument. The catheter is advanced along the wire until it is in the desired position. Because of the relatively small diameter of shaft 21 compared to the cross-sectional area of the luminal opening, fluids can be passed through the catheter without removing the guide wire. For example, a contrast material or dye can be introduced through the annular passageway formed between the shaft of the guide wire and the wall of the luminal opening, and pressure measurements can be made through this same passageway.

As illustrated in FIG. 3, coil 24 can be bent in any suitable manner to facilitate steering of the wire into a side branch of the cardiovascular system. The angle of the bend can be chosen in accordance with the angle of the branch into which the guide wire is to be inserted.

The embodiment of FIG. 4 is generally similar to the embodiment of FIGS. 1-2, and like reference numerals designate corresponding elements in the two embodiments. In the embodiment of FIG. 4, the tapered end portion 23 of the shaft 21 terminates prior to the distal end of coil 24, and the windings toward the distal end of the coil are spaced apart to provide a tip which is substantially more flexible than the remainder of the guide wire. A safety wire 36 extends between the distal end of shaft 21 and the distal end of coil 24, and is fabricated of a material stronger than the coil. This wire prevents the coil from being overstretched or broken in use, and it also facilitates the shaping of coil 24 into various curves for steering into side branches of the cardiovascular system. Suitable materials for the safety wire include tungsten and other metals or alloys stronger than stainless steel. In one presently preferred embodiment, the wire comprises a flat tungsten ribbon having a generally rectanguar cross-section, with a width of about 0.003 inch and a thickness of about 0.001 inch. This ribbon allows the coil to remain extremely flexible and helps the coil retain a curvature to which it is formed. The safety wire is bonded both to shaft 21 and to end plug 31, and in the embodiment illustrated, the proximal end of the safety wire is secured by the same bond 29 that affixes the coil to the shaft. Alternatively, if desired, the proximal end of the safety wire can be affixed to the tapered portion of the shaft. Operation and use of the embodiment of FIG. 4 is similar to that described above.

It is apparent from the foregoing that a new and improved guide wire and method of using the same have been provided. While only certain presently preferred embodiments have been described in detail, as will be apparent to those familiar with the art, certain changes and modifications can be made without departing from the scope of the invention as defined by the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3552384 *Jul 3, 1967Jan 5, 1971American Hospital Supply CorpControllable tip guide body and catheter
US3789841 *Sep 15, 1971Feb 5, 1974Becton Dickinson CoDisposable guide wire
US4003369 *Apr 22, 1975Jan 18, 1977Medrad, Inc.Angiographic guidewire with safety core wire
US4020829 *Oct 23, 1975May 3, 1977Willson James K VSpring guide wire with torque control for catheterization of blood vessels and method of using same
US4545390 *Sep 22, 1982Oct 8, 1985C. R. Bard, Inc.Steerable guide wire for balloon dilatation procedure
EP0014424A1 *Jan 29, 1980Aug 20, 1980Toray Monofilament Company LimitedMedical vascular guide wire and self-guiding type catheter
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5312427 *Oct 16, 1992May 17, 1994Shturman Cardiology Systems, Inc.Device and method for directional rotational atherectomy
US5314438 *Feb 2, 1993May 24, 1994Shturman Cardiology Systems, Inc.Abrasive drive shaft device for rotational atherectomy
US5356418 *Oct 28, 1992Oct 18, 1994Shturman Cardiology Systems, Inc.Apparatus and method for rotational atherectomy
US5360432 *Dec 17, 1992Nov 1, 1994Shturman Cardiology Systems, Inc.Abrasive drive shaft device for directional rotational atherectomy
