Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE38267 E1
Publication typeGrant
Application numberUS 09/080,270
Publication dateOct 7, 2003
Filing dateMay 18, 1998
Priority dateJun 22, 1994
Also published asCA2169955A1, CA2169955C, DE69532985D1, DE69532985T2, EP0714589A1, EP0714589A4, EP0714589B1, US5519760, USRE44378, WO1995035636A1
Publication number080270, 09080270, US RE38267 E1, US RE38267E1, US-E1-RE38267, USRE38267 E1, USRE38267E1
InventorsDaniel G. Borkowski, Hingsum F. Fung, Hadi F. Habal, Kenneth Chao, Sheng-roan Kai, D. Packard II Robert, Manuel Maseda
Original AssigneeVerizon Laboratories, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cellular network-based geographic coverage area reporting method and apparatus
US RE38267 E1
Abstract
In a cellular system configuration, the location of a mobile station is determined from the acquisition of cellular network data pertaining to the mobile station, and the translation of such network data into a corresponding geographical position profile. The cellular system includes a mobile station locator entity for receiving from a mobile switching center the network data such as cell and/or sector ID and trunk group member number. The mobile station locator translates the network data into position information such as geographic coordinates (latitude and longitude), resolution (radius), and angle values for sectorized cells.
Images(5)
Previous page
Next page
Claims(37)
What is claimed is:
1. In a cellular system comprising a plurality of cell sites each including a plurality of mobile stations in communication with a base station, and comprising a plurality of interconnected mobile switching centers each in communication with the base stations of certain cell sites, wherein each mobile switching center maintains network identification data for each mobile station being served in said certain cell sites, a method of determining the location of a mobile station originating communications within a cell site, comprising the steps of:
acquiring the network identification data for said mobile station from the mobile switching center serving said cell site; and
translating said acquired network identification data into geographical location information using indexable tables generated from data of trunk groups and member numbers used by each cell site and data front geographic maps of radio coverage for said cell sites.
2. The method as recited in claim 1 wherein the acquiring step includes the steps of:
transmitting from the mobile switching center a cellular channel including an identity code assigned to the communicating mobile station;
prompting the mobile switching center with said identity code to request network identification data for said communicating mobile station;
at the mobile switching center, responsively retrieving the requested network identification data using the identity code; and
transmitting the network identification data from said mobile switching center.
3. The method as recited in claim 2 includes the step of:
developing an information array at the mobile switching center including entries for each mobile station in said cell site indexed by a respective identity code.
4. The method as recited in claim 2 wherein:
said cellular channel further includes the mobile station communication.
5. In a cellular system comprising a plurality of cell sites each including a plurality of mobile stations in communication with a base station, and comprising a plurality of interconnected mobile switching centers each in communication with the base stations of certain cell sites, wherein each mobile switching center maintains network identification data for each mobile station being served in said certain cell sites, a method of determining the location of a mobile station originating communications within a cell site, comprising the steps of:
transmitting from the mobile switching center a cellular channel including the network identification data for said mobile station;
receiving the transmitted network identification data; and
translating the received network identification data into geographical location information using indexable tables generated from data of trunk groups and member numbers used by each cell site and data from geographic maps of radio coverage for said cell sites.
6. A location-finding assembly in a cellular system, said system servicing a plurality of mobile stations through a base station connected to a mobile switching center, comprising:
server means responsive to a location request for prompting the mobile switching center for network data on a base station;
said server means including means for receiving network data from the mobile switching center, and means for converting said network data into a corresponding geographical position profile using indexable tables generated from data of trunk groups and member numbers used by each cell site and data from geographic maps of radio coverage for said cell sites.
7. In a cellular telephone system, a method of providing to a desired location an identity of a mobile station and a geographic coverage area of a cell within which the mobile station is located, the method comprising the steps of:
obtaining from the cellular telephone system an identity code of the mobile station and an identity of the cell;
accessing a geographic information database containing geographic information relating to the cellular telephone system including geographic coordinate data and cell size data to obtain from the geographic information database geographic information corresponding to the geographic coverage area of the cell within which the mobile station is located; and
providing the identity of the mobile station and the geographic information corresponding to the geographic coverage area of the cell within which the mobile station is located to the desired location.
8. The method according to claim 7, wherein the geographic information database comprises at least one of geographic coordinates, resolution, and angle values for said cell.
9. A method of reporting to a called party an identity of a mobile station and information relating to a geographic coverage area of a cell of a radiotelephone system within which the mobile station is placing a call to a called party, the method comprising the steps of:
acquiring from the radiotelephone system the identity of the mobile station and an identity of the cell within which the mobile station is placing the call;
accessing a geographic information database containing geographic information for at least one cell of the radiotelephone system, wherein the geographic information database comprises geographic coordinates of the at least one cell at latitude and longitude data and resolution data;
retrieving from the geographic information database the geographic information corresponding to the identified cell, the geographic information including the geographic coverage area of the cell within which the mobile station is placing the call; and
delivering the geographic information including the geographic coverage area of the cell within which the mobile station is placing the call to the called party.
10. The method according to claim 9, wherein the geographic information database is created by integrating physical location information of at least one cell of the radiotelephone system with radiofrequency (RF) propagation data representing a communication coverage area of the at least one cell.
11. The method according to claim 9, wherein the geographic information database is indexed by the identity of the at least one cell.
12. The method according to claim 9, wherein the step of acquiring the identity of the cell site within which the mobile station is placing the call comprises the substep of querying a switching center of the radiotelephone system.
13. The method according to claim 9, wherein the step of acquiring the identity of the cell within which the mobile station is placing the call is automatically accomplished whenever a telephone number of the called party is a predetermined value.
14. The method according to claim 9, wherein the geographic information enables depiction of a circle when a serving base station is associated with an omni-directional cell.
15. A method of reporting to a called party an identity of a mobile station and information relating to a geographic coverage area of a cell of a radiotelephone system within which the mobile station is placing a call, the method comprising the steps of:
acquiring from the radiotelephone system the identity of the mobile station and an identity of the cell within which the mobile station is placing the call;
accessing a geographic information database containing geographic information for at least one cell of the radiotelephone system, wherein the geographic information database comprises angle data;
retrieving from the database the geographic information corresponding to the identified cell, including the geographic coverage area of the cell within which the mobile station is placing the call; and
delivering the geographic information including the geographic coverage area of the cell within which the mobile station is placing the call to the called party.
16. The method according to claim 15, wherein the geographic information database comprises sector information for at least one sectored cell of the radiotelephone system.
17. The method according to claim 15, wherein the geographic information database is created by integrating physical location information of at least one cell of the radiotelephone system with radiofrequency (RF) propagation data representing a communication coverage area of the at least one cell.
18. The method according to claim 15, wherein the geographic information database is indexed by the sector information of the at least one cell.
19. The method according to claim 15, wherein the step of acquiring the identity of the cell site within which the mobile station is placing the call comprises the substep of querying a switching center of the radiotelephone system.
20. The method according to claim 19, wherein the step of acquiring the identity of the cell within which the mobile station is placing the call is automatically accomplished whenever a telephone number of the called party is a predetermined value.
21. The method according to claim 15, wherein the geographic information enables depiction of a section of a circle when a serving base station is associated with a sector of a sectorized cell.
22. A cellular network-based location system configured to provide to a desired location an identity of a mobile station and a geographic coverage area of a cell within which the mobile station is located, the system comprising:
a mobile switching center for providing an identity code of the mobile station to a mobile station locator;
a first interface, within the mobile station locator, for retrieving and storing information regarding the cell;
a geographic information database, within the mobile station locator, for translating the information regarding the cell into geographic coverage area information regarding the cell including geographic coordinate data and cell size data; and
a second interface, within the mobile station locator, for providing the geographic coverage area information regarding the cell to a desired location.
23. The system according to claim 22, wherein the desired location is an assistance center dispatch station.
24. The system according to claim 22, wherein the geographic information database comprises at least one of geographic coordinates, resolution, and angle values for said cell.
25. A cellular network-based location system configured to provide to a desired location an identity of a mobile station and a geographic coverage area of a cell within which the mobile station is placing a call to a called party, the system comprising:
means for acquiring from the radiotelephone system the identity of the mobile station and an identity of the cell within which the mobile station is placing the call;
means for accessing a geographic information database containing geographic information for at least one cell of the radiotelephone system, wherein the geographic information database comprises geographic coordinates of the at least one cell as latitude and longitude data and resolution data;
means for retrieving from the database the geographic information corresponding to the identified cell, including the geographic coverage area of the cell; and
means for delivering the geographic information including the geographic coverage area of the cell to the called party.
26. The system according to claim 25, wherein the geographic information database is created by integrating physical location information of at least one cell of the radiotelephone system with radiofrequency (RF) propagation data representing a communication coverage area of the at least one cell.
27. The system according to claim 25, wherein the geographic information database is indexed by the identity of the at least one cell.
28. The system according to claim 25, wherein the means for acquiring the identity of the cell site within which the mobile station is placing the call comprises means for querying a switching center of the radiotelephone system.
29. The system according to claim 25, wherein the identity of the cell within which the mobile station is placing the call is automatically acquired whenever a telephone number of the called party is a predetermined value.
30. The system according to claim 25, wherein the geographic information enables depiction of a circle when a serving base station is associated with an omni-directional cell.
31. A cellular network-based location system configured to provide to a desired location an identity of a mobile station and a geographic coverage area of a cell within which the mobile station is placing a call to a called party, the system comprising:
means for acquiring from the radiotelephone system the identity of the mobile station and an identity of the cell within which the mobile station is placing the call;
means for accessing a geographic information database containing geographic information for at least one cell of the radiotelephone system, wherein the geographic information database comprises angle data;
means of retrieving from the database the geographic information corresponding to the identified cell, including the geographic coverage area of the cell; and
means for delivering the geographic information including the geographic coverage area of the cell to the called party.
32. The system according to claim 31, wherein the geographic information database comprises sector information for at least one sectored cell of the radiotelephone system.
33. The method according to claim 31, wherein the geographic information database is created by integrating physical location information of at least one cell of the radiotelephone system with radiofrequency (RF) propagation data representing a communication coverage area of the at least one cell.
34. The system according to claim 31, wherein the geographic information database is indexed by the sector information of the at least one cell.
35. The system according to claim 31, wherein the means for acquiring the identity of the cell site within which the mobile station is placing the call comprises means for querying a switching center of the radiotelephone system.
36. The system according to claim 35, wherein the identity of the cell within which the mobile station is placing the call is automatically acquired whenever a telephone number of the called party is a predetermined value.
37. The system according to claim 31, wherein the geographic information enables depiction of a section of a circle when a serving base station is associated with a sector of a sectorized cell.
Description

