Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE36798 E
Publication typeGrant
Application numberUS 09/190,109
Publication dateAug 1, 2000
Filing dateAug 3, 1992
Priority dateAug 1, 1991
Publication number09190109, 190109, US RE36798 E, US RE36798E, US-E-RE36798, USRE36798 E, USRE36798E
InventorsGareth Williams, Judith A. Cornfield, Janet Brown, Neil P. Ryan
Original AssigneeHickson International, Plc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Comprising cuprammonium complex compound and tebuconazole used for preservation of wood
US RE36798 E
Abstract
The instant invention concerns a wood preservative composition comprising a synergistically effective amount of (a) a cuprammonium compound and (b) tebuconazole to preserve wood.
Images(4)
Previous page
Next page
Claims(4)
We claim:
1. A wood preservative composition comprising a synergistically effective amount of (a) a cuprammonium compound and (b) tebuconazole to preserve wood.Iadd., wherein (a) and (b) are present in a ratio of between 500:1 and 5:1 by weight of copper ion to tebuconazole.Iaddend.. .[.2. The wood preservative composition of claim 1, wherein (a) and (b) are present in a
ratio of between 500:1 and 2:1 by weight..].3. The wood preservation composition of claim 1, wherein (a) and (b) are present in a ratio of between 5:1 and 50:1 by weight .Iadd.of copper ion to
tebuconazole.Iaddend.. 4. The wood preservative composition of claim 1, wherein (a) and (b) are present in a ratio of approximately 25:1 by weight
.Iadd.of copper ion to tebuconazole.Iaddend.. 5. The wood preservative composition of claim 1 wherein said cuprammonium compound is copper complexed with an alkanolamine.
Description

This invention relates to preservative for wood and other cellulosic materials.

The use of biocidal metal ions in wood preservation is well known. There are also many compounds containing a triazole group which are known to possess biocidal properties.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a graph correlating the additive and synergistic effects of a loading of hypothetical compound X relative to a loading of hypothetical compound Y. Points A and B are the toxic index values for biocidal compounds Y and X respectively. The straight line between the two points illustrates the toxic index values which would be obtained if the biocidal effects of compounds X and Y were merely additive.

FIG. 2 is a graph correlating the loading of tebuconazole (Kg/m3) and the loading of copper (Kg/m3). The dotted line illustrates the expected concentration of cuprammonium compound and tebuconazole which would be needed in a composition containing copper and tebuconazole at a weight ratio of 25:1 if the performance of copper and tebuconazole were merely additive. The solid line illustrates the actual concentrations found to be required.

FIG. 3 is a graph correlating the retention of copper (Kg/m3) and the retention of tebuconazole (Kg/m3). The line with broad dashes illustrates a theoretical line of effectiveness assuming that the performance of copper and tebuconazole are merely additive. The line with narrow dashes illustrates the actual line of effectiveness. The solid lines illustrate the ratio of cuprammonium compound to tebuconazole.

FIG. 4 is a graph correlating the loading of tebuconazole (Kg/m3) and the loading of copper (Kg/m3). The dotted line illustrates the expected concentrations of cuprammonium compound and tebuconazole at a weight ratio of 25:1 if the performance of copper and tebuconazole were merely additive. The solid line illustrates the actual concentrations found to be required.

FIG. 5 is a graph correlating the loading of propiconazole (Kg/m3) and the loading of copper (Kg/m3). The dotted line illustrates the expected concentrations of cuprammonium compound and propiconazole at a weight ratio of 25:1 if the performance of copper and propiconazole were merely additive. The solid line illustrates the actual concentrations found to be required.

FIG. 6 is a graph correlating the loading of azaconazole (Kg/m3) and the loading of copper (Kg/m3). The dotted line illustrates the expected concentrations of cuprammonium compound and azaconazole at a weight ratio of 25:1 if the performance of copper and azaconazole were merely additive. The solid line illustrates the actual concentrations found to be required.

According to the present invention there are provided preservative compositions comprising a biocidal metal compound and a fungicidal compound containing a triazole group wherein the weight ratio of metal atom: fungicidal compound containing the triazole group is at least 1:2.5; with the specific exceptions of (i) composition (a) which contains 1.320% by weight of sodium nitride, 1.190% by weight of copper sulphate. 5H2 O, 0.400% by weight of boric acid, 0.625% by weight of sodium heptonate, 0.390% by weight of sodium hydroxide, 0.012% by weight of tebuconazole, 0.391% by weight of surfactant blend in xylene and 95.762% by weight of water and (ii) composition (b) which contains 0.00025% by weight of a compound of formula: ##STR1## 0.025% by weight of a compound of formula ##STR2## 2.525% by weight of dimethylformamide, 0.006313% by weight of alkylarylpolyglycolether the remainder being water.

We have found that compositions according to the invention possess advantageous properties: in particular, it has been found that the metal compound and the fungicidal compound containing the triazole group (hereinafter "the triazole compound") exhibit synergistic fungicidal activity.

It will be understood that the metal compound may be present in a form such that metal ions are free in solution or may form part of a complex. Similarly, the triazole compound may be free in solution or may be present in the form of a salt or a complex. For example, the triazole compound could be present in the form of a complex with part of the biocidal metal ion.

The compositions according to the invention may be used to treat substrates such as wood or other cellulosic materials (such as cotton, hessian, rope and cordage). For convenience, the invention will be described hereinafter with reference to the treatment of wood but it will be appreciated that the other materials may be treated analogously.

The metal compound may be a compound of any biocidally active metal including copper, aluminum, manganese, iron, cobalt, nickel, zinc, silver, cadmium, tin, antimony, mercury, lead and bismuth. These may be either used alone or in mixtures. The preferred metals are copper and zinc used alone, in combination with each other or with one or more of the metals listed previously. The most preferred metal is copper, particularly Cu (II) ion.

The triazole compound may be any compound which contains a triazole group and which possesses biocidal activity. Preferably the triazole compound contains the triazole group. ##STR3##

Advantageously, the triazole compound is selected from compounds of formula (A): ##STR4## wherein R1 represents a branched or straight chain C1-5 alkyl group (e.g. t-butyl) and R2 represents a phenyl group optionally substituted by one or more substituents selected from halogen (e.g. chlorine, fluorine or bromine) atoms or C1-3 alkyl (e.g. methyl), C1-3 alkoxy (e.g. methoxy) phenyl or nitro groups.