US5377690 *Feb 9, 1993Jan 3, 1995C. R. Bard, Inc.Guidewire with round forming wire
US5429139 *Mar 7, 1994Jul 4, 1995Schneider (Europe) A.G.Guide wire
US5488959 *Dec 27, 1993Feb 6, 1996Cordis CorporationMedical guidewire and welding process
US5606981 *Feb 3, 1995Mar 4, 1997C. R. Bard, Inc.Catheter guidewire with radiopaque markers
US5636642 *Apr 25, 1995Jun 10, 1997Target Therapeutics, Inc.Deformable tip super elastic guidewire
US5706826 *Dec 21, 1995Jan 13, 1998Schneider (Europe) A.G.Guide wire with helical coil
US5720300 *Feb 21, 1995Feb 24, 1998C. R. Bard, Inc.High performance wires for use in medical devices and alloys therefor
US5749837 *Aug 1, 1996May 12, 1998Target Therapeutics, Inc.Enhanced lubricity guidewire
US5769796 *Jan 22, 1997Jun 23, 1998Target Therapeutics, Inc.Super-elastic composite guidewire
US5772609 *Jun 28, 1996Jun 30, 1998Target Therapeutics, Inc.Guidewire with variable flexibility due to polymeric coatings
US5830155 *Oct 27, 1995Nov 3, 1998Cordis CorporationGuidewire assembly
US5836892 *Oct 30, 1995Nov 17, 1998Cordis CorporationGuidewire with radiopaque markers
US5891055 *Aug 25, 1994Apr 6, 1999Schneider (Europe) A.G.Guide wire
US6206834 *Oct 14, 1997Mar 27, 2001Schneider (Europe) A.G.Stiffened hollow vascular device
US6235048May 7, 1999May 22, 2001Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6245029 *Jun 4, 1997Jun 12, 2001Nissho CorporationStylet and connector therefor
US6251130Dec 16, 1998Jun 26, 2001Innercool Therapies, Inc.Device for applications of selective organ cooling
US6340368Oct 23, 1998Jan 22, 2002Medtronic Inc.Implantable device with radiopaque ends
US6361557Feb 3, 2000Mar 26, 2002Medtronic Ave, Inc.Staplebutton radiopaque marker
US6379378Mar 3, 2000Apr 30, 2002Innercool Therapies, Inc.Lumen design for catheter
US6383210Jun 2, 2000May 7, 2002Innercool Therapies, Inc.Method for determining the effective thermal mass of a body or organ using cooling catheter
US6464716Jun 30, 2000Oct 15, 2002Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6471717May 12, 2000Oct 29, 2002Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6475231Jan 5, 2001Nov 5, 2002Innercool Therapies, Inc.Method and device for applications of selective organ cooling
US6482226Aug 30, 2000Nov 19, 2002Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6491039Mar 31, 2000Dec 10, 2002Innercool Therapies, Inc.Medical procedure
US6491716Feb 9, 1999Dec 10, 2002Innercool Therapies, Inc.Method and device for applications of selective organ cooling
US6533804Jan 11, 2001Mar 18, 2003Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US6540771Jan 8, 2001Apr 1, 2003Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US6551349Mar 22, 2001Apr 22, 2003Innercool Therapies, Inc.Selective organ cooling apparatus
US6558412Apr 12, 2001May 6, 2003Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6576001Dec 3, 2001Jun 10, 2003Innercool Therapies, Inc.Lumen design for catheter
US6582455Jul 21, 2000Jun 24, 2003Innercool Therapies, Inc.Method and device for applications of selective organ cooling
US6585752Nov 7, 2001Jul 1, 2003Innercool Therapies, Inc.Fever regulation method and apparatus
US6602276Mar 1, 2001Aug 5, 2003Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6648906Apr 5, 2001Nov 18, 2003Innercool Therapies, Inc.Method and apparatus for regulating patient temperature by irrigating the bladder with a fluid
US6648908Mar 11, 2002Nov 18, 2003Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US6660028Feb 25, 2002Dec 9, 2003Innercool Therapies, Inc.Method for determining the effective thermal mass of a body or organ using a cooling catheter
US6676688Apr 16, 2001Jan 13, 2004Innercool Therapies, Inc.Method of making selective organ cooling catheter
US6676689Mar 11, 2002Jan 13, 2004Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US6676690Jun 20, 2001Jan 13, 2004Innercool Therapies, Inc.Inflatable heat transfer apparatus
