USRE38837E1 - Efficient power transfer in electronic ballast - Google Patents

Efficient power transfer in electronic ballast Download PDF

Info

Publication number
USRE38837E1
USRE38837E1 US10/385,178 US38517803A USRE38837E US RE38837 E1 USRE38837 E1 US RE38837E1 US 38517803 A US38517803 A US 38517803A US RE38837 E USRE38837 E US RE38837E
Authority
US
United States
Prior art keywords
ballast
lamp
voltage
coupled
fluorescent lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US10/385,178
Inventor
Zahir M. Ahmed
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Electronics and Systems Inc
Original Assignee
Power Electronics and Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23529139&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE38837(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Power Electronics and Systems Inc filed Critical Power Electronics and Systems Inc
Priority to US10/385,178 priority Critical patent/USRE38837E1/en
Assigned to POWER ELECTRONICS & SYSTEMS, INC. reassignment POWER ELECTRONICS & SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AHMED, ZAHIR M.
Application granted granted Critical
Publication of USRE38837E1 publication Critical patent/USRE38837E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the product of the frequency of the voltage across the lamp and the capacitor value across the lamp is a constant.
  • the above stated relationship and equation is a design tool for the efficient design of an electronic ballast where the circuit configuration includes a high-frequency, low loss capacitor across the lamp.
  • the concept of using a capacitor across a lamp for the generation of a sine wave across a load is known, the above stated design tool is considered an invention due to the following facts:
  • the integrated schematic as shown in FIG. 1 is considered unique due to the fact that no such schematic exists in completeness or in its entirety, for an electronic ballast for use on F32T8, F25T8, and F17T8 fluorescent lamps, as known to the applicant.
  • a few sections of the schematic have been published, conceptually, independently, and piecewise. Examples: the boost converter, resonant circuit, and EMI filter. But to the applicant's best knowledge, the entire schematic, integrated for the electronic ballast specified does not exist.
  • FIG. 1a is a schematic diagram showing a portion of the invented circuit.
  • FIG. 1b is a schematic diagram showing the remaining portion of the invented circuit.
  • FIG. 1c is a schematic diagram showing an alternate embodiment of the portion of the invented circuit shown in FIG. 1 b.
  • ballast for gas discharge lamps, in general, and for F32T8, F25T8, and F17T8 fluorescent lamps, in particular, the said ballast comprising of:
  • the capacitor value is fixed for efficient power transfer.
  • Terminal # 4 of said lamp is connected to the ballast terminal, # 6 .
  • the switching transistors Q 2 , Q 3 of any type are supplied by a regulated boost power supply connected between terminals 14 , 15 , 16 , and 17 of output voltage V 1 .
  • the switching transistors Q 2 , Q 3 when of the MOSFET type, are driven by the integrated circuit IR 2151 , IR 2155 , or equivalent.
  • the boost power supply (L 1 , C 1 , C 2 , C 3 and C 4 ) receives power from one of the following power utility lines.
  • j 120 v 60 Hz, 220 v 50/60 Hz, or 277 v 50/60 Hz can be used to provide the rectified output for the boost regulator which in turn corrects the power factor using an integrated circuit to shape the current wave form to follow the voltage wave form.
  • An EMI filter is connected between terminals 8 , 9 , 10 , 11 , 12 and 13 and includes a common mode choke, L 1 .
  • a line transient protector VZ 1 is connected between terminals 18 and 19 .
  • the black and white wires leading from the ballast are connected to a single-phase 120 v 160 Hz line through a switch (not shown), while the green wire is connected to the earth terminal (refer to schematic).
  • the surge absorber, VZ 1 clamps any unusual voltage transients exceeding 150 volts and protects the components of the ballast from damage.
  • the clipper VZ can absorb 4500 amps without damage. Transients of this magnitude are extremely rare.
  • the EMI filter consists of a front-end AC capacitor C 1 , a common mode inductor L 1 , two line-to-earth ground high frequency capacitors C 2 and C 3 , and an AC capacitor C 4 across the AC line just before the rectifier bridge. This entire filter will reduce the conducted emission on the AC lines as required by FCC regulations.
  • the rectifier bridge CR 1 - 4 (D 1 -D 4 ), provides a rectified output to the power factor correction boost regulator.
  • the rectifier bridge is further protected by the AC polyester capacitor C 5 which filters the switching noise from the power factor boost regulator.
  • the boost regulator inductor L 2 switched by the transistor Q 1 provides higher DC voltage than the average input voltage.
  • the integrated circuit U 1 functions as a power factor corrector as well as a voltage regulator component.
  • the regulator output voltage is then switched into the resonant circuit L 3 and C 15 which provide sufficient sine wave peaks to ionize the lamp 1 and strike the arc.
  • the damping factor of the resonant circuit increases enough to supply the desired electrical power into the lamp, based upon the impedance of the lamp.
  • the damping factor is a function of the capacitor C 15 selected as per the stated design method described above.
  • the fifteen microsecond period of the sine wave and 0.0047 microfarad capacitance across the lamps conform to the invented design tool which provide the required power to the lamp and minimize the volt amperes stunted by the capacitor C 15 .
  • the ballast would be inefficient.
  • the above design tool is unique because the frequency of the lamp voltage and the capacitor value across it are interdependent for efficient power transfer to the lamp.
  • Efficiency is the prime factor in energy saving schemes of electronic ballast.
  • the above equation brings a new methodolgy in the design of the most efficient electronic ballast for each gas discharge lamp type.
  • This ballast design does not use transformants either at the 120 v 160 Hz side, or at the output side. To the best of applicant's knowledge, there does not exist and electronic ballast without input, output, or both transformers, used for F32T8, F25T8, F17T8, or other lamps not known to the applicant.
  • ballast electronic design Due to the nature of the circuit design, the open circuit voltage when the lamp is not connected, is not more than 230 volts for the 120 Volts, 60 Hz ballasts for F32T8, F25T8 and F17T8 lamps. Usually, the open circuit voltage for ballasts with disconnected lamps is more hazardous in the range of 450 volts to 600 volts.
  • the design tool is applicable to one or more lamps connected in parallel with capacitors across each lamp.
  • FIG. 1 B In the invented ballast, if more than one lamp is connected, one way of connecting the lamps is shown in FIG. 1 B. However, since the invented design does not use isolation transformers, if one of the lamps is disconnected at one end, then there may be leakage from that end to ground thereby creating a safety hazard.
  • the lamp connections shown in FIG. 1C provides connections which isolate the lamps from one another which prevents leakage to ground if one end of either lamp is disconnected.
  • the connections shown in FIG. 1C may be extended to cover additional lamps.