A particularly preferred compound of formula (A) is tebuconazole:

alpha-[2-(4-chlorophenyl)ethyl]-alpha(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol.

Alternatively, the triazole compound is advantageously selected from compounds of formula (B): ##STR5## wherein R3 is as defined for R2 above and R4 represents a hydrogen atom or a branched or straight chain C1-5 alkyl group (e.g. n-propyl).

Particularly preferred compounds of formula (B) are: propiconazole (1-[[2-(2,4-dichlorophenyl)-4-propyl- 1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole) and azaconazole (1-[[2,4-dichlorophenyl)-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole).

Hexaconazole and difenaconazole are examples of further triazole compounds which may be used in the compositions of the invention.

Compositions may contain more than one triazole compound for example, they may contain tebuconazole and propiconazole, or a mixture of tebuconazole, propiconazole and azaconazole.

We have found that the biocidal metal may advantageously be incorporated into the composition in the form of inorganic salts of the metal ion e.g. in the form of the metal carbonate, sulphate, chloride, hydroxide, borate, fluoride or oxide. Alternatively the metal may be used in the form of the metal salt of simple organic compound e.g. in the form of a salt of a carboxylic acid such as a metal acetate. Thus, it has been found that the biocidal triazole compounds exhibit synergistic properties when the metal ion is present in the form of such simple salts, and it is not necessary to add the metal ion in the form of a salt of, or complex with, a larger more complex organic compound which itself possesses biocidal properties.

The optimum weight ratio of metal ion to triazole compound varies depending on the particular material or product to which the composition is applied and the type of organism against which protection is required. Preferably the ratio by weight of metal to triazole compound is less than 1000:1, e.g. no greater than 750:1. More preferably, the weight ratio of metal: triazole compound should be between 750:1 and 1:1, particularly preferably between 500:1 and 2:1; most preferably the said ratio is between 50:1 and 5:1, especially about 25:1.

The concentration required for preservative treatment depends on the ratio of metal to triazole compound selected, the metal chosen, the method of treatment employed, the timber species, the level of protection required and the nature and quantity of any other biocides present. The levels necessary can be determined readily by one skilled in the art. In general, the level of metal required will be in the range 0.01-5% and the level of triazole will be in the range 25 ppm to 1.0%. The preferred range for waterborne treatments is to have a metal concentration of 0.1-5% and a triazole level of 50 ppm to 5000 ppm.

Compositions in accordance with the invention may if desired additionally contain nitrite ion. Alternatively, there can be advantages associated with the omission of nitrite ion from the compositions for example, by leaving out nitrite ion the formation of certain noxious gases is prevented.

The compositions of the present invention advantageously contain a biocidally active quaternary ammonium compound or tertiary amine salt. These compounds aid in the formation of emulsions of triazole compounds in aqueous solutions of biocidal metal ion. Compositions containing quaternary ammonium compounds or tertiary amine salts can form micro-emulsions which are particularly useful in the treatment of timber. In addition, the presence of these compounds may mean that additional organic solvents are not necessary to solubilise the triazole compound. Furthermore, the quaternary ammonium compounds and tertiary amine salts are themselves biocidal and so they enhance the overall biocidal activity of the composition. These compounds also improve penetration of the biocidal metal ion and triazole compound into the timber.

The composition in accordance with the invention may contain water as solvent, or an organic solvent or a mixture of solvents. Formulations can be prepared as concentrates intended to be diluted at the treatment facility, or the formulations can be prepared in the form of dilute treatment solutions. Optionally, separate solutions of biocidal metal ion and triazole compound can be provided e.g. in the form of two concentrates intended to be mixed before or after dilution.

Suitable formulations may be prepared, for example, by preparing aqueous solutions of metal ion complexes and subsequently adding an emulsified formulation of the triazole compound. Suitable complexing agents for the metal ion would be for example, polyphosphoric acids such as tripolyphosphoric acid, ammonia, water soluble amines and alkanolamines capable of complexing with biocidal cations; aminocarboxylic acids such as glycine, glutamic acid, ethylenediaminetetra-acetic acid, hydroxyethyldiamine triacetic acid, nitrilotriacetic acid and N-dihydroxy ethylglycine; polymeric compounds which contain groups capable of complexing with metallic cations such as polyacrylic acids; hydroxycarboxylic acids such as tartaric acid, citric acid, malic acid, lactic acid, hydroxybutyric acid, glycollic acid, gluconic acid and glucoheptonic acid; phosphonic acids such as nitrilotrimethylene phosphonic acid, ethylenediaminetetra (methylene phosphonic acid), hydroxyethylidene diphosphonic acid. Where the complexing agents are acidic in nature they may be employed either as free acids or as their alkali metal or ammonium salts. These complexing agents may be used either alone or in combination with each other. Suitable surfactants for triazole compounds include, for example, cationic, nonionic, anionic or amphoteric surfactants.

Suitable formulations can also be prepared, for example, by adding an emulsified formulation of the triazole compound to an aqueous solution of a metal salt, such as copper sulphate or zinc acetate. At high ratios of metal ion to azole, the solubility of the azole may be sufficient to disperse the azole in the formulation using a suitable co-solvent.

Alternatively, formulations can be prepared employing only organic solvents. To prepare such formulations, a biocidal metal salt of a carboxylic acid (e.g. decanoic or octanoic acid) is prepared and dissolved in a suitable organic solvent to form a concentrate. The triazole compound can then be added directly to the concentrate or to a solution diluted with a suitable solvent such as an ester, alcohol, ester alcohol, aliphatic or aromatic hydrocarbon, glycol ether, glycol or ketone.

Concentrated formulations containing organic solvents can optionally be mixed with water to form an emulsion which can be stabilized with surfactants if necessary.

Compositions in accordance with the invention can optionally contain other additives conventionally employed in timber preservation such as water repellents, color additives, viscosity modifiers or corrosion inhibitors.

