Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE37997 E1
Publication typeGrant
Application numberUS 08/624,783
Publication dateFeb 18, 2003
Filing dateMar 27, 1996
Priority dateJan 22, 1990
Fee statusPaid
Publication number08624783, 624783, US RE37997 E1, US RE37997E1, US-E1-RE37997, USRE37997 E1, USRE37997E1
InventorsMark E. Tuttle
Original AssigneeMicron Technology, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Polishing pad with controlled abrasion rate
US RE37997 E1
Abstract
A polishing pad is provided, having its face shaped to produce controlled nonuniform removal of material from a workpiece. Non-uniformity is produced as a function of distance from the pad's rotational axis (the working radius). The pad face is configured with both raised, contact regions and voided, non-contact regions such that arcuate abrasive contact varies nonuniformly as a function of distance from the pad's rotational axis. Void density at any distance may be produced by several techniques such as varying void size as a function of working radius or varying the number of voids per unit area as a function of working radius. Either technique produces variation in voided area per total unit area for rings of pad surface concentric with the rotational axis having infintesimally small width.
Images(6)
Previous page
Next page
Claims(29)
I claim:
1. A polishing pad rotatable about a central axis, said pad having a circular, planar face perpendicular to said central axis, said face to be brought in spinning contact with a workpiece during a polishing operation, said face extending from said central axis to an outer, continuous, circular periphery and comprising both raised and voided regions, wherein at least one of said raised regions is disposed immediately proximate said central axis, said raised and voided regions being configured so as to produce a controlled nonuniform rate of material removal from said workpiece, said rate of material removal being a non-linear function of distance from the pad's rotational axis to a working radius.
2. The polishing pad of claim 1, wherein high material removal rates correspond to bands of low void density on said face and low removal rates correspond to bands of high void density on said face.
3. The polishing pad of claim 2, wherein said voids are recessed regions within said face.
4. The polishing pad of claim 2, wherein said voids are holes which extend entirely through the pad.
5. The apparatus of claim 2, wherein said voids are circular.
6. A rotatable polishing pad having a central axis and a substantially planar contact surface extending substantially continuously from said central axis to an outer, continuous, circular periphery for polishing a workpiece, comprising:
at least two perceptibly different substantially arcuate regions on said contact surface;
at least one of said contact surface regions including a first density of voided area opening onto said contact surface; and
at least another of said contact surface regions including a second density of voided area opening onto said contact surface, said second density of voided area being not equal to said first density of voided area.
7. The polishing pad of claim 6, wherein said at least two contact surface regions are substantially contiguous.
8. The polishing pad of claim 6, wherein said at least two contact surface regions together extend radially from said central axis to said periphery of said polishing pad.
9. The polishing pad of claim 6, further including at least a third substantially arcuate region on said contact surface including a third density of voided area, opening onto said contact surface, wherein said at least three contact surface regions are arranged substantially coaxially, and wherein at least one of said substantially coaxial contact surface regions is interposed between at least two other contact surface regions having either greater or lesser voided area density.
10. The polishing pad of claim 9, wherein at least one of said arcuate contact surface regions comprises a substantially circular region extending radially from said central axis, and two others of said at least three contact surface regions each comprises an annular band lying on a larger radius than said circular region.
11. The polishing pad of claim 9, wherein said at least three contact surface regions are substantially contiguous.
12. The polishing pad of claim 9, wherein said at least three contact surface regions together extend radially from said central axis to said periphery of said polishing pad.
13. The polishing pad of claim 6, wherein said differing voided area densities are substantially a function of the number of voids per unit area in a region, the size of the voids in a region, or a combination thereof.
14. A rotatable polishing pad having a central axis and a substantially planar contact surface extending substantially continuously from said central axis to an outer, continuous, circular periphery for polishing a workpiece, comprising:
at least two perceptibly different, substantially arcuate regions on said contact surface, each of said regions lying at least partially on different radii with respect to said central axis;
