Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE35352 E
Publication typeGrant
Application numberUS 08/588,791
Publication dateOct 15, 1996
Filing dateJan 19, 1996
Priority dateDec 3, 1992
Also published asUS5433700, US5725496, US5762624
Publication number08588791, 588791, US RE35352 E, US RE35352E, US-E-RE35352, USRE35352 E, USRE35352E
InventorsWilliam S. Peters
Original AssigneeHeartport, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for intraluminally inducing cardioplegic arrest and catheter for use therein
US RE35352 E
Abstract
A process for inducing cardioplegic arrest of a heart in situ in a patient's body, comprising maintaining the patient's systemic circulation by peripheral cardiopulmonary by-pass, occluding the ascending aorta through a percutaneously placed arterial balloon catheter, venting the left side of the heart, and introducing a cardioplegic agent into the coronary circulation. This procedure readies the heart for a variety of surgical procedures that can be performed percutaneously through lumina in the catheter. An aortic catheter for use in the process is also described.
Images(6)
Previous page
Next page
Claims(17)
I claim:
1. A method for inducing cardioplegic arrest of a heart in situ in a patient's body, comprising the steps of:
(a) maintaining systemic circulation with peripheral cardiopulmonary by-pass;
(b) occluding at least one of the patient's vena cavae with an inflatable cuff on a distal portion of at least one percutaneously placed venous catheter to isolate a fight atrium of the heart from at least a portion of the patient's venous system;
(c) occluding the ascending aorta through a percutaneously placed arterial balloon catheter;
(d) introducing a cardioplegic agent into the coronary circulation; and
(e) venting the heart through a percutaneously placed catheter.
2. A method as claimed in claim 1 in which the ascending aorta is occluded by an arterial balloon catheter percutaneously placed through one of the fernoral arteries.
3. A method as claimed in claim 2 wherein the cardioplegic agent is introduced through a lumen in the arterial balloon catheter.
4. A method as claimed in claim 1 further comprising introducing a fluid into the right atrium through a lumen in a percutaneous venous catheter which opens between the two cuffs.
5. A method as claimed in claim 1 in which the percutaneous venous catheter is introduced into the heart through a femoral vein.
6. A method as claimed in claim 1 in which the systemic circulation is maintained through a cardiopulmonary by-pass that includes an oxygenated blood return catheter introduced into one of the femoral arteries.
7. A method as claimed in claim 1 wherein the vena cavae arc occluded with two inflatable cuffs, each inflatable cuff being on a separate percutaneously placed venous catheter.
8. A method as claimed in claim 1 wherein the vena cavae are occluded with two inflatable cuffs both disposed on a single percutaneously placed venous catheter.
9. A method as claimed in claim 1 further comprising withdrawing venous blood from at least one vena cava through a lumen in at least one of the percutaneously placed venous catheters and directing the venous blood to the cardiopulmonary by-pass.
10. A method as claimed in claim 4 wherein the fluid comprises saline.
11. A method as claimed in claim 1 wherein oxygenated blood is returned from the cardiopulmonary bypass to the patient's arterial system through a lumen in the arterial balloon catheter.
12. A method as claimed in claim 1 wherein the heart is vented by withdrawing fluid through a lumen in the arterial balloon catheter.
13. A method as claimed in claim 1 further comprising introducing an instrument through a lumen in the arterial balloon catheter into the patient's heart.
14. A method as claimed in claim 13 wherein the instrument comprises a scope, the method further comprising visualizing the heart with the scope.
15. A method as claimed in claim 13 wherein the instrument comprises a cannula having a lumen, the method further comprising venting fluids from the heart through the lumen in the cannula.
16. A method for inducing cardioplegic arrest of a heart in situ in a patient's body, comprising the steps of:
(a) positioning a percutaneously placed venous catheter in at least a portion of both of the patient's vena cavae and in a right atrium of the heart;
(b) occluding a superior vena cavae with a first inflatable cuff on a distal portion of the percutaneously placed venous catheter and occluding an inferior vena cavae with a second inflatable cuff on a distal portion of the percutaneously placed venous catheter to isolate the heart from at least a portion of the patient's venous system;
(c) withdrawing blood from the venous system through a lumen in the venous catheter;
(d) oxygenating the blood withdrawn from the venous system;
(e) returning the oxygenated blood to the patient's arterial system;
(f) occluding the ascending aorta through a percutaneously placed arterial balloon catheter,
(g) introducing a cardioplegic agent into the coronary circulation; and
(h) venting the heart through a percutaneously placed catheter.
17. A method for inducing cardioplegic arrest of a heart in situ in a patient's body, comprising the steps of:
(a) maintaining systemic circulation with peripheral cardiopulmonary bypass;
(b) isolating a fight atrium of the patient's heart from the patient's venous system with at least one percultaneously placed venous catheter;
(c) isolating a coronary vasculature from the patient's arterial system with a percutaneously placed arterial balloon catheter;,
(d) introducing a cardioplegic agent into the coronary vasculature; and
(e) venting fluid from the heart through a percutaneously placed catheter.
Description

.Iadd.This application is a reissue of Ser. No. 08/159,815 filed Nov 30, 1993 now U.S. Pat. No. 5,443,700. .Iaddend.

