Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE34904 E
Publication typeGrant
Application numberUS 08/086,872
Publication dateApr 11, 1995
Filing dateJul 8, 1993
Priority dateOct 30, 1989
Also published asCA2028387A1, EP0426086A1, US5120838
Publication number08086872, 086872, US RE34904 E, US RE34904E, US-E-RE34904, USRE34904 E, USRE34904E
InventorsErnst K. Just, Thomas G. Majewicz, Arjun C. Sau
Original AssigneeHercules Incorporated
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Alkylaryl hydrophobically modified cellulose ethers
US RE34904 E
Abstract
Cellulose ethers are disclosed which have sufficient nonionic substitution to render them water soluble and which are further modified with a C10 to C24 long chain alkylaryl group in an amount between 0.2% by weight and the amount which makes them less than 1% by weight soluble in water. Hydroxyethylcellulose is a preferred water soluble cellulose ether for modification according to the invention. These products exhibit substantially improved viscosifying effects compared to their unmodified cellulose ether counterparts, and provide good leveling and sag resistance in latex paints. Preferred alkylaryl groups are nonylphenyl, dodecylphenyl, and dinonylphenyl. Included are cellulose ethers with spacer groups of various lengths between the alkylaryl group and the connecting group to the cellulose molecule.
Images(8)
Previous page
Next page
Claims(8)
What is claimed is:
1. An arylalkyl hydrophobically modified hydroxyethylcellulose useful as an associative thickener in an aqueous protective coating, characterized in that the arylalkyl hydrophobically modified hydroxyethylcellulose provides a leveling value of at least 7 and a sag value of at least 12 and a Stormer Viscosity of at least 85 KU.
2. The arylalkyl hydrophobically modified hydroxyethylcellulose of claim 1 wherein the arylalkyl group is one of the group of nonylphenyl, dodecylphenyl, dinonylphenyl and poly(ethyleneoxy)nonylphenyl.
3. The arylalkyl hydrophobically modified hydroxyethylcellulose of claim 2 having a molecular weight of 20,000 to 400,000.
4. The arylalkyl hydrophobically modified hydroxyethylcellulose of claim 3 having a hydroxyethyl Molar Substitution (M.S.) of 3.0 to 4.5.
5. The arylalkyl hydrophobically modified hydroxyethylcellulose of claim 3 where the arylalkyl substitution ranges from 0.4 to 1.5 weight percent. .Iadd.
6. The arylalkyl hydrophobically modified hydroxyethylcellulose of claim 1, wherein the hydroxyethylcellulose is ethyl group modified. .Iaddend. .Iadd.7. An arylalkyl hydrophobically modified cellulose ether useful as an associative thickener in an aqueous protective coating, characterized in that the arylalkyl hydrophobically modified cellulose either provides, in an all acrylic semi-gloss latex paint formulation, a leveling value of at least 7, a sag value of at least 12, and a Stormer Viscosity of at least 85 KU. .Iaddend. .Iadd.8. The arylalkyl hydrophobically modified cellulose ether of claim 7, wherein the cellulose ether comprises a water soluble hydroxyalkyl cellulose. .Iaddend. .Iadd.9. The arylalkyl hydrophobically modified cellulose ether of claim 8, wherein the water soluble hydroxyalkyl cellulose comprises a member selected from the group consisting of hydroxyethylcellulose and hydroxypropylcellulose. .Iaddend. .Iadd.10. The arylalkyl hydrophobically modified cellulose ether of claim 9, wherein the water soluble hydroxyalkyl cellulose is hydroxyethylcellulose. .Iaddend. .Iadd.11. The arylalkyl hydrophobically modified cellulose ether of claim 10, wherein the hydroxyethylcellulose is ethyl group modified. .Iaddend. .Iadd.12. The arylalkyl hydrophobically modified cellulose ether of claim 7, wherein the cellulose ether comprises methylcellulose. .Iaddend. .Iadd.13. The arylalkyl hydrophobically modified cellulose ether of claim 7, wherein the arylalkyl comprises about 10 to 24 carbon atoms. .Iaddend. .Iadd.14. The arylalkyl hydrophobically modified cellulose ether of claim 13, wherein the arylalkyl comprises a member selected from the group consisting of nonylphenyl, dodecylphenyl, and dinonylphenyl. .Iaddend. .Iadd.15. The arylalkyl hydrophobically modified cellulose ether of claim 7, wherein the amount of arylalkyl hydrophobe is between about 0.2 weight percent, and the amount which renders the cellulose ether less than 1 percent by weight soluble in water. .Iaddend. .Iadd.16. The arylalkyl hydrophobically modified cellulose ether of claim 15, wherein the amount of arylalkyl hydrophobe is