Abstract

An electronic ballast for one or more F32T8 or F25T8 or F1718 fluorescent lamps has a new design tool for efficient transfer of power to the lamp or the lamps. The design tool is constructed from the ballast DC voltage and the commercially available lamp specifications by the manufacturers or from the American National Standards (ANSI). This design tool is shown below. F × C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
    • where W=Lamp rating in watts,
    • V0=Lamp voltage.
    • V1=Electronic Ballast DC voltage,
    • R0=Lamp Impedance in ohms, (ANSI C78.1-1991).
    • k=Empirical constant=1.5 to 10.0.

Description

This a continuation-in-part application of application Ser. No. 08/387,261 filed Feb. 13, 1995, now U.S. Pat. No. 5,585,700.
SUMMARY OF INVENTION
For efficient power transfer in an electronic ballast for gas discharge lamps such as fluorescent lamps, the product of the frequency of the voltage across the lamp and the capacitor value across the lamp is a constant.
F×C=Constant (K), where
    • C=capacitance across the lamp.
    • F=frequency of sine wave voltage across the lamp terminals.
    • K=a fixed number derived from the lamp specifications as stated in the American National Standard, ANSI 78.11991, and the ballast DC voltage applied to the lamp circuit to generate the high frequency sine wave.
If a frequency is selected, then there is only one value of capacitor which will transfer power to the lamp with the least power loss in the ballast circuit. Or, if a capacitor value is selected, the above equation gives the allowable frequency for efficient power transfer.
The above stated relationship and equation is a design tool for the efficient design of an electronic ballast where the circuit configuration includes a high-frequency, low loss capacitor across the lamp. Although the concept of using a capacitor across a lamp for the generation of a sine wave across a load is known, the above stated design tool is considered an invention due to the following facts:
    • 1. The above design tool is constructed from the lamp and ballast power supply specifications.
    • 2. To the best of the knowledge of the applicant, the above invented design tool has not been published in any paper as of this date.
    • 3. From the published information on gas discharge lamps known to the applicant, the above design tool or design procedure for efficient electronic ballast, F×C=a fixed number derived from the lamp parameters and ballast voltage, is not obvious.
    • 4. The above stated design improvement tool has been specifically constructed for the electronic ballast for F32T8, F25T8, and F17T8 fluorescent lamps.
The integrated schematic as shown in FIG. 1 is considered unique due to the fact that no such schematic exists in completeness or in its entirety, for an electronic ballast for use on F32T8, F25T8, and F17T8 fluorescent lamps, as known to the applicant. A few sections of the schematic have been published, conceptually, independently, and piecewise. Examples: the boost converter, resonant circuit, and EMI filter. But to the applicant's best knowledge, the entire schematic, integrated for the electronic ballast specified does not exist.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1a is a schematic diagram showing a portion of the invented circuit.
FIG. 1b is a schematic diagram showing the remaining portion of the invented circuit.
FIG. 1c is a schematic diagram showing an alternate embodiment of the portion of the invented circuit shown in FIG. 1b.
DETAILED DESCRIPTION
An electronic ballast for gas discharge lamps, in general, and for F32T8, F25T8, and F17T8 fluorescent lamps, in particular, the said ballast comprising of:
    • a: A polypropylene high-frequency capacitor C15 across each lamp, the capacitor value being controlled by the relationship: Frequency multiplied by the capacitance is a fixed number for a certain type of lamp. The fixed number is dirived from the specifications as stated in American National Standard ANSI 78.1-1991.
The equation: F × C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
    • where W=lamp rating in watts
    • V1=electronic ballast DC voltage
    • V0=lamp voltage rating, rms.
    • R0=lamp impedance in ohms, derived from ANSI standard
    • K=empirical constant=1.5-10.0
With any frequency selected, the capacitor value is fixed for efficient power transfer.
b: One side of the capacitor connected to terminal # 1 of the lamp 1, and terminal # 2 is connected to one side of the choke L3, whose inductance is fixed for the frequency selected for efficient power transfer.
c: The other side of said inductor L3 is connected to a DC blocking capacitor C14 which in turn is connected to switching MOS Field Effect Transistors Q2 and Q3.
d: The other side of said capacitor is connected to terminal # 3, on the opposite side of the lamp 1.
e: Terminal # 4 of said lamp is connected to the ballast terminal, #6.
f: The same connections apply to lamp # 2, lamp # 3, and so on. There is no limit to the number of lamps connected in parallel except for the power capability of the ballast.
g: The switching transistors Q2, Q3 of any type are supplied by a regulated boost power supply connected between terminals 14, 15, 16, and 17 of output voltage V1.