This application is a reissue of Ser. No. 08/159,815 filed Nov 30, 1993 now U.S. Pat. No. 5,443,700. .Iaddend.

FIELD OF THE INVENTION

The present invention relates to a method for inducing cardioplegic arrest in a heart and to catheters for use in that method.

1. Background Art

The use of extracorporeal cardiopulmonary by-pass for cardiac support has become well established. This use has, however, involved median sternotomy or less commonly thoracotomy with all of the trauma that necessarily accompanies such a major surgical procedure.

The present invention contemplates, at least in its preferred embodiments, the possibility of effective ascending aortic occlusion, cardioplegia, venting, right heart deflation and topical cooling-in association with extracorporeal cardiopulmonary by-pass all without necessitating a median sternotomy or other thoracic incision.

2. Disclosure of the Invention

In a first aspect the present invention consists in a method for inducing cardioplegic arrest of a heart in situ in a patient's body, comprising the steps of:

(a) maintaining systemic circulation with peripheral cardiopulmonary by-pass;

(b) occluding the ascending aorta through a percutaneously placed arterial balloon catheter;,

(c) introducing a cardioplegie agent into the coronary circulation; and

(d) venting the left side of the heart.

The method according to the present invention may be carried out on humans or other mammalian animals. The method is of particular applicability in humans as it allows an alternative approach to open heart surgery and the development of closed cardioscopic surgery. The method according to the invention enables a percutaneous by-pass system to be associated with cardioplegia, venting and cooling of the heart which subverts the need for median sternotomy. This may, in turn, reduce the complications of the surgery.

The maintenance of the systemic circulation involves establishing a cardiopulmonary by-pass. The blood may be drawn into the by-pass merely by positioning a percutaneous catheter into the right atrium and/or into one or both of the vena cavae through which venous blood may be drawn from the heart into an extracorporeal pump oxygenator. In more preferred embodiments of the invention a single catheter with two inflatable cuffs, or two separate catheters, each with an inflatable cuff are introduced into the vena cavae to occlude them adjacent to their right atrial inlets. This allows isolation of the fight atrium and allows blood to be drawn from the vena cavae into the by-pass system. There is also preferably provision for percutaneous communication via one catheter with the right atrium to allow infusion of saline into the right atrium. This infusion has the advantage that it allows the heart to be cooled and improves visual acuity within the right heart allowing direct cardioscopic examination and/or intervention.

The catheter used to decompress the right atrium and to draw blood into the by-pass is preferably introduced through the femoral vein by percutaneous puncture or direct cut down. If other than simple venous drainage is required catheters with inflatable cuffs, as described above, are placed preferably such that an inflatable cuff of the cannula is positioned within each of the inferior (suprahepatic) and superior vena cavae. There is preferably a lumen in the cannula acting as a common blood outlet from the vena cavae leading to the pump oxygenator. A separate lumen is preferably used to infuse saline between the two inflated cuffs into the right atrium. If, alternatively, separate catheters are used to occlude each of the inferior and superior vena cavae then the cannula for the inferior vena cavae is preferably introduced percutaneously from the fernoral vein and that for the superior vena cavae is introduced percutaneously through the jugular or subclavian vein.

The ascending aorta is preferably occluded by a balloon catheter introduced percutaneously through the femoral artery. This catheter must carry adjacent its tip an inflatable cuff or balloon of sufficient size that upon being inflated it is able to completely occlude the ascending aorta. The length of the balloon should preferably not be so long as to impede the flow of blood or other solution to the coronary arteries or to the brachiocephalic, left carotid or left subclavian arteries. A balloon length of about 40 mm and diameter of about 35 mm is suitable in humans. The balloon is of a cylindrical shape to fully and evenly accommodate the lumen of the ascending aorta. This maximises, the surface area contact with the aorta, and allows for even distribution of occlusive pressure.

The balloon of the catheter is preferably inflated with a saline solution to avoid the possibility of introducing into the patient an air embolism in the event that the balloon is ruptured. The balloon should be inflated to a pressure sufficient to prevent regurgitation of blood into the aortic root and to prevent migration of the balloon into the root whilst not being so high as to cause damage or dilation to the aortic wall. An intermediate pressure of the order of 350 mmHg has been proven effective in trials.