between 0.25 and 2.4 weight percent. .Iaddend. .Iadd.17. The arylalkyl hydrophobically modified cellulose ether of claim 7, comprising a spacer group between the arylalkyl and the cellulose ether. .Iaddend. .Iadd.18. The arylalkyl hydrophobically modified cellulose ether of claim 17, wherein the spacer group comprises 1 to 100 ethyleneoxy units. .Iaddend. .Iadd.19. The arylalkyl hydrophobically modified cellulose ether of claim 7, comprising an ether linkage connecting the arylalkyl hydrophobe and the cellulose ether. .Iaddend. .Iadd.20. The arylalkyl hydrophobically modified cellulose ether of claim 19, wherein the arylalkyl hydrophobe comprises a hydroxyalkyl radical. .Iaddend. .Iadd.21. The arylalkyl hydrophobically modified cellulose ether of claim 20, wherein the hydroxyalkyl radical comprises a hydroxypropyl radical. .Iaddend. .Iadd.22. The arylalkyl hydrophobically modified cellulose ether of claim 21, wherein the arylakyl hydrophobe comprises a glycidyl ether, reacted with the cellulose ether. .Iaddend. .Iadd.23. The arylalkyl hydrophobically modified cellulose ether of claim 22, comprising a spacer group between the arylalkyl and the ether linkage. .Iaddend. .Iadd.24. The arylalkyl hydrophobically modified cellulose ether of claim 23, wherein the spacer group comprises 1 to 100 ethyleneoxy units. .Iaddend. .Iadd.25. The arylalkyl hydrophobically modified cellulose ether of claim 24, wherein the cellulose ether comprises hydroxyethylcellulose. .Iaddend. .Iadd.26. The arylalkyl hydrophobically modified cellulose ether of claim 25, wherein the hydroxyethylcellulose is ethyl group modified. .Iaddend. .Iadd.27. The arylalkyl hydrophobically modified cellulose ether of claim 26, wherein the arylalkyl comprises nonylphenyl. .Iaddend. .Iadd.28. The arylalkyl hydrophobically modified cellulose ether of claim 27, wherein the amount of arylalkyl hydrophobe is between about 0.2 weight percent, and the amount which renders the cellulose ether less than 1 percent by weight solution in water. .Iaddend. .Iadd.29. The arylalkyl hydrophobically modified cellulose ether of claim 28, wherein the amount of arylalkyl hydrophobe is between 0.25 and 2.4 weight percent. .Iaddend. .Iadd.30. An all acrylic semi-gloss latex paint formulation, comprising the arylalkyl hydrophobically modified hydroxyethylcellulose of claim 1. .Iaddend. .Iadd.31. An all acrylic semi-gloss latex paint formulation, comprising the arylalkyl hydrophobically modified hydroxyethylcellulose of claim 6. .Iaddend. .Iadd.32. An all acrylic semi-gloss latex paint formulation, comprising the arylalkyl hydrophobically modified cellulose ether of claim 7. .Iaddend. .Iadd.33. An all acrylic semi-gloss latex paint formulation, comprising the arylalkyl hydrophobically modified cellulose ether of claim 11. .Iaddend. .Iadd.34. An all acrylic semi-gloss latex paint formulation, comprising the arylalkyl hydrophobically modified cellulose ether of claim 19. .Iaddend. .Iadd.35. An all acrylic semi-gloss latex paint formulation, comprising the arylalkyl hydrophobically modified cellulose ether of claim 26. .Iaddend. .Iadd.36. A vinyl acrylic latex paint formulation, comprising the arylalkyl hydrophobically modified hydroxyethylcellulose ether of claim 1. .Iaddend. .Iadd.37. A vinyl acrylic latex paint formulation, comprising the arylalkyl hydrophobically modified hydroxyethylcellulose of claim 6. .Iaddend. .Iadd.38. A vinyl acrylic latex paint formulation, comprising the arylalkyl hydrophobically modified cellulose ether of claim 7. .Iaddend. .Iadd.39. A vinyl acrylic latex paint formulation, comprising the arylalkyl hydrophobically modified cellulose ether of claim 11. .Iaddend. .Iadd.40. A vinyl acrylic latex paint formulation, comprising the arylalkyl hydrophobically modified cellulose ether of claim 19. .Iaddend. .Iadd.41. A vinyl acrylic latex paint formulation, comprising the arylalkyl hydrophobically modified
cellulose ether of claim 26. .Iaddend. .Iadd.42. A latex paint formulation, comprising the arylalkyl hydrophobically modified hydroxyethylcellulose of claim 1. .Iaddend. .Iadd.43. A latex paint formulation, comprising the arylalkyl hydrophobically modified hydroxyethylcellulose of claim 6. .Iaddend. .Iadd.44. A latex paint formulation, comprising the arylalkyl hydrophobically modified cellulose ether of claim 7. .Iaddend. .Iadd.45. A latex paint formulation, comprising the arylalkyl hydrophobically modified cellulose ether of claim 11. .Iaddend. .Iadd.46. A latex paint formulation, comprising the arylalkyl hydrophobically modified cellulose ether of claim 19. .Iaddend. .Iadd.47. A latex paint formulation, comprising the arylalkyl hydrophobically modified cellulose ether of claim 26. .Iaddend.
Description
FIELD OF THE INVENTION