This application is the parent of Ser. No. 09/969,637, filed Oct. 4, 2001.

FIELD OF THE INVENTION

The present invention relates to cellular communication systems and, more particularly, to a cellular configuration for determining the location of a mobile station.

BACKGROUND OF THE INVENTION

The increased terminal mobility offered by cellular telephone networks as well as mobile radio data networks has brought about an increased demand for location-based services and applications. Fleet operators are interested in automated vehicle tracking applications to enhance their dispatch operations. Moreover, stolen vehicle recovery systems have enjoyed a significant amount of success during the past few years. However, most efforts to date have been designed around specialized equipment employed at the mobile operator site for acquiring location information. For example, U.S. Pat. No. 5,043,736 to Darnell et al. discloses a cellular position locating system where the location of a remote unit is derived from data transmitted by a global positioning system to a specially equipped receiver at the remote unit.

SUMMARY OF THE INVENTION

The present invention concerns, in a cellular system comprising a plurality of cell sites each including a plurality of mobile stations in communication with a base station, and comprising a plurality of interconnected mobile switching centers each in communication with the base stations of certain cell sites, wherein each mobile switching center maintains network identification data for each mobile station being served in said certain cell sites, a method of determining the location of a mobile station originating communications within a cell site, comprising the steps of: acquiring the network identification data for said mobile station from the mobile switching center serving said cell site; and translating said acquired network identification data into geographical location information.

In another aspect the present invention concerns, in a cellular system comprising a plurality of cell sites each including a plurality of mobile stations in communication with a base station, and comprising a plurality of interconnected mobile switching centers each in communication with the base stations of certain cell sites, wherein each mobile switching center maintains network identification data for each mobile station being served in said certain cell sites, a method of determining the location of a mobile station originating communications within a cell site, comprising the steps of: transmitting from the mobile switching center a cellular channel including the network identification data for said mobile station; receiving the transmitted network identification data; and translating the received network identification data into geographical location information.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart depicting a communications sequence in accordance with one embodiment of the present invention;

FIG. 2 is a flowchart depicting a communications sequence in accordance with another embodiment of the present invention;

FIG. 3 is a block diagram of a mobile system configuration employing the present invention; and

FIG. 4 is a detailed block diagram representation of the mobile system configuration in FIG. 3.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The implementation of certain cellular services requires that the mobile station location be made available to the service provider. For example, in a 911 emergency service, medical personnel need an accurate and precise reading on the source of a distress call in order for prompt medical attention to be made available within the entire coverage area of single or multi-carrier cellular networks. Although the location finding system disclosed by Darnell et al., supra, conveys highly accurate positional information from a modified mobile station specially configured to interface with a GPS system, a more desirable system from a subscriber perspective would keep intact the existing mobile station configuration.

The present invention concerns an enhancement to the existing cellular network topology permitting the acquisition of a mobile station location using cellular parameters from the network. The cellular parameters define the placement of each mobile station within its cellular network and its relationship to other mobile stations. For example, the parameters may include data identifying the communications trunk group serving the mobile station, a member number, and cell and/or sector ID. An accurate conversion of cellular data into a geographical profile may be performed using radio plans as a translational mechanism. The radio plans, which correspond to geographic maps of radio coverage, furnish information such as the latitude and longitude derived from the cell base station antenna location, elevation, radius, and angles for sectorized cells.

For purposes of discussion and clarity, the term “mobile station locator” (MSL or “Locator”) is used hereinafter to encompass a facility, mechanism, or assembly in whatever form implemented, constructed, or operable, which interacts with and is the recipient of location-determinative cellular data from the cellular network. The MSL itself maintains an information resource responsive to input cellular data for generating a corresponding geographical location estimate. The resource is constructed by accumulating position data from radio coverage maps, for example, where cellular data is translatable into geographical information.

The basic configuration of a cellular network includes a plurality of base stations defining cell sites and providing wireless communication to mobile station units within the cell site coverage area. The cellular network is further configured with a plurality of mobile switching centers in communication with the base stations and other switching centers to perform processing and switching functions enabling connections between mobile stations and interfacing to external networks such as the PSTN.

In one embodiment of the present invention detailed in the flow diagram sequence of FIG. 1, a code representing the identity of a mobile station is transmitted from the mobile switching center (MSC or “Center”) to the mobile station locator. In particular, the identity code corresponds to a mobile Identification Number (MIN) and/or an Electronic Serial Number (ESN). The Locator then queries the Center with the MIN, requesting network data on the mobile station having the designated MIN. In response to this query, the Center retrieves the requested information such as trunk group and member number, and then forwards it to the Locator. A translation operation at the Locator converts the cellular network data into corresponding geographical location information.

In another embodiment of the present invention detailed in the flow diagram sequence of FIG. 2, cellular network data is transmitted along with the MIN from the Center to the Locator; accordingly, in this embodiment, the Locator does not prompt the Center for cellular data. In a preferred implementation, the Center invokes the transmission of cellular data pertaining to a mobile station in response to a trigger command from the mobile station represented by certain dialed mobile digits known as a feature code.

FIG. 3 is a system level block diagram illustratively representing a cellular configuration for implementing the present invention. For purposes of investigating the location-finding capability, an Assistance Center 31 was included to monitor the call from the mobile station and the position information from the Mobile Station Locator (MSL) 32. In particular, AC 31 is an entity receiving a voice channel over a cellular link connected to the Mobile Switching Center (MSC) 33, and receiving the geographical location data from Locator 32. The Assistance Center 31 includes a processing center with dispatching and/or storage capabilities which receives user calls and location data and provides services based upon that information. The Assistance Center 31 specifically contains equipment which provides the capability for a call-taker (i.e., operator or dispatcher) to talk with the cellular phone caller and display the caller's position on a graphical display.

The Mobile Switching Center 33 is a cellular telephone network switch that provides processing and switching functions to allow cellular phones to communicate with other phones (cellular and wireline). The Mobile Station Locator 32 is a facility performing the retrieval and storage of location information pertaining to mobile stations. In particular, Locator 32 receives, retrieves, stores and processes location information, and then furnishes it to AC 31. The Locator 32 is equipped with an MSL-MSC Interface (MMI) that performs the retrieval of location information from the Mobile Switching Center 33.

Base stations, also called cell sites, are connected to Center 33 and provide radio communication with the cellular phones. Base stations can be configured with omnidirectional or sectorized antennas. An omni cell provides radio coverage radiating out from the cell center in all directions; this type of a cell may be approximated by a circle on a map. A sectorized cell has antennas which provide coverage for a section of the circle; this type of a cell may be approximated by a pie-wedge shape on a map.

The cellular configuration shown in FIG. 3 was exercised during a Location Assistance and Tracking Information Service (LATIS) field trial demonstration to explore the methods by which the location of a mobile station (e.g., cellular phone) originating a call may be made available to entities both internal and external to the cellular network. The Locator 32 principally serves the function of collecting location data from the cellular network, translating it, and providing it to AC 31. The location data comprised the geographic coordinates and size of the serving cellular network cell site (e.g., base station). The resolution of this location data was limited by the size of the cell site; however, the resolution of the data from multiple cell sites was enhanced by sector information such as the cell subset/section.

The LATIS trial activated the acquisition mode to determine a mobile station's position by engaging the operator into initiating a call into *the cellular network. In particular, the mobile station operator dialed a recognizable feature code (FC) on a standard cellular phone. The Center 33 recognized the feature code and connected the call to AC 31 for establishing a voice connection between the answering personnel and the caller.

The acquisition of location information by Locator 32, and its subsequent delivery to AC 31, is accomplished during the LATIS trial by a first and second transport scheme hereinafter designated Methods I and II. In Method I, Center 33 transmits the caller's identity to AC 31 over a network connection. The caller's identity is defined by a Mobile Identification Number (MIN) which corresponds to the telephone number of the station originating a call. For the purposes of the trial, the MIN was ten (10) digits in length.

The AC 31 responds by forwarding to Locator 32 a message containing the caller's MIN in order to request cellular data relevant to the MIN. The Locator 32 then interacts with Center 33 to retrieve the cell-site trunk currently in use by that particular mobile station. The Locator 32 converts the trunk information received from Center 33 into a location value including a geographic coordinate (latitude and longitude), a resolution parameter (radius), and possibly two angle values (for sectorized cells). This information is then formatted and transmitted to AC 31 for graphical display. Depending upon the type of base station currently serving the cellular phone, the location value may be displayed by AC 31 in different ways, such as with a circle described by the geographic coordinate and the resolution, or a pie-wedge conveying this information and supplemented with the two angle values.

In Method II, Center 33 multiplexes the caller's identity (e.g., MIN) with cellular network data and transmits the combined signal to AC 31. For example, Center 33 may outpulse the MIN pulse a 5-digit code representing the serving cell/sector. The AC 31 receives this code and forwards it to Locator 32, which converts it into a geographical location value that is transmitted to AC 31 for graphical display. The following table summarizes the features of the transport methods used during the trial.

Location Mobile Signaling Data
Transport Dialed Digits Outpulsed
Method (Feature Code) from MSC to AC
I *57 MIN (10)
II 211 MIN (10) + cell & sector (5)

Although the LATIS field trial included specific routes for communicating cellular network data to Locator 32, these routes are indicated for illustrative purposes only and should not serve as a limitation of the present invention. Rather, the cellular network data may be transmitted to Locator 32 directly or indirectly via any type of communications link. Furthermore, the network data may be transmitted before or contemporaneously with the voice channel. For example, the voice channel may be forwarded to AC 31 or another entity over one link, while the network data may be independently routed over an alternative path to Locator 32. In addition, the MIN and/or network data (depending upon the application) may be multiplexed with the voice channel before transmission from Center 33.

Likewise, even though in Method I the Locator 32 was prompted with the MIN by Assistance Center 31, and in Method II the cell/sector location data was initially transmitted to AC 31 before being coupled to Locator 32 for conversion, this supervisory/coordinating role of AC 31 should not serve as a limitation of the present invention. Rather, it should be apparent to those skilled in the art that the MIN for Method I and the cellular network data for Method II could be transmitted directly to Locator 32 from Center 33, while the voice communication would be separately transmitted by Center 33 to AC 31 or any other end user.

FIG. 4 is a further block diagram representation of the cellular configuration in FIG. 3. The specific components, subsystems, and other entities mentioned in conjunction with FIG. 4 should not be viewed as a limitation of the present invention, but as representative of one implementation of the cellular configuration. It should be apparent to those skilled in the art that the functions demonstrated in FIG. 4 may be implemented by other equivalent means.

The mobile station employed standard cellular phones such as Motorola transportable cellular phones which did not require any non-standard modifications. The phones were initialized with MINs (telephone numbers) from the serving GTE Mobilnet cellular system so that the phone would be on its “home” system throughout the trial.

The Mobile Switching Center 33 was an AT&T Autoplex System 1000 comprising one Executive Cellular Processor (ECP) 41 and several Digital Cellular Switches (DCS) 42. Each DCS 42 is connected to several base stations (cell sites). The only hardware modification made to Center 33 was the connection of a dedicated T-1 span (trunk group) to carry the test calls to an Assistance Center Switch 43. The link between the DCS 42 and ACS 43 is designated interface A in FIG. 4.

The ECP 41 was modified to provide the necessary digit translation, call routing, and trunk signaling. The following discussion enumerates the modifications made to certain forms of ECP 41.

(1) The Subscriber and Feature Information Form was modified to add Primary Dialing Class 22. The MIN of each test phone was part of Dialing Class 22; this class was created for the trial to restrict tile dialing capabilities of the test phones and to prevent interference with the live traffic.

(2) Pattern matching was added to the Dialing Plan form (DPLAN). These modifications specified the feature codes that were used. If the dialed digits received form the mobile station matched *57 (Method I), or 211 (Method II), a Destination Index of 911 for the DXDRTE route and a Dialed Number Modification (DNMOD) of 13 were assigned. If the digits matched *58+12 or more digits (which would be latitude/longitude), a Destination Index of 911 and a DNMOD of 14 were assigned.

(3) Dialed Number Modification (DNMOD) 13 performed cell and sector matching. It the call originated from one of the cells/sectors in the table, a corresponding set of digits was added to the dialed digits (*57 or 211), and the entire set was routed to the Digit-By-Digit Call Routing (DXDRTE).

(4) Dialed Number Modification (DNMOD) 14 performed latitude and longitude translation. The *58 was deleted from the incoming digits, and the remaining lat/long digits were routed to the Digit-By-Digit Call Routing (DXDTRE).

(5) The Digit-By-Digit Call Routing (DXDTRE) assigned an outgoing trunk group and outpulsed the digits. The Feature Group D signaling method was used. The caller's MIN was outpulsed in the ANI (Automatic Number Identification) field, and the digits sent by the DNMOD forms were outpulsed in the Called Address field.

As noted above, Assistance Center 31 in FIG. 3 is equipped with means for communicating with the mobile station via the cellular network over a communications link such as a voice channel, and for receiving and displaying the geographical position information of the mobile station caller. The Assistance Center 31 is represented in FIG. 4 as an Assistance Center Switch (ACS) 43 and an Assistance Center Dispatch Station 46, discussed infra. The ACS 43 contains telephone switching equipment capable of receiving and discerning identity and location information pertaining to incoming calls, and routing those calls to operators as necessary.

The ACS 43 is configured to include a Summa Four SDS-500 switch 44 which was configured with two T1 cards, one used during the trial and the other used for testing. The ACS 43 may further include a dial tone generator, an MF (multi-frequency) card for inband signaling-data capture, and an SLIC card to control attached telephone sets if so desired. A dedicated T1 span (interface A) from Center 33 was connected to one of the T1 cards; calls from Center 33 entered through ports on this card. The SDS switch 44 was controlled by all SDS host 45 which was running the SDS control software. The switch 44 communicated switch-related information and activity to the host 45 through reports; the host 45 issued commands to control the switch 44; and the switch 44 responded to commands with responses. The SDS host machine 45 was an HP-9000 series workstation.

The control software for the switch 44 was written in the C programming language and comprised five main modules (discussed infra) to execute the functions of receive messages, send messages, signal capture, analyze number, and prepare MSL input.

Receive Messages module

This module received messages from the SDS switch 44. This module was designed to support different types of applications; based upon the destination code and function ID in a message, the message was forwarded to an application module. For the trial, only one module, namely the signal capture module, was used.

Send Messages module

This module received messages from host modules and queued them for transmission to the switch. It returned several status responses to the calling module, including socket full/output pending and communication error.

Signal Capture module

This module reacted to changes in the T1 and telset resources; these changes were sent to the host via Impulse Rule Complete reports, Incoming Port Change reports, Outgoing Port change reports, or responses to Outgoing Port Control commands. Based upon the report, a command was built and sent to the switch via the Send Messages module. The commands included the resource's virtual communication address, and were formulated with the SDS Application Program Interface (API).

The Impulse Rule Complete report indicated that the signaling information from an inbound call (on the T1 span) was complete. The received signaling data were then sent to the Analyze Number module for analysis and further action.

Analyze Number module

This module analyzed the digits received by the signal capture module to determine which set of location data it contained (e.g., latitude & longitude, cell & sector, or none). The location data were then reformatted into a location information set and sent to the Prepare MSL Input module.

Prepare MSL Input module

This module prepared a location record for the MSL from the given location information set. If any error in the location set was detected, an appropriate error message was written to a log file. Otherwise, a data record was passed immediately to Locator 32 via the Send Messages module.

Additionally, this module sent an Outgoing Port Control command to the switch to perform an Outpulse Rule (ringing, etc.) for an ACDS telset (discussed infra). Since six telsets were used, if the first one was busy, the second one rang; if they both were busy, the call was queued (with ringback heard by the caller), and the first available telset received the call.

As noted above, the Assistance Center may also include an Assistance Center Dispatch Station (ACDS) 46 for housing telephone dispatching equipment 47 that enables an operator to talk with a caller and process the caller's location. This phone equipment would be interfaced to the SDS switch 44 through the SLIC card.

The ACDS comprised six standard telephones 47 and one HP-9000 series workstation 48. The telephones 47, connected to the ACS 43, allowed the operator to communicate with the callers/testers. Two software applications ran on the workstation: a Geographic Information System (GIS) for electronic mapping of callers' locations and a Graphical User Interface (GUI) which allowed the operator to quickly collect test scenario data.

The Geographic Information System is an X Window application which displays geographic data. In addition, GIS contains highly powerful algorithms for determining the shortest route/path between any two or more points. The following features were specifically added for use in the trial.

A feature was added to display incoming location data with a car icon; this corresponded with “exact” locations where latitude and longitude data were present.

A feature was added to display incoming location data with a circle; this corresponded with locations from omni-directional base stations.

A feature was added to display incoming location data as a pie-wedge (section of a circle); this corresponded with locations from sectorized base stations.

Capabilities were added to retrieve and delete the information related to a call. While any icon was illuminated, the operator could click on the icon and retrieve the specific information related to that call: MIN, latitude & longitude (if applicable), and cell/sector values (if applicable). The operator could also delete the entry, at which point the icon would be removed.

The GUI assists the operator in the gathering of necessary information. The GUI was built using X Windows/Motif 1.1 widget family, and includes a menu bar with twelve fields which the operator can fill with test information. The fields are delineated below.

(a) Dialing MIN: The tester's MIN.

(b) Date: The date and times were obtained from the workstation's operating system.

(c) Dial Type: The dialing types (Method I or II) are listed.

(d) Cell: The name and number of the test cells were listed.

(e) Cell_id: The number of the cell used.

(f) Sector: The sector used by the tester in that cell.

(g) Caller: Caller's name.

(h) Call_taker: The operator's name.

(i) Weather: Four conditions were listed: sunny, partly cloudy, rainy, and foggy.

(j) Location: Thirty-two pre-assigned test locations were listed.

(k) Result: Pass or fail result was given to each test_index.

(l) Duration: Three call-duration times were listed: less then ten seconds, less than one minute, and greater than one minute.

A comment field was also provided to function as a server for location information. The Mobile Station Locator 32 was implemented with an HP-9000 series workstation.

The Locator 32 included an MSL Host & Server unit 49 containing software written in C and comprising the following six modules: main control, request, query-one, query-all, database-retrieval, GIS-interface. The MSL server 49 was designed to handle multiple simultaneous calls and operated as follows. The main control module waited for an incoming request from the ACS 43 (via interface B). For each incoming call, if the location data were present, the MSL server 49 translated it (if necessary) and formatted a data message which was sent to the ACDS 46. If the incoming call did not contain location data, the MSL server 49 checked if information from a Mobile Switching Center was included; if the Center was known, Locator 32 interacted with that particular Center using the query-one module. If the Center was not known, Locator 32 had the capability to interact with all connected Mobile Switching Centers using the query-all module. Both types of query modules were designed to use an MSL-MSC interface module 50, discussed below.

To ascertain the performance of the Mobile Station Locator 32, the main control module recorded the following events, with time-stamps, in log files:

incoming mobile station call message received;

query sent to MSC interface process by the MSC query process;

query response received from the MSC interface process; and

mobile station location record sent to ACDS.

MSL-MSC Interface

The purpose of the MSL-MSC Interface (MMI) module 50 is to perform MSC-specific processing to retrieve location information. The MMI 50 was written as an Expect script using TCL (Tool Command Language). The MMI 50 login routine established a connection with the Autoplex ECP 41 Recent Change port through the workstation's serial port. During the trial, this connection involved dialing a modem and logging into the ECP 41, all of which were handled automatically by the MMI 50. Once a connection was established, the MMI 50 main program continuously scanned an input file for query requests from the MSL server 49.

When a query request was found, the MMI 50 would issue an OP:DN command to the ECP 41; this command would contain the MIN received from Locator 32 in the query request message. Under normal operating circumstances, ECP 41 would return an MCR (Mobile Call Register) value. The MMI 50 would then issue an OP:MCR command with the MCR value. Under similar operating circumstances, ECP 41 would return, among other data, the cell site trunk information corresponding with the trunk currently serving the mobile station. The MMI 50 returned this information (trunk group and member number) to the MSL server 49 by writing it into an output file. In any errors were encountered, the MMI 50 would write an appropriate error message into the output file.

MSL Data Message Formats and Translations

The Locator 32 receives location data and performs conversions to provide a uniform output message format to applications (API). An illustrative output message format is as follows:

cell and sector  4 characters
longitude  8
latitude  8
elevation  5
radius  5
starting angle  5
real coverage angle  5
message/comments 125

A space was used to delimit each field.

The MSL host 49 executes certain conversion operations to properly translate the cellular network identification data for a specified mobile station into geographical position information. For example, transport Method I provides trunk group and member number data from the MSL-MSC Interface 50 to the MSL host 49. This data is translated in a first conversion operation into cell ID and sector ID information. In a second conversion operation, employed as a principal operation for transport Method II or as a secondary operation for transport Method I, the input data comprising cell/sector ID is converted into latitude and longitude, resolution (radius), angle 1, and angle 2.

The conversion operations are preferably performed using indexable tables previously generated and stored at Locator 32. The data for the first conversion operation was obtained, for example, from lists of trunk groups and member numbers used by each cell site (categorized by cell ID and/or sector ID). The data for the second conversion operation was gathered from radio plans (geographic maps of radio coverage) for the cells chosen for the trial, and organized into a tabular format. The latitude and longitude of each cell were taken directly from these radio plans using the base station antenna location as an index. The angles for sectorized cells were also extracted from the radio plans and other tables. The resolution of each cell/sector was determined from the radio plans as the distance from its center to the furthest point that provided at least −75 dB radio signal coverage. The −75 dB figure was preferably used as a measure of the signal strength necessary to qualify as a threshold for handoff.

The following describes the interfaces among the units represented in FIG. 4.

(1) MSC-ACS Interface (link “A”)

This is a T1 span with Feature Group D (FG-D) signaling. The MSC 33 outpulsed ANI (the mobile's MIN) and, depending upon the location-transport method, a string of dialed digit which contained information pertaining to the location of the caller.

(2) ACS-MSL interface (link “B”)

This is a file-transfer interface between the SDS host 45 and the MSL Server 49 processes. For all mobile-originated calls, a request message including the mobile's MIN and optional location information was written by the SDS Host 45 into a file. The MSL server 49 read the data from the file. The SDS Host 45 and MSL processes were executed on separate machines connected through an ethernet link.

(3) MSL-MSC interface (link “C”)

This is a serial connection between the MSL interface unit 50 and the MSC's recent change port. Since Locator 32 is located remotely from Center 33, modems are used on a dial-up telephone line. The MSL's MMI 50 interacted with the MSC 33 to retrieve serving trunk group and member number data for a given MIN when transport Method I is operational.

(4) MSL-ACDS interface (link “D”)

This is a file-transfer interface between the MSL Server 49 and the ACDS 46 application processes. The MSL writes its output messages containing the geographic location information into a file which is read by the ACDS application (GIS). Since the MSL and ACDS processes are executed on separate machines, an ethernet connection was used to transport the file read-write messages.

As an alternative to the location-finding schemes discussed above, the geographical location data may be obtained at the mobile station site using an enhanced mobile unit interfaced to an external position location system such as a GPS satellite. Location data for this service consisted of the latitude and longitude information uploaded by the enhanced mobile station. The resolution of this data was dependent upon the capabilities of the positioning equipment used at the mobile station.

For this service (designate transport Method III), an “enhanced” cellular phone employed an attached positioning device capable of determining the current location of the mobile unit. At the mobile operator's command, the enhanced phone read the current location information from the positioning device and automatically initiated a call. The dialed digits comprised a feature code plus the latitude and longitude location information. The Mobile Switching Center recognized this feature code and connected the call to the Assistance Center. In particular, the Switching Center out-pulsed the MIN plus the latitude (‘lat’) and longitude (‘lon’) which were included in the digits dialed by the cellular phone; the ‘lat’ required eight digits, and the ‘lon’ required seven digits. The Switching Center transmitted this information to the Station Locator, which reformatted it and sent it to the Assistance Center for graphical display. Transport Method III is summarized in the following table.

Location
Transport Mobile Signaling Data Outpulsed
Method Dialed Digits to AC from MSC
III *58 + lon (8) + lat (7) MIN (10) + lon (8) +
lat (7)

The implementation of transport Method III required certain modifications to the mobile system configuration described above. The following discussion recites the enhancements made for the GPS-based implementation.

Enhanced Cellular Phones

Five GTE CCP-2000 Cellular Credit Card Phones (CCP) were modified for use in the aforementioned LATIS trial to implement Transport Method III. The modifications included the software and hardware revisions noted below. Hardware modifications included the following.

The RJ-11 data jack on the side of the CCP was modified to connect directly to the serial port of the CCP's microprocessor. This allowed the CCP to communicate with an attached positioning device via a serial link.

Several modifications were made to the CCP's operating software.

The software polled the serial port once every second looking for location data from the connected positioning device. If data was found and valid position information was included, the data was flagged as valid and stored in a buffer. If no data was found, or if invalid position information was included, the data was flagged as invalid.

The software displayed a location status on the CCP's display. If location data flag indicated valid data in the buffer, the display would be updated with latitude and longitude information alternating every five seconds. If the data was flagged as invalid, an “Invalid Loc Data” message was displayed every five seconds.

The function of the “Data” key was changed to provide the following functionality. When the Data key was pressed by a user/tester, the CCP would automatically initiate a call. The dialed digits included a 3-digit programmable feature code (FC) followed by 15 digits of position information (8 longitude digits followed by 7 latitude digits). Once the call was successfully initiated, control of the CCP was returned to the tester.

The “Lock” key functionality was modified such that it would act as a toggle for a Tracking Mode. If the Tracking Mode was currently off when the Lock key was pressed, the CCP software would enable the mode; if the mode was on when the key was pressed, the software turned off the mode. While in the Tracking Mode, the CCP software maintained complete control of the phone; the tester could only press the Lock key, which would lead to the mode being disabled and control returned to the tester. While in the Tracking Mode, the CCP would initiate calls automatically in a pre-programmed interval. The call initiation was identical to that corresponding to the Data key press, but the duration of the call and the time between calls were determined by a set of programmable parameters.

The CCP's service utility was modified to allow the feature code for the Data key to be programmed. Modifications were made also to allow programming of the feature code, call duration, and between-call interval for Tracking Mode.

The positioning devices were Lowrance OEM GPS receivers, although any such geographical positioning system may be employed. These receivers were capable of receiving signals from location acquisition systems such as GPS satellites, processing the signals, and computing a location estimate based on those signals. One GPS receiver was connected to each CCP-2000 phone through a serial data cable. The GPS receivers automatically forwarded location information messages once every second. These messages contained the receiver status, position status, and position information. The resolution of GPS receivers is highly dependent upon environmental factors and varies continuously. Under typical conditions, a GPS receiver that is receiving data from three or more satellites will have an accuracy of 50 to 100 meters.

While there has been shown and described herein what are presently considered the preferred embodiments of the invention, it will be apparent to those skilled in the art that various changed and modifications can be made therein without departing from the scope of the invention as defined by the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4445118 *May 22, 1981Apr 24, 1984The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationNavigation system and method
US4651157 *May 7, 1985Mar 17, 1987Mets, Inc.Security monitoring and tracking system
US4654867 *Aug 11, 1986Mar 31, 1987Motorola, Inc.Cellular voice and data radiotelephone system
US4737978 *Oct 31, 1986Apr 12, 1988Motorola, Inc.Networked cellular radiotelephone systems
US4748655Jul 24, 1985May 31, 1988Racal Research LimitedPortable telephones
US4750197 *Jul 2, 1987Jun 7, 1988Denekamp Mark LIntegrated cargo security system
US4754465 *May 7, 1984Jun 28, 1988Trimble Navigation, Inc.Global positioning system course acquisition code receiver
US4809005 *Jan 21, 1988Feb 28, 1989Western Atlas International, Inc.Determining ship towed sensor position information
US4912756 *Apr 7, 1989Mar 27, 1990Unilink CorporationMethod and apparatus for error-free digital data transmission during cellular telephone handoff, etc.
US5014206 *Aug 22, 1988May 7, 1991Facilitech International IncorporatedTracking system
US5043736 *Jul 27, 1990Aug 27, 1991Cae-Link CorporationCellular position locating system
US5055851 *Nov 29, 1989Oct 8, 1991Trackmobile, Inc.Vehicle location system
US5081703 *Jun 27, 1990Jan 14, 1992Pactel CorporationSatellite mobile communication system for rural service areas
US5155689Jan 17, 1991Oct 13, 1992By-Word Technologies, Inc.Vehicle locating and communicating method and apparatus
US5208756Jan 28, 1991May 4, 1993Song Han LVehicle locating and navigating system
US5218367Jun 1, 1992Jun 8, 1993TrackmobileVehicle tracking system
US5221925Jul 25, 1991Jun 22, 1993Cross Anthony DPosition identification system
US5235633 *Dec 26, 1991Aug 10, 1993Everett DennisonCellular telephone system that uses position of a mobile unit to make call management decisions
US5299132Jul 28, 1992Mar 29, 1994By-Word Technologies, Inc.Vehicle locating and communicating method and apparatus using cellular telephone network
US5327144 *May 7, 1993Jul 5, 1994Associated Rt, Inc.Cellular telephone location system
US5371781Sep 30, 1993Dec 6, 1994At&T Corp.System and method for identifying the incoming directory number when multiple directory numbers are assigned to one wireless device
US5388147Aug 30, 1993Feb 7, 1995At&T Corp.Cellular telecommunication switching system for providing public emergency call location information
US5398190 *Jan 6, 1994Mar 14, 1995Hm Holding CorporationVehicle locating and communicating method and apparatus
US5432841Jul 10, 1992Jul 11, 1995Rimer; Neil A.System for locating and communicating with mobile vehicles
US5442684Jan 13, 1994Aug 15, 1995Nec CorporationMethod and arrangement of locating cordless units in wide area cordless telephone system
US5479482Sep 26, 1994Dec 26, 1995At&T Corp.Cellular terminal for providing public emergency call location information
US5519621Mar 17, 1995May 21, 1996Highwaymaster Communications, Inc.Vehicle locating and communicating method and apparatus
US5542100Mar 9, 1995Jul 30, 1996Sony CorporationMobile communication system
US5544225Jun 5, 1995Aug 6, 1996Highwaymaster Communications, Inc.Data messaging in a cellular communications network
US5548583Feb 15, 1995Aug 20, 1996Stanford Telecommuncations, Inc.Wireless telephone user location capability for enhanced 911 application
US5561704Mar 16, 1994Oct 1, 1996At&T Corp.Proximity based toll free communication services
US5561840May 24, 1993Oct 1, 1996Nokia Telecommunications OyMethod and system for location-updating of subscriber mobile stations in a mobile radio network by a combination of mobile initiated location updating of some mobile stations and network-initiated location updating of others
US5815814 *Nov 22, 1995Sep 29, 1998Sygnet Communications, Inc.Cellular telephone system that uses position of a mobile unit to make call management decisions
USRE35916 *Nov 9, 1995Oct 6, 1998Dennison; EverettCellular telephone system that uses position of a mobile unit to make call management decisions
CA2069230A1May 22, 1992Nov 23, 1993Larry C WorthamVehicle locating and communicating method and apparatus
CA2122988CNov 6, 1992Oct 5, 1999John R. CooperApparatus for detecting and preventing subscriber number cloning in a cellular mobile telephone system
CA2139514A1Apr 23, 1994Dec 22, 1994Thomas NallCellular communication system having information retrieval and method therefor
CA2149135A1Nov 9, 1993May 26, 1994Coral Systems IncAn apparatus and method for detecting potentially fraudulent telecommunication activity
CA2161333A1Jan 19, 1994Nov 24, 1994Ass Rt IncCellular Telephone Location System
EP0484067A2Oct 25, 1991May 6, 1992AT&T Corp.Automatic system for forwarding of calls
WO1989012835A1 *Jun 16, 1989Dec 28, 1989Keith Chisholm BrownRoad vehicle locating system
WO1994001978A1Jul 12, 1993Jan 20, 1994Marco Alberto FiorentinoSystem for locating and communicating with mobile vehicles
Non-Patent Citations
Reference
1 *"GPS-Based Vessel Position Monitoring and Display System", IEEE 1990 Position Location and Navigation Sysposium, Mar. 20, 1990.*
2Bellcore Technical Advisory, TA-NPL-000145, Compatibility Information of a Wireless Service Provider and Local Exchange Carrier Network.
3 *Trimble Data Sheet dated May 1989 disclosing hand held GPS Receiver Sold by Trimble Navigation under the name "TRIMPACK".*
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6813503 *Aug 31, 2000Nov 2, 2004Nokia CorporationWireless communication terminal for accessing location information from a server
US6909903 *Jul 19, 2001Jun 21, 20053E Technologies International, Inc.Method and system for location-aware wireless mobile devices including mobile user network message interfaces and protocol
US6985731 *Apr 2, 2001Jan 10, 2006Bellsouth Intellectual Property CorporationLocation defined control of cellular system
US7058395 *Nov 1, 2005Jun 6, 2006Eric Morgan DowlingGeographical web browser, methods, apparatus and systems
US7107149 *Sep 5, 2002Sep 12, 2006Kabushiki Kaisha ToshibaPosition information presentation device, position information presentation method and program to present position information
US7333794 *Mar 4, 2002Feb 19, 2008At&T Mobility Ii LlcReal-time network analysis and performance management
US7336942Apr 5, 2005Feb 26, 20083E Technologies International, Inc.Method and system for location-aware wireless mobile devices including mobile user network message interfaces and protocol
US7366492May 3, 2002Apr 29, 2008Verizon Corporate Services Group Inc.Method and system for mobile location detection using handoff information
US7446655 *Sep 30, 2004Nov 4, 2008Qualcomm IncorporatedTracking lost and stolen mobile devices using location technologies and equipment identifiers
US7734298 *May 22, 2006Jun 8, 2010Polaris Wireless, Inc.Estimating the location of a wireless terminal based on signal path impairment
US7848762Apr 18, 2008Dec 7, 2010Polaris Wireless, Inc.Computationally-efficient estimation of the location of a wireless terminal based on pattern matching
US7899467 *May 22, 2006Mar 1, 2011Polaris Wireless, Inc.Estimating the location of a wireless terminal based on the traits of the multipath components of a signal
US7944350May 21, 2010May 17, 2011Spectrum Tracking Systems, Inc.Method and system for providing tracking services to locate an asset
US8073441Aug 24, 2010Dec 6, 2011Metropcs Wireless, Inc.Location-based network selection method for a mobile device
US8543688Dec 8, 2010Sep 24, 2013Sprint Communications Company L.P.Generating correlation codes for location information
US8583141Jun 7, 2010Nov 12, 2013Polaris Wireless, Inc.Estimating the location of a wireless terminal based on signal path impairment
US8639212 *Sep 15, 2006Jan 28, 2014At&T Mobility Ii LlcMapping cellular coverage of alert areas
USRE44378Sep 25, 2006Jul 16, 2013Verizon Laboratories Inc.Cellular network-based location system
EP1705932A1 *Mar 3, 2005Sep 27, 2006Alcatel Alsthom Compagnie Generale D'electriciteProximity service
WO2011063833A1 *Nov 25, 2009Jun 3, 2011Telefonaktiebolaget Lm Ericsson (Publ)Method and apparatus for enabling location based services
Classifications
U.S. Classification455/456.3, 455/404.2
International ClassificationH04W8/10, H04W64/00, H04W60/04, H04W88/18, H04W8/08
Cooperative ClassificationH04W8/08, H04W64/00, H04W8/10, H04W88/18, H04W60/04
European ClassificationH04W64/00
Legal Events
DateCodeEventDescription
Apr 2, 2012ASAssignment
Owner name: GTE LABORATORIES INCORPORATED, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BORKOWSKI, DANIEL G.;FUNG, HINGSUM S.;HABAL, HADI F.;ANDOTHERS;REEL/FRAME:027970/0077
Effective date: 19940621
Oct 31, 2001ASAssignment
Owner name: VERIZON LABORATORIES INC., MASSACHUSETTS
Free format text: CHANGE OF NAME;ASSIGNOR:GTE LABORATORIES INCORPORATED;REEL/FRAME:012292/0077
Effective date: 20000630
Owner name: VERIZON LABORATORIES, INC., MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MASEDA, MANUEL;REEL/FRAME:012292/0114
Effective date: 20011022
Owner name: VERIZON LABORATORIES INC. 40 SYLVAN ROADWALTHAM, M
Free format text: CHANGE OF NAME;ASSIGNOR:GTE LABORATORIES INCORPORATED /AR;REEL/FRAME:012292/0077
Owner name: VERIZON LABORATORIES, INC. 40 SYLVAN ROADWALTHAM,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MASEDA, MANUEL /AR;REEL/FRAME:012292/0114