The compositions of the invention may contain other organic compounds including fungicides, insecticides and bacteriocides. Such organic compounds include carboxylic acids such as naphthenic acids and branched aliphatic acids and their metal salts such as copper and zinc naphthenate, phenols and substituted phenols such as orthophenyl phenol and its alkali metal or ammonia salts; polyhalogenated phenols such as pentachlorophenol or tribromophenol and their alkali metal or ammonia salts; quaternary ammonium salts and tertiary amine salts such as didecyl dimethyl ammonium chloride, octyl decyl dimethyl ammonium chloride, dodecyl dimethyl benzyl ammonium chloride, dodecyl benzyl trimethyl ammonium chloride, dodecyl dimethyl amine acetate, dodecyl dimethyl amine lactate, dodecyl dimethyl amine salicylate, didodecyl methyl amine chloride; isothiazolone derivatives such as 4,5-dichloro-2-(n-octyl)-4-isothiazolin-3-one or 2-methyl-4-isothiazolin- 3-one, 2n-octyl-4-isothiazolin-3-one and mixtures of those and other related compounds; sulphamide derivatives such as N,N-dimethyl-N-phenyl-(N-fluorodichloro-methylthio)-sulphonamide, N,N-dimethyl-N-tolyl-N-(dichlorofluoro-methylthio)-sulphamide; azoles such as imidazole; MBT (methylene-bis thiocyanate); IPBC (3-iodo-2-propanyl-butyl-carbamate); carbendazim and chlorothalonil; N-nitrosophenylhydroxylamine and N-nitroso cyclohexyl hydroxylamine, either as their metal salts or as metal chelates; pyrethroid type insecticides selected from the group consisting of cyano-(4-fluoro-3-phenoxyphenyl)-methyl- 3-(2,2-dichloroethenyl)-2,2-dimethyl-cyclopropanecarboxylate, (3-phenoxyphenyl)-methyl- 3-(2,2-dichloroethyenyl)-2,2-dimethylcyclopropanecarboxylate, cyano-(3-phenoxyphenyl)-methyl- 2-(4-chlorophenyl)-3-methylbutyrate, and mixtures thereof; organo-phosphorous, carbamate and organochlorine insecticides such as lindane.

Other biocidally active elements may also be present such as boron, in any form, for example boric acid, boron or boron esters and also fluorides and silicafluorides.

Particularly preferred compositions in accordance with the invention comprise copper (II) ion, a triazole compound which is tebuconazole or propiconazole, and an alkanolamine, as well as borate ion and/or a quaternary ammonium compound or a mixture of quaternary ammonium compounds.

According to a further aspect of the invention there is provided a method of treating a substrate of the type hereinbefore defined which comprises applying to the substrate a composition as defined above. Also within the scope of the invention is a method of treating a substrate of the type hereinbefore defined which comprises applying to the substrate composition (b) as defined above.

The skilled man will be well acquainted with the various methods of treating the substrates with aqueous solutions. For example, the compositions according to the invention may be applied to wood by dipping, spraying, deluging, brushing and by vacuum and/or pressure impregnation. Other types of substrate may be treated by analogous methods.

The following non-limiting Examples further illustrate the invention.

EXAMPLES

The compositions of Examples 1 to 3 may be prepared by adding an emulsified formulation of the triazole compound to an aqueous solution of a metal complex.

______________________________________             % w/w______________________________________Example 1 A concentrate formulation; metal to azole ratio______________________________________25:1Basic copper carbonate               10.9Monoethanolamine    23.1Boric acid          16.9Tebuconazole        0.24Xylene              3.76Process oil         4.00Anionic/non-ionic emulsifier               1.00Water               40.10______________________________________Example 2 A ready to use solution; metal to azole ratio______________________________________10:1Copper sulphate pentahydrate               1.18Lactic acid         2.13Sodium nitrite      1.31Boric acid          0.79Ammonium hydroxide  0.57Tebuconazole        0.03Cypermethrin        0.05Methyl dioxitol     0.64Anionic/non-ionic emulsifier               0.08Water               93.22______________________________________Example 3 A ready to use solution; metal to azole ratio______________________________________5:1Basic copper carbonate               0.55Ammonium hydroxide  0.65Ammonium bicarbonate               0.33Propiconazole       0.06Naphthenic acid     0.15Anionic/non-ionic emulsifiers               0.21Methyl dioxitol     0.48Water               97.624______________________________________
EXAMPLE 4

A ready to use solution; metal to azole ratio 5:1

The compositions of Examples 4 and 5 may be prepared by adding an emulsified formulation of the triazole compound to an aqueous solution of the metal ion.

______________________________________             % w/w______________________________________Copper acetate      0.43Zinc acetate        0.84Tebuconazole        0.06Ester alcohol       0.032-ethyl hexanoic acid               0.03Process oil         0.03Anionic/non-ionic emulsifier               0.06Water               98.52______________________________________Example 5 A ready to use solution, metal to azole ratio______________________________________30:1Copper sulphate pentahydrate               1.18Azaconazole         0.01Methyl dioxitol     0.08Anionic/non-ionic emulsifiers               0.01Water               98.72______________________________________Example 6 Two pack system______________________________________Pack A:Copper carbonate    14.5Monoethanolamine    30.7Water               54.8Pack B:Tebuconazole        10Ester glycol        502-ethyl hexanoic acid               10Process oil         10Anionic/non-ionic emulsifiers               20______________________________________

The ratio of copper to Tebuconazole resulting from the mixing of Pack A and Pack B can vary from 1:2.5 to 750:1 parts by weight.

The separate packs are intended to be mixed together at the treatment facility and diluted with water.

Examples 7 to 11 contain organic solvents.

______________________________________           % w/w______________________________________Example 7 A concentrateZinc versatate    15.0Tebuconazole      0.5Glycol ether      10.0White spirit      74.5Example 8 A concentrateCopper caprylate  25.0Tebuconazole      0.05Shellsol A        74.75Permethrin        0.2Example 9 A concentrateCopper acypetacs  15.0Hexylene glycol biborate             10.0Cypermethrin      0.1Tebuconazole      0.1White spirit      74.8Example 10 A concentrateZinc octoate      50.0Azaconazole       1.0Glycol ether      49.0Example 11 A ready to use solutionCopper versatate  5.0Propiconazole     0.01Permethrin        0.1White spirit      94.89______________________________________

The compositions of Examples 12 and 13 each contain a biocidally active quaternary ammonium compound. These compounds stabilize the triazole compound in the treatment solution obtained by diluting the concentrated compositions.

______________________________________Example 12 A concentrate               % w/w______________________________________Monoethanolamine      19.23Basic copper carbonate                 7.27Benzalkonium chloride (50% active)                 8.0Tebuconazole          0.8Boric acid            11.3______________________________________

Weight ratio Cu:benzalkonium chloride:Tebuconazole 5:5:1

EXAMPLE 12(a)

A concentrate was made having the same formulation as Example 12 except that monoethanolamine was replaced by ethylenediamine.

______________________________________Example 13 A concentrate              % w/w______________________________________Monoethanolamine     30.77Basic copper carbonate                14.50Didecyldimethylammonium methyl                8.0sulphate (50% active)Propiconazole        0.32______________________________________

Weight ratio Cu: Didecyldimethylammonium methyl sulphate: Propiconazole 2:1:0.08

EXAMPLE 13(a)

A concentrate was made having the same formulation as Example 13 except that monoethanolamine was replaced by diethanolamine.

Synergistic Action of Mixtures Formulated According to the Invention

The toxic limit value for a particular biocidal compound is the concentration of the compound which is required to prevent degradation (defined as >3% mass loss) of a substrate by a target organism. Toxic limits are normally expressed as two experimentally-determined concentrations that span the pass/fail point of the test. The toxic index is the midpoint of these two values. Where a preservative composition contains two biocidal compounds at a particular ratio, the toxic index is the estimated minimum concentration of each biocide required for effective protection of the substrate from the target organism. In FIG. 1 of the accompanying drawings, points A and B are the toxic index values for biocidal compounds Y and X respectively and the straight line between these two points illustrates the toxic index values which would be obtained if the biocidal effects of compounds X and Y are merely additive. If, for any particular ratio of X:Y, the toxic index value is found to be below the straight line (e.g. at point C), then compounds X and Y are synergistic at that particular ratio.

A convenient method of assessing the synergistic properties of a formulation is to use a `synergistic index`. This may be defined as: ##EQU1##

The theoretical toxic index may be calculated by interpolation to the theoretical line of action. A SI of 1 indicates no synergism. As the SI increases, so the degree of synergism also increases.

A) Compositions containing tebuconazole

(i) Fungicidal effect on basidiomycete

Fungicidal activity was measured according to the test method pr EN113. This method involves treating small wood blocks with the preservative compounds and then exposing them to the decay fungi in a small test vessel. Using a range of treatment concentrations, estimation of performance is determined after a 12 week exposure period by measuring the weight loss of the blocks. Average values for weight loss for replicate samples allow the determination of an estimated concentration or loading of preservative in the wood which will be effective against the target fungus. In order to demonstrate synergism, results have been obtained using tebuconazole alone, a substituted cuprammonium compound and then together as a mixture, the constituents of which are given as Example 1. The copper to tebuconazole ratio for this example was 25:1. All tests were carried out after cold water leaching according to the method published as EN84. Although boron was included in these formulations, this leaching procedure is sufficient to remove all of the boron. There is therefore no contribution of this active ingredient to overall efficacy in the tests. Results are given in Tables 1 and 2 for the individual active ingredients and Table 3 for the mixture.

              TABLE 1______________________________________Toxic limit values for Tebuconazole asdetermined by EN113 (kgm-3 active ingredient)        Toxic Limit                Toxic Index        kgm-3                kgm-3______________________________________P. placenta    0.3-0.5   0.4C. Versicolor  0.2-0.4   0.3C. puteana     0.05-0.2  0.125______________________________________

              TABLE 2______________________________________Toxic limit values for substitute coprammoniumcompounds determined by EN113 (kgm-3 copper)        Toxic Limit                Toxic Index        kgm-3                kgm-3______________________________________P. placenta    >4.62     Estimated value 5.0G. trabeum     >4.49     --C. puteana     3.1-5.4   4.25______________________________________

These results clearly indicate the differential performance between tebuconazole and the cuprammonium compounds. For the most aggressive fungus (Poria placenta) about 0.4 kgm-3 Tebuconazole is required for effectiveness whilst approximately 5.0 kgm-3 of copper is required to prevent decay.

Further results for tests using a 25:1 mixture of copper to tebuconazole are given in Table 3. Poria placenta was used as this is the most aggressive fungus in the full EN113 test towards these two compounds.

              TABLE 3______________________________________Toxic limit values for a 25:1 copper:tebuconazolemixture as determined by EN113. (Toxic limitvalues given as kgm-3 Cu)        Toxic Limit                Toxic Index        kgm-3 Cu                kgm-3 Cu______________________________________P. placenta    1.4-2.2   1.8______________________________________

These results have been plotted in diagrammatic form in FIG. 2 of the accompanying drawings.

In FIG. 2, the dotted line illustrates the expected concentration of cuprammonium compound and tebuconazole which would be needed in a composition containing copper and tebuconazole at a weight ratio of 25:1 if the performance of copper and tebuconazole were merely additive (3.2 kgm-3 copper and 0.13 kgm-3 tebuconazole). The solid line illustrates the actual concentrations found to be required. These concentrations are considerably lower than expected (1.8 kgm-3 copper and 0.072 kgm-3 tebuconazole), producing a synergistic index of 1.78.

ii) Fungicidal effect of various copper:tebuconazole ratios

The above tests have been extended to delineate the range of ratios over which synergism exists between cuprammonium compounds and tebuconazole. A shortened version of the test prEN113 was used: the duration of the test was 6 weeks; the target fungus was C.puteana as the growth rate of this copper tolerant fungus is reliable in a six week exposure test. All blocks were cold-water leached according to prEN84. The compositions tested were obtained by mixing the packs A and B described in Example 6 to obtain the copper: Tebuconazole ratios shown in Table 4, which also shows the toxic and synergistic indices found at these ratios.

              TABLE 4______________________________________                 Theoretical      Toxic Index                 Toxic Index                            SynergisticFormulation      (kgm-3)                 (kgm-5)                            Index______________________________________Tebuconazole      0.048   aiCuprammonium      4.91    Cucompound  1:10     0.048   ai     0.048 ai   1.00 25:1      <0.48   Cu     0.95  Cu   >2.08 500:1     <1.90   Cu     4.10  Cu   >2.101000:1     4.34    Cu     4.40  Cu   1.01______________________________________ N.B. Ratios given as Copper:Tebuconazole ai = active ingredient

These values clearly show the surprising differences in fungicidal activity exhibited by different ratios of Cu:tebuconazole; they are shown in diagrammatic form in FIG. 3. Whereas at 1:10 and 1000:1 the fungicidal activity of Cu and tebuconazole are purely additive, at 25:1 and 500:1 the formulations are significantly synergistic.

iii) Fungicidal effect against soft rot

The mixture used in the previous test was further tested in a fungal cellar test where activity against soft rot was assessed. Results from this test are particularly important in assessing the suitability of wood preservatives for use in ground contact.

Small stakes of wood (15󫢩00 mm) of Beech were exposed in unsterile soil to nine-tenths of their length. The exposure period was six months. Leached samples were used. The strength loss was used as the main criteria for assessment. 80% of residual strength was used as the level at which toxic limits were determined.

Toxic thresholds on Beech against soft rot for individual components and mixtures after leaching are given below (in this table, the toxic limit and toxic index for the cuprammonium compound are given in kg of Cu per m3).

              TABLE 5______________________________________          Toxic Limit                   Toxic Index          (kgm-3 active                   (kgm-3 active          ingredient)                   ingredient)______________________________________Tebucanozole     >9.09      >9.09Cuprammonium compound            >8.44      >8.44Copper:Tebuconazole 25:1            1.65-3.25  2.45______________________________________

The interaction between the copper and tebuconazole for performance on Beech against soft rot is shown in FIG. 4 of the accompanying drawings.

In FIG. 4, the dotted line illustrates the expected concentrations of copper and tebuconazole needed in a composition containing copper and tebuconazole at a weight ratio of 25:1 if the performance of copper and tebuconazole were merely additive (>8.44 kgm-3 copper and >0.33 kgm-3 tebuconazole). The solid line illustrates the actual concentrations found to be required. These concentrations are considerably lower than expected (2.44 kgm-3 copper and 0.01 kgm-3 tebuconazole).

These results show that the synergistic index of copper:tebuconazole combined at a ratio of 25:1 is >3.58 when tested against soft rot fungi.

B) Compositions containing either propiconazole or Azaconazole

Tests to evaluate efficacy against basidiomycetes were carried out on Propiconazole and Azaconazole singly and in mixtures with copper using ratios within the scope of the invention. The tests were carried out according to both EN113 and the method published as IRG/WP/2329, and toxic limits were identified as described above for the fungus Coniophora puteana.

The toxic limits are given in the table below (in this table, the toxic limit and toxic index for the duprammonium compound are given in kg of Cu per m3):

              TABLE 6______________________________________          Toxic Limit  Toxic Index          (kgm-3 total                       (kgm-3 totalActive ingredient          active ingredient)                       active ingredient)______________________________________Cuprammonium compound          3.1-5.4      4.25Propiconazole  0.3-0.7      0.5Azaconazole    0.7-1.3      1.0Cu:Propiconazole 5:1          <0.504       <0.504Cu:Azaconazole 5:1          1.008-2.04   1.52______________________________________

The interaction between the propiconazole and copper is illustrated in FIG. 5; and that for azaconazole and copper is illustrated in FIG. 6.

In FIG. 5, the dotted line illustrates the expected concentrations of copper and propiconazole in a composition containing copper at a weight ratio of 5:1 if the performance of copper and tebuconazole were merely additive (1.6. kgm-3 copper and 0.3 kgm-3 propiconazole). The solid line illustrates the actual concentrations found to be required. These concentrations are considerably lower than expected (<0.42 kgm-3 copper and <0.084 kgm-3 propiconazole). A synergistic of index of >3.77 was calculated from these results for Cu:Propiconazole combined at a ratio of 5:1.

In FIG. 6, the dotted line illustrates the expected concentrations of copper and azaconazole needed in a composition containing copper at a weight ratio of 5:1 if the performance of copper and azaconazole were merely additive (2.5 kgm-3 copper and 0.5 kgm-3 azaconazole). The solid line illustrates the actual concentrations found to be required. These concentrations are considerably lower than expected (1.26 kgm-3 copper and 0.25 kgm-3 azaconazole).

These results suggest that copper: azaconazole mixtures combined of a ratio of 5:1 are synergistic with a synergistic index of 1.97.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2041655 *Nov 16, 1934May 19, 1936Celcure CorpWood treating preparation
US3976594 *Apr 15, 1974Aug 24, 1976Boliden AktiebolagPreservative for wood and other organic material subject to biological deterioration and containing amine-forming metals, polyphosphate and chlorinating phenols
US4143153 *Feb 21, 1975Mar 6, 1979Basf AktiengesellschaftFungicide for wood preservation employing complexed heavy metal salts of n-nitroso-n-cyclohexylhydroxylamine
US4288249 *Aug 11, 1980Sep 8, 1981Reichhold Chemicals, Inc.Water soluble pentachlorophenol and tetrachlorophenol wood treating systems
US4382884 *Apr 6, 1981May 10, 1983Ciba-Geigy CorporationFire-retardant, intumescent composition and its use for the flameproofing of substrates, and as a fire-extinguishing agent comprising an ammonium salt, a water-soluble nitrogen compound as a blowing agent and dextrin
US4420542 *Oct 25, 1982Dec 13, 1983Reilly Tar & Chemical Corp.Article and method for wood preservation
US4461721 *Apr 12, 1982Jul 24, 1984Basf AktiengesellschaftWood preservative
US4648988 *Oct 15, 1984Mar 10, 1987Janssen Pharmaceutica, N.V.Azole, solvent, solubilizer
US4652580 *Mar 17, 1986Mar 24, 1987Basf AktiengesellschaftApplication of azolylmethyloxiranes for the treatment of viral diseases
US4845111 *May 12, 1988Jul 4, 1989Bayer AktiengesellschaftFungicidal agents
US4845112 *Aug 26, 1987Jul 4, 1989Bayer AktiengesellschaftFungicidal agents
US4849440 *Feb 29, 1988Jul 18, 1989Bayer AktiengesellschaftSubstituted 1-/hydroxyethyltriazole, polyhaloalkylthioamine derivatives
US4886825 *Jul 5, 1988Dec 12, 1989Ciba-Geigy CorporationBlend of mancozeb and a triazole component; fungicides
US4897410 *Dec 7, 1988Jan 30, 1990Bayer AktiengesellschaftFungicidal compositions
US4902704 *Dec 1, 1986Feb 20, 1990Bayer AktiengesellschaftMixture of 1,2,4-triazoyl-alkanol derivative and polyhalogenoalkylthio derivative
US4933337 *Mar 29, 1989Jun 12, 1990Bayer AktiengesellschaftFungicidal agents
US4933358 *Apr 12, 1989Jun 12, 1990Bayer AktiengesellschaftFungicidal compositions
US5013746 *Apr 7, 1989May 7, 1991Janssen Pharmaceutica N.V.Imazalil containing synergistic compositions
US5013748 *Feb 8, 1989May 7, 1991XylochimieEmulsifiable biocidal concentrates for wood preservation
US5059617 *Oct 18, 1989Oct 22, 1991Bayer AktiengesellschaftSynergistic fungicidal compositions
US5078912 *May 1, 1991Jan 7, 1992Dr. Wolman GmbhWater dilutable formulation containing copper salt, ethanolamine, fungicidal anion and alkali; nonpolluting
US5082855 *Sep 24, 1990Jan 21, 1992Bayer AktiengesellschaftSynergistic triazole and guanidine derivatives
US5156673 *Dec 3, 1987Oct 20, 1992Deutsche Solvay-Werke GmbhThiophosphate derivatives and suspending agent
US5187194 *Oct 16, 1990Feb 16, 1993Dr. Wolman GmbhWood preservatives containing polymeric nitrogen compounds
US5200421 *Apr 13, 1992Apr 6, 1993Bayer AktiengesellschaftSynergistic combination of azole fungicide tebuconazole and 3-iodo-2-propargyl N-butylcarbamate
US5216007 *Jan 15, 1992Jun 1, 1993Rohm And Haas CompanySubstituted ethylene imidazole and triazoles
US5221758 *Sep 28, 1989Jun 22, 1993Maynard Nigel PReacting an organic complexing agent with a borate or boric acid
US5223178 *Dec 10, 1990Jun 29, 1993Rohm And Haas CompanyUse of certain triazoles to protect materials from fungal attack, articles and compositions
US5223524 *Apr 1, 1992Jun 29, 1993Janssen Pharmaceutica N.V.Fungicides for wood preservation, soils or plant cultivation
US5230892 *Jul 10, 1992Jul 27, 1993Bayer AktiengesellschaftFungicides, herbicides or insecticides with additives or dispersants and carriers in solid formation
US5252594 *Jun 17, 1992Oct 12, 1993Rohm And Haas CompanyFungicidal (2-aryl-2-substituted)ethyl-1,2,4-triazoles
AU1511792A * Title not available
AU5846386A * Title not available
AU6478690A * Title not available
AU6664286A * Title not available
AU7042887A * Title not available
AU13522178A * Title not available
*CA1185896A Title not available
*CA1249510A Title not available
*CA1284854A Title not available
CA2028228A1 *Oct 19, 1990Apr 21, 1991Reimer GoettscheWood preservatives containing polymeric nitrogen compounds
*DE2140051A1 Title not available
DE3231347A1 *Aug 24, 1982Mar 1, 1984Basf AgBeta-triazolylketale, verfahren zu ihrer herstellung und diese enthaltende fungizide
EP0089958A1 *Apr 27, 1982Oct 5, 1983Kenogard AbWood preservative compositions.
EP0102540A2 *Aug 8, 1983Mar 14, 1984BASF AktiengesellschaftBeta-triazolyl ketals, process for their preparation and fungicides containing them
EP0252366A1 *Jun 24, 1987Jan 13, 1988Dr. Wolman GmbHWood protecting agents containing copper and organotin compounds
EP0315850A2 *Oct 31, 1988May 17, 1989BASF AktiengesellschaftMethod for influencing plant growth by azolyl methyl oxiranes
EP0447756A1 *Jan 23, 1991Sep 25, 1991DESOWAG Materialschutz GmbHComposition or concentrate for the protection of sawn wood against wood staining fungi
EP0448932A2 *Jan 23, 1991Oct 2, 1991DESOWAG Materialschutz GmbHComposition or concentrate for the protection of sawn wood against wood staining fungi
EP0453922A1 *Apr 16, 1991Oct 30, 1991Bayer AgUse of copper salts for inhibiting crystallisation
GB2194752A * Title not available
WO1985000040A1 *Jun 13, 1984Jan 3, 1985Koppers AustraliaPreservative composition
WO1989008395A1 *Mar 1, 1989Sep 21, 1989Soyez Jean LouisCopper tallate-based fungicidal compositions
WO1991011306A1 *Feb 1, 1991Aug 8, 1991Hickson Int PlcPreservatives and method of treating wood therewith
WO1993002557A1 *Aug 3, 1992Feb 18, 1993Hickson Int PlcPreservatives for wood and other cellulosic materials
Non-Patent Citations
Reference
1"Dictionary of Organic Compounds," 5th Ed., vol. 5, pp. 5388-5389, entries T-02376 and T-02377 (1983). No month.
2"Pesticide Index" (1988), p. 163. No month.
3Browning, "The Chemistry of Wood," (1975) p. 430. No month.
4 *Browning, The Chemistry of Wood, (1975) p. 430. No month.
5Buschhaus, H., "Preventol A8--A Modern Wood Fungicide," Eur. Polym. Paint Colour J., 182:4309, pp. 351-352 (Jun. 1992).
6 *Buschhaus, H., Preventol A8 A Modern Wood Fungicide, Eur. Polym. Paint Colour J. , 182:4309, pp. 351 352 (Jun. 1992).
7Chin, et al., "Pigment Emulsified Creosote--An Alternative to High Tempature Creosote," Proc. 21st Forest Products Conference, Melbourne, Australia (1984). No month.
8Chin, et al., "Recent Advances in Oil-Based Preservative Emulsions in Austrlia," Proc. 22nd Forest Products Conference, Melbourne, Australia (Nov. 1986).
9 *Chin, et al., Pigment Emulsified Creosote An Alternative to High Tempature Creosote, Proc. 21st Forest Products Conference , Melbourne, Australia (1984). No month.
10 *Chin, et al., Recent Advances in Oil Based Preservative Emulsions in Austrlia, Proc. 22nd Forest Products Conference , Melbourne, Australia (Nov. 1986).
11Cookson and Greaves, "An Accelerated Field Simulator Trial of Metal Soaps," Holzforschung, (1991) vol. 45, pp. 19-22. No month.
12 *Cookson and Greaves, An Accelerated Field Simulator Trial of Metal Soaps, Holzforschung , (1991) vol. 45, pp. 19 22. No month.
13Cotton and Wilkson, "Advanced Inorganic Chemistry," (1992) p. 756. No month.
14 *Cotton and Wilkson, Advanced Inorganic Chemistry, (1992) p. 756. No month.
15Culbreath, A.K., et al., "Use of a Resistant Peanut Cultivar with Copper Fungicides and Reduced Fungicide Applications for Control of Late Leaf Spot," Crop Protection, vol. 11, Aug. 1992, pp. 361-365.
16 *Culbreath, A.K., et al., Use of a Resistant Peanut Cultivar with Copper Fungicides and Reduced Fungicide Applications for Control of Late Leaf Spot, Crop Protection , vol. 11, Aug. 1992, pp. 361 365.
17 *Dictionary of Organic Compounds, 5th Ed., vol. 5, pp. 5388 5389, entries T 02376 and T 02377 (1983). No month.
18 *Goodwine, et al., Suitability of Propiconazole as a New Generation Wood Preserving Fungicide, American Wood Preservers Association, pp. 206 214 (1990). No month.
19Goodwine, et al., Suitability of Propiconazole as a New Generation Wood-Preserving Fungicide, American Wood Preservers' Association, pp. 206-214 (1990). No month.
20Goodwine, W.R., "Suitability of Propiconazole as a New-Generation Wood-Preserving Fungicide," Chemical Abstracts, 114:242686t (1991). No month.
21 *Goodwine, W.R., Suitability of Propiconazole as a New Generation Wood Preserving Fungicide, Chemical Abstracts, 114:242686t (1991). No month.
22Graves, H., "Wood Preservation in Australia," (1984), Appendix 1, pp. 54-55. No month.
23 *Graves, H., Wood Preservation in Australia, (1984), Appendix 1, pp. 54 55. No month.
24Greaves, et al., "Laboratory Tests on Light Organic Solvent Preservatives for use in Australia Part 4, Assessment of Several New Candidate Fungicides," J. Inst. of Wood Science, (1988) pp., 21-27, 103-107, 145-148. No month.
25 *Greaves, et al., Laboratory Tests on Light Organic Solvent Preservatives for use in Australia Part 4, Assessment of Several New Candidate Fungicides, J. Inst. of Wood Science , (1988) pp., 21 27, 103 107, 145 148. No month.
26Groth, D.E., et al., "Foliar Fungicides for Control of Rice Diseases in the United States," Pest Management in Rice, ed. Grayson, et al., published for the Society of Chemical Industry by Elsevier Applied Science. [No Date].
27 *Groth, D.E., et al., Foliar Fungicides for Control of Rice Diseases in the United States, Pest Management in Rice, ed. Grayson, et al., published for the Society of Chemical Industry by Elsevier Applied Science. No Date .
28Gruening, R., et al., "Azaconazole-Based Compositions as Wood preservatives," Chemical Abstracts 112:2614h. (1990). No month.
29 *Gruening, R., et al., Azaconazole Based Compositions as Wood preservatives, Chemical Abstracts 112:2614h. (1990). No month.
30Grundlinger, R., et al., "Tebuconazole--A New Triazole Fungicide for Wood Preservation," The International Research Group on Wood Preservation, Paper prepared for the 21st Annual Meeting in Rotorua, New Zealand, May 13-18, 1990.
31 *Grundlinger, R., et al., Tebuconazole A New Triazole Fungicide for Wood Preservation, The International Research Group on Wood Preservation , Paper prepared for the 21st Annual Meeting in Rotorua, New Zealand, May 13 18, 1990.
32Johnson and Thornton, "An Australian Test of Wood Preservatives II. The Condition after 25 Years' Exposure of Stakes Treated with Waterbone Preservatives," Material and Organsimen (1991), vol. 26, pp. 303-315. No month.
33 *Johnson and Thornton, An Australian Test of Wood Preservatives II. The Condition after 25 Years Exposure of Stakes Treated with Waterbone Preservatives, Material and Organsimen (1991), vol. 26, pp. 303 315. No month.
34Johnson, Thornton & Saunders, "An In-Ground Natural Durability Field Test of Australian Timbers and Exotic Reference Species III. Results after Approximately 15 Years' Exposure," Material and Organismen, vol. 21, pp. 251-264 (1986). No month.
35 *Johnson, Thornton & Saunders, An In Ground Natural Durability Field Test of Australian Timbers and Exotic Reference Species III. Results after Approximately 15 Years Exposure, Material and Organismen , vol. 21, pp. 251 264 (1986). No month.
36Leemput, L.V., et al., "Introductory Studies on the Environmental Fate of Azaconazole, a New Fungicide for Wood Preservation," Chem. Prot. Environ. 1985, Elsevier, pp. 163-182. No month.
37 *Leemput, L.V., et al., Introductory Studies on the Environmental Fate of Azaconazole, a New Fungicide for Wood Preservation, Chem. Prot. Environ. 1985 , Elsevier, pp. 163 182. No month.
38Metzner, W., "Azaconazole-Containing Wood Preservatives," Chemical Abstracts 110:90628c. (1989). No month.
39 *Metzner, W., Azaconazole Containing Wood Preservatives, Chemical Abstracts 110:90628c. (1989). No month.
40 *Page, R.G., Thomson, W.T., The Insecticides, Herbicides, Fungicides Quick Guide , (1985) p. 108. No month.
41Page, R.G., Thomson, W.T., The Insecticides, Herbicides, Fungicides Quick Guide, (1985) p. 108. No month.
42 *Pesticide Index (1988), p. 163. No month.
43 *Preservative Treatment for Sawn Tiber, Veneer and Plywood, Australian Standard as 1604 1980, p. 13. No month.
44Preservative Treatment for Sawn Tiber, Veneer and Plywood, Australian Standard as 1604-1980, p. 13. No month.
45Tamblyn, N., "Proceedings of the Tenth Forest Products Research Conference," (1961) Melbourne, pp. 86-107. No month.
46 *Tamblyn, N., Proceedings of the Tenth Forest Products Research Conference, (1961) Melbourne, pp. 86 107. No month.
47 *The Australian Standard AS 1604 1980, p. 13 (1980). No month.
48The Australian Standard AS 1604-1980, p. 13 (1980). No month.
49 *The Pesticide Manual, published by The British Crop Protection Council. (1978). No month.
50Thompson, E., et al., "The Chemistry of Wood Preservation," Society of Chemistry (1991). No month.
51 *Thompson, E., et al., The Chemistry of Wood Preservation, Society of Chemistry (1991). No month.
52Valcke, A., "Suitability of Propiconazole (R 49362) as a New Generation Wood Preserving Fungicide," 20th Annual Meeting of International Research Group on Wood Preservation Congress Centre, Lappeenranta, Finland, May 22-26, 1989.
53 *Valcke, A., Suitability of Propiconazole (R 49362) as a New Generation Wood Preserving Fungicide, 20th Annual Meeting of International Research Group on Wood Preservation Congress Centre, Lappeenranta, Finland, May 22 26, 1989.
54 *Valke, A.R., and Goodwine, W.R., Azaconazole, A New Wood Preservative, American Wood Preservers Association, 1985. No month.
55Wallis, A.F.A., "Wood Pulping with Mono-, Di- and Triethanolamine," Appita, vol. 31, No. 6, May, 1978.
56 *Wallis, A.F.A., Wood Pulping with Mono , Di and Triethanolamine, Appita , vol. 31, No. 6, May, 1978.
57Wustenhofer, B., et al., "Tebuconazole, a New Wood-Preserving Fungicide," The International Research Group on Wood Preservation, paper prepared for the 21st Annual Meeting Rotorua, New Zealand, May 13-19, 1990.
58 *Wustenhofer, B., et al., Tebuconazole, a New Wood Preserving Fungicide, The International Research Group on Wood Preservation , paper prepared for the 21st Annual Meeting Rotorua, New Zealand, May 13 19, 1990.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6416789Jan 5, 2001Jul 9, 2002Kop-Coat, Inc.Containing boron compound, organo iodine containing carbamate and an amine-oxide compound
US6818317 *Apr 30, 2002Nov 16, 2004Potlach CorporationTermite resistant and fungal resistant oriented strand board and methods for manufacturing
US6843837Jul 25, 2003Jan 18, 2005Osmose, Inc.Do not form precipitates; preserving wood and other cellulose-based materials, such as paper, particleboard, textiles, rope, etc., against organisms responsible for the destruction of wood, namely fungus and insects
US7056919Jan 24, 2003Jun 6, 2006Kopcoat, Inc.Synergistic combination of fungicides to protect wood and wood-based products and wood treated by such combination as well as methods of making the same
US7264796Sep 24, 2004Sep 4, 2007Potlatch CorporationTermite resistant and fungal resistant oriented strand board and methods for manufacturing
US7361215Jun 13, 2003Apr 22, 2008Koppers Arch Wood Protection (Aust) Pty LimitedMaterial and method for treatment of timber
US7485286Oct 3, 2006Feb 3, 2009Potlatch CorporationPartially or completely impregnating flakes of wood, which have been covered with a pesticide and/or a fungicide, with diphenylmethane diisocyanate; orienting the flakes in alternate lengthwise and crosswise layers; and curing the MDI
US7625577Jun 10, 2004Dec 1, 2009Koppers-Hickson Timber Protection Pty LimitedMixture of preservative containing insecticide, fungicide and carrier containing a dryin goil
US7713553Sep 16, 2002May 11, 2010Genics Inc.Forming solidified complex of water soluble copper-borate; dissolving in water to release copper; insecticides, fungicides
US7816343Mar 8, 2007Oct 19, 2010Hwd Acquisition, Inc.Fungicide; trihexylene glycol biborate boric acid ester in sterically hindered di-alcohol organic solvent; iodo-2-propynyl butyl carbamate organo-iodine compound; tebuconazole triazole, deltamethrin synthetic pyrethroid insecticide; protect cellulosic composites, particleboard, hardboard
US8597419 *Jan 17, 2008Dec 3, 2013Genics Inc.Preservative compositions for wood and like materials
US8664250May 17, 2005Mar 4, 2014Kop-Coat, Inc.Synergistic combination of fungicides to protect wood and wood-based products and wood treated by such combination as well as methods of making the same
US20100062166 *Jan 17, 2008Mar 11, 2010Genics Inc.Preservative compositions for wood and like materials
WO2004067507A2Jan 23, 2004Aug 12, 2004Kop Coat IncSynergistic combination of fungicides to protect wood and wood-based products and wood treated by such combination as well as methods of making the same
Classifications
U.S. Classification106/18.32, 424/638, 514/491, 424/630, 514/383, 514/500
International ClassificationA01N, B27K, A01N59/00, A01N43/653, B27K3/00, A01N43/647, A01N59/16, A01N59/06, B27K3/52, B27K3/50
Cooperative ClassificationB27K3/22, B27K3/52, B27K3/343, B27K3/20, B27K3/40, A01N43/653, A01N59/20
European ClassificationA01N43/653, A01N59/20