at least one of said contact surface regions including a first contact area per unit surface area on said contact surface; and
at least another of said contact surface regions including a second contact area per unit surface area on said contact surface, said second contact area per unit surface area being not equal to said first contact area per unit surface area.
15. The polishing pad of claim 14, wherein said at least two contact surface regions are substantially contiguous.
16. The polishing pad of claim 14, wherein said at least two contact surface regions extend radially from said central axis to said periphery of said polishing pad.
17. The polishing pad of claim 14, further including at least a third substantially arcuate region on said contact surface including a third density of voided area, opening onto said contact surface, wherein said at least three contact surface regions are arranged substantially coaxially, and wherein at least one of said substantially coaxial contact surface regions is interposed between at least two other contact surface regions having either greater or lesser contact area per unit surface area.
18. The polishing pad of claim 17, wherein at least one of said arcuate contact surface regions comprises a substantially circular region extending radially from said central axis, and at least two others of said at least three contact surface regions each comprises an annular band lying on a larger radius than said circular region.
19. The polishing pad of claim 17, wherein said at least three contact surface regions are substantially contiguous.
20. The polishing pad of claim 17, wherein said at least three contact surface regions together extend radially from said central axis to said periphery of said polishing pad.
21. The polishing pad of claim 14, wherein said contact surface includes a plurality of apertures therein, and said differing contact area per unit surface area in said at least two contact surface regions is substantially a function of the number of apertures opening onto said contact surface per unit area in a region, the size of the apertures in a region, or a combination thereof.
22. A rotatable polishing pad having a central axis and a contact surface extending substantially continuously from said central axis to an outer, continuous, circular periphery for polishing a workpiece, comprising:
a plurality of perceptibly different substantially concentric contact regions on said contact surface;
each of said regions providing a different contact area per unit surface area than the contact area per unit surface area of any radially adjacent region; and
wherein the contact area per unit surface area of a region lying between two radially adjacent regions is either less than or greater than the contact area per unit surface area of both of said radially adjacent regions.
23. The polishing pad of claim 22, wherein at least one of said regionsare is defined by at least one distinct radial boundary.
24. The polishing pad of claim 22, wherein at least two of said regions are mutually contiguous and a transition therebetween is indistinct.
25. The polishing pad of claim 22, wherein said contact surface includes a plurality of apertures therein, and said differing contact area per unit surface area is substantially a function of the number of apertures opening onto said contact surface per unit area, the size of the apertures, or a combination thereof.
26. A rotatable polishing pad having a central axis and a contact surface extending substantially continuously from said central axis to an outer, continuous, circular periphery for polishing a workpiece, said contact surface comprising at least two regions of differing contact area per unit surface area, wherein said contact surface includes a contact area per unit surface area varying non-linearly as a function of distance extending from said central axis to said periphery of said pad.
27. The polishing pad of claim 26, wherein said contact surface is marked by a distinct boundary lying at a given radius from said central axis between said at least two regions of differing contact area per unit surface area.
28. The polishing pad of claim 26, wherein said contact surface is defined by a gradual transition lying generally proximate a given radius from said central axis between said at least two regions of differing contact area per unit surface area.
29. A rotatable polishing pad having a central axis and a contact surface extending substantially continuously from said central axis to an outer, continuous, circular periphery for polishing a workpiece, wherein said contact surface provides a continuous variation in contact area per unit surface area as a non-linear function of radius from said central axis.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This is a continuation-in-part to U.S. Pat. application No. 7/468,348, filed Jan. 22, 1990 (allowed, but not yet issued), and of U.S. Pat. application No. 7/562,288, filed Aug. 3, 1990, now U.S. Pat. No. 5,020,283.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the grinding or polishing of a workpiece, in particular the polishing of a surface, such as a semiconductor wafer surface to a controlled degree of planarity.

2. Description of the Related Art

In the manufacture of integrated circuits, for example, planarity of the underlying semiconductor substrate of wafer is very important. Critical geometries of integrated circuitry are presently in the neighborhood of less than 1 micron. These geometries are by necessity produced by photolithographic means: an image is optically or electromagnetically focused and chemically processed on the wafer. If the wafer surface is not sufficiently planar, some regions will be in focus and clearly defined, and other regions will not be sufficiently well defined, resulting in a nonfunctional or less than optimal circuit. Planarity of semiconductor wafers is therefore necessary.

In some processes, material is deposited nonuniformly across the wafer, often varying in thickness as a function of radial distance from the center of the wafer. While it is often desired to provide uniform abrasion with a polishing pad, there are also circumstances in which a controlled non-uniformity of abrasion is desired. This would occur in cases in which the non-uniformity of deposit is to be eliminated through polishing, in cases in which a surface is to be made nonuniform, and in order to compensate for non-uniformity of the process.

Chemical and mechanical means, and their combination (the combination being known as “mechanically enhanced chemical polishing”), have been employed, to effect planarity of a wafer. In mechanically enhanced chemical polishing, a chemical etch rate on high topographies of the wafer is assisted by mechanical energy.

FIGS. 1A and 1B illustrate the basic principles used in prior art mechanical wafer polishing. A ring-shaped section of a polishing pad rotates at Wp radians per second (R/s) about axis O. A wafer to be polished is rotated at Ww R/s, usually in the same sense. The wafer may also be rotated in the opposite sense and may be moved in directions +X and −X relative to some fixed point, the wafer face is pressed against the rotating pad face to accomplish polishing. The pad face, itself, which is typically characterized by low abrasivity, is generally used in combination with a mechanically abrasive slurry, which may also contain a chemical etchant.

FIG. 2 helps to clarify rotation Ww and the ring shape of the pad in FIG. 1. For a generic circular pad moving at a particular rotational speed, the linear speed of the polishing face at any given radius will vary according to the relationship L=Wp×R, where L is in cm/s, W is in radians/second, and radius R is in cm. It can be seen, for example, that linear speed L2 at large radius R2 is greater than linear speed L1 at small radius R1. Consider now that the pad has a surface contact rate with a workpiece that varies according to radius. Portions of a workpiece, such as a wafer, contacting the pad face at radius R1 experience a surface contact rate proportional to L1. Similarly, portions of the wafer contacting the pad face at radius R2 will experience a surface contact rate proportional to L2. Since L2>L1, it is apparent that a workpiece at radius R2 will receive more surface contact than a workpiece at radius R1. If a wafer is large enough in comparison to the pad to be polished at both R1 and R2, the wafer will be polished at an uneven rate which is a function of the 2πR, where R is distance from the rotational axis of the pad. The resulting 2πR non-planarity is not acceptable for high precision polishing required for semiconductor wafers.

While there are instances in which planar abrasion is desired, there are other instances in which a controller variation in abrasion is desired. This would occur where material buildup is non-planar and polishing is used to generate a planar surface, and in instances where a specified degree of nonplanarity is desired. Non-planar abrasion may also be used in order to compensate for non-uniformity of the process, as for example, when an edge of a semiconductor wafer polishes differently from the center of the wafer.

Referring again to the prior art of FIG. 1, a common approach by which prior art attempts to overcome non-uniform surface contact rate is by using a ring-shaped pad or the outer circumference of a circular pad, to limit the difference between the largest usable radius and smallest usable radius, thus limiting surface contact rate variation across the pad face, and by moving the wafer and positively rotating it, relative to the pad and its rotation. The combination is intended to limit the inherent variableness of the surface contact rate across the wafer, thereby minimizing non-planarity. Such movement of the wafer with respect to the polishing pad's axis of rotation requires special gearing and design tolerances to perform optimally.

According to the disclosure of U.S. Pat. No. 468,348 5,177,908, of which this is a continuation-in-part, the face of a polishing pad is shaped so as to provide substantially constant arcuate contact with a workpiece for circumferential traces of any radius from the center of the pad. This is accomplished by incorporating both raised and voided areas into the face of the pad in a geometric pattern that results in an increase in voided area density as the radius from the rotational axis of the pad increases. Several possible geometric face patterns are disclosed, each of which substantially achieves the goal of providing substantially constant arcuate contact for any given radius. This, in turn, results in more uniform removal of material from workpiece surfaces during mechanical planarization, thus enhancing planarity of the finished surface.

Although surface planarity is often the goal of an abrasive operation, the attainment of a non-planar surface may also be the desired result. The creation of non-planar surfaces is more complicated than the creation of planar surfaces. Using contemporary techniques, this generally requires careful control of the movement of the polishing pad's axis of rotation in relation to the position of the workpiece.

The object of the present invention to provide a polishing pad with which precision non-planar surfaces may be created.