US6685732Aug 17, 2001Feb 3, 2004Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US6695873Mar 11, 2002Feb 24, 2004Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US6702842May 30, 2002Mar 9, 2004Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6755850May 29, 2002Jun 29, 2004Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6832715Dec 3, 2001Dec 21, 2004Scimed Life Systems, Inc.Forming atraumatic distal tip; heating to activate flux and allow solder ball to melt and flow into coil around shaft; intravascular catheters
US6887262Sep 19, 2002May 3, 2005Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6905509Jul 18, 2001Jun 14, 2005Innercool Therapies, Inc.Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6918924Nov 17, 2003Jul 19, 2005Innercool Therapies, Inc.Method and apparatus for regulating patient temperature by irrigating the bladder with a fluid
US7001378Mar 1, 2002Feb 21, 2006Innercool Therapies, Inc.Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US7018399Dec 29, 2003Mar 28, 2006Innercool Therapies, Inc.Method of making selective organ cooling catheter
US7052508Nov 18, 2003May 30, 2006Innercool Therapies, Inc.Inflatable heat transfer apparatus
US7063718Mar 5, 2003Jun 20, 2006Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US7066948Mar 8, 2004Jun 27, 2006Innercool Therapies, Inc.Selective organ cooling apparatus and method
US7094253Apr 9, 2003Aug 22, 2006Innercool Therapies, Inc.Fever regulation method and apparatus
US7181290 *Mar 12, 2004Feb 20, 2007Pacesetter, Inc.Convertible stylet to abet in the implant of a left heart lead
US7211105Dec 5, 2003May 1, 2007Innercool Therapias, Inc.Method for determining the effective thermal mass of a body or organ using a cooling catheter
US7291144Jan 3, 2002Nov 6, 2007Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7294142Aug 13, 2002Nov 13, 2007Innercool TherapiesSelective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US7300453Feb 24, 2004Nov 27, 2007Innercool Therapies, Inc.System and method for inducing hypothermia with control and determination of catheter pressure
US7371254Sep 3, 2004May 13, 2008Innercool Therapies, Inc.Medical procedure
US7449018Jan 7, 2004Nov 11, 2008Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US7651518Nov 14, 2003Jan 26, 2010Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US7766949Aug 16, 2006Aug 3, 2010Innercool Therapies, Inc.Fever regulation method and apparatus
US7883474Apr 30, 1996Feb 8, 2011Target Therapeutics, Inc.Composite braided guidewire
US7914493Nov 30, 2006Mar 29, 2011Cook Medical Technologies LlcWire guide with engaging portion
US7951183May 13, 2008May 31, 2011Innercool Therapies, Inc.Medical procedure
US7998182Jan 17, 2006Aug 16, 2011Innercool Therapies, Inc.Selective organ cooling apparatus
US8043283Nov 6, 2007Oct 25, 2011Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US8157766Feb 10, 2009Apr 17, 2012Medrad, Inc.Torqueable kink-resistant guidewire
US8157794Oct 30, 2007Apr 17, 2012Innercool Therapies, Inc.Method and device for performing cooling-or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US8163000Nov 13, 2007Apr 24, 2012Innercool Therapies, Inc.Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US8167821Feb 26, 2003May 1, 2012Boston Scientific Scimed, Inc.Multiple diameter guidewire
US8308658Apr 13, 2007Nov 13, 2012Neometrics, Inc.Medical guidewire
US8485969Sep 18, 2008Jul 16, 2013Jeffrey GrayzelMedical guide element with diameter transition
US20120271409 *Apr 25, 2011Oct 25, 2012Medtronic Vascular, Inc.Helical Radiopaque Marker
EP0770404A1Oct 25, 1996May 2, 1997Cordis CorporationGuidewire assembly
WO1998022024A1 *Nov 18, 1997May 28, 1998Interventional TechnologiesMedical guidewire with fully hardened core
Classifications
U.S. Classification600/585, 600/434, 604/95.01
International ClassificationA61M25/01, A61B19/00
Cooperative ClassificationA61M25/0108, A61M2025/09175, A61B19/54, A61M25/09
European ClassificationA61M25/09
Legal Events
DateCodeEventDescription
May 20, 1997FPAYFee payment
Year of fee payment: 12
Apr 29, 1993FPAYFee payment
Year of fee payment: 8