This invention relates to a new class of modified water soluble polymers. Specifically it relates to alkylaryl hydrophobically modified hydroxyethylcellulose, methylcellulose and hydroxypropylcellulose.

BACKGROUND OF THE INVENTION

Nonionic water soluble cellulose ethers are employed in a wide variety of industrial applications, as thickeners, as water retention aids, and as suspension aids in certain polymerization processes, among others. Widely used, commercially available, nonionic cellulose ethers include methylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, hydroxyethylpropylcellulose, hydroxypropylcellulose, and ethylhydroxyethylcellulose.

As is generally the case with high polymers, better thickening efficiency is realized with high molecular weigh cellulose ethers. U.S. Pat. Nos. 4,228,277 and 4,243,802 (Landoll) disclose nonionic cellulose ethers of relatively low molecular weight which are capable of producing viscous aqueous solutions in practical concentrations. U.S. Pat. No. 4,845,175 discloses alkylaryl hydrophobically modified hydroxyethylcellulose as a useful material for emulsion polymerization, but contains no disclosure of how to make or use the compounds of the present invention. These products exhibit a relatively high degree of surface activity compared to that of more conventional nonionic water soluble cellulose ethers. These products are nonionic cellulose ethers which are modified by substitution with specified amounts of C10 to C24 alkyl radicals. Such ethers are substituted with an amount of long chain alkyl hydrocarbon radical between about 0.2 weight percent and the amount which renders said cellulose ether less than 1% by weight soluble in water. The base cellulose ether thus modified is preferably one of low to medium molecular weight, i.e., less than about 800,000 and preferably between 20,000 and 500,000, or a Degree of Polymerization (D.P.) of about 75 to 1,800.

Modification of the cellulose ethers with small hydrophobic groups such as ethyl, benzyl and phenylhydroxyethyl groups were not found to effect the property improvements shown by the long chain alkyl hydrophobic modifications. The long chain alkyl cellulose ethers disclosed were useful as stabilizers in emulsion polymerizations, as thickeners in cosmetics, and as flocculants in mineral processing. One particularly good utility was as a thickener in latex paint, where very small amounts of low molecular weight long chain alkyl modified nonionic cellulose ethers outperformed larger quantities of higher molecular weight conventional nonionic cellulosic ethers. The advantages of these products in this particular use are discussed in detail in the Aqualon publication entitled "Natrosol® Plus-Modified Hydroxyethylcellulose-Performance as a Latex Paint Thickener," Specifically, they provide improved paint rheology, excellent spatter resistance, and good thickening efficiency in a wide variety of latex paint formulations. Paint leveling properties are adequate and better than those obtained with the unmodified base polymer from which they were prepared. However, further improvements in leveling properties would be desirable.

SUMMARY OF THE INVENTION

It is the object of this invention to provide a new class of hydrophobically modified cellulose ethers which give, among other applications, significantly better leveling properties in latex paint formulations than those obtained with the long chain alkyl substituted cellulose ethers of the two previously mentioned patents, without sacrificing the other good performance properties in latex paint applications. This has been achieved by the use of nonionic cellulose ethers having a sufficient degree of nonionic substitution selected from the class consisting of methyl, hydroxyethyl and hydroxypropyl which would cause them to be water soluble, and which are further substituted with alkylaryl hydrocarbon radicals having about 10 to 24 carbon atoms in an amount between about 0.2 weight percent and the amount which renders said cellulose ether less than 1 percent by weight soluble in water. The cellulose ether to be modified is preferably one of low to medium molecular weight, i.e. less than about 800,000 and preferably .Iadd.between .Iaddend.about 20,000 and 500,000 (about 75 to 1,800 D.P.) Examples of such alkylaryl modified cellulose ethers are hydroxyethylcelluloses modified with either nonylphenyl, dodecylphenyl, or dinonylphenyl alkylaryl groups containing alkylaryl substitution levels from 0.25 to 2.4 weight percent.