h: The switching transistors Q2, Q3, when of the MOSFET type, are driven by the integrated circuit IR 2151, IR 2155, or equivalent.
i: The boost power supply (L1, C1, C2, C3 and C4) receives power from one of the following power utility lines.
j: 120 v 60 Hz, 220 v 50/60 Hz, or 277 v 50/60 Hz can be used to provide the rectified output for the boost regulator which in turn corrects the power factor using an integrated circuit to shape the current wave form to follow the voltage wave form.
k: An EMI filter is connected between terminals 8, 9, 10, 11, 12 and 13 and includes a common mode choke, L1.
l: A line transient protector VZ1 is connected between terminals 18 and 19.
The black and white wires leading from the ballast are connected to a single-phase 120 v 160 Hz line through a switch (not shown), while the green wire is connected to the earth terminal (refer to schematic). The surge absorber, VZ1, clamps any unusual voltage transients exceeding 150 volts and protects the components of the ballast from damage. The clipper VZ can absorb 4500 amps without damage. Transients of this magnitude are extremely rare.
Next, the EMI filter consists of a front-end AC capacitor C1, a common mode inductor L1, two line-to-earth ground high frequency capacitors C2 and C3, and an AC capacitor C4 across the AC line just before the rectifier bridge. This entire filter will reduce the conducted emission on the AC lines as required by FCC regulations.
The rectifier bridge CR1-4 (D1-D4), provides a rectified output to the power factor correction boost regulator. The rectifier bridge is further protected by the AC polyester capacitor C5 which filters the switching noise from the power factor boost regulator. The boost regulator inductor L2 switched by the transistor Q1 provides higher DC voltage than the average input voltage. The integrated circuit U1 functions as a power factor corrector as well as a voltage regulator component.
The regulator output voltage is then switched into the resonant circuit L3 and C15 which provide sufficient sine wave peaks to ionize the lamp 1 and strike the arc. When the arc is established, the damping factor of the resonant circuit increases enough to supply the desired electrical power into the lamp, based upon the impedance of the lamp. The damping factor is a function of the capacitor C15 selected as per the stated design method described above.
The fifteen microsecond period of the sine wave and 0.0047 microfarad capacitance across the lamps conform to the invented design tool which provide the required power to the lamp and minimize the volt amperes stunted by the capacitor C15.
However, if the capacitor value is increased, for example, to 0.01 microfarad and frequency is unchanged, the new capacitor value will draw twice the current, which means much higher watts from the boost regulator for the same power consumption by the lamp. Thus, the ballast would be inefficient.
The above design tool is unique because the frequency of the lamp voltage and the capacitor value across it are interdependent for efficient power transfer to the lamp. Efficiency is the prime factor in energy saving schemes of electronic ballast. The above equation brings a new methodolgy in the design of the most efficient electronic ballast for each gas discharge lamp type.
This ballast design does not use transformants either at the 120 v 160 Hz side, or at the output side. To the best of applicant's knowledge, there does not exist and electronic ballast without input, output, or both transformers, used for F32T8, F25T8, F17T8, or other lamps not known to the applicant.
However, the concept of not using transformers at the input or output has been published. These publications nevertheless, do not specify the ballast for F32T8, F25T8, f17T8 lamps, and further do not state the efficient energy transfer as disclosed herein. In the present disclosure, the efficient energy transfer design equation is locked with transformerless configurations.
This efficient design technique combined with transformless circuitry, along with the use of integrated circuit chips to generate sinewves and correct powerfactor, has made this ballast electronic design unique. Due to the nature of the circuit design, the open circuit voltage when the lamp is not connected, is not more than 230 volts for the 120 Volts, 60 Hz ballasts for F32T8, F25T8 and F17T8 lamps. Usually, the open circuit voltage for ballasts with disconnected lamps is more hazardous in the range of 450 volts to 600 volts. The design tool is applicable to one or more lamps connected in parallel with capacitors across each lamp.
In the invented ballast, if more than one lamp is connected, one way of connecting the lamps is shown in FIG. 1B. However, since the invented design does not use isolation transformers, if one of the lamps is disconnected at one end, then there may be leakage from that end to ground thereby creating a safety hazard. In this connection, the lamp connections shown in FIG. 1C provides connections which isolate the lamps from one another which prevents leakage to ground if one end of either lamp is disconnected. The connections shown in FIG. 1C may be extended to cover additional lamps.