The aortic catheter is preferably introduced under fluoroscopic guidance over a suitable guidewire. Transoesophageal echocardiography can alternatively be used for positioning as has been described with reference to the venous catheter. The catheter may serve a number of separate functions and the number of lumina in the catheter will depend upon how many of those functions the catheter is to serve. The catheter can be used to introduce the cardioplegic agent, normally in solution, into the aortic root via one lumen. The luminal diameter will preferably be such that a flow of the order of 250-500 ml/min of caxdioplegic solution can be introduced into the aortic root under positive pressure to perfuse adequately the heart by way of the coronary arteries. The same lumen can, by applying negative pressure to the lumen from an outside source, effectively vent the left heart of blood or other solutions. It may also be desirable to introduce medical instruments and/or a cardioscope into the heart through another lumen in the catheter. The lumen should be of a diameter suitable to pass a fibre-optic light camera of no greater than 3 mm diameter. It is however, preferable that the diameter and cross-sectional design of the internal lumina is such that the external diameter of the catheter in its entirety is small enough to allow its introduction into the adult femoral artery by either percutaneous puncture or direct cut-down.

The oxygenated blood returning to the body from the by-pass system may be conveyed into the aorta from another lumen in the cannula carrying the balloon. In this case the returning blood is preferably discharged from the catheter in the external iliac artery. In another embodiment of the invention, and in order to reduce the diameter of the catheter carring the balloon, a separate arterial catheter of known type may be used to return blood to the patient from the by-pass system. In this case a short catheter is positioned in the other femoral artery to provide systemic arterial blood from the bypass system. The control end of the catheter, i.e. that end that remains outside of the body, should have separate ports of attachment for the lumina. The catheter length should be approximately 900 mm for use in humans.

The cardioplegic agent may be any of the known materials previously known to be useful, or in the future found to be useful, as cardioplegic agents. The agent is preferably infused as a solution into the aortic root through one of the lumina of the aortic catheter.

In another aspect the present invention consists in a catheter for use in occluding the ascending aorta comprising an elongate tube having one or more continuous lumina along its length, an inflatable cuff is disposed about the tube adjacent one end thereof, the cuff being of such a size that upon being inflated it is able to occlude the ascending aorta of a patient.

The catheter and method according to the present invention can be used to induce cardioplegic arrest and may be used in a number of surgical procedures. These include the following:

1. Coronary artery revascularisation such as:

(a) angioscopic laser introduction or angioscopic balloon angioplasty catheter into the coronary arteries via one lumen of the aortic catheter, or

(b) thoraco dissection of one or both of the mammary arteries with revascularisation achieved by distal anastomoses of the internal mammary arteries to coronary arteries via a small left anterior thoracotomy.

2Secundum-type arterial septal defect repair such as by:

(a) "Closed" cardioscopic closure, or

(b) Closure as an "open" procedure via a mini-right thoracotomy.

3. Sinus venosus defect repairs similar to 2 above.

4. Infundibular stenosis relief by cardioscopie techniques.

5. Pulmonary valvular stenosis relief by cardioscopic techniques.

6. Mitral valve surgery via a small right thoracotomy.

7. Aortic stenosis relief by the introduction of instrumentation via a lumen in the aortic catheter into the aortic root.

8. Left ventricular aneurysm repair via a small left anterior thoracotomy.

BRIEF DESCRIPTION OF THE DRAWINGS

Hereinafter given by way of example are preferred embodiments of the present invention described with reference to the accompanying drawings in which:

FIG. 1 is a schematic partly cut-away representation of a patients heart having percutaneous catheters placed therein for carrying out the method according to the present invention;

FIG. 2 is a similar view to FIG. 1 showing the aortic catheter in position but including an angioscope and a left ventricular venting cannula introduced into the aortic root and left ventricle respectively, via separate lumina within the aortic catheter;

FIG. 3 is a front elevational view of part of the vascular system of a patient showing, inter alia, the aortic balloon catheter positioned in the ascending aorta via the femoral artery;

FIG. 4 is a side elevational view of the control end of the aortic catheter according to the present invention;

FIG. 5 is a partly cut away side elevational view of the balloon end of the catheter of FIG. 4 in an inflated condition;

FIG. 6a is a cross-sectional view of the catheter of FIG. 4 intermediate the control end and the balloon end;

FIG. 6b is an alternative cross-sectional arrangement of the lumina in the catheter of FIG. 4;

FIG. 7 is a cross-sectional view through the balloon end of the catheter of FIG. 4;

FIGS. 8a and 8b show schematically two alternative arrangements to the catheter shown in FIG. 4;

FIGS. 9a and 9b show schematically two alternative catheter arrangements for the isolation of the right atrium and venous drainage.

BEST MODE OF CARRYING OUT THE INVENTION

The heart 10 of FIGS. 1 and 2 is positioned in the living body of a patient and is accessed percutaneously.

In order to induce cardioplegia in the heart while maintaining the patient it is necessary to divert the patients blood circulation through an extracorporeal cardiopulmonary by-pass system. This is achieved by isolating the heart 10 on both the venous and arterial sides using appropriate percutaneously inserted venous catheter 11, aortic balloon catheter 12, and if this catheter 12 doesn't have provision for arterial blood return, arterial catheter 39 (see FIG. 3). The venous outflow and arterial inflow lumina of the catheters 11 and 12 of the by-pass system are of sufficient cross sectional area to achieve standard blood flows to maintain the patient's systemic circulation during the period of extracorporeal circulation.