While any nonionic water soluble cellulose ether can be employed as a cellulose ether substrate used to form the products of this invention, the preferred cellulose ether substrate is hydroxyethylcellulose of about 50,000-400,000 molecular weight. The alkylaryl substituent can be attached to the cellulose ether substrate via an ether, ester or urethane linkage. Preferred is the ether linkage, as the reagents currently used to effect etherification are readily obtained, the reaction is similar to that commonly used for the initial etherification, and the reagents are more easily handled than the reagents employed for modification via the other linkages. The resulting linkage is also usually more resistant to further reactions.

DETAILED DESCRIPTION OF THE INVENTION

Although the products of this invention are referred to as being "long chain alkylaryl group modified," it will be recognized that except in the case where modification is effected with an alkyl halide, the modifier is not a simple long chain alkylaryl group. The group is actually a hydroxyalkyl radical in the case of a glycidyl ether, a urethane radical in the case of an isocyanate, or an acyl radical in the case of an acid or acyl chloride. Nonetheless, the terminology "long chain alkylaryl group" is used and the number of carbon atoms referes only to those carbon atoms in the hydrocarbon portion of the modifying molecule. It does not include any carbon atoms in the connecting groups. Thus, hydroxyethylcellulose modified by reaction with nonylphenyl glycidyl ether is termed a C15 hydrophobic group (C6 +C9) modification of hydroxyethylcellulose. ##STR1##

Similar modifications using .[.ether.]. .Iadd.either .Iaddend.dodecylphenyl glycidyl ether or dinomylphenyl glycidyl ether would result in C18 and C24 hydrophobes, respectively.

Moreover, there may be additional spacer groups, of various lengths, between the standard connecting group mentioned above and the long chain alkylaryl group. Thus, products with the structure: ##STR2## have been prepared, where the hydrophobe group is still considered to be C15.

Methods of preparing mixed ethers of cellulose, i.e. products having more than one etherifying modifier attached to the same cellulose molecule are known to the art. The products of this invention can be prepared via essentially the same methods. The preferred procedure for preparing the mixed ethers of this invention comprises slurrying the nonionic cellulose ether in an inert organic diluent with alkali until swollen, and reacting with about a C10 to C24 alkylaryl glycidyl ether, with agitation and heat, until the reaction is complete. Residual alkali is then actualized, and the product is recovered, washed with inert diluents, and dried. The etherification can also be effected with a C10 to C24 halide, but these are sometimes less reactive, less efficient and more corrosive. Therefore, it is preferred to use the glycidyl ether.

Methods of preparation of alkyl hydrophobically modified cellulose ethers are described in U.S. Pat. No. 4,228,277. In addition, rather than isolating and reacting the dried cellulose ether with the alkylaryl glycidyl ether, it is also possible to conduct the reaction in situ, that is, immediately after the preparation of the base cellulose ether of the proper substitution level, without isolating the cellulose ether. In this variation, the alkylaryl glycidyl ether is added immediately upon completion of the preparation of the cellulose ether, e.g., hydroxyethylcellulose. The reaction mixture is then reacted at an appropriate temperature and time for the reaction to be completed. In both methods of preparation, it is necessary that conditions be provided to assure that the cellulose ether is swollen to the point that the modifier can react substantially uniformly on all cellulose ether molecular throughout.

The following examples illustrate the practice of this invention, which has industrial application in latex paint manufacture.

EXAMPLES 1 to 6 Nonylphenyl Glycidyl Ether (NPGE) ##STR3##

The nonylphenyl glycidyl ether used is a commercial product of Wilmington Chemical Company (Heloxy® WC-64; 90% pure).

Reaction of NPGE with Hydroxyethylcellulose

Hydroxyethylcellulose was prepared by methods described in U.S. Pat. No. 4,084,060 in a 0.5 gallon CHEMCO stirred autoclave from 121.5 g cellulose; 1,600 ml t-butyl alcohol; 38.9 g sodium hydroxide in 152 ml of water; and 158 g ethylene oxide, at 80° C. Without cooling the reactor, nonylphenyl glycidyl ether (NPGE) dissolved in 20 ml t-butyl alcohol as added and the reactor heated to 110° C. The mixture was kept at 110° C. for 2 hours. The reactor was then cooled to below 40° C. and neutralized to a pH of 7-8. The product was purified by slurrying in 85% aqueous acetone, filtering, reslurrying in 100% acetone, filtering and drying in a laboratory fluid bed dryer. The products were cream colored solids.

Analytical data are given in Table 1.

