Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE36806 E
Publication typeGrant
Application numberUS 09/313,336
Publication dateAug 1, 2000
Filing dateMay 17, 1999
Priority dateJul 29, 1994
Also published asCA2194274A1, EP0772874A1, EP1043719A2, EP1043719A3, US5538774, WO1996004651A1
Publication number09313336, 313336, US RE36806 E, US RE36806E, US-E-RE36806, USRE36806 E, USRE36806E
InventorsDonald T. Landin, Jeffrey W. McCutcheon
Original Assignee3M Innovative Properties Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Internally damped rotatable storage article
US RE36806 E
Abstract
The present invention provides a method for internally damping a rotatable storage article which is subject to resonant vibrations. More specifically, the present invention provides a method of improving the damping properties of a rotatable storage article by introducing a viscoelastic material as an inner layer(s) of the rotatable storage article. The invention also provides the damped rotatable storage articles themselves.
Images(4)
Previous page
Next page
Claims(33)
What is claimed is:
1. An internally damped rotatable storage article .Iadd.comprising.Iaddend.:
.Iadd.a structural material selected from the group consisting of metals and ceramics; and.Iaddend.
.[.having.]. at least one layer of vibration damping material contained therein, comprising a viscoelastic material, said vibration damping material having a loss factor of at least about 0.01 and a storage modulus of at least about 6.9×103 Pascals, wherein the thickness of each of said layer(s) ranges from about 0.002 mm to about 0.5 mm, and wherein the vibration damping is improved by at least about 10% in at least 1 vibrational mode.
2. The rotatable storage article of claim 1 wherein the thickness of each of said layer(s) ranges from about 0.002 mm to about 0.15 mm.
3. The rotatable storage article of claim 1 wherein the thickness of each of said layer(s) ranges from about 0.002 mm to about 0.05 mm.
4. The rotatable storage article of claim 1 wherein the thickness of each of said layer(s) of vibration damping material is about 0.5 to about 50% the thickness of the article.
5. The rotatable storage article of claim 1 wherein the thickness of each of said layer(s) of vibration damping material is about 1 to about 25% the thickness of the article.
6. The rotatable storage article of claim 1 wherein the viscoelastic material has a loss factor greater than about 0.1 and a storage modulus of at least about 6.9×104 Pascals.
7. The rotatable storage article of claim 1 wherein the viscoelastic material has a loss factor of 0.5 to about 10 and a storage modulus of about 6.9×104 to about 1.4×107 Pascals.
8. The rotatable storage article of claim 1 wherein the viscoelastic material is selected from the group consisting of thermoplastic polymers, thermosetting polymers, and mixtures thereof.
9. The rotatable storage article of claim 1 wherein the viscoelastic material is a thermosetting polymer.
10. The rotatable storage article of claim 9 wherein the thermosetting polymer is an acrylate.
11. The rotatable storage article of claim 1 selected from the group consisting of magnetic rotatable storage articles.[., optical rotatable storage articles, magneto-optical rotatable storage articles,.]. and mechanical rotatable storage articles.
12. The rotatable storage article of claim 1 selected from the group consisting of magnetic rigid disks, magnetic floppy disks, magnetic drums, .[.optical compact disks, optical disks, optical drums, magneto-optical compact disks, magneto-optical disks, magneto-optical drums.]. and vinyl records.
13. The rotatable storage article of claim 1 wherein said rotatable storage article contains at least 2 layers of vibration damping material.
14. The rotatable storage article of claim 1 wherein the vibration damping material further comprises a fibrous material.
15. The rotatable storage article of claim 14 wherein the vibration damping material includes about 3 to about 60 weight percent fibrous material, based on the total weight of the vibration damping material.
16. The rotatable storage article of claim 1 wherein the vibration damping material further comprises a particulate material.
17. The rotatable storage article of claim 16 wherein the particulate material is selected from the group consisting of glass bubbles, glass beads, ceramic bubbles, ceramic beads, thermally conductive bubbles, aluminum oxide powder, aluminum nitride powder, silica, and cured epoxy nodules.
18. The rotatable storage article of claim 1 wherein the vibration damping material includes about 0.5 to about 70 weight percent of particulate material based on the total weight of the vibration damping material.
19. The rotatable storage article of claim 1 wherein the vibration damping material further comprises a fibrous material and a particulate material.
20. The rotatable storage article of claim 1 which contains a single layer of vibration damping material wherein said layer is positioned within the article at a distance of at least about 5% of the thickness of the article from an upper and lower surface of the article.
21. The rotatable storage article of claim 1 which contains a single layer of vibration damping material wherein said layer is positioned within the article at a distance of at least about 30% of the thickness of the article from an upper and lower surface of the article.
22. The rotatable storage article of claim 1 wherein the rotatable storage article has one layer of damping material positioned equidistant from an upper surface of the article and a lower surface of the article.
23. The rotatable storage article of claim 1 which contains at least two layers of vibration damping material wherein each damping material layer is positioned within the article such that it is at least about 5% of the thickness of the article away from an upper and lower surface of the article and each vibration damping material layer is at least about 5% of the thickness of the article away from another vibration damping layer.
24. The rotatable storage article of claim 1 which contains at least two layers of vibration damping material wherein each damping material layer is positioned within the article such that it is at least about 5% of the thickness of the article away from an upper and lower surface of the article and each vibration damping material is at least about 20% of the article thickness away from another damping layer.
25. The rotatable storage article of claim 1 which contains at least two layers of vibration damping material wherein each damping material layer is positioned within the article such that it is at least about 5% of the thickness of the article away from an upper and lower surface of the article and each vibration damping material is at least about 30% of the article thickness away from another damping layer.
26. The rotatable storage article of claim 1 wherein the vibration damping material further comprises an epoxy resin material, wherein said epoxy resin material may optionally have vibration damping properties.
27. The rotatable storage article of claim 1 wherein the vibration damping layer is a continuous layer.
28. The rotatable storage article of claim 1 wherein the vibration damping layer is a continuous layer made up of adjacent sections of different vibration damping materials.
29. The rotatable storage article of claim 1 wherein the article contains at least 2 layers of vibration damping material, wherein at least 2 of the layers comprise different damping materials.
30. The rotatable storage article of claim 1 wherein the vibration damping layer is a discontinuous layer.
31. The rotatable storage article of claim 30 wherein the discontinuous layer comprises sections of damping material separated by non-damping material or spaces.
32. The rotatable storage article of claim 1 wherein each vibration damping material layer is encased within the storage article.
33. A method of improving the viscoelastic damping characteristics of a rotatable storage article .Iadd.comprising a structural material selected from the group consisting of metals and ceramics, the method .Iaddend.comprising providing at least one layer of vibration damping material within the rotatable storage article, each vibration damping material layer comprising a viscoelastic material, said vibration damping material having a loss factor of at least about 0.01 and a storage modulus of at least about 6.9×103 Pascals, wherein the thickness of each of said layer(s) ranges from about 0.002 mm to about 0.5 mm, and wherein the vibration damping is improved by at least about 10% in at least 1 vibrational mode. .Iadd.34. An internally damped rotatable storage article having at least one layer of vibration damping material contained therein, comprising a viscoelastic material, said vibration damping material having a loss factor of at least about 0.01 and a storage modulus of at least about 2.0×105 Pascals, wherein the thickness of each of said layer(s) ranges from about 0.002 mm to about 0.5 mm, and wherein the vibration damping is improved by at least about 10% in at least 1 vibrational mode..Iaddend..Iadd.35. The rotatable storage article of claim 1, wherein the article is a magnetic rotatable storage article..Iaddend..Iadd.36. A disk drive comprising the rotatable storage article of claim 1..Iaddend..Iadd.37. A computer comprising the disk drive of claim 36..Iaddend..Iadd.38. A disk drive comprising the rotatable storage article of claim 34..Iaddend..Iadd.39. A computer comprising the disk drive of claim 38..Iaddend..Iadd.40. A disk drive comprising:
an internally damped magnetic rotatable storage article comprising:
at least one layer of vibration damping material comprising a viscoelastic material contained therein, said vibration damping material having a loss factor of at least about 0.01 and a storage modulus of at least about 6.9×103 Pascals,
wherein the thickness of each of said layer(s) ranges from about 0.002 mm to about 0.5 mm, and
wherein the vibration damping is improved by at least about 10% in at least 1 vibrational mode..Iaddend..Iadd.41. A computer comprising the disk drive of claim 40..Iaddend..Iadd.42. The disk drive of claim 40, wherein the internally damped magnetic rotatable storage article comprises a glass structural material..Iaddend..Iadd.43. The internally damped rotatable storage article of claim 1, wherein the structural material is metal..Iaddend.
Description
FIELD OF THE INVENTION

The present invention relates to a method for internally damping a rotatable storage article which is subject to resonant vibrations. More specifically, the present invention relates to a method of improving the damping properties of a rotatable storage article by introducing a viscoelastic material as an inner layer(s) of the rotatable storage article. The invention also relates to the damped rotatable storage articles themselves.

BACKGROUND OF THE INVENTION

Periodic or random vibrations or shocks can excite the resonant frequencies in a rotatable storage article which can be problematic due to the resultant formation of undesirable stresses, displacements, fatigue, and even sound radiation. Such undesirable vibrations or shocks are typically induced by external forces and can be experienced by a wide variety of articles and under a variety of conditions. For example, resonant vibrations can cause excessive vertical displacement of art optical disk's surface during operation which may lead to poor laser focus. Proper laser focus is a key to optimum write/read characteristics, signal quality, and tracking ability.

Various techniques have been used to reduce vibrational and shock effects (stresses, displacements, etc.) on storage articles. Three basic techniques to reduce vibration and shock effect include

1) adding stiffness or mass to the rotatable storage article so that the resonant frequencies of the rotatable storage article are not excited by a given excitation source,

2) isolating the rotatable storage article from the excitation so the vibrational or shock energy does not excite the rotatable storage article's resonant frequencies, and

3) damping the rotatable storage article so that given excitations do no result in excessive negative effects at the resonant frequencies of the rotatable storage article.

An isolation technique for limiting vibration transmission is described in U.S. Pat. No. 4,870,429 issued Sep. 26, 1989. A single-sided or double-sided optical disk structure is described which includes two sheets of substrate bonded to each other with a foam spacer interposed between the two substrates to restrict or isolate the vibrations caused by external forces. The spacer is made from an elastomeric foam material and is positioned between the two substrates to restrict the transmission of such forces (e.g. vibrations or shocks). The thickness of the spacer is stated to be preferably not less than 0.2 mm, more preferably not less than 0.4 mm, because when the thickness is too small the effect of the spacer to restrict or isolate forces is not exhibited sufficiently. Such a system adds to the overall size of the rotatable storage article and may be impractical where close positioning of the article to other structures is desired.

Two types of surface or external damping treatments which can be used to reduce shock or vibration impact on rotatable articles are: (1) free layer damping treatments; and (2) constrained layer damping treatments. Both of these damping treatments, Dan provide high levels of damping to a structure, i.e., dissipation of undesirable vibrations, without sacrificing the stiffness of the structure. The use of viscoelastic materials as exterior surface damping treatments is described in EP 0507515 published Oct. 7, 1992. Examples of additional surface or external damping techniques are described, for example, in U.S. Pat. Nos. 2,819,032 (issued Jan. 7, 1953); 3,071,217 (issued Jan. 1, 1963); 3,078,969 (issued Feb. 26, 1963); 3,159,249 (issued Dec. 1, 1964); and 3,160,549 (issued Dec. 8, 1964). All of the aforementioned damping techniques can add complexity and expense to the design of the rotatable storage article, limit the amount of exterior article surface available for data storage, and can increase the overall size of the article.

Free layer damping; treatment is also referred to as "unconstrained layer" or "extensional damping" treatment. In this technique, damping occurs by applying a layer of viscoelastic damping material to one or more exterior surfaces of the article to be damped. The material can be applied to one or more exterior surfaces of the article to be damped. The mechanism by which this treatment method dissipates undesirable energy, e.g., resonant vibrations, involves deformation. That is, when the article is subjected to cyclic loading, for example, the damping material is subjected to tension-compression deformation and dissipates the energy through an extensional strain mechanism.

Constrained layer damping treatment is also referred to as "shear damping" treatment. For a given weight, this type of damping treatment is generally more efficient than the free layer damping treatment. In this technique, damping occurs by applying a damper consisting of one or more layers of viscoelastic damping material and one or more layers of a higher tensile modulus material to one or more exterior surfaces of the article to be damped. That is, this damping technique is similar to the free layer damping treatment wherein a viscoelastic material is applied to one or more exterior surfaces of a structure, the difference being that the viscoelastic material is additionally constrained by a layer having a higher modulus than the viscoelastic material, e.g., a metal layer, in the constrained layer treatment. Energy dissipates from the viscoelastic damping material via a shear strain mechanism. The shear strain results from constraints by the higher modulus constraining layer and the base structure.

Although these exterior surface damping techniques are used, the degree of damping is oftentimes limited by thickness or spacing requirements as well as application difficulties. Furthermore, the exterior damper must be applied to potential data storage surface areas, limiting information storage capability. In addition, external dampers can interfere with information retrieval from the storage article. Another disadvantage is that the external damper may be subject to degradation by the environmental conditions in which it is used. As way of example, if a rotatable storage article is desired to be a component in a size limited application, such as hard disk drives for portable computer systems, computers, or calculators, the ability to adequately damp the rotatable storage article by means of an "add-on" exterior surface damper may not be possible due to overall thickness requirements to meet a "form factor" requirement or the necessity of using the exterior surface for data/information storage. Thus, an alternative approach is needed to damp vibrational or shock energy without adversely affecting the overall size or thickness or available surface area of the rotatable storage article.