Claims (26)

1. A ballast for coupling to at one fluorescent lamp comprising:
a) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
b) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at one fluorescent lamp and to said circuitry means, such that F and C satisfy the equation: F × C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 xV 1
where W=specified wattage of the lamp
V1=applied DC voltage of the ballast
V0=a predetermined lamp voltage
R0=a predetermined lamp impedance
K=empirical constant in the range of 1.5-10.0.
2. A ballast for coupling to at least two fluorescent lamps comprising:
a) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
b) a plurality of capacitors having a capacitance C, each coupled in parallel to a corresponding one of said at least two fluorescent lamps and to said circuitry means, such that F and C satisfy the equation: F × C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 xV 1
where W=specified wattage of the lamp
V1=applied DC voltage of the ballast
V0=a predetermined lamp voltage
R0=a predetermined lamp impedance
K=empirical constant in the range of 1.5-10.0,
wherein one end of each of said capacitors is coupled to a first terminal at a first end of its corresponding fluorescent lamp, and a second end of each of said capacitors is coupled to a first terminal at a second end of its corresponding fluorescent lamp, and a second terminal at said second end of said corresponding fluorescent lamp is coupled to a corresponding second terminal of a second end of an adjacent one of said at least two fluorescent lamps.
3. A ballast for coupling to at least one F32T8 fluorescent lamp comprising:
a) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
b) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F32T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F × C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts,
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
4. The ballast of claim 3 wherein the alternating current is generated by switching transistors.
5. The ballast of claim 3 wherein the ballast does not include an input transformer.
6. The ballast of claim 3 wherein the ballast does not include an output transformer.
7. The ballast of claim 3 wherein the ballast does not include an input or an output transformer.
8. The ballast of claim 3 wherein the ballast includes a boost regulator inductor.
9. The ballast of claim 3 wherein the ballast includes a common mode choke.
10. A ballast for coupling to at least one F25T8 fluorescent lamp comprising:
a) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
b) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F25T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F × C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts,
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
11. The ballast of claim 10 wherein the alternating current is generated by switching transistors.
12. The ballast of claim 10 wherein the ballast does not include an input transformer.
13. The ballast of claim 10 wherein the ballast does not include an output transformer.
14. The ballast of claim 10 wherein the ballast does not include an input or an output transformer.
15. The ballast of claim 10 wherein the ballast includes a boost regulator inductor.
16. A ballast for coupling to at least one F17T8 fluorescent lamp comprising:
a) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
b) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F17T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F × C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts,
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
17. The ballast of claim 16 wherein the alternating current is generated by switching transistors.
18. The ballast of claim 16 wherein the ballast does not include an input transformer.
19. The ballast of claim 16 wherein the ballast does not include an output transformer.
20. The ballast of claim 16 wherein the ballast does not include an input or an output transformer.
21. The ballast of claim 16 wherein the ballast includes a boost regulator inductor.
22. The ballast of claim 16 wherein the ballast includes a common mode choke.
23. The ballast of claim 16 wherein the ballast includes a common mode choke.
24. A fluorescent lighting system comprising:
a. at least one F32T8 fluorescent lamp; and
b. a ballast coupled to said at least one F32T8 fluorescent lamp comprising:
1 ) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
2 ) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F32T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F × C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts,
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
25. A fluorescent lighting system comprising:
a. at least one F25T8 fluorescent lamp; and
b. a ballast coupled to said at least one F25T8 fluorescent lamp comprising:
1 ) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
2 ) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F25T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F × C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts,
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
26. A fluorescent lighting system comprising:
a. at least one F17T8 fluorescent lamp; and
b. a ballast coupled to said at least one F17T8 fluorescent lamp consisting:
1 ) circuitry means coupled to a source of alternating current for generating a sine wave having a frequency F;
2 ) at least one capacitor having a capacitance C coupled in parallel to a corresponding one of said at least one F17T8 fluorescent lamp and to said circuitry means, such that F in hertz and C in farads satisfy an equation: F × C = K 2 W 2 V 1 2 - V 0 2 R 0 2 2 π V 1
where W=specified wattage of the lamp in watts,
V 1 =applied DC voltage of the ballast in volts,
V 0 =a predetermined lamp voltage in volts.
R 0 =a predetermined lamp impedance in ohms,
K=empirical constant in a range of 1.5-10.0.
US10/385,178 1995-02-13 2003-03-10 Efficient power transfer in electronic ballast Expired - Fee Related USRE38837E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/385,178 USRE38837E1 (en) 1995-02-13 2003-03-10 Efficient power transfer in electronic ballast

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/387,261 US5585700A (en) 1995-02-13 1995-02-13 Electronic ballast
US08/722,370 US5872431A (en) 1995-02-13 1996-09-27 Efficient power transfer in electronic ballast
US10/385,178 USRE38837E1 (en) 1995-02-13 2003-03-10 Efficient power transfer in electronic ballast

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/722,370 Reissue US5872431A (en) 1995-02-13 1996-09-27 Efficient power transfer in electronic ballast

Publications (1)

Publication Number Publication Date
USRE38837E1 true USRE38837E1 (en) 2005-10-18

Family

ID=23529139

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/387,261 Expired - Fee Related US5585700A (en) 1995-02-13 1995-02-13 Electronic ballast
US08/722,370 Ceased US5872431A (en) 1995-02-13 1996-09-27 Efficient power transfer in electronic ballast
US10/385,178 Expired - Fee Related USRE38837E1 (en) 1995-02-13 2003-03-10 Efficient power transfer in electronic ballast

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/387,261 Expired - Fee Related US5585700A (en) 1995-02-13 1995-02-13 Electronic ballast
US08/722,370 Ceased US5872431A (en) 1995-02-13 1996-09-27 Efficient power transfer in electronic ballast

Country Status (4)

