Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE38837 E1
Publication typeGrant
Application numberUS 10/385,178
Publication dateOct 18, 2005
Filing dateMar 10, 2003
Priority dateFeb 13, 1995
Publication number10385178, 385178, US RE38837 E1, US RE38837E1, US-E1-RE38837, USRE38837 E1, USRE38837E1
InventorsZahir M. Ahmed
Original AssigneePower Electronics And Systems, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Efficient power transfer in electronic ballast
US RE38837 E1
Abstract
An electronic ballast for one or more F32T8 or F25T8 or F1718 fluorescent lamps has a new design tool for efficient transfer of power to the lamp or the lamps. The design tool is constructed from the ballast DC voltage and the commercially available lamp specifications by the manufacturers or from the American National Standards (ANSI). This design tool is shown below. F C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
    • where W=Lamp rating in watts,
    • V0=Lamp voltage.
    • V1=Electronic Ballast DC voltage,
    • R0=Lamp Impedance in ohms, (ANSI C78.1-1991).
    • k=Empirical constant=1.5 to 10.0.
Images(4)
Previous page
Next page
Claims(26)
1. A ballast for coupling to at one fluorescent lamp comprising:
a) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
b) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at one fluorescent lamp and to said circuitry means, such that F and C satisfy the equation: F C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 xV 1
where W=specified wattage of the lamp
V1=applied DC voltage of the ballast
V0=a predetermined lamp voltage
R0=a predetermined lamp impedance
K=empirical constant in the range of 1.5-10.0.
2. A ballast for coupling to at least two fluorescent lamps comprising:
a) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
b) a plurality of capacitors having a capacitance C, each coupled in parallel to a corresponding one of said at least two fluorescent lamps and to said circuitry means, such that F and C satisfy the equation: F C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 xV 1
where W=specified wattage of the lamp
V1=applied DC voltage of the ballast
V0=a predetermined lamp voltage
R0=a predetermined lamp impedance
K=empirical constant in the range of 1.5-10.0,
wherein one end of each of said capacitors is coupled to a first terminal at a first end of its corresponding fluorescent lamp, and a second end of each of said capacitors is coupled to a first terminal at a second end of its corresponding fluorescent lamp, and a second terminal at said second end of said corresponding fluorescent lamp is coupled to a corresponding second terminal of a second end of an adjacent one of said at least two fluorescent lamps.
3. A ballast for coupling to at least one F32T8 fluorescent lamp comprising:
a) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
b) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F32T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts,
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
4. The ballast of claim 3 wherein the alternating current is generated by switching transistors.
5. The ballast of claim 3 wherein the ballast does not include an input transformer.
6. The ballast of claim 3 wherein the ballast does not include an output transformer.
7. The ballast of claim 3 wherein the ballast does not include an input or an output transformer.
8. The ballast of claim 3 wherein the ballast includes a boost regulator inductor.
9. The ballast of claim 3 wherein the ballast includes a common mode choke.
10. A ballast for coupling to at least one F25T8 fluorescent lamp comprising:
a) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
b) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F25T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts,
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
11. The ballast of claim 10 wherein the alternating current is generated by switching transistors.
12. The ballast of claim 10 wherein the ballast does not include an input transformer.
13. The ballast of claim 10 wherein the ballast does not include an output transformer.
14. The ballast of claim 10 wherein the ballast does not include an input or an output transformer.
15. The ballast of claim 10 wherein the ballast includes a boost regulator inductor.
16. A ballast for coupling to at least one F17T8 fluorescent lamp comprising:
a) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
b) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F17T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts,
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
17. The ballast of claim 16 wherein the alternating current is generated by switching transistors.
18. The ballast of claim 16 wherein the ballast does not include an input transformer.
19. The ballast of claim 16 wherein the ballast does not include an output transformer.
20. The ballast of claim 16 wherein the ballast does not include an input or an output transformer.
21. The ballast of claim 16 wherein the ballast includes a boost regulator inductor.
22. The ballast of claim 16 wherein the ballast includes a common mode choke.
23. The ballast of claim 16 wherein the ballast includes a common mode choke.
24. A fluorescent lighting system comprising:
a. at least one F32T8 fluorescent lamp; and
b. a ballast coupled to said at least one F32T8 fluorescent lamp comprising:
1 ) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
2 ) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F32T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts,
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
25. A fluorescent lighting system comprising:
a. at least one F25T8 fluorescent lamp; and
b. a ballast coupled to said at least one F25T8 fluorescent lamp comprising:
1 ) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
2 ) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F25T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts,
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
26. A fluorescent lighting system comprising:
a. at least one F17T8 fluorescent lamp; and
b. a ballast coupled to said at least one F17T8 fluorescent lamp consisting:
1 ) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
2 ) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F17T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts.
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
Description

This a continuation-in-part application of application Ser. No. 08/387,261 filed Feb. 13, 1995, now U.S. Pat. No. 5,585,700.

SUMMARY OF INVENTION

For efficient power transfer in an electronic ballast for gas discharge lamps such as fluorescent lamps, the product of the frequency of the voltage across the lamp and the capacitor value across the lamp is a constant.

FC=Constant (K), where

    • C=capacitance across the lamp.
    • F=frequency of sine wave voltage across the lamp terminals.
    • K=a fixed number derived from the lamp specifications as stated in the American National Standard, ANSI 78.11991, and the ballast DC voltage applied to the lamp circuit to generate the high frequency sine wave.

If a frequency is selected, then there is only one value of capacitor which will transfer power to the lamp with the least power loss in the ballast circuit. Or, if a capacitor value is selected, the above equation gives the allowable frequency for efficient power transfer.

The above stated relationship and equation is a design tool for the efficient design of an electronic ballast where the circuit configuration includes a high-frequency, low loss capacitor across the lamp. Although the concept of using a capacitor across a lamp for the generation of a sine wave across a load is known, the above stated design tool is considered an invention due to the following facts:

    • 1. The above design tool is constructed from the lamp and ballast power supply specifications.
    • 2. To the best of the knowledge of the applicant, the above invented design tool has not been published in any paper as of this date.
    • 3. From the published information on gas discharge lamps known to the applicant, the above design tool or design procedure for efficient electronic ballast, FC=a fixed number derived from the lamp parameters and ballast voltage, is not obvious.
    • 4. The above stated design improvement tool has been specifically constructed for the electronic ballast for F32T8, F25T8, and F17T8 fluorescent lamps.

The integrated schematic as shown in FIG. 1 is considered unique due to the fact that no such schematic exists in completeness or in its entirety, for an electronic ballast for use on F32T8, F25T8, and F17T8 fluorescent lamps, as known to the applicant. A few sections of the schematic have been published, conceptually, independently, and piecewise. Examples: the boost converter, resonant circuit, and EMI filter. But to the applicant's best knowledge, the entire schematic, integrated for the electronic ballast specified does not exist.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is a schematic diagram showing a portion of the invented circuit.

FIG. 1b is a schematic diagram showing the remaining portion of the invented circuit.

FIG. 1c is a schematic diagram showing an alternate embodiment of the portion of the invented circuit shown in FIG. 1b.

DETAILED DESCRIPTION

An electronic ballast for gas discharge lamps, in general, and for F32T8, F25T8, and F17T8 fluorescent lamps, in particular, the said ballast comprising of:

    • a: A polypropylene high-frequency capacitor C15 across each lamp, the capacitor value being controlled by the relationship: Frequency multiplied by the capacitance is a fixed number for a certain type of lamp. The fixed number is dirived from the specifications as stated in American National Standard ANSI 78.1-1991.

The equation: F C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1

    • where W=lamp rating in watts
    • V1=electronic ballast DC voltage
    • V0=lamp voltage rating, rms.
    • R0=lamp impedance in ohms, derived from ANSI standard
    • K=empirical constant=1.5-10.0

With any frequency selected, the capacitor value is fixed for efficient power transfer.

b: One side of the capacitor connected to terminal #1 of the lamp 1, and terminal #2 is connected to one side of the choke L3, whose inductance is fixed for the frequency selected for efficient power transfer.

c: The other side of said inductor L3 is connected to a DC blocking capacitor C14 which in turn is connected to switching MOS Field Effect Transistors Q2 and Q3.

d: The other side of said capacitor is connected to terminal #3, on the opposite side of the lamp 1.

e: Terminal #4 of said lamp is connected to the ballast terminal, #6.

f: The same connections apply to lamp #2, lamp #3, and so on. There is no limit to the number of lamps connected in parallel except for the power capability of the ballast.

g: The switching transistors Q2, Q3 of any type are supplied by a regulated boost power supply connected between terminals 14, 15, 16, and 17 of output voltage V1.

h: The switching transistors Q2, Q3, when of the MOSFET type, are driven by the integrated circuit IR 2151, IR 2155, or equivalent.

i: The boost power supply (L1, C1, C2, C3 and C4) receives power from one of the following power utility lines.

j: 120 v 60 Hz, 220 v 50/60 Hz, or 277 v 50/60 Hz can be used to provide the rectified output for the boost regulator which in turn corrects the power factor using an integrated circuit to shape the current wave form to follow the voltage wave form.

k: An EMI filter is connected between terminals 8, 9, 10, 11, 12 and 13 and includes a common mode choke, L1.

l: A line transient protector VZ1 is connected between terminals 18 and 19.

The black and white wires leading from the ballast are connected to a single-phase 120 v 160 Hz line through a switch (not shown), while the green wire is connected to the earth terminal (refer to schematic). The surge absorber, VZ1, clamps any unusual voltage transients exceeding 150 volts and protects the components of the ballast from damage. The clipper VZ can absorb 4500 amps without damage. Transients of this magnitude are extremely rare.

Next, the EMI filter consists of a front-end AC capacitor C1, a common mode inductor L1, two line-to-earth ground high frequency capacitors C2 and C3, and an AC capacitor C4 across the AC line just before the rectifier bridge. This entire filter will reduce the conducted emission on the AC lines as required by FCC regulations.

The rectifier bridge CR1-4 (D1-D4), provides a rectified output to the power factor correction boost regulator. The rectifier bridge is further protected by the AC polyester capacitor C5 which filters the switching noise from the power factor boost regulator. The boost regulator inductor L2 switched by the transistor Q1 provides higher DC voltage than the average input voltage. The integrated circuit U1 functions as a power factor corrector as well as a voltage regulator component.

The regulator output voltage is then switched into the resonant circuit L3 and C15 which provide sufficient sine wave peaks to ionize the lamp 1 and strike the arc. When the arc is established, the damping factor of the resonant circuit increases enough to supply the desired electrical power into the lamp, based upon the impedance of the lamp. The damping factor is a function of the capacitor C15 selected as per the stated design method described above.

The fifteen microsecond period of the sine wave and 0.0047 microfarad capacitance across the lamps conform to the invented design tool which provide the required power to the lamp and minimize the volt amperes stunted by the capacitor C15.

However, if the capacitor value is increased, for example, to 0.01 microfarad and frequency is unchanged, the new capacitor value will draw twice the current, which means much higher watts from the boost regulator for the same power consumption by the lamp. Thus, the ballast would be inefficient.

The above design tool is unique because the frequency of the lamp voltage and the capacitor value across it are interdependent for efficient power transfer to the lamp. Efficiency is the prime factor in energy saving schemes of electronic ballast. The above equation brings a new methodolgy in the design of the most efficient electronic ballast for each gas discharge lamp type.

This ballast design does not use transformants either at the 120 v 160 Hz side, or at the output side. To the best of applicant's knowledge, there does not exist and electronic ballast without input, output, or both transformers, used for F32T8, F25T8, F17T8, or other lamps not known to the applicant.

However, the concept of not using transformers at the input or output has been published. These publications nevertheless, do not specify the ballast for F32T8, F25T8, f17T8 lamps, and further do not state the efficient energy transfer as disclosed herein. In the present disclosure, the efficient energy transfer design equation is locked with transformerless configurations.

This efficient design technique combined with transformless circuitry, along with the use of integrated circuit chips to generate sinewves and correct powerfactor, has made this ballast electronic design unique. Due to the nature of the circuit design, the open circuit voltage when the lamp is not connected, is not more than 230 volts for the 120 Volts, 60 Hz ballasts for F32T8, F25T8 and F17T8 lamps. Usually, the open circuit voltage for ballasts with disconnected lamps is more hazardous in the range of 450 volts to 600 volts. The design tool is applicable to one or more lamps connected in parallel with capacitors across each lamp.

In the invented ballast, if more than one lamp is connected, one way of connecting the lamps is shown in FIG. 1B. However, since the invented design does not use isolation transformers, if one of the lamps is disconnected at one end, then there may be leakage from that end to ground thereby creating a safety hazard. In this connection, the lamp connections shown in FIG. 1C provides connections which isolate the lamps from one another which prevents leakage to ground if one end of either lamp is disconnected. The connections shown in FIG. 1C may be extended to cover additional lamps.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5001386Dec 22, 1989Mar 19, 1991Lutron Electronics Co., Inc.Circuit for dimming gas discharge lamps without introducing striations
US5185560Mar 4, 1991Feb 9, 1993Nilssen Ole KElectronic fluorescent lamp ballast
US5550436Sep 1, 1994Aug 27, 1996International Rectifier CorporationMOS gate driver integrated circuit for ballast circuits
US5568041 *Feb 9, 1995Oct 22, 1996Magnetek, Inc.Low-cost power factor correction circuit and method for electronic ballasts
US5612597 *Dec 29, 1994Mar 18, 1997International Rectifier CorporationOscillating driver circuit with power factor correction, electronic lamp ballast employing same and driver method
Non-Patent Citations
Reference
1[Proposed Order Granting Defendants/Counterclaimants, American Fluorescent Corporation of Power Electronics & Systems, Inc.'s Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Mar. 24, 2003](Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
2[Proposed] Judgment of Invalidity of U.S. Patent No. 5,872,431 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
33 page letter Dated May 28, 2004 to Craig A. Gelfound, Esq., McDermott Will & Emery from James Juo, Esq., Fulwider, Patton.
4Answer to First Amended Complaint; Counterclaim for Patent Infringement; Demand for Jury Trial, dated Dec. 2, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
5Certification and Notice of Interested Parties (Local Rule 83-1.5), dated Sep. 18, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
6Complaint for Decloratory Relief of Patent Invalidity, and Non-Infringement; Demand for Jury Trial, dated Sep. 18, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
7Confirmation of Waiver of Service of Summons, dated Jan. 16, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
8Corrected Proof of Service of Notice of Interested Parties, dated Nov. 22, 2002 (Cordelia et al., vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
9Correspondence dated Dec. 2, 2002 from Craig A. Gelfound to Paul Feng (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
10Correspondence dated Dec. 9, 2002 from James Juo to Craig A. Gelfound (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
11Correspondence dated Jan. 8, 2003 from James Juo to Craig A. Gelfound (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
12Correspondence dated Oct. 3, 2002 from Paul Feng to Eric S. Hyman (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
13Correspondence dated Sep. 27, 2002 from Eric S. Hyman to Paul Feng (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
14Correspondence dated Sep. 6, 2002 from Eric S. Hyman to Moe Ahmed (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
15Declaration of Craig Gelfound in Support of Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Mar. 24, 2003 (Cordelia et al., vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
16Declaration of Craig Gelfound in Support of Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Reply for Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Apr. 11, 2003 (Cordelia et al., vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
17Declaration of James Juo In Support of Plaintiffs' Motion for Summary Judgment of Invalidity of U.S. patent No. 5,872,431, dated Apr. 21, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
18Declaration of James Juo in Support of Plaintiffs' Opposition to Defendants' Motion for Stay, dated Apr. 7, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
19Declaration of James Keng in Support of Plaintiffs' Opposition to Defendants' Motion for a Stay, dated Apr. 4, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
20Declaration of Kanghong Zhang in Support of Plaintiffs' Motion for Summary Judgment of Invalidity of U.S. patent No. 5,872,431, dated Apr. 16, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
21Declaration of Marc E. Brown in Support of Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Mar. 24, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
22Defendants' Status Report Regarding Patent Reissue Application, dated Sep. 29, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT (Ex)).
23Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Notice of Motion and Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Mar. 24, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
24Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Reply to Opposition to Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Apr. 11, 2003 (Cordelia et al. vs. American Flucrescent, et al., CV 02-7343 DT(Ex)).
25Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Response to Plaintiffs First Set of Interrogatories (Nos. 1-7), served Apr. 7, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
26Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Response to Plaintiffs' First Set of Requests for Production of Documents and Things (Nos. 1-133) (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
27First Amended Complaint for Declaratory Relief of Patent Invaligity, and Non-Infrindement; Demand for Jury Trial, dated Oct. 8, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
28Haver, R.J. Electronic Ballasts, AR 180, Motorola, Inc. Arizona. Intertech Communications, Inc. 1987, pp. 1-6.
29Hexfets Improve Efficiency, Expand Life of Electronic Lighting Ballast, AN-973, International Rectifier, El Segundo, CA. [no date] pp. 1-7. [Located Feb. 27, 2003 at http://www.irf.com/technical-info/appnotes/an-973.pdf.].
30International Rectifier Design Tips, Publication DT 94-10A, entitled "Choosing the Correct Dropping Resistor Value for the IR2151/IR2152/IR 2155 Control IC's" by Tick Houk.
31International Rectifier Design Tips, Publication DT 94-3A, entitled "Simple Ballast Using IR 2155 MOS Gate Driver" by Peter N. Wood et al.
32Memorandum in Opposition to Ex Parte Application to Continue Hearing on Motion for Stay, dated Apr. 23, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
33Notice of Interested Parties, dated Nov. 21, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
34Notice of Lawsuit and Request for Waiver of Summons, dated Jan. 9, 2003 (Cordelia et al., vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
35Notice of Voluntary Dismissal of Defendant Zahir M. Ahmed, dated Jan. 20, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
36Opposition to Defendants' Motion for Stay, dated Apr. 7, 2003 (Cordelia et al., vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
37Order for Jury Trial: Establishing a Discovery cut-Off Date of Aug. 15, 2003; Setting the Final Pre-Trial Conference for Dec. 8, 2003 at 1:30 PM; Setting Jan. 27, 2004 at 9:30 AM as the Trial Date; and Re: Preparation for Jury Trial, dated Dec. 1, 2000 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
38Order Granting Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc., 's Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Apr. 28, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
39Order Granting Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.,'s Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Apr. 28, 2003 (Cordelia et al. vs. American Fluoescent, et al., CV 02-7343 DT(Ex)).
40Order Setting Scheduling Conference, dated Dec. 3, 2002 (Cordelia et al. vs. American Fluorescent, et at., CV 02-7343 DT(Ex)).
41Plaintiffs' Ex Parte Application and Order to Continue Hearing Date for Defendants' Motion for Stay, dated Apr. 22, 2003(Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
42Plaintiffs' First Set of Interrogatories (Nos. 107), dated Mar. 6, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
43Plaintiffs' First Set of Requests for Production of Documents and Things (Nos. 1-133), dated Mar. 6, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
44Plaintiffs' Memorandum of Points & Authorities in Support of Ex Parte Application for an Order to Continue Hearing Date, dated Apr. 22, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
45Plaintiffs' Memorandum of Points and Authorities Supporting Motion for Summary Judgment of Invalidity of U.S. Patent No. 5,872,431, dated Apr. 21, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
46Plaintiffs' Notice of Motion and Motion for Summary Judgment of Invalidity of U.S. Patent No. 5,872,431 , dated Apr. 21, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
47Plaintiffs' Reply to Defendants' Counterclaim, dated Dec. 23, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
48Plaintiffs' Rule 26(a)(1) Initial Disclosures, dated Feb. 24, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
49Plaintiffs' Statement of Uncontroverted Facts and Conclusions of Law in Support of Motion for Summary Judgment of Invalidity of U.S. Patent No. 5,872,431, dated Apr. 21, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
50Power Electronics and Systems, Inc. and American Fluorescent corporation's Initial Disclosures Pursuant to Fed. R. Civ. P. 26(a)(1), dated Feb. 24, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
51Proposed Joint Report Under F.R. Civ. P. 26(f), dated Feb. 20, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-4343 DT(Ex)).
52Rapid-Start-Types-Dimensional and Electrical Characteristics. American National Standard for Fluorescent Lamps. American National Standards Institute ANSI, C78.1-1991. 1991, pp. 1-85.
53Second Generation Power Factor Controller, LX1562/1563, Linfinity Electronics, Garden Grove, CA, Rev. 1.2. 1994, pp. 1-22.
54Spangler, J. Bipolar Transistors Excel in Off-Line Resonant Converters, Motorola Semiconductor Products Inc., Phoenix, AZ. 1986, pp. 1-8.
55Standing Order With Regard to Newly Assigned Cases, dated Sep. 20, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
56Status Report Regarding Patent Reissue Application From Defendants, dated Jun. 30, 2003 (Cordelia et al. vs. American Florescent, et al., CV 02-7343 DT(Ex)).
57Stipulation to Continue the Hearing Date of Defendants' Motion for Stay, dated Mar. 26, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
58Texas Instruments Lighting Products. Data Manual & Application Report. Mixed Signal Products. 1994, p. 2-32 (Single page).
59Wood, P.N. Electronic Ballasts Using the Cost-Saving IR2155 Driver, International Rectifier, AN-995. El Segundo, CA. 1994, pp. 1-9.
60Wood, P.N. et al. Simple Electronic Ballast Using IR2155 MOS Gate Driver DT-94-3, International Rectifier, Design Tips. 1994, pp. 1 and 2.
Classifications
U.S. Classification315/307, 315/241.00R, 315/246
International ClassificationG05F1/00
Cooperative ClassificationY02B20/183
Legal Events
DateCodeEventDescription
Nov 7, 2006RRRequest for reexamination filed
Effective date: 20060412
Apr 25, 2006CCCertificate of correction
Nov 19, 2004ASAssignment
Owner name: POWER ELECTRONICS & SYSTEMS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AHMED, ZAHIR M.;REEL/FRAME:015395/0507
Effective date: 19960313
Owner name: POWER ELECTRONICS & SYSTEMS, INC. 2461 WEST 205TH
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AHMED, ZAHIR M. /AR;REEL/FRAME:015395/0507