SUMMARY OF THE INVENTION

We have found such an alternative approach. The present invention provides an internally damped rotatable storage article.

The term "rotatable storage article" as used herein refers to a media that has information stored on it and/or which is capable of storing information. The article is typically capable of being rotated in some manner that allows the data stored on the article to be passed by a read or write element to allow reading of information from the article, or writing of information on the article, or both. Examples of storage articles include rigid disk drive disks, optical disks, compact disks (CDs), magneto-optical disks, records, drums, floppy disks and the like.

The present invention also provides a method of improving the vibration damping characteristics of a rotatable storage article by providing an internally damped rotatable storage article. The method typically involves incorporating one or more layers of a vibration damping material into the storage article typically by adding one layer or a plurality of layers of a damping material during the manufacture of the rotatable storage article as an inner layer. The layer(s) may be continuous or discontinuous. The discontinuous layer may be separated by space(s) and/or a non-damping material. A continuous layer may comprise the same damping material or different damping material adjacent to each other, thereby forming a continuous surface.

The vibration damping material includes a viscoelastic material or combination of different viscoelastic materials. Useful viscoelastic materials are those having a storage, modulus of at least about 1.0 psi (6.9×103 Pascals) and a loss factor of at least about 0.01, at the temperature and frequency of use. Advantageously and preferably, a layer(s) of the vibration damping material is placed in areas of high strain energy as an inner layer(s) to provide improved damping in the desired frequency and temperature range. The added damping layer(s) increases the vibrational damping, as measured by the system loss factor, of the rotatable storage article or the structural material of which it is made, by at least about 10% in at least one vibrational mode. System loss factor is a measure of the damping in a structure.

In certain preferred embodiments, the vibration damping material also includes an effective amount of a fibrous material. The vibration damping material preferably includes an amount of fibrous material effective to improve vibration damping of the article or the structural material of which the article is made by a factor of at least about two in strain energy ratio of at least one vibrational mode. Typically, this requires incorporating about 3 to 60 wt % of the fibrous material into the vibration damping material, based on the total weight of the vibration damping material. Preferably, the fibrous material is a nonmetallic fibrous material, such as glass.

In another preferred embodiment, the vibration damping material also includes an effective amount of a particulate material. The vibration damping material preferably includes an amount of particulate material effective to improve vibrational damping of the article or the structural material of which the article is made by a factor of at least about two in strain energy ratio of at least one vibrational mode. Typically, this requires incorporating about 0.5 to 70 weight percent of the particulate material into the vibration damping material, based on the total weight of the vibration damping material. Combinations of particulate and fibrous materials may be used, typically about 0.5 to about 70 wt. % based on the total damping material. Additionally, in certain preferred embodiments, the vibration damping material that provides the significant portion of the damping for a given material layer also includes an effective amount of an epoxy resin (with or without the particulate or fibrous material) dispersed within the damping material. The vibration damping material preferably includes an amount of epoxy resin effective to improve the mechanical integrity of the rotatable disk storage article or the structural material of which the rotatable disk storage article is made. The epoxy resin material may optionally having damping properties. An example of a suitable damping material incorporating an epoxy resin is disclosed in U.S. Pat. No. 5,262,232 (issued Nov. 13, 1993), incorporated herein by reference. Typically, the amount of epoxy resin incorporated into the vibration damping material is about 0.5 to 95 weight percent, preferably about 5 to about 50 weight percent, based on the total weight of the vibration damping material.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic top view of a "disk type" rotatable storage article of the present invention having a continuous single layer of a vibrational damping material placed near the center of the article's thickness.

FIG. 2 is a schematic of a "disk type" rotatable storage article of the present invention showing a cross-section of the rotatable storage article of FIG. 1 having one layer of damping material.

FIG. 3 is a schematic of an alternative embodiment of the present invention showing a cross-section of a rotatable storage article having two layers of damping material which are not exposed at the article outer perimeter.

FIG. 4 is a schematic of an alternative embodiment of the present invention showing a cross-section of a rotatable storage article having a single discontinuous layer of damping material which is not exposed at the inner or outer perimeter of the article.

FIG. 4b is a schematic of an alternative embodiment of the present invention showing a cross-section of rotatable storage article having a single discontinuous layer of damping material which is not exposed at the inner or outer perimeter of the article.

FIG. 5 is a graph of frequency versus transfer function for Example 1 and Comparative Example 2 identified as A and B, respectively.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method of improving damping properties of rotatable storage articles, and thereby solving vibration problems in a variety of applications where rotatable storage articles are exposed to vibration or shock. More specifically, the present invention provides a vibration and shock resistant internally damped rotatable storage article that uses a highly dissipative damping material, with a loss factor of at least about 0.01 at a given frequency and temperature, preferably at least about 0.1. This damping material, when placed in the rotatable storage article as inner layer(s), can be exposed to significant amounts of strain energy in various vibrational modes of interest and dissipates a portion of this vibrational energy as heat, thereby diminishing vibration and shock displacement oscillations. The present invention functions so as to damp, i.e., reduce the vibrational or shock amplitude or duration of, a wide variety of vibrational modes, e.g., bending, torsion, sway, and extensional modes, in a wide variety of rotatable storage article designs and over a wide frequency and temperature range. It can be applied to situations in which exterior surface treatments, such as constrained layer treatments, are typically used and are especially useful where overall size of the article is important.

The method of the present invention typically involves the incorporation of a vibration damping material as one or more interior layers of the rotatable storage article laminate. The vibration damping material may be layered in between the structural material, e.g., aluminum and it alloys, polyester, ceramic, polycarbonate, glass, and/or vinyl, etc. of the rotatable storage article. Preferably, the laminated material has the damping material laminated, sprayed, silk screened, or cast onto one or more layers of structural material. The damping material layer can be continuous, or discontinuous. The final rotatable storage article design can have the damping material encased around the edges using, for example, metal or plastic or sealed with adhesive, tape, or by sonic bonding or the like so that the damping material is substantially completely surrounded by, i.e., encased or enclosed within, the structural material, which provides protection of the damping material from environmental conditions. Alternately, the damping material can be exposed at the perimeter edges or cutouts within the rotatable storage article, which is preferred from a damping standpoint. The addition of the damping material into the laminate structure results in creating an inherently damped rotatable substrate laminate that can be further processed to add magnetic or optical recording coatings and an opening for a hub or spindle.

The damping layer may substantially form a layer having about the same dimensions as the substrate layers between which it is sandwiched. Alternately, the layer may be of more limited dimensions and may be situated in an area of greatest vibrational stresses.

Typically, an amount of the damping material is present such that the damping characteristics of the rotatable storage article are improved. Preferably, a sufficient amount of the vibration damping material is used such that the damping is improved by at least about 10% in at least one vibrational mode. As a result of this technique, high mechanical strains are introduced into the damping material when the structure is excited at one or more of its natural frequencies. A portion of the resulting mechanical strain energy in the damping material is then dissipated in the form of heat. The higher the strain energy in the damping material, the more vibration energy is dissipated from the rotatable storage article structure.

The placement of a partial layer of damping material in the rotatable storage article can be influenced by whether the article edges are sealed. This can alter the stiffness of the rotatable storage article and determine areas of greater vibrational activity for a given vibrational or shock excitation of one of the modes of vibration in a certain area of the rotatable storage article. That is, the partial vibration damping material layer(s) are placed in the article where one or more vibrational modes are active. By such placement, the amount of strain energy that is generated in the damping material used for the rotatable storage article can be maximized. The identification of these locations can be determined by one of skill in the art using modal analysis or finite element analysis.

The rotatable storage article's structure damped by the method of the present invention can be prepared from any material suitable for rotatable storage article designs. Useful structural materials include, for example, metals such as aluminum and aluminum alloys; organic materials/resins such as polyester, polycarbonate and vinyl; and inorganic materials such as glass and ceramic. Additional materials such as magnetic or optical coatings, wear resistant overcoats and lubricants may also be used for preparing the data storage surface(s) of the article of the invention.

The vibration damping material can include any material that is viscoelastic. A viscoelastic material is one that is viscous, and therefore capable of dissipating energy, yet exhibits certain elastic properties, and therefore capable of storing energy. That is, a viscoelastic material is an elastomeric material typically containing long-chain molecules that can convert mechanical energy into heat when they are deformed. Such a material typically can be deformed, e.g., stretched, by an applied load and gradually regain its original shape, e.g., contract, sometime after the load has been removed.

Suitable viscoelastic materials for use in the vibration damping materials of the present invention have a storage modulus, i.e., measure of the energy stored during deformation, of at least about 1.0 psi (6.9×103 Pascals). The storage modulus of useful viscoelastic materials can be as high as 500,000 psi (3.45×109 Pascals); however, typically it is about 10-2000 psi (6.9×104 -1.4×107 Pascals).

Suitable viscoelastic materials for use in the vibration damping materials of the present invention have a loss factor, i.e., the ratio of energy loss to energy stored, of at least about 0.01. Preferably the loss factor is at least about 0.1, more preferably about 0.5-10, and most preferably about 1-10, in the frequency and temperature range where damping is required (typically about 1-10,000 Hz and -40° to 100° C. This loss factor is a measure of the material's ability to dissipate energy and depends on the frequency and temperature experienced by the damping material. For example, for a crosslinked acrylic polymer, at a frequency of 100 Hz, the loss factor at 68° F. (20° C.) is about 1.0, while at 158° F. (70° C.) the loss factor is about 0.7.

Preferred viscoelastic materials are those that remain functional over a wide range of temperatures, e.g., -40° F. (-40° C.) to 300° F. (149° C.). Most preferred viscoelastic materials are those that cover the broadest temperature and frequency range at the desired minimum loss factor and storage modulus to achieve acceptable damping of the rotatable storage article, and do not experience a significant degradation in properties due to long times at high temperatures or short excursions beyond these high temperature levels.

Useful viscoelastic damping materials can be isotropic as well as anisotropic materials, particularly with respect to its elastic properties. As used herein, an "anisotropic material" or "nonisotropic material" is one in which the properties are dependent upon the direction of measurement. Suitable viscoelastic materials include urethane rubbers, silicone rubbers, nitrile rubbers, butyl rubbers, acrylic rubbers, natural rubbers, styrene-butadiene rubbers, and the like. Other useful damping viscoelastic materials include polyesters, polyurethanes, polyamides, ethylene-vinyl acetate copolymers, polyvinyl butyral, polyvinyl butyral-polyvinyl acetate copolymers, epoxy-acrylate interpenetrating networks and the like. Specific examples of useful materials are disclosed or referenced in U.S. Pat. No. 5,183,863 (issued Feb. 2, 1993), U.S. Pat. No. 5,262,232 (issued Nov. 16, 1993) and U.S. Pat. No. 5,308,887 (issued May 3, 1994), all of which are incorporated herein by reference.

Examples of thermoplastic materials suitable for use as the vibration damping material in rotatable storage articles according to the present invention include, but are not limited to, those selected from the group consisting of polyacrylates, polycarbonates, polyetherimides, polyesters, polysulfones, polystyrenes, acrylonitrile-butadiene-styrene blockcopolymers, polypropylenes, acetal polymers, polyamides, polyvinyl chlorides, polyethylenes, polyurethanes, and combinations thereof.

Useful viscoelastic materials can also be crosslinkable to enhance their strength. Such viscoelastics are classified as thermosetting resins. When the viscoelastic material is a thermosetting resin, then prior to the manufacture of the damped storage article. The thermosetting resin is in a thermoplastic state. During the manufacturing process, the thermosetting resin is cured and/or crosslinked typically to a solid state, although it could be a gel upon curing as long as the cured material possesses the viscoelastic properties described above. Depending upon the particular thermosetting resin employed, the thermosetting resin can include a curing agent, e.g., catalyst, which when exposed to an appropriate energy source (such as thermal energy) the curing agent initiates the polymerization of the thermosetting resin. Particularly preferred viscoelastic damping materials are those based on acrylates.

In general, any suitable viscoelastic material can be used. The choice of viscoelastic material for a particular set of conditions, e.g., temperature and frequency of vibration, etc., is within the knowledge of one of skill in the art of viscoelastic damping. It is to be understood that blends of any of the foregoing materials can also be used.

In addition to the viscoelastic material, the vibration damping material of certain preferred embodiments of tile present invention includes an effective amount of a fibrous and/or particulate material. Herein, an "effective amount" of a fibrous material or particulate is an amount sufficient to impart at least improvement in desirable characteristics to the viscoelastic material, but not so much as to give rise to any significant detrimental effect on the structural, magnetic, optical (e.g., degrade read/write capability), or electrical integrity of the rotatable storage article in which the viscoelastic material is incorporated. Generally, the fibrous or particulate material is used in an amount effective to increase the strain energy ratio of a component containing the same amount and type of viscoelastic material without the fibrous or particulate material. Generally, an increase in the strain energy ratio of a factor of at least about two in at least one vibrational mode is desired. Typically, the amount of the fibrous material in the viscoelastic material is within a range of about 3-60 wt %, preferably about 10-50 wt %, more preferably about 15-45 wt %, and most preferably about 20-40 wt %, based on the total weight of the vibration damping material. Typically, the amount of the particulate material in the viscoelastic material is within a range of about 0.5-70 wt %, preferably about 1-45 wt %, more preferably about 5-40 wt %, and most preferably about 5-30 wt %, based on the total weight of the vibration damping material.

The fibrous material can be in the form of fibrous strands or in the form of a fiber mat or web, although fibrous strands are preferred. The fibrous strands can be in the form of threads, cords, yarns, filaments, etc., as long as the viscoelastic material can wet the surface of the material. They can be dispersed randomly or uniformly in a specified order. Preferably, the fibrous strands, i.e., fibers or fine threadlike pieces, have an aspect ratio of at least about 2:1, and more preferably an aspect ratio within a range of about 2:1 to about 10:1. The aspect ratio of a fiber is the ratio of the longer dimension of the fiber to the shorter dimension.

The fibrous material can be composed of any material that increases the damping capability of the viscoelastic material. Examples of useful fibrous materials in applications of the present invention include metallic fibrous materials, such as aluminum oxide, magnesium or steel fibers, as well as nonmetallic fibrous materials, such as fiberglass. Generally, high Young's modulus fibrous materials, i.e., those having a modulus of at least about 1,000,000 psi (6.9×109 pascals), are preferred. Most preferably, the fibrous material is nonmetallic. The nonmetallic fibrous materials can be a variety of materials, including, but not limited to, those selected from the group consisting of glass, carbon, minerals, synthetic or natural heat resistant organic materials, and ceramic materials. Preferred fibrous materials for rotatable storage articles of the present invention ate organic materials, glass, and ceramic fibrous material.

By "heat resistant" organic fibrous material, it is meant that useable organic materials should be sufficiently resistant to melting, or otherwise softening or breaking down under the conditions of manufacture and use of the rotatable storage article of the present invention. Useful natural organic fibrous materials include, but are not limited to, those selected from the group consisting of wool, silk, cotton, and cellulose. Examples of useful synthetic organic fibrous materials include, but are not limited to, those selected from the group consisting of polyvinyl alcohol, nylon, polyester, rayon, polyamide, acrylic, polyolefin, aramid, and phenol. The preferred organic fibrous material for applications of the present invention is aramid fibrous material. Such a material is commercially available from Dupont Co., Wilmington, Del. under the tradenames of "Kevlar" and "Nomex".

Generally, any ceramic fibrous material is useful in applications of the present invention. An example of a ceramic fibrous material suitable for the present invention is NEXTEL™ which is commercially available from Minnesota Mining and Manufacturing Co., St. Paul, Minn. Examples of useful, commercially available, glass fibrous material are those available from PPG Industries, Inc. Pittsburgh, Pa., under the product name E-glass bobbin yarn; Owens Corning, Toledo, Ohio, under the product name "Fiberglass" continuous filament yarn; and Manville Corporation, Toledo, Ohio, under the product name "Star Rov 502" fiberglass roving.

Advantages can be: obtained through use of fibrous materials of a length as short as about 100 micrometers. The fibers are not limited in length but much longer fibers may provide insufficient fiber interface and therefore decreased shearing surfaces between fibers. The fiber thickness or diameter for typical fibrous material ranges from about at least 5 micrometers. The thinner the fiber, the higher the surface area of the fibrous material. Thus, preferred fibrous materials are very thin. The thickness of the fiber is also dependent upon the desired thickness; of the overall damping material layer that will be used in the rotatable storage article. Thus, many common fibers may not be suitable if the overall damping material thickness is relatively thin (e.g., 4-10 micrometers).

The particulate material useful in the invention can be in the form of glass and ceramic bubbles or beads, flakes, or powder, as long as the viscoelastic can wet the surface of the material. The particulate material can vary in size, but should not be greater than the thickness of the damping material layer. Preferably, the particulate material is on the size order of about 0.1 to about 5 micrometers and more preferably about 0.1 to about 2 micrometers.

The particulate material can be composed of any material that increases the damping capability of the viscoelastic damping material.

Examples of usefill particulate materials in applications of the present invention include coated or uncoated glass and ceramic bubbles or beads such as thermally conductive bubbles, powders such as aluminum oxide powder and aluminum nitride powder, silica, cured epoxy nodules, and the like, i.e., those having a modulus of at least about 10,000 psi (6.9×107 Pascals), are preferred. More preferably, useful particulate materials have a Young's modulus of about 100,000 psi (6.9×108 Pascals), and most preferable are those with a modulus of at least 1,000,000 psi (6.9×109 Pascals). Blends of a particulate material and fibrous material can be used from about 0.5 wt % to about 70 wt % based on the weight % of damping material.

In addition to fibers and particulate material, the vibration damping material of the present invention can include additives such as fillers (e.g. talc, etc.), colorants, toughening agents, fire retardants, antioxidants, antistatic agents, and the like. Sufficient amounts of each of these materials can be used to effect the desired result.

The damped rotatable storage article of the invention utilizes the damping of viscoelastic materials with a minimum impact on the rotatable storage article structural geometry and stiffness. Thus, the rotatable storage articles of the present invention are good candidates for products that require added vibration and shock resistance in tight geometry applications and/or sensitive weight applications. In addition, the damped storage article allows storage (e.g., data, information, etc.) on one or both sides of the rotatable storage article, if desired, whereas an add-on free layer or constrained layer damper would limit storage to one side of the article. Thinner articles may also be possible, as the addition of damping material to an inner layer of the laminate may eliminate the need for added stiffness or mass to help reduce the effects of vibrations or shock.

The internally damped laminate of the present invention will be better understood by reference to the following FIGS. 1-4.

FIG. 1 is a schematic of one embodiment of the present invention showing a top view of a rotatable disk storage article 1 having an interior continuous single layer of a damping material. The rotatable storage article 1 has an overcoat 3a such as polycarbonate to protect the information storage layer, outer radius 7, and inner radius 5.

FIG. 2 is a schematic of one embodiment of the present invention showing a cross section of a rotatable disk storage article 1 of FIG. 1 taken along line 2--2. The article 1 has a continuous layer of a damping material 8 bonded between supporting; structural materials 4a and 4b. The disk 1 also includes information storage layers 6a and 6b, and overcoat layers 3a and 3b.

FIG. 3 is a schematic of an alternative embodiment of the present invention showing a cross section of a rotatable storage article 10 having two layers of damping material 12a and 12b, which are not exposed at the article outer perimeter. The damping layers 12a and 12b are positioned between supporting structural material 14. The article 10, which has an inner radius 18 and an outer radius 20, also includes information storage layers 16a and 16b and overcoat layers 13a and 13b.

FIG. 4 is a schematic of an alternative embodiment of the invention showing a cross section of a rotatable storage article 30 having a single discontinuous layer of damping material 32, which is not exposed at the article 30 outer perimeter. The damping layer 33 is made up of adjacent sections of a first damping material 33 and a different damping material 35. Alternatively the material 35 could, for example represent a nondamping material or even a space. The damping layer 32 is placed within supporting structural material 34. The article 30 which has an inner radius 36 and an outer radius 38 also includes information storage layers 40a and 40b, as well as overcoat layers 39a and 39b.

FIG. 4b is a schematic of an alternative embodiment of the invention showing a cross section of a rotatable storage article 50 having a single discontinuous layer of damping material 52, which is not exposed at the article 50 outer perimeter. The damping layer 52 is made up of adjacent sections of a first damping material 53 and spaces 54. The damping layer 52 is placed within supporting structural material 56. The article 50 which has an inner radius 57 and an outer radius 59 also includes information storage layers 60a and 60b, as well as overcoat layers 62a and 62b.

Those skilled in the art can select the best means to introduce the damping material into a specific process based on the needs of the final damped laminate rotatable storage article and also limitations in processing capabilities of the laminate input materials.

The vibrational damping material can include a viscoelastic material or a combination of viscoelastic material with a fibrous or particulate material. It is to be understood that the vibration damping material can include a blend of viscoelastic materials as well as a variety of different fibrous or particulate materials. Blends of fibreous and particulate material are also possible.

The desired thickness of the damping material is typically 0.002 mm to 0.5 mm; preferably, 0.02 mm to 0.15 mm; and most preferably, 0.02 mm to 0.05 mm. Typically, the thickness of the damping material is about 0.5 to about 50% of the thickness of the article, more typically about 1 to about 25%. The rotatable storage article of the invention typically contains at least 1 damping layer, more typically 1-3 layers, preferably 1-2, most preferably 1 for reasons of simplicity of the storage article's manufacturing process and cost. Stiffness may be sacrificed when more than 1 layer is included. However, a wider temperature range of damping is possible when multiple layers of different damping materials are included. The amount of damping material used can vary. Sufficient material should be used to obtain the desired damping effect while balancing the structural requirements of the article. The vibration damping layer may be continuous or discontinuous. A continuous layer may comprise the same material or adjacent sections of different vibration damping materials, for example. A discontinuous layer may comprise sections of damping material separated by nondamping material and/or spaces, for example. When 2 or more layers are present the layers may comprise the same or different damping material and each may be continuous or discontinuous.

When the article contains a single layer of vibration damping material preferably the layer is positioned within the article at a distance of at least about 5%, more preferably at least about 30% of the thickness of the article from an upper and lower surface of the article. When the article has one layer of damping material most preferably it is positioned equidistant from an upper surface of the article and a lower surface of the article. When the article contains at least two layers of vibration damping material preferably each damping material layer is positioned within the article such that it is at least about 5% of the thickness of the article away from an upper and lower surface of the article and each vibration damping material layer is preferably at least about 5%, more preferably at least about 20% and most preferably at least about 30% of the thickness of the article away from another vibration damping layer.

The rotatable storage article of the present invention can be made by any suitable technique for creating rotatable storage articles as understood by those in the industry. These techniques are generally known to those of skill in the art. For example, a damped rotatable rigid disk for a disk drive application can be made by adding a single layer of a damping material 0.025 mm thick near the center of a disk by laminating a layer of aluminum with a layer of suitable damping material and as additional layer of aluminum. This laminate is then stamped with a tool to yield a disk that has an inner damping layer. The disk "blank" is further processed to define edge and surface requirements and a read and writable data storage surface is added. The finished damped rotatable disk will have increased damping over the non-damped disk of the same process.

Examples of rotatable storage articles which may be damped internally include but are not limited to those selected from the group consisting of magnetic rotatable storage articles such as rigid disks, floppy disks, and drums; optical rotatable storage articles such as compact disks, optical disks, and drums; magneto optical rotatable storage articles such as compact disks, optical disks, drums; and mechanical rotatable storage articles such as vinyl records.

EXAMPLES

The invention has been described with reference to various specific and preferred embodiments and will be further described by reference to the following detailed examples. It is understood, however, that there are many extensions, variations, and modifications on the basic theme of the present invention beyond that shown in the examples and detailed description, which are within the spirit and scope of the present invention. All parts, percentages, ratios, etc. in the Specification and the Examples are by weight unless indicated otherwise.

Example 1 and Comparative Examples 1-3

In order to evaluate the performance of an internally damped rotatable article a sample article was prepared by adding a layer of a 0.051 mm damping material into the aluminum disk construction (Example 1) and compared to the performance of a disk construction that was bonded together with a non-damping adhesive material adhesive (Comparative Example 2), and a disk construction without a damping layer or adhesive layer (Comparative Example 1).

Description of Sample

For the purpose of demonstrating the invention, an acrylic damping material was used in the damped disk build-up in a single layer. The damping material used was an acrylic polymer that had a loss factor greater than 0.5 for a broad frequency range (±1000 Hz) at the desired test temperature (20° C./72° F.). The acrylic damping polymer selected was 3M Scotchdamp™ ISD-112, SJ2015 type 1202 available from Minnesota Mining and Manufacturing Company, St. Paul, Minn.).

Example 1

A 0.051 mm thick sheet of acrylic polymer damping material (3M Scotchdamp™ ISD-112) was placed between two 68.26 mm diameter aluminum disks, each having a 17.46 mm diameter center hole and a thickness of 0.7112 mm, to form a construction. The acrylic polymer sheet completely covered the inner surface of each aluminum disk. The construction was subjected to hand pressure for about 1 minute and then rolled with a 4.5 kg. roller to affect a bond between the acrylic polymer sheet and the two aluminum disks to provide an internally damped disk article. Although the disk article did not have any information storage layers we believe, it is representative of a disk that would have such storage layers.

The internally damped disk article was then tested as follows: Using a C-clamp, the internally damped disk article was secured at its center to a rigid table. The disk was then excited with an electromagnetic transducer (Electro 3030 HTB A) at a point 2 mm from its outer edge where a small piece of steel had been bonded. The resulting acceleration was measured with an accelerometer (Endevco Model 22) at a point diametrically opposite to the excitation point and at 2 mm from its outer edge. The transfer function was calculated from the acceleration measurement using a Tektronix 2630 Fourier Analyzer. Each transfer function was the average of 100 measurements. The transfer function thus obtained is represented graphically as a function of frequency in FIG. 5, as plot A.

The measurement of the damping is determined by calculating the system loss factor for the disk article design at the desired resonant frequency. The "system loss factor" is defined as: the width (Hz) of the resonant peak at 3 db below the resonant frequency of peak amplitude/the resonant frequency (Hz) at peak amplitude.

The system loss factor and the frequency are reported in Table 1 under Ex. 1.

Comparative Example 1

In this comparative example, a laminate was prepared and tested as in Example 1 except that no acrylic polymer sheet was used and the two aluminum disks were merely placed one on top of the other. The system loss factor and the frequency are reported in Table 1 under Comp. Ex. 1. The C-clamp used in the test method served to hold the two disks together during testing.

Comparative Example 2

In this comparative example, a laminate was prepared and tested as in Example 1 except that a 0.0254 mm thick layer of non-damping cyanoacrylate adhesive (Pronto™ Brand Instant Adhesive CA-8, available from 3M Company) was used in place of the acrylic polymer sheet. The transfer function thus obtained is represented graphically in FIG. 5, as plot B. The system loss factor and the frequency are reported in Table 1 under Comp. Ex.

              TABLE 1______________________________________Example No.  Frequency (Hz)                   System Loss FactorEx. 1        1850       0.243Comp. Ex. 1        2200               0.022Comp. Ex. 2       2500                  0.020______________________________________

From the data in Table 1 it can be seen that the system loss factor of the internally damped disk article (Ex. 1) is about 10 times greater than disk constructions of Comparative Examples 1 and 2 which demonstrates the superior damping performance of the internally damped disk article. FIG. 5 demonstrates the superior damping properties of a laminate representing the rotatable storage article of the invention compared to a laminate containing an internal adhesive layer which is not a damping material.

The foregoing detailed description and example have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. The invention is not limited to the exact details shown and described, for variations obvious to one skilled in the art will be included within the invention defined by the claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2819032 *Oct 20, 1953Jan 7, 1958Douglas Aircraft Co IncAircraft fuselage having panel damping material
US3071217 *Jan 15, 1960Jan 1, 1963Avro Aircraft LtdVibration damping in sheet metal structures
US3078969 *Jun 15, 1959Feb 26, 1963Lord Mfg CoDamped beam
US3159249 *Jan 27, 1960Dec 1, 1964Univ MinnesotaDamping means
US3160549 *Dec 29, 1960Dec 8, 1964Minnesota Mining & MfgVibration damping structures
US3282763 *Mar 8, 1962Nov 1, 1966Gunderson Ralph RMethod of adhering a light reflector unit to a mounting surface
US4195713 *Sep 18, 1978Apr 1, 1980Reduc Acoustics AbSandwich structures with partial damping layers
US4334233 *Jul 1, 1980Jun 8, 1982Tokyo Shibaura Denki Kabushiki KaishaOptical recording element and its manufacturing method
US4503531 *Dec 8, 1982Mar 5, 1985Pioneer Electronic CorporationOptical disc
US4571124 *Nov 18, 1983Feb 18, 1986Sumitomo Cement Co., Ltd.Method of forming cast-in-place concrete pile
US4583102 *May 3, 1984Apr 15, 1986Matsushita Electric Industrial Co., Ltd.Optical disc and method of manufacturing
US4686543 *Dec 10, 1985Aug 11, 1987Fuji Photo Film Co., Ltd.Information recording medium
US4711798 *Dec 16, 1986Dec 8, 1987Ricoh Company, Ltd.Optical information recording medium
US4731620 *Feb 12, 1987Mar 15, 1988Fuji Photo Film Co., Ltd.Lasers, adhesive of chlorinated polyolefin
US4731780 *Jan 21, 1987Mar 15, 1988U.S. Philips CorporationOptical recording element
US4740947 *Jun 12, 1987Apr 26, 1988Sharp Kabushiki KaishaDual surface optical memory disc
US4760012 *Aug 28, 1987Jul 26, 1988Matsushita Electric Industrial Co., Ltd.Signal recording disk
US4800112 *Apr 9, 1987Jan 24, 1989Seiko Epson CorporationAdhesives, multilayer, stability, weatherproofing
US4847827 *Jun 28, 1988Jul 11, 1989Pioneer Electric CorporationOptical information recording disk
US4865949 *Apr 20, 1988Sep 12, 1989Ricoh Company, Ltd.Optical information recording medium
US4871429 *Apr 29, 1988Oct 3, 1989Learonal, IncLimiting tin sludge formation in tin or tin/lead electroplating solutions
US4892606 *Aug 24, 1987Jan 9, 1990Canon Kabushiki KaishaOptical recording medium having space therein and method of manufacturing the same
US4917751 *Mar 20, 1989Apr 17, 1990Sharp Kabushiki KaishaMethod of producing double sided optical memory disks
US4939011 *Feb 24, 1989Jul 3, 1990Nitto Denko CorporationSilicone pressure sensitive adhesive bonds substrates with reflective and recording sides
US5059462 *Oct 18, 1989Oct 22, 1991Mitsui Petrochemical Industries, Ltd.Information recording medium
US5077120 *Oct 9, 1990Dec 31, 1991Pioneer Electronic CorporationOptical disk
US5146438 *May 30, 1990Sep 8, 1992E. I. Du Pont De Nemours & Co.Method of making double-sided magneto-optical disks having reduced birefringence
US5151310 *Dec 18, 1990Sep 29, 1992Pioneer Electronic CorporationAdhesives
US5167996 *Nov 27, 1990Dec 1, 1992Mitsui Petrochemical Industries, Ltd.Bonding two transparent resin layers, one of which has recording layer on interior surface
US5183863 *May 29, 1992Feb 2, 1993Toyo Boseki Kabushiki KaishaViscoelastic resin composition for vibration-damping material
US5188875 *Aug 24, 1990Feb 23, 1993Mitsui Petrochemical Industries, Ltd.Information recording medium and adhesive composition therefor
US5197060 *Sep 11, 1990Mar 23, 1993Seiko Epson CorporationDual substrate optical recording medium
US5213947 *Mar 5, 1991May 25, 1993Ricoh Company, Ltd.Optical recording medium
US5219708 *Dec 4, 1991Jun 15, 1993Tdk CorporationOptical disk
US5244775 *Mar 20, 1992Sep 14, 1993Hitachi, Ltd.Forming recording film on surface of replica substrate having information patterns, disposing pair of replica substrates provided with films so that films face each other, bonding and laminating pair with reaction-type adhesive; Shore hardness
US5262232 *Jan 22, 1992Nov 16, 1993Minnesota Mining And Manufacturing CompanyInterpenetrating polymer network of acrylate and epoxy, high temperature use
US5284538 *Feb 21, 1991Feb 8, 1994Sony CorporationOptical disc having signal recording layer on each side and method for producing same
US5290877 *Oct 22, 1992Mar 1, 1994Mitsui Petrochemical Industries, Ltd.Information recording medium and adhesive composition therefor
US5308887 *May 23, 1991May 3, 1994Minnesota Mining & Manufacturing CompanySilicone/acrylic based; adhesive tapes
US5310588 *Aug 13, 1991May 10, 1994H. B. Fuller Licensing & Financing Inc.High temperature sealant containing phenyl silicone
US5356715 *Jul 31, 1992Oct 18, 1994Morton International, Inc.Reaction product of bisphenol-derived epoxy resins and either polyesters or polyethers
US5360652 *Oct 15, 1992Nov 1, 1994Pioneer Electronic CorporationOptical recording disc
US5399220 *Oct 22, 1992Mar 21, 1995Optical Disc CorporationComposite disc media and method for making same
US5399604 *Jul 21, 1993Mar 21, 1995Japan Synthetic Rubber Co., Ltd.Epoxy group-containing resin compositions
US5445855 *Aug 5, 1993Aug 29, 1995Mitsui Petrochemical Industries, Ltd.Composed of an ethylene-cycloolefin copolymer substrate and an adhesive layer
US5487926 *Nov 20, 1991Jan 30, 1996Tdk CorporationOptical disk
US5530036 *Dec 15, 1994Jun 25, 1996Japan Synthetic Rubber Co., Ltd.Storage stable thermosetting resin compositions
US5538774 *Jul 29, 1994Jul 23, 1996Minnesota Mining And Manufacturing CompanyInternally damped rotatable storage article
US5540967 *Oct 11, 1994Jul 30, 1996Mitsubishi Denki Kabushiki KaishaOptical disc
US5543271 *Jan 20, 1995Aug 6, 1996Hitachi, Ltd.Optical recording and reproduction apparatus
AU4352989A * Title not available
CA2001152A1 *Oct 20, 1989May 24, 1990Masayoshi KurisuInformation recording medium
DE8504837U1 *Feb 21, 1985Aug 14, 1985Fuhrmann, Udo, 5980 Werdohl, DeTitle not available
EP0243517B1 *Apr 28, 1986Feb 27, 1991Matsushita Electric Industrial Co., Ltd.Method for producing information storage disk
EP0330197A2 *Feb 23, 1989Aug 30, 1989Nitto Denko CorporationOptical disk
EP0341785A1 *May 5, 1989Nov 15, 1989Philips and Du Pont Optical CompanyOptical disc having an antiresonance ring
EP0370622A2 *Oct 20, 1989May 30, 1990Mitsui Petrochemical Industries, Ltd.Information recording medium
EP0390413A2 *Mar 21, 1990Oct 3, 1990Mitsubishi Denki Kabushiki KaishaOptical disc and method for making same
EP0414258B1 *Aug 24, 1990Jun 28, 1995Mitsui Petrochemical Industries, Ltd.Information recording medium and adhesive composition therefor
EP0430629A2 *Nov 27, 1990Jun 5, 1991Mitsui Petrochemical Industries, Ltd.Information recording media
EP0443797A2 *Feb 18, 1991Aug 28, 1991Sony CorporationOptical disc having signal recording layer on each side and method for producing same
EP0463382A2 *May 25, 1991Jan 2, 1992Philips Electronics N.V.Method of making double-sided magneto-optical disks having reduced birefringence
EP0507515A2 *Mar 27, 1992Oct 7, 1992Minnesota Mining And Manufacturing CompanyMagneto-optical disk with vibration dampening
EP0526244A2 *Jul 30, 1992Feb 3, 1993Sgs-Thomson Microelectronics, Inc.Method of forming a polysilicon buried contact
EP0581536A1 *Jul 23, 1993Feb 2, 1994Japan Synthetic Rubber Co., Ltd.Epoxy group-containing resin composition
EP0624870A2 *Mar 21, 1990Nov 17, 1994Mitsubishi Denki Kabushiki KaishaApparatus for making optical discs
EP0706178A2 *Oct 2, 1995Apr 10, 1996Matsushita Electric Industrial Co., Ltd.Optical information medium, method for producing the optical information medium, and unit for producing the optical information medium
EP0720159A2 *Dec 27, 1995Jul 3, 1996Matsushita Electric Industrial Co., Ltd.Optical recording medium having dual information surfaces
EP0725396A2 *Jan 30, 1996Aug 7, 1996Kabushiki Kaisha ToshibaOptical disk and optical disk apparatus
EP0729142A1 *Feb 27, 1996Aug 28, 1996Sony CorporationOptical recording medium and method of manufacturing same
EP0735530A1 *Apr 1, 1996Oct 2, 1996Toshiba-Emi LimitedMethod and apparatus for manufacturing bonded disks
GB2153298A * Title not available
JPH0218730A * Title not available
JPH0294141A * Title not available
JPH0428031A * Title not available
JPH0453837A * Title not available
JPH0822639A * Title not available
JPH0896415A * Title not available
JPH03142893A * Title not available
JPH03203828A * Title not available
JPH04341943A * Title not available
JPH04344344A * Title not available
JPH05182241A * Title not available
JPS6039962A * Title not available
JPS6350932A * Title not available
JPS60187951A * Title not available
JPS60242347A * Title not available
JPS63137893A * Title not available
WO1996005249A2 *Jul 28, 1995Feb 22, 1996Minnesota Mining & MfgAcrylic syrup curable to a crosslinked viscoelastomeric material
WO1996031875A2 *Apr 8, 1996Oct 10, 1996Matsushita Electric Ind Co LtdOptical information recording medium, manufacturing method therefor, manufacturing apparatus therefor, and optical information recording and reproducing apparatus
Non-Patent Citations
Reference
1"Design and Manufacture of Loudspeakers," translated by Chi-Hsueh Publisher, 1979, pp. 213-216.
2D. J. Perettie et al., "The Alternate Alternative Substrate--"Chemically Strengthened" Aluminum," Diskon Conference, Sep. 1995.
3 *D. J. Perettie et al., The Alternate Alternative Substrate Chemically Strengthened Aluminum, Diskon Conference, Sep. 1995.
4 *Design and Manufacture of Loudspeakers, translated by Chi Hsueh Publisher, 1979, pp. 213 216.
5Jeff McAllister, "Disk flutter: Causes and potential cures," Data Storage, May/Jun. 1997, pp. 29-34.
6 *Jeff McAllister, Disk flutter: Causes and potential cures, Data Storage , May/Jun. 1997, pp. 29 34.
7Masao Nakamura, "Two-Sided Tape Used To Glue DVDs Together," Denshi Zairyo, (Electronic Materials-Japanese), Special Edition, Jun. 1996, pp. 46-49 (translation attached).
8 *Masao Nakamura, Two Sided Tape Used To Glue DVDs Together, Denshi Zairyo , (Electronic Materials Japanese), Special Edition, Jun. 1996, pp. 46 49 (translation attached).
9Trade Magazine, "Tape-Disc Business," 10, (1996), #9, p. 13.
10 *Trade Magazine, Tape Disc Business, 10, (1996), 9, p. 13.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6688439 *Aug 13, 2001Feb 10, 2004Rolls-Royce PlcVibration damping system and a method of damping vibrations
US6697213Feb 1, 2001Feb 24, 2004Seagate Technology LlcCover including multiple cover plates with damped layers
US6764734 *May 18, 1999Jul 20, 2004Seagate Technology LlcFor data storage systems/computers in magneto-optical and magnetic recording
US7147906 *Jun 24, 2003Dec 12, 2006General Electric CompanyData storage medium comprising polyimides
Classifications
U.S. Classification428/64.1, 430/270.11, 369/288, 428/325, 369/287, 428/416, 428/64.4, 428/327, 369/283, 430/495.1, 428/913, 428/329, 428/64.2, 428/323, 430/945
International ClassificationG11B7/26, G11B11/105, F16F15/126, F16F15/12, G11B11/10, G11B5/73, F16F15/02, F16F15/16, G11B5/82, G11B7/241, F16F9/30, G11B7/24, F16F1/36, F16F15/08, F16F3/093
Cooperative ClassificationF16F2224/048, F16F15/08, F16F3/093, G11B7/2403, F16F9/30, Y10S430/146, F16F9/306, F16F1/3605, F16F2228/00, Y10S428/913
European ClassificationG11B7/2403, F16F3/093, F16F1/36B, F16F15/08, F16F9/30L, F16F9/30