Country Link
US (3) US5585700A (en)
AU (1) AU4703996A (en)
IL (1) IL116875A0 (en)
WO (1) WO1996025696A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060844A (en) * 1998-06-09 2000-05-09 Laplaz Lighting Co. Method and apparatus of an improved electronics ballast circuit
US6600271B1 (en) 1998-06-09 2003-07-29 Laplaz Light Co. Inc. Method and apparatus of an improved electronics ballast circuit
US20070253134A1 (en) * 2006-04-26 2007-11-01 Covi Kevin R Protection of EMC filter components due to failure of boost stage/circuit to prevent smoke, sound or fire in a boost stage under fault condition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001386A (en) 1989-12-22 1991-03-19 Lutron Electronics Co., Inc. Circuit for dimming gas discharge lamps without introducing striations
US5185560A (en) 1978-03-20 1993-02-09 Nilssen Ole K Electronic fluorescent lamp ballast
US5550436A (en) 1994-09-01 1996-08-27 International Rectifier Corporation MOS gate driver integrated circuit for ballast circuits
US5568041A (en) * 1995-02-09 1996-10-22 Magnetek, Inc. Low-cost power factor correction circuit and method for electronic ballasts
US5612597A (en) * 1994-12-29 1997-03-18 International Rectifier Corporation Oscillating driver circuit with power factor correction, electronic lamp ballast employing same and driver method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185560A (en) 1978-03-20 1993-02-09 Nilssen Ole K Electronic fluorescent lamp ballast
US5001386A (en) 1989-12-22 1991-03-19 Lutron Electronics Co., Inc. Circuit for dimming gas discharge lamps without introducing striations
US5001386B1 (en) 1989-12-22 1996-10-15 Lutron Electronics Co Circuit for dimming gas discharge lamps without introducing striations
US5550436A (en) 1994-09-01 1996-08-27 International Rectifier Corporation MOS gate driver integrated circuit for ballast circuits
US5612597A (en) * 1994-12-29 1997-03-18 International Rectifier Corporation Oscillating driver circuit with power factor correction, electronic lamp ballast employing same and driver method
US5568041A (en) * 1995-02-09 1996-10-22 Magnetek, Inc. Low-cost power factor correction circuit and method for electronic ballasts

Non-Patent Citations (60)