In the case of the use of a single venous double-ballooned catheter 11, as is shown in FIG. 1, the catheter 11 is inserted through the fernoral vein preferably. A suitable guide wire is initially inserted and the catheter 11 is then introduced in known manner under fluoroscopic guidance. The catheter 11 includes a pair of separately inflatable balloons 14 and 15 each connected to a balloon inflation control device (not shown) through suitable lumina in the catheter 11. The balloon 14 is adapted to occlude the superior vena cavae 16 while the balloon 15 is adapted to occlude the suprahepatic inferior vena cavae I7. A blood withdrawal lumen in the catheter 11 has an inlet orifice 18 flush with the balloon 14, to avoid venous collapse during blood flow into the catheter 11, and a series of inlet slots 19 in the inferior vena cavae. Blood drawn into the inlets 18 and 19 enter a common single lumen. Blood drawn into the by-pass system through the catheter 11 is oxygenated and returned to the patient in a manner which will be hereinafter described.

A separate lumen in the catheter 11 opens into the right atrium 22 through aperture 21 to allow evacuation of blood from the right heart and the infusion of saline to induce topical cooling and/or to improve visual acuity within the right heart.

In use, after the catheter 11 has been positioned the balloons may be inflated or deflated to vary the rate of venous return to the right atrium 22 and therefore the degree of decompression of the left heart. Venous drainage may be effected by gravitational drainage or by applying a degree of negative pressure to assist flow into the pump oxygenator. It will be appreciated that the distance between the balloons 14 and 15 will need to be correct for a given patient and this may be assessed by X-ray examination to allow selection of an appropriately sized catheter. Alternatively separate catheters 11b and 11c could be used, as is shown in FIG. 9a, for the inferior and superior vena cavae. The cannula 11b being introduced as has been described above and the cannula 11c being introduced through the jugular or subclavian vein. It will also be appreciated that for simple operations not requiring complete occlusion of the right atrium it is possible to merely insert a simple catheter 11 into the right atrium to draw blood into the by-pass system as is seen in FIG. 2. Positioning under fluoroscopic guidance is not essential in this case.

The catheter 12 is positioned in the manner described above with its free end located in the ascending aorta 23. The catheter 12 is so positioned by insertion preferably through the femoral artery 24 and via the descending aorta 25 as is seen in FIG. 3.

If desired a fluoroscopic dye may be introduced into the aortic root 26 through the catheter 12 for accurate positioning of the tip of the catheter 12 relative to the aortic root 26 and the coronary ostia.

The catheter 12 carries at its free end a balloon 27. The balloon 27 is arranged to be inflated with saline from an inflation control device 23 of known type through a lumen in the catheter 12. The device 28 is fired with a pressure gauge 29 to allow the operator to control the inflation of the balloon 27. The pressure of the fully inflated balloon 27 should be of the order of 350 mmHg so as to be sufficient to effectively occlude the aorta and to prevent the balloon moving while not being so great as to cause damage to the aortic wall. The balloon 27 should have a maximum diameter sufficient to occlude the aorta and for this purpose the maximum diameter should be about 35 mm. The balloon 27 should have a length of about 40 mm so as not to be so long as to occlude or impede blood flow to the coronary arteries on to the brachiocephalic, subclavian or carotid arteries. If necessary in any given patient the required length and diameter of the balloon may be determined by angiographic, X-ray examination or echocardiography and an appropriately sized catheter selected on that basis.

The balloon 27 is preferably connected to the lumen 32 through which it is inflated at the end of the balloon 27 distal to the tip of the catheter 12 through orifice 31 (see FIG. 5). This allows the tip of the catheter to contain fewer lumina than the remainder of the catheter. Accommodation of the deflated balloon around the tip of the catheter is thus possible without adding to the diameter of the tip as compared with the rest of the catheter 12.

The catheter 12 includes a plurality of lumina (see FIGS. 6 and 7). In addition to the balloon inflation lumen 32 there is at least a single venting/cardioplegia lumen 33 of circular cross-section. There may be a separate and extra circular lumen 34 for instrumentation. If two lumens are present the venting/cardioplegia lumen may be circular or crescent shaped in cross-section (FIG. 6a, 6b). The diameter of the various lumina should be as small as practicable commensurate with the intended use. In addition there may be a continuous lumen 35 through which arterial blood is returned from the by-pass. This may flow out of the catheter 11 through an orifice in the region of the external iliac artery. In alternative embodiments of the invention such as shown in FIGS. 3 and 8 the arterial return lumen 35 may comprise its own catheter 39 of known type introduced into the other femoral artery or some other suitable artery.

The control end of the catheter 12, illustrated in FIG. 4, has a plurality of ports of attachment 40, 41, 42 for each of the lumina 32, 33, 34, respectively. Inflation control device 18 and pressure gauge 19 may be connected to port 40 to allow the operator to control inflation of balloon 27.