SUMMARY OF THE INVENTION

According to the invention, a polishing pad is provided, having its face shaped to produce controlled nonuniform removal of workpiece material. Non-uniformity is produced as a function of distance from the pad's rotational axis (the working radius). The pad face is configured with both contact regions and voided regions such that arcuate abrasive contact varies nonuniformly with distance from the pad's rotational axis. Void density at any distance may be produced by several techniques such as varying void size as a function of working radius or varying the number of voids per unit area as a function of working radius. Either technique produces variation in voided area per total unit area for rings of pad surface, concentric with the rotational axis, having infinitesimally small width.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are elevational and side views of an illustrative prior art polishing pad implementation;

FIG. 2 illustrates different linear velocities for different radii on a generic polishing pad;

FIG. 3 shows a preferred embodiment of the inventive polishing pad;

FIG. 4 is a cross-section along line 44 of FIG. 3;

FIG. 5 is a cross-section along line 55 of FIG. 3;.

FIG. 6 shows an additional embodiment of the inventive polishing pad.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to FIG. 3, the contact surface of a polishing pad constructed in accordance with the present invention is depicted. Two possible patterns are represented, with the upper half of the pad depicting a four-band pattern, and the lower half of the pad depicting a three-band pattern. The upper half of the pad has a center portion of low void density 31 that is adjacent a band of high void density 32, which is adjacent and indistinctly transistions into a band of low void density 33, which is adjacent an outer-most band of high void density 34. The lower half of the pad, on the other hand, has a center portion of low void density 35, which is adjacent a band of high void density 36, which is adjacent a band of low void density 37. A polishing pad (not shown) (see FIG. 6) having continuous variation of void density as a function of radius, such that the polishing rate is also a function of radius is another embodiment.

As disclosed in the aforementioned issued patent, voided surface regions on the pad may be created with a variety of patters. For example, patterns having radial, ray-like voided regions and patterns having a multiplicity of circular voided regions are just two of many possibilities.

Referring now to FIG. 4, a cross-sectional view through line 44 of FIG. 3 depicts a first embodiment of the invention. As can be seen in this cross-sectional view, each void 41 is a recessed regions, or depressions, between raised portions 42 of the pad. The surface of the raised portions will contact the workpiece during rotational polishing with the pad. By varying the density of the voids, the total arcuate contact with raised surface portions for any given circumference, as defined by a constant radius R, can be established.

Referring now to FIG. 5, a cross-sectional view through line 55 of FIG. 3 depicts a second embodiment of the invention. In this embodiment, the voids 41 of FIG. 4 are replaced by holes 51, which extend entirely through the pad 52.

In most instances, it is anticipated that there will be rotational movement of the workpiece about a center axis in order to achieve substantial uniformity of abrasion over the workpiece surface. Generally, the rotational movement of the workpiece is slow in comparison to the rotational movement of the pad.

Although only several embodiments of the invention have been disclosed herein, it will be obvious to those having ordinary skill in the art of polishing and grinding technology that changes and modifications may be made thereto without departing from the scope and the spirit of the invention as claimed.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US816461Dec 22, 1904Mar 27, 1906George GortonClearance-space grinding-disk.
US888129Apr 25, 1905May 19, 1908Carborundum CoManufacture of abrasive material.
US959054Mar 8, 1909May 24, 1910Charles GloverGrinding and polishing disk.
US1953983 *Jul 23, 1932Apr 10, 1934Carborundum CoManufacture of rubber bonded abrasive articles
US2242877Mar 15, 1939May 20, 1941Albertson & Co IncAbrasive disk and method of making the same
US2409953Oct 13, 1943Oct 22, 1946Western Electric CoMaterial treating apparatus
US2653428Apr 10, 1952Sep 29, 1953Fuller Paul KGrinding disk
US2749681Aug 31, 1953Jun 12, 1956Stephen U Sohne AGrinding disc
US2749683 *Oct 5, 1954Jun 12, 1956Western Electric CoLapping plate
US3468079Sep 21, 1966Sep 23, 1969Kaufman Jack WAbrasive-like tool device
US3495362Mar 17, 1967Feb 17, 1970Thunderbird Abrasives IncAbrasive disk
US3517466Jul 18, 1969Jun 30, 1970Ferro CorpStone polishing wheel for contoured surfaces
US4244775Apr 30, 1979Jan 13, 1981Bell Telephone Laboratories, IncorporatedProcess for the chemical etch polishing of semiconductors
US4271640 *Jun 12, 1979Jun 9, 1981Minnesota Mining And Manufacturing CompanyRotatable floor treating pad
US4373991Jan 28, 1982Feb 15, 1983Western Electric Company, Inc.High pressure injection of liquid between wafer and holder to allow free floating rotation; flatness; photolithography
US4621458Oct 8, 1985Nov 11, 1986Smith Robert SFlat disk polishing apparatus
US4663890May 22, 1986May 12, 1987Gmn Georg Muller Nurnberg GmbhMethod for machining workpieces of brittle hard material into wafers
US4671851Oct 28, 1985Jun 9, 1987International Business Machines CorporationDepositing silicon nitride barrier; polishing with silica-water slurry
US4679359Dec 20, 1985Jul 14, 1987Fuji Seiki Machine Works, Ltd.Method for preparation of silicon wafer
US4693036Nov 28, 1984Sep 15, 1987Disco Abrasive Systems, Ltd.Semiconductor wafer surface grinding apparatus
US4715150Apr 29, 1986Dec 29, 1987Seiken Co., Ltd.Nonwoven fiber abrasive disk
US4739589Jul 2, 1986Apr 26, 1988Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoff MbhProcess and apparatus for abrasive machining of a wafer-like workpiece
US4773185Feb 2, 1987Sep 27, 1988Linden Integral Research, Inc.Surface abrading machine
US4789424Dec 11, 1987Dec 6, 1988Frank FornadelCrosshatched radially cut pitch lap; optic submerged in polishing compound; automatic, tolerence
US4811522Mar 23, 1987Mar 14, 1989Gill Jr Gerald LCounterbalanced polishing apparatus
US4821461Nov 23, 1987Apr 18, 1989Magnetic Peripherals Inc.Abrading tool
US4843766Apr 26, 1988Jul 4, 1989Disco Abrasive Systems, Ltd.Cutting tool having concentrically arranged outside and inside abrasive grain layers and method for production thereof
US4918872Jul 8, 1988Apr 24, 1990Kanebo LimitedSurface grinding apparatus
US5020283Aug 3, 1990Jun 4, 1991Micron Technology, Inc.Polishing pad with uniform abrasion
US5131190Jan 31, 1991Jul 21, 1992C.I.C.E. S.A.Lapping machine and non-constant pitch grooved bed therefor
US5137597Apr 11, 1991Aug 11, 1992Microelectronics And Computer Technology CorporationFabrication of metal pillars in an electronic component using polishing
US5142828Jun 25, 1990Sep 1, 1992Microelectronics And Computer Technology CorporationCorrecting a defective metallization layer on an electronic component by polishing
US5177908Jan 22, 1990Jan 12, 1993Micron Technology, Inc.Polishing pad
US5329734 *Apr 30, 1993Jul 19, 1994Motorola, Inc.Polishing pads used to chemical-mechanical polish a semiconductor substrate
USRE31053May 1, 1981Oct 12, 1982Bell Telephone Laboratories, IncorporatedApparatus and method for holding and planarizing thin workpieces
CA679731AFeb 11, 1964Carborundum CoBonded abrasive articles
EP0318135A2Sep 5, 1988May 31, 1989Magnetic Peripherals Inc.Abrading tool and process of manufacturing the same
EP0439124A2Jan 22, 1991Jul 31, 1991Micron Technology, Inc.Polishing pad with uniform abrasion
FR1195595A Title not available
FR2063961A1 Title not available
GB2043501A Title not available
GB190726287A Title not available
JPH01153263A Title not available
JPH03277465A Title not available
JPS6299072A Title not available
JPS51137998A Title not available
JPS51137999A Title not available
JPS51138038A Title not available
JPS62241648A Title not available
SU1206067A1 Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8715035 *Feb 21, 2006May 6, 2014Nexplanar CorporationCustomized polishing pads for CMP and methods of fabrication and use thereof
US20090053976 *Feb 21, 2006Feb 26, 2009Roy Pradip KCustomized Polishing Pads for CMP and Methods of Fabrication and Use Thereof
US20120258652 *Nov 9, 2010Oct 11, 2012Koehnle Gregory ARotary buffing pad
Classifications
U.S. Classification451/548, 451/550, 451/527, 451/921, 451/287
International ClassificationB24B7/22, H01L21/687, B24B37/04, B24B13/01, B24D11/00
Cooperative ClassificationB24B7/228, B24B13/01, B24B37/26, B24D11/00
European ClassificationB24B37/26, B24B13/01, B24D11/00, B24B7/22E
Legal Events
DateCodeEventDescription
Sep 2, 2005FPAYFee payment
Year of fee payment: 12