* Cited by examiner, † Cited by third party
Title
[Proposed Order Granting Defendants/Counterclaimants, American Fluorescent Corporation of Power Electronics & Systems, Inc.'s Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Mar. 24, 2003](Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
[Proposed] Judgment of Invalidity of U.S. Patent No. 5,872,431 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
3 page letter Dated May 28, 2004 to Craig A. Gelfound, Esq., McDermott Will & Emery from James Juo, Esq., Fulwider, Patton.
Answer to First Amended Complaint; Counterclaim for Patent Infringement; Demand for Jury Trial, dated Dec. 2, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Certification and Notice of Interested Parties (Local Rule 83-1.5), dated Sep. 18, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Complaint for Decloratory Relief of Patent Invalidity, and Non-Infringement; Demand for Jury Trial, dated Sep. 18, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Confirmation of Waiver of Service of Summons, dated Jan. 16, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Corrected Proof of Service of Notice of Interested Parties, dated Nov. 22, 2002 (Cordelia et al., vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Correspondence dated Dec. 2, 2002 from Craig A. Gelfound to Paul Feng (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Correspondence dated Dec. 9, 2002 from James Juo to Craig A. Gelfound (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Correspondence dated Jan. 8, 2003 from James Juo to Craig A. Gelfound (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Correspondence dated Oct. 3, 2002 from Paul Feng to Eric S. Hyman (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Correspondence dated Sep. 27, 2002 from Eric S. Hyman to Paul Feng (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Correspondence dated Sep. 6, 2002 from Eric S. Hyman to Moe Ahmed (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Declaration of Craig Gelfound in Support of Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Mar. 24, 2003 (Cordelia et al., vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Declaration of Craig Gelfound in Support of Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Reply for Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Apr. 11, 2003 (Cordelia et al., vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Declaration of James Juo In Support of Plaintiffs' Motion for Summary Judgment of Invalidity of U.S. patent No. 5,872,431, dated Apr. 21, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Declaration of James Juo in Support of Plaintiffs' Opposition to Defendants' Motion for Stay, dated Apr. 7, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Declaration of James Keng in Support of Plaintiffs' Opposition to Defendants' Motion for a Stay, dated Apr. 4, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Declaration of Kanghong Zhang in Support of Plaintiffs' Motion for Summary Judgment of Invalidity of U.S. patent No. 5,872,431, dated Apr. 16, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Declaration of Marc E. Brown in Support of Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Mar. 24, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Defendants' Status Report Regarding Patent Reissue Application, dated Sep. 29, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT (Ex)).
Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Notice of Motion and Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Mar. 24, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Reply to Opposition to Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Apr. 11, 2003 (Cordelia et al. vs. American Flucrescent, et al., CV 02-7343 DT(Ex)).
Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Response to Plaintiffs First Set of Interrogatories (Nos. 1-7), served Apr. 7, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.'s Response to Plaintiffs' First Set of Requests for Production of Documents and Things (Nos. 1-133) (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
First Amended Complaint for Declaratory Relief of Patent Invaligity, and Non-Infrindement; Demand for Jury Trial, dated Oct. 8, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Haver, R.J. Electronic Ballasts, AR 180, Motorola, Inc. Arizona. Intertech Communications, Inc. 1987, pp. 1-6.
Hexfets Improve Efficiency, Expand Life of Electronic Lighting Ballast, AN-973, International Rectifier, El Segundo, CA. [no date] pp. 1-7. [Located Feb. 27, 2003 at http://www.irf.com/technical-info/appnotes/an-973.pdf.].
International Rectifier Design Tips, Publication DT 94-10A, entitled "Choosing the Correct Dropping Resistor Value for the IR2151/IR2152/IR 2155 Control IC's" by Tick Houk.