In use the catheter 11 is introduced percutaneously by puncture or cutdown as has been described and once blood flow through the by-pass is established (including systemic cooling) flows are reduced and the balloon 27 is inflated. Flows are then returned to the operating levels and a suitable cardioplegic agent is introduced into the aortic root. Once the full volume of cardioplegic agent has been given and cardiac arrest achieved, the lumen is then used to vent the heart. The heart may then be operated on or examined by insertion of instrumentation 37 such as a cardioscope or a laser into the heart through the lumen 34 or through atrial trocars. Alternatively, with the heart on by-pass as described above the heart can be approached by an open method by an incision other than median sternotomy. Venting of the left ventricle may be effected by providing an extended cannula 38 projecting from lumen 33 into the left ventricle (see FIG. 2) or by simply applying negative pressure to the venting lumen 33 of the aortic catheter. To reverse cardioplegic arrest the body is rewarmed and the balloon 17 deflated. Aortic blood is thus allowed to perfuse the heart. Whilst the body remaim supported by peripheral cardiopulmonary bypass, the return of the heart rhythm is awaited. External defibrillation may be necessary. Weaning from by-pass is then completed in a routine fashion.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3769960 *Apr 17, 1972Nov 6, 1973Us Health Education & WelfareIntra-aortic balloon system
US4173981 *May 23, 1977Nov 13, 1979University Of UtahCannula for arterial and venous bypass cannulation
US4276874 *Nov 15, 1978Jul 7, 1981Datascope Corp.Elongatable balloon catheter
US4527549 *Sep 30, 1982Jul 9, 1985Shelhigh Inc.Method of and means for intraaortic assist
US4531936 *Jan 12, 1983Jul 30, 1985Gordon Robert TDevice and method for the selective delivery of drugs to the myocardium
US4540399 *Feb 1, 1983Sep 10, 1985Ken LitzieEmergency bypass system
US4592340 *May 2, 1984Jun 3, 1986Boyles Paul WArtificial catheter means
US4601713 *Jun 11, 1985Jul 22, 1986Genus Catheter Technologies, Inc.Variable diameter catheter
US4664125 *May 30, 1986May 12, 1987Pinto John GFlow-occluding method for the diagnosis of heart conditions
US4697574 *Feb 20, 1986Oct 6, 1987Medicorp Research Laboratories Corp.Pump for assistance in circulation
US4705507 *Apr 28, 1986Nov 10, 1987Boyles Paul WArterial catheter means
US4741328 *Mar 14, 1985May 3, 1988Shlomo GabbayMeans for intraaortic assist and method of positioning a catheter therefor
US4785795 *Jan 14, 1987Nov 22, 1988Abiomed Cardiovascular, Inc.High-frequency intra-arterial cardiac support system
US4804365 *Feb 13, 1987Feb 14, 1989C. R. BardVascular cannulae for transfemoral cardiopulmonary bypass and method of use
US4877035 *Oct 12, 1988Oct 31, 1989Trustees Of The University Of PennsylvaniaMeasurement of the end-systolic pressure-volume relation using intraaortic balloon occlusion
US4889137 *May 5, 1988Dec 26, 1989The United States Of America As Reprsented By The Department Of Health And Human ServicesMethod for improved use of heart/lung machine
US4902272 *Jun 17, 1987Feb 20, 1990Abiomed Cardiovascular, Inc.Intra-arterial cardiac support system
US4902273 *Mar 22, 1988Feb 20, 1990Choy Daniel S JHeart assist device
US4943275 *Oct 14, 1988Jul 24, 1990Abiomed Limited PartnershipInsertable balloon with curved support
US5011469 *Aug 29, 1988Apr 30, 1991Shiley, Inc.Peripheral cardiopulmonary bypass and coronary reperfusion system
US5116305 *Oct 23, 1991May 26, 1992Abiomed, Inc.Curved intra aortic balloon with non-folding inflated balloon membrane
US5167628 *May 2, 1991Dec 1, 1992Boyles Paul WAortic balloon catheter assembly for indirect infusion of the coronary arteries
US5176619 *May 5, 1989Jan 5, 1993Jacob SegalowitzHeart-assist balloon pump with segmented ventricular balloon
US5176628 *May 16, 1991Jan 5, 1993Alcon Surgical, Inc.Vitreous cutter
US5186713 *Nov 1, 1990Feb 16, 1993Baxter International Inc.Extracorporeal blood oxygenation system and method for providing hemoperfusion during transluminal balloon angioplasty procedures
US5195942 *Aug 12, 1991Mar 23, 1993Institute Of Critical Care MedicineCardiac arrest treatment
US5219326 *May 5, 1992Jun 15, 1993Hattler Brack GInflatable percutaneous oxygenator
US5254097 *Jan 6, 1992Oct 19, 1993Datascope Investment Corp.Combined percutaneous cardiopulmonary bypass (PBY) and intra-aortic balloon (IAB) access cannula
US5308320 *Dec 28, 1990May 3, 1994University Of Pittsburgh Of The Commonwealth System Of Higher EducationPortable and modular cardiopulmonary bypass apparatus and associated aortic balloon catheter and associated method
US5312344 *Aug 9, 1993May 17, 1994Grinfeld Roberto RArterial perfusion cannula for extracorporeal circulation and other uses
EP0218275A1 *Aug 29, 1986Apr 15, 1987Fijneman, Martinus Jacobus Antonius JohannesMulti-purpose catheter
WO1992017118A1 *Mar 30, 1992Oct 5, 1992Shturman Cardiology Syst IncMethod and apparatus for in vivo heart valve decalcification
Non-Patent Citations
Reference
1"Occlusion Balloon Catheters: Instructions for Use", Medi-Tech, Boston Scientific Corporation, Rev. Mar. 1991.
2Buckberg, G. D. "Strategies and ogic of Cardioplegic Delivery to Prevent, Avoid, and Reverse Ischemic and Reperfusion Damage", J. Thorac Cardio Vasc Surg, 93:127-129 (1987).
3 *Buckberg, G. D. Strategies and ogic of Cardioplegic Delivery to Prevent, Avoid, and Reverse Ischemic and Reperfusion Damage , J. Thorac Cardio Vasc Surg, 93:127 129 (1987).
4Cosgrove, D. M. "Management of the Calcified Aorta: An Alternative Method of Occlusion" Ann Thorac Surg. 36:718-719 (1983).
5 *Cosgrove, D. M. Management of the Calcified Aorta: An Alternative Method of Occlusion Ann Thorac Surg. 36:718 719 (1983).
6Crooke et al. "Biventricular Distribution of Cold Blood Cardioplegic Solution Administered by different retrograde techniques", J. Thorac Cardiovasc Surg. 10240:631-636 (1991).
7 *Crooke et al. Biventricular Distribution of Cold Blood Cardioplegic Solution Administered by different retrograde techniques , J. Thorac Cardiovasc Surg. 10240:631 636 (1991).
8Erah, Jr. and Stoney, Jr. "Balloon Catheter Occlusion of the Ascending Aorta" Ann Thorac Surg. 35:560-561 (1983).
9 *Erah, Jr. and Stoney, Jr. Balloon Catheter Occlusion of the Ascending Aorta Ann Thorac Surg. 35:560 561 (1983).
10Foster and Threlkel "Proximal Control of Aorta with a Balloon Catheter" Surg. Gynecology & Obstetrics, pp. 693-694 (1971).
11 *Foster and Threlkel Proximal Control of Aorta with a Balloon Catheter Surg. Gynecology & Obstetrics, pp. 693 694 (1971).
12Gundry et al. "A comparison of retrograde cardiolegia versus antegrad cardioplegia in the presence of coronary artery obstruction" Ann Thorac Surg, 38(2):124-127 (1984).
13 *Gundry et al. A comparison of retrograde cardiolegia versus antegrad cardioplegia in the presence of coronary artery obstruction Ann Thorac Surg, 38(2):124 127 (1984).
14Ishizaka, M. "Myocardial protection by retrograde cardiac perfusion with cold modified krebs solution through coronary sinus during complete ischemic arrest for 120.", Ass. Thorac Surg (Japan), 25(12):1592-1601 (1977).
15 *Ishizaka, M. Myocardial protection by retrograde cardiac perfusion with cold modified krebs solution through coronary sinus during complete ischemic arrest for 120. , Ass. Thorac Surg (Japan), 25(12):1592 1601 (1977).
16Lust et al. "Improvedprotection of chronically inflow-limited myocardium with retrograde coronary sinus cardioplegia", Circulation 78(5pt2)III217-223 (1988).
17 *Lust et al. Improvedprotection of chronically inflow limited myocardium with retrograde coronary sinus cardioplegia , Circulation 78(5pt2)III217 223 (1988).
18 *Occlusion Balloon Catheters: Instructions for Use , Medi Tech, Boston Scientific Corporation, Rev. Mar. 1991.
19Ogawa et al. "Aortic arch reconstruction without aortic cross-clamping using separate extra corporeal circulation", J. Jpn Assoc Thorac Surg, 41(11):2185-2190 (1993).
20 *Ogawa et al. Aortic arch reconstruction without aortic cross clamping using separate extra corporeal circulation , J. Jpn Assoc Thorac Surg, 41(11):2185 2190 (1993).
21Partington, M. T. "Studies of retrograde cardioplegia: II. Advantages of antegrade/retrograde cardioplegia to optimize distribution in jeopardized myocardium", J. Thorac Cardiovasc Surgery, 1989, 97(4):613-622.
22 *Partington, M. T. Studies of retrograde cardioplegia: II. Advantages of antegrade/retrograde cardioplegia to optimize distribution in jeopardized myocardium , J. Thorac Cardiovasc Surgery, 1989, 97(4):613 622.
23Razi, "The challege of cacific aortitis", J. Card Surg 8:102-107 (1993).
24 *Razi, The challege of cacific aortitis , J. Card Surg 8:102 107 (1993).
25Rossi, F. "Long-Term Cardiopulmonary Bypass by Peripheral Cannulation in a Model of Total Heart Failure", J. Thorac Cardio Vasc Surg, 100:914-921 (1990).
26 *Rossi, F. Long Term Cardiopulmonary Bypass by Peripheral Cannulation in a Model of Total Heart Failure , J. Thorac Cardio Vasc Surg, 100:914 921 (1990).
27 *Sabiston, D. C. Textbook of Surgery, 10th Ed, 2021 2023, 2114 2121, (1972).
28Sabiston, D. C. Textbook of Surgery, 10th Ed, 2021-2023, 2114-2121, (1972).
29Takahashi, M. "Retrograde coronary sinus perfusion for mycardial protection in aortic valve surgery", Jpn Assoc Thorac Surg. 30(3):306-318 (1982).
30 *Takahashi, M. Retrograde coronary sinus perfusion for mycardial protection in aortic valve surgery , Jpn Assoc Thorac Surg. 30(3):306 318 (1982).
31 *Textbook of Surgery, 10th ed. (W. B. Saunders Company, Philadelphia, 1972) pp. 2021 2023, 2114 2121.
32Textbook of Surgery, 10th ed. (W. B. Saunders Company, Philadelphia, 1972) pp. 2021-2023, 2114-2121.
33Uchida et al. "Percutaneous Cardiomyotomy and Valvulotomy with Angioscopic Guidance", American Heart J 121(4, Pt 1):1221-1224 (1991).
34 *Uchida et al. Percutaneous Cardiomyotomy and Valvulotomy with Angioscopic Guidance , American Heart J 121(4, Pt 1):1221 1224 (1991).
35Uchida et al., "Percutaneous Fiberoptic Angioscopy of the Cardiac Valves", American Heart J, 121(6, part 1):1791-98 (1991).
36 *Uchida et al., Percutaneous Fiberoptic Angioscopy of the Cardiac Valves , American Heart J, 121(6, part 1):1791 98 (1991).
37Yamaguchi, A. "A Case of a Reoperation Using a Balloon Catheter with Blocked Pars Ascendes Aortae", Kyobu Geka, 42(11):961-964 (1991).
38 *Yamaguchi, A. A Case of a Reoperation Using a Balloon Catheter with Blocked Pars Ascendes Aortae , Kyobu Geka, 42(11):961 964 (1991).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5779685 *Nov 13, 1995Jul 14, 1998Quest Medical, Inc.Retrograde cardioplegia catheter and method of use
US5795325 *Dec 11, 1995Aug 18, 1998Heartport, Inc.Methods and apparatus for anchoring an occluding member
US5799661 *Jun 7, 1995Sep 1, 1998Heartport, Inc.Devices and methods for port-access multivessel coronary artery bypass surgery
US5810757 *Dec 1, 1995Sep 22, 1998Heartport, Inc.Catheter system and method for total isolation of the heart
US5827220 *Jul 15, 1997Oct 27, 1998Runge; Thomas M.Cannula system for a biventricular cardic support system or a cardiopulmonary bypass system and method
US6182664Feb 18, 1997Feb 6, 2001Edwards Lifesciences CorporationMinimally invasive cardiac valve surgery procedure
US6213126Jun 19, 1997Apr 10, 2001Scimed Life Systems, Inc.Percutaneous artery to artery bypass using heart tissue as a portion of a bypass conduit
US6231544 *May 12, 1997May 15, 2001Embol-X, Inc.Cardioplegia balloon cannula
US6241699Jul 22, 1998Jun 5, 2001Chase Medical, Inc.Catheter system and method for posterior epicardial revascularization and intracardiac surgery on a beating heart
US6248121Jul 23, 1998Jun 19, 2001Cardio Medical Solutions, Inc.Blood vessel occlusion device
US6251093Jul 13, 1998Jun 26, 2001Heartport, Inc.Methods and apparatus for anchoring an occluding member
US6253769Sep 7, 1999Jul 3, 2001Scimed Life Systems, Inc.Method for percutaneous coronary artery bypass
US6267747 *May 6, 1999Jul 31, 2001Cardeon CorporationAortic catheter with porous aortic root balloon and methods for inducing cardioplegic arrest
US6299599 *Oct 27, 1999Oct 9, 2001Alsius CorporationDual balloon central venous line catheter temperature control system
US6311693Oct 4, 1999Nov 6, 2001Wesley D. StermanMethod and systems for performing thoracoscopic cardiac bypass and other procedures
US6315768 *Jun 8, 1999Nov 13, 2001Richard K. WallacePerfusion procedure and apparatus for preventing necrosis following failed balloon angioplasty
US6325813Aug 18, 1998Dec 4, 2001Scimed Life Systems, Inc.Method and apparatus for stabilizing vascular wall
US6332468Sep 7, 1999Dec 25, 2001Cardiothoracic Systems, Inc.Method for coronary artery bypass
US6340356Sep 23, 1997Jan 22, 2002NAVIA JOSť ANTONIOIntraluminal catheter with expandable tubular open-walled element
US6390098Dec 23, 1999May 21, 2002Scimed Life Systems, Inc.Percutaneous bypass with branching vessel
US6432124May 3, 2000Aug 13, 2002Alsius CorporationMethod and system treating heart malady such as cardiac arrest and heart attack using hypothermia
US6443158Jun 1, 1998Sep 3, 2002Scimed Life Systems, Inc.Percutaneous coronary artery bypass through a venous vessel
US6478029Aug 5, 2000Nov 12, 2002Hearport, Inc.Devices and methods for port-access multivessel coronary artery bypass surgery
US6494211Jan 19, 2000Dec 17, 2002Hearport, Inc.Device and methods for port-access multivessel coronary artery bypass surgery
US6494897Sep 4, 2001Dec 17, 2002Heartport, Inc.Methods and systems for performing thoracoscopic cardiac bypass and other procedures
US6517524Feb 15, 2001Feb 11, 2003Genesse Biomedical, Inc.Occlusive cannula for aortic blood flow and air venting
US6539945Jan 25, 2001Apr 1, 2003The Cleveland Clinic FoundationMinimally invasive cardiac surgery procedure
US6575168Jan 12, 2001Jun 10, 2003Scimed Life Systems, Inc.System and method for percutaneous coronary artery bypass
US6592547Jan 21, 1999Jul 15, 2003Grimes Kevin VMethods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested
US6620131Aug 10, 2001Sep 16, 2003Alsius CorporationDual balloon central venous line catheter temperature control system
US6682551Mar 31, 2000Jan 27, 2004Alsius CorporationMethod and system for treating cardiac arrest using hypothermia
US6709415Oct 31, 2001Mar 23, 2004Biosud S.A.Intraluminal catheter with expandable tubular open-walled element
US6726710May 20, 2002Apr 27, 2004Alsius CorporationMethod and system for treating cardiac arrest using hypothermia
US6732739Feb 10, 2003May 11, 2004The Cleveland Clinic FoundationMinimally invasive cardiac surgery procedure
US6835188 *Jul 31, 2001Dec 28, 2004Cardeon CorporationAortic catheter with porous aortic root balloon and methods for inducing cardioplegic arrest
US6936057Nov 7, 2000Aug 30, 2005Cardio Medical Solutions, Inc. (Cms)Device and method for partially occluding blood vessels using flow-through balloon
US7004175May 13, 2003Feb 28, 2006Scimed Life Systems, Inc.System and method for percutaneous coronary artery bypass
US7014651Jun 27, 2002Mar 21, 2006Alsius CorporationMethod and system for treating cardiac arrest using hypothermia
US7028692Sep 19, 2001Apr 18, 2006Heartport, Inc.Methods and systems for performing thoracoscopic coronary bypass and other procedures
US7131447Apr 26, 2004Nov 7, 2006Heartport, Inc.Methods and systems for performing thoracoscopic coronary bypass and other procedures
US7874981Jul 31, 2003Jan 25, 2011Tyco Healthcare Group LpOrifice introducer device
WO1998043696A1 *Mar 31, 1998Oct 8, 1998Heartport IncMethods and devices for occluding a patient's ascending aorta
WO1998047558A1 *Apr 22, 1998Oct 29, 1998Heartport IncAntegrade cardioplegia catheter and method
WO1999029363A1Dec 4, 1998Jun 17, 1999Cardeon CorpAortic catheter and methods for inducing cardioplegic arrest and for selective aortic perfusion
WO1999037202A2Jan 22, 1999Jul 29, 1999Heartport IncMethods and devices for occluding the ascending aorta
WO1999064099A1Jun 8, 1999Dec 16, 1999Cardeon CorpCardiovascular catheter apparatus and catheter positioning method using tissue transillumination
WO2001030413A2 *Oct 24, 2000May 3, 2001Alsius CorpDual balloon central venous line catheter temperature control system
Classifications
U.S. Classification604/6.14, 604/113, 604/28
International ClassificationA61M25/00
Cooperative ClassificationA61M25/0026, A61M2210/127, A61M2025/1052, A61B2018/00232, A61M25/0032, A61M2025/028, A61B2018/00261, A61M2205/3355, A61M2202/047, A61M25/0023, A61M2205/3344
European ClassificationA61M25/00R1M
Legal Events
DateCodeEventDescription
Mar 21, 2008ASAssignment
Owner name: EDWARDS LIFESCIENCES, LLC, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEARTPORT, INC.;REEL/FRAME:020753/0153
Effective date: 20071219
May 17, 2004PRDPPatent reinstated due to the acceptance of a late maintenance fee
Effective date: 19961015