                                  TABLE 1__________________________________________________________________________ Grams of            1% nonylphenyl        Weight %     Brookfield                           %Example glycidyl        nonylphenyl               Hydroxy-                     Viscosity                           Ash asNo.   ether added        modifier               ethyl M.S.                     (mPa · s)                           Na2 SO4__________________________________________________________________________Control A 0      0      4.1    44   6.5Control B 0      0      5.2    40   5.41     9      0.61   4     120   6.22     18     0.94   3.1   175   5.03     18     1.12   4     352   5.64     18     1.2    5.2   250   5.65     26     1.63   3.1   2120  5.36     26     2.42   5.2   2180  5.3__________________________________________________________________________

Table 1 illustrates the associative thickener characteristics of alkylaryl hydrophobically modified cellulose ethers to provide enhanced viscosity.

EXAMPLES 7 TO 13 Dodecylphenyl Glycidyl Ether (DDPGE) ##STR4##

The dodecylphenyl glycidyl ether was prepared by a procedure described in U.S. Pat. No. 3,102,912. DDPGE was 80% pure and contained predominately the para isomer.

Dinonylphenyl Glycidyl Ether (DNPGE) ##STR5##

The dinonylphenyl glycidyl ether was prepared by a procedure described in Synthesis, February 1983, pp. 117-119. DNPGE was 99% pure and contained predominately the ortho-para isomer.

.[.Poly(ethyleneoxy)nonylphenyl9 Glycidyl Ether.]. .Iadd.Poly(ethyleneoxy)9 nonylphenyl Glycidyl Ether .Iaddend.(PEONPGE) ##STR6##

The poly(ethyleneoxy)nonpyphenyl glycidyl ether was prepared in the same manner as dinonylphenyl glycidyl ether except that poly(ethyleneoxy)9 nonyl-phenol (Igepal CO630 from GAF) was used instead of dinonylphenol. PEONPGE was 90% pure.

Reaction of DDPGE, DNPGE or PEONPGE with Hydroxyethylcellulose

The dodecylphenyl glycidyl ether (DDPGE) or the dinonylphenyl glycidyl ether (DDPGE) was reacted with hydroxyethylcellulose prepared using the same amounts of ingredients described in examples 1 to 6, except for the amount of alkylaryl glycidyl ether. Poly(ethyleneoxy)9 nonylphenyl glycidyl ether (PEONPGE), 2.1 g, was reacted with 34.5 a HEC, prepared according to examples 1 to 6, in the presence of 250 ml tert-butyl alcohol (TBA), and 3.6 g sodium hydroxide in 27 g water, at 90° C. for 41/2 hours. Neutralization and product workup were similar to the procedures described for examples 1 to 6.

The amounts of the glycidyl ethers used and analyses of the products isolated are shown in Table 2.

              TABLE 2______________________________________Ex-  Grams of  Weight %   Hy-   1%am-  phenyl    Phenyl     droxy Brookfieldple  glycidyl  glycidyl ether                     ethyl Viscosity                                   % Ash asNo.  ether added          modifier   M.S.  (mPa · s)                                   Na2 SO4______________________________________A. Dodecylphenyl glycidyl ether7    9.0       0.51       4.0    63     4.98    13.57     0.78       3.9   230     5.49    18.2      1.00       4.0   550     5.1B. Dimonylphenyl glycidyl ether10   12.0      0.25       4.1    56     4.011   18.2      0.46       4.1   135     4.912   25.0      0.62       4.1   300     3.6C. Poly(ethyleneoxy)9 nonylphenyl gylcidyl ether13   2.1 g/    ˜0.5 4.5    44     --34.5 g HEC______________________________________
EXAMPLES 14 to 27

The products of examples 1 to 13 were used in a semi-gloss white interior .Iadd.all .Iaddend.acrylic latex paint formulation (formulation 3; SG-41-3; Aqualon Company Natrosol® Plus booklet, p. 16), substituting these products for the Natrosol® Plus Thickener used in the formulation.

Details of the paint properties resulting are given in Table 3. All paints were thickened to a Stormer viscosity of about 90 K.U. Performance parameters are described in the Aqualon Company Natrosol® Plus booklet.

              TABLE 3______________________________________Ex-   Thick-  Brushing             Sagample ener    Viscosity      Level-                              Resistance                                      60°No.   Sample  (poises) Spatter                        ing   (mils)  Gloss______________________________________A. Nonylphenyl Modifier14    1       1.3      5     9     10      33.915    2       1.1      6     10    12      36.016    3       1.0      7     9     17      33.517    4       1.1      8     9     13      26.218    5       0.8      7     7     16      37.419    6       1.0      5     3     24      17.8B. Dodecylphenyl Modifier20    7       1.2      8     9     11      39.821    8       1.0      8     8     13      40.222    9       1.0      8     5     19      40.0C. Dinonylphenyl Modifier23    10      1.2      9     9     10      39.824    11      1.0      8     8     12      38.925    12      0.8      8     8     12      39.1D. Poly(ethyleneoxy)9 nonylphenyl Modifier26    13      1.2      6     9     10      --E Control (Natrosol ®  Plus) (Long Chain Alkyl Modifier)27            11       9     5     20      31.0______________________________________

Several unusual effects have been observed to be caused by the products of this invention in latex paint formulations. Relative to a thickener comprises of a long chain alkyl hydrocarbon modifier such as the group in Natrosol® Plus, these alkylaryl modified HEC thickeners showed significantly better leveling properties in paint, with values of 8-10 (compared to a value of 5 for Natrosol® Plus). When the alkylaryl group was nonylphenyl, the paint leveling value increased as the amount of hydrophobic substitution increased, up to a nonylphenyl substitution value of about 1.5 weight percent. At higher amounts of substitution, paint leveling values decreased. Thus, optimum paint leveling was achieved with nonylphenyl substitution amounts of between 0.5 and 1.5 weight percent. Other paint properties such as spatter resistance, brushing viscosity, and gloss were comparable to those obtained with the long chain hydrocarbon alkyl modifier. Sag resistance properties were slightly poorer as the result of the better leveling properties; however, sag values were still within acceptable limits.

In addition, other alkylaryl modifiers, such as dodecylphenyl (C18) and dinonylphenyl (C24) also gave excellent leveling and sag resistance properties as did cellulose ethers with a long spacer group between the alkylaryl hydrophobic group and a standard connecting group, as in the cellulose ether with a poly(ethyleneoxy)9 nonylphenyl modifier.

EXAMPLE 28

Thickener sample Number 3 from Table 1 was used in a .Iadd.vinyl acrylic paint formulation--specifically, a .Iaddend.vinyl acetate/vinyl versatate latex paint formulation. A leveling rating of 6 was obtained, compared to a rating of 3 for Natrosol® Plus.

This example illustrates an improvement in leveling by use of an alkylaryl modified hydroxyethylcellulose, relative to Natrosol® Plus in a different type of latex paint.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1451331 *Aug 5, 1920Apr 10, 1923Henry DreyfusManufacture of cellulose derivatives
US1483738 *Feb 12, 1924 vienna
US1502379 *Apr 25, 1921Jul 22, 1924Henry DreyfusManufacture of cellulose derivatives
US1683682 *Jun 16, 1923Sep 11, 1928Leon LilienfeldPreparation of alkali cellulose and cellulose ethers
US1683831 *Jun 16, 1923Sep 11, 1928Leon LilienfeldCellulose ether and process of making same
US1867050 *Feb 6, 1929Jul 12, 1932Ig Farbenindustrie AgCellulose ethers and process of preparing them
US1877856 *Jan 22, 1930Sep 20, 1932Ig Farbenindustrie AgManufacture of mixed cellulose ethers
US2067853 *Nov 1, 1934Jan 12, 1937Hercules Powder Co LtdMethod for the preparation of aralkyl ethers of cellulose
US2071287 *Nov 1, 1934Feb 16, 1937Hercules Powder Co LtdAralkyl ethers of cellulose and method of producing
US2077066 *Aug 20, 1934Apr 13, 1937Hercules Powder Co LtdMethod for the preparation of aralkyl ethers of cellulose
US2087549 *Oct 26, 1934Jul 20, 1937Rohm & HaasPreparation of cellulose ethers
US2096114 *May 5, 1934Oct 19, 1937Hercules Powder Co LtdMethod for reducing the viscosity of aralkyl ethers of cellulose
US2098335 *Jun 3, 1936Nov 9, 1937Dreyfus HenryManufacture of derivatives of polyhydroxy compounds
US2101032 *Oct 6, 1934Dec 7, 1937Hercules Powder Co LtdMethod for the recovery of aralkyl ethers of cellulose
US2102205 *Jan 23, 1936Dec 14, 1937Du PontCellulose mixed ethers and process for the preparation thereof
US2119171 *Jul 30, 1934May 31, 1938Hercules Powder Co LtdMethod for the preparation of aralkyl ethers of cellulose
US2201663 *Sep 7, 1933May 21, 1940Du PontXanthate of cellulose glycollic acid
US2205487 *Mar 26, 1938Jun 25, 1940Hercules Powder Co LtdAralkyl ethers of high molecular carbohydrates
US2284282 *Aug 20, 1938May 26, 1942Procter & GambleMenaphthyl cellulose derivatives
US2383361 *May 5, 1943Aug 21, 1945Dow Chemical CoStabilizing cellulose ethers
US3102912 *Mar 4, 1960Sep 3, 1963West Laboratories IncSurface active phenoxy, ethoxylated hydroxy propylamines
US3941751 *Mar 6, 1974Mar 2, 1976Hercules IncorporatedEpoxy-azido compounds
US3971627 *Jun 24, 1975Jul 27, 1976Hercules IncorporatedModified polyester, polyamide, polycarbonate, polyolefin or rayon tire cord
US4009329 *Nov 14, 1975Feb 22, 1977Union Carbide CorporationBioresistant cellulose ethers
US4065319 *Nov 18, 1975Dec 27, 1977Hercules IncorporatedTile cements
US4076930 *Jan 29, 1971Feb 28, 1978James EllingboePolysaccharide polyols
US4084060 *Nov 18, 1976Apr 11, 1978Union Carbide CorporationControlled swelling during hydroxyethylation in aqueous caustic
US4097667 *Dec 16, 1976Jun 27, 1978Hoechst AktiengesellschaftHydroxyalkyl cellulose ethers
US4127495 *Jan 19, 1978Nov 28, 1978Hercules IncorporatedNon-built liquid detergents
US4228277 *Feb 12, 1979Oct 14, 1980Hercules IncorporatedModified nonionic cellulose ethers
US4243802 *Jun 6, 1979Jan 6, 1981Hercules IncorporatedSurfactant-soluble cellulose derivatives
US4281110 *Nov 3, 1980Jul 28, 1981Blount David HProcess for the production of broken down lignin-cellulose silicate copolymers
US4286964 *Oct 12, 1979Sep 1, 1981Seed Brian SPolyfunctional epoxides and halohydrins used as bridging groups to bind aromatic amine group-containing alcohols and thiols to hydroxyl bearing substrates
US4485089 *Oct 17, 1983Nov 27, 1984Hercules IncorporatedGel toothpastes
US4485211 *Sep 15, 1982Nov 27, 1984The B. F. Goodrich CompanyPoly(glycidyl ether)block copolymers and process for their preparation
US4650863 *May 10, 1985Mar 17, 1987Hoechst AktiengesellschaftPreparation of water-soluble mixed cellulose ethers
US4663159 *Feb 1, 1985May 5, 1987Union Carbide CorporationHydrophobe substituted, water-soluble cationic polysaccharides
US4683004 *Aug 20, 1985Jul 28, 1987Union Carbide CorporationCellulose ethers, personal care products
US4684704 *Jun 19, 1986Aug 4, 1987Hercules IncorporatedRheology, storage stability
US4703116 *Feb 14, 1986Oct 27, 1987National Starch And Chemical CorporationWet strength, dry strength
US4731162 *Mar 31, 1987Mar 15, 1988National Starch And Chemical CorporationPolysaccharide derivatives containing aldehyde groups for use as paper additives
US4845175 *Mar 24, 1988Jul 4, 1989Union Carbide CorporationPreparation of aqueous polymer emulsions in the presence of hydrophobically modified hydroxyethylcellulose
US4845207 *Jun 17, 1987Jul 4, 1989Aqualon Company3-alkoxy-2-hydroxypropylhydroxyethylcellulose and building composition containing the same
US4902733 *Jul 25, 1988Feb 20, 1990Aqualon CompanyAqueous protective coating composition comprising 3-alkoxy-2-hydroxypropylhydroxyethylcellulose and film forming latex
US4954270 *Feb 27, 1989Sep 4, 1990Lever Brothers CompanyFabric softening composition: fabric softener and hydrophobically modified nonionic cellulose ether
US4981959 *Feb 27, 1989Jan 1, 1991Akzo N.V.Modified cellulose for biocompatible dialysis membranes II and process for preparation thereof
US4981960 *Feb 27, 1989Jan 1, 1991Akzo N.V.Modified cellulose for biocompatible dialysis membranes IV and process for preparation thereof
US4994112 *Oct 30, 1989Feb 19, 1991Aqualon CompanyHigh speed, uniform coating
US4997935 *Feb 27, 1989Mar 5, 1991Akzo N.V.Ethers, esters
US5100658 *Jul 16, 1990Mar 31, 1992The Procter & Gamble CompanyVehicle systems for use in cosmetic compositions
US5106609 *Jul 16, 1990Apr 21, 1992The Procter & Gamble CompanyVehicle systems for use in cosmetic compositions
US5140099 *Mar 12, 1990Aug 18, 1992Berol Nobel AbWater soluble nonionic cellulose ethers and their use in paints
UST976002 *Jan 9, 1978Nov 7, 1978 Toothpaste containing benzyl hydroxyethyl cellulose as a binder
CH148481A * Title not available
DE492062C *Sep 26, 1919Feb 15, 1930Ig Farbenindustrie AgVerfahren zur Herstellung von Benzylaethern der Cellulose
DE494917C *May 16, 1924Apr 3, 1930Ig Farbenindustrie AgVerfahren zur Darstellung von Celluloseaethern
DE554877C *Sep 22, 1928Jul 15, 1932Ig Farbenindustrie AgVerfahren zur Herstellung von Alkylaralkylaethern kolloidaler Kohlenhydrate, wie Cellulose u. dgl.
DE3147434A1 *Nov 30, 1981Jun 9, 1983Hoechst AgVerfahren zur herstellung von celluloseethern mit dimethoxyethan als dispergierhilfsmittel
EP0161607A2 *May 6, 1985Nov 21, 1985Hoechst AktiengesellschaftProcess for preparing water-soluble mixed ethers of cellulose
EP0384167A1 *Jan 30, 1990Aug 29, 1990Union Carbide Chemicals And Plastics Company, Inc.Polysaccharides with alkaryl or aralkyl hydrophobes and latex compositions containing same
FR808699A * Title not available
GB305946A * Title not available
GB325512A * Title not available
GB346426A * Title not available
GB1242735A * Title not available
Non-Patent Citations
Reference
1 *English Language Derwent Abstract for European Patent Publication No. 0 161 607.
2 *Synthesis, Feb. 1983, pp. 117 119.
3Synthesis, Feb. 1983, pp. 117-119.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5504123 *Dec 20, 1994Apr 2, 1996Union Carbide Chemicals & Plastics Technology CorporationDual functional cellulosic additives for latex compositions
US5583214 *Jun 5, 1995Dec 10, 1996Union Carbide Chemicals & Plastics Technology CorporationDual functional cellulosic additives for latex compositions
US5879440 *Jul 28, 1997Mar 9, 1999Hercules IncorporatedMixing molecular weight degraded polysaccharide derivative which is resistant to enzymatic hydrolysis with ingredients for water-borne paint
US6372901Jun 7, 1995Apr 16, 2002Union Carbide CorporationPolysaccharides with alkyl-aryl hydrophobes and latex compositions containing same
US6417268Dec 6, 1999Jul 9, 2002Hercules IncorporatedMethod for making hydrophobically associative polymers, methods of use and compositions
US6730636 *Apr 30, 2002May 4, 2004Halliburton Energy Services, Inc.Environmentally acceptable well cement fluid loss control additives, compositions and methods
Classifications
U.S. Classification536/90, 536/93, 106/172.1, 524/43, 524/44, 536/96, 536/94
International ClassificationC09D201/00, C09D7/00, C09K3/00, C09D7/12, C09D131/02, C09D193/00, C07D303/22, C08B11/18, C08L1/28, C08B11/193
Cooperative ClassificationC08B11/193, C08L1/28, C09D7/002, C09D131/02
European ClassificationC09D7/00D, C09D131/02, C08B11/193
Legal Events
DateCodeEventDescription
Dec 1, 2008ASAssignment
Owner name: HERCULES INCORPORATED, DELAWARE
Free format text: PATENT TERMINATION CS-013616-0430;ASSIGNOR:CREDIT SUISSE, CAYMAN ISLANDS BRANCH;REEL/FRAME:021901/0297
Effective date: 20081113
Dec 31, 2002ASAssignment
Owner name: HERCULES INCORPORATED, DELAWARE
Free format text: RELEASE OF SECURITY INTEREST;ASSIGNORS:BANK OF AMERICA;HERCULES INCORPORATED;HERCULES CREDIT INC;AND OTHERS;REEL/FRAME:013782/0406
Effective date: 20021219
Owner name: HERCULES INCORPORATED 1313 NORTH MARKET STREETWILM
Dec 27, 2002ASAssignment
Owner name: CREDIT SUISSE FIRST BOSTON, AS COLLATERAL AGENT, N
Free format text: NOTICE OF GRANT OF SECURITY INTEREST;ASSIGNOR:HERCULES INCORPORATED;REEL/FRAME:013616/0430
Effective date: 20021220
Owner name: CREDIT SUISSE FIRST BOSTON, AS COLLATERAL AGENT 11
Jan 5, 2001ASAssignment
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH
Free format text: NOTICE OF GRANT OF SECURITY INTEREST;ASSIGNORS:HERCULES INCORPORATED;HERCULES CREDIT, INC.;HERCULESFLAVOR, INC.;AND OTHERS;REEL/FRAME:011425/0727
Effective date: 20001114
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT INDEPEN
Free format text: NOTICE OF GRANT OF SECURITY INTEREST;ASSIGNORS:HERCULES INCORPORATED /AR;REEL/FRAME:011425/0727