International Rectifier Design Tips, Publication DT 94-3A, entitled "Simple Ballast Using IR 2155 MOS Gate Driver" by Peter N. Wood et al.
Memorandum in Opposition to Ex Parte Application to Continue Hearing on Motion for Stay, dated Apr. 23, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Notice of Interested Parties, dated Nov. 21, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Notice of Lawsuit and Request for Waiver of Summons, dated Jan. 9, 2003 (Cordelia et al., vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Notice of Voluntary Dismissal of Defendant Zahir M. Ahmed, dated Jan. 20, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Opposition to Defendants' Motion for Stay, dated Apr. 7, 2003 (Cordelia et al., vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Order for Jury Trial: Establishing a Discovery cut-Off Date of Aug. 15, 2003; Setting the Final Pre-Trial Conference for Dec. 8, 2003 at 1:30 PM; Setting Jan. 27, 2004 at 9:30 AM as the Trial Date; and Re: Preparation for Jury Trial, dated Dec. 1, 2000 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Order Granting Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc., 's Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Apr. 28, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Order Granting Defendants/Counterclaimants, American Fluorescent Corporation and Power Electronics & Systems, Inc.,'s Motion for Stay Pending Resolution of United States Patent Office Proceeding, dated Apr. 28, 2003 (Cordelia et al. vs. American Fluoescent, et al., CV 02-7343 DT(Ex)).
Order Setting Scheduling Conference, dated Dec. 3, 2002 (Cordelia et al. vs. American Fluorescent, et at., CV 02-7343 DT(Ex)).
Plaintiffs' Ex Parte Application and Order to Continue Hearing Date for Defendants' Motion for Stay, dated Apr. 22, 2003(Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Plaintiffs' First Set of Interrogatories (Nos. 107), dated Mar. 6, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Plaintiffs' First Set of Requests for Production of Documents and Things (Nos. 1-133), dated Mar. 6, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Plaintiffs' Memorandum of Points & Authorities in Support of Ex Parte Application for an Order to Continue Hearing Date, dated Apr. 22, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Plaintiffs' Memorandum of Points and Authorities Supporting Motion for Summary Judgment of Invalidity of U.S. Patent No. 5,872,431, dated Apr. 21, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Plaintiffs' Notice of Motion and Motion for Summary Judgment of Invalidity of U.S. Patent No. 5,872,431 , dated Apr. 21, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Plaintiffs' Reply to Defendants' Counterclaim, dated Dec. 23, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Plaintiffs' Rule 26(a)(1) Initial Disclosures, dated Feb. 24, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Plaintiffs' Statement of Uncontroverted Facts and Conclusions of Law in Support of Motion for Summary Judgment of Invalidity of U.S. Patent No. 5,872,431, dated Apr. 21, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Power Electronics and Systems, Inc. and American Fluorescent corporation's Initial Disclosures Pursuant to Fed. R. Civ. P. 26(a)(1), dated Feb. 24, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Proposed Joint Report Under F.R. Civ. P. 26(f), dated Feb. 20, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-4343 DT(Ex)).
Rapid-Start-Types-Dimensional and Electrical Characteristics. American National Standard for Fluorescent Lamps. American National Standards Institute ANSI, C78.1-1991. 1991, pp. 1-85.
Second Generation Power Factor Controller, LX1562/1563, Linfinity Electronics, Garden Grove, CA, Rev. 1.2. 1994, pp. 1-22.
Spangler, J. Bipolar Transistors Excel in Off-Line Resonant Converters, Motorola Semiconductor Products Inc., Phoenix, AZ. 1986, pp. 1-8.
Standing Order With Regard to Newly Assigned Cases, dated Sep. 20, 2002 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Status Report Regarding Patent Reissue Application From Defendants, dated Jun. 30, 2003 (Cordelia et al. vs. American Florescent, et al., CV 02-7343 DT(Ex)).
Stipulation to Continue the Hearing Date of Defendants' Motion for Stay, dated Mar. 26, 2003 (Cordelia et al. vs. American Fluorescent, et al., CV 02-7343 DT(Ex)).
Texas Instruments Lighting Products. Data Manual & Application Report. Mixed Signal Products. 1994, p. 2-32 (Single page).
Wood, P.N. Electronic Ballasts Using the Cost-Saving IR2155 Driver, International Rectifier, AN-995. El Segundo, CA. 1994, pp. 1-9.
Wood, P.N. et al. Simple Electronic Ballast Using IR2155 MOS Gate Driver DT-94-3, International Rectifier, Design Tips. 1994, pp. 1 and 2.

Also Published As

Publication number Publication date
US5872431A (en) 1999-02-16
IL116875A0 (en) 1996-07-23
WO1996025696A1 (en) 1996-08-22
AU4703996A (en) 1996-09-04
US5585700A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
US5608295A (en) Cost effective high performance circuit for driving a gas discharge lamp load
US4808887A (en) Low-pressure discharge lamp, particularly fluorescent lamp high-frequency operating system with low inductance power network circuit
US5223767A (en) Low harmonic compact fluorescent lamp ballast
US4782268A (en) Low-pressure discharge lamp, particularly fluorescent lamp high-frequency operating circuit with low-power network interference
US4692667A (en) Parallel-resonant bridge-inverter fluorescent lamp ballast
US5994848A (en) Triac dimmable, single stage compact flourescent lamp
US5410221A (en) Lamp ballast with frequency modulated lamp frequency
US7528557B2 (en) Electronic controller for high-power gas discharging lamp
US5994847A (en) Electronic ballast with lamp current valley-fill power factor correction
US4259616A (en) Multiple gaseous lamp electronic ballast circuit
WO2008101764A1 (en) Charge pump electronic ballast for use with low input voltage
US5258692A (en) Electronic ballast high power factor for gaseous discharge lamps
US6642670B2 (en) Ballast converter with power factor and current crest factor correction
CA2037667C (en) Ignitor for high pressure arc discharge lamps
US5559396A (en) Ballast filtering scheme for reduced harmonic distortion
US5416386A (en) Electronic ballast with controlled DC rail voltage
USRE38837E1 (en) Efficient power transfer in electronic ballast
US5426349A (en) Electronic ballast with two-transistor switching device
US6100652A (en) Ballast with starting circuit for high-intensity discharge lamps
EP0599405B1 (en) Low harmonic power supply for a discharge lamp
EP0606664B1 (en) Ballast circuit
US5703438A (en) Line current filter for less than 10% total harmonic distortion
WO1992022953A1 (en) Electrical power supply
AU653668B2 (en) Ballast circuit
US6356034B1 (en) Low voltage discharge lamp power supply

Legal Events

Date Code Title Description
AS Assignment

Owner name: POWER ELECTRONICS & SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AHMED, ZAHIR M.;REEL/FRAME:015395/0507

Effective date: 19960313

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 8

RR Request for reexamination filed

Effective date: 20060412

B1 Reexamination certificate first reexamination

Free format text: CLAIMS 1 AND 2 WERE PREVIOUSLY CANCELLED. CLAIMS 3-26 ARE CANCELLED.

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees