Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE40121 E1
Publication typeGrant
Application numberUS 09/851,643
Publication dateFeb 26, 2008
Filing dateMay 8, 2001
Priority dateJun 13, 1994
Fee statusPaid
Also published asDE59507630D1, DE59511099D1, EP0992516A2, EP0992516A3, EP0992516B1, US6002032
Publication number09851643, 851643, US RE40121 E1, US RE40121E1, US-E1-RE40121, USRE40121 E1, USRE40121E1
InventorsGerhard Erker, Bodo Temme, Michael Aulbach, Bernd Bachmann, Frank Küber
Original AssigneeGerhard Erker, Bodo Temme, Michael Aulbach, Bernd Bachmann, Kueber Frank
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Transition metal compound
US RE40121 E1
Abstract
The present invention relates to zwitterionic neutral transition metal compounds. The compounds are suitable as catalyst components for the polymerization of olefins.
Images(14)
Previous page
Next page
Claims(21)
1. A zwitterionic transition metal compound of the formula I
where
L are identical or different and are each a π-ligand or an electron donor, n is equal to 1, 2, 3 or 4,
M is a metal atom of group IIIb, IVb, Vb or VIb of the Periodic Table of the Elements,
X is a heteroatom or a hydrocarbon group having 1-40 carbon atoms,
X′ is a hydrocarbon group having 1-40 carbon atoms,
A is an atom of group Ib, IIb, IIIa, IIIb, IVa, Va, Vb, VIb, VIIb or VIIIb of the Periodic Table of the Elements,
R1 are identical or different and are each a perhalogenated C1-C40-hydrocarbon radical, and m is equal to 1, 2, 3, 4 or 5.
2. A transition metal compound as claimed in claim 1, wherein the radicals L are identical or different and are each a π-ligand.
3. A transition metal compound as claimed in claim 1, wherein the radicals L are identical or different and are each an unsubstituted or substituted cyclopentadienyl group.
4. A transition metal compound as claimed in claim 1, wherein the radicals L are linked to one another via a bridge.
5. A transition metal compound as claimed in claim 1, wherein n=2 when M is a metal atom of group IVb of the Periodic Table of the Elements.
6. A transition metal compound as claimed in claim 1, wherein
M is a metal atom of group IVb of the Periodic Table of the Elements, n is equal to 2,
L are identical or different and are each a substituted or unsubstituted cyclopentadienyl group, where two radicals L are optionally linked to one another via a bridge Z and
Z is CR2R3 or SiR2R3 or a unit Si—(CR2R3)x—Si which links two fragments LnM+XX′—A—R1 m with one another, where x is an integer from 0 to 10,
X and X′ together form a three-membered to five-membered hydrocarbon chain which can be saturated or unsaturated and are unsubstituted or substituted by one or more C1-C20-hydrocarbon radicals,
R2 and R3 are identical or different and are each a hydrogen atom, a halogen atom, a C1-C20-alkyl group, a C1-C10-fluoroalkyl group, a C1-C10-alkoxy group, a C6-C14-aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl group, or R2 and R3 together with the atoms connected them form one or more rings, and R2 and R3 are optionally bonded to L;
A is an atom of group Ib, IIb, IIIa, IVa, Va, Vb of the Periodic Table of the Elements,
R1 are identical or different and are each a perfluorinated alkyl or aryl group having from 1 to 20 carbon atoms and
m is equal to 2, 3 or 4.
7. A transition metal compound as claimed in claim 6, wherein
M is zirconium,
n is equal to 2,
L are identical or different and are each a substituted cyclopentadienyl group, where two radicals L are linked to one another via a bridge Z, where Z is CR2R3 or SiR2R3 and R2 and R3 are as defined in claim 6,
X and X′ together form an unsaturated four-membered hydrocarbon chain whose hydrogen atoms are optionally replaced by C1-C20-alkyl groups,
A is boron atom,
R1 are identical and are each a pentafluorophenyl group (C6F5) and
m is equal to 3.
8. A catalyst component comprising at least one transition metal compound as claimed in claim 1.
9. A catalyst component as claimed in claim 8, additionally containing a support.
10. A process for preparing a compound according to claim 1 of the formula I
where
L are identical or different and are each a π ligand or an electron donor, n is equal to 1, 2, 3 or 4,
M is a metal atom of group IIIb, IVb, Vb or VIb of the Periodic Table of the Elements,
X is a heteroatom or a hydrocarbon group having 1-40 carbon atoms,
X′ is a hydrocarbon group having 1-40 carbon atoms,
A is an atom of group Ib, IIb, IIIa, IIIb, IVa, Va, Vb, VIb, VIIb or VIIIb of the Periodic Table of the Elements,
R1 are identical or different and are each a perhalogenated C1-C40-hydrocarbon radical, and m is equal to 1, 2, 3, 4 or 5, which comprises reacting a compound of the formula II
with a compound of the formula III
and reacting the reaction product with a compound of the formula AR1 m, where L, n, M, X, B, X, X′, A, R1 and m in the formulae II, III and AR1 m are as defined for the formula I and Hal is a halogen atom.
11. A zwitterionic transition metal compound of the formula
wherein:
L and L′ are identical or different and are each a substituted or unsubstituted cyclopentadienyl group;
Z is a bridge linking together said L and L′ and is a group of the formula CR2R3 or SiR2R3;
R2 and R3 are identical or different and are each a hydrogen atom, a halogen atom, a C1-C20-alkyl group, a C1-C10-fluoroalkyl group, a C1-C10-alkoxy group, a C6-C14-aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl group, or R2 and R3 together with the atoms connected them form one or more rings, and R2 and R3 are optionally bonded to L;
M is a metal atom of group IVb of the Periodic Table of the Elements;
X-X′ is a 3- to 5-membered saturated or unsaturated hydrocarbon chain which is unsubstituted or substituted by one or more C1-C20-hydrocarbon radicals; and
the R1 radicals are identical or different and are each a perfluorinated alkyl or aryl group having from 1 to 20 carbon atoms.
12. A catalyst system for olefin polymerization comprising a transition metal compound of claim 11 and, optionally, a catalyst support material.
13. A catalyst system as claimed in claim 12, wherein said catalyst system is essentially free of an aluminoxane except when said catalyst support material is present and is a solid aluminoxane.
14. The catalyst as claimed in claim 8, wherein M is titanium, zirconium or hafnium.
15. The catalyst as claimed in claim 12, wherein M is zirconium.
16. The catalyst as claimed in claim 14, wherein an unsubstituted or
M is Zr,
n is equal to 2,
L are identical or different and are each a substituted cyclopentadienyl group, where two radicals L are linked to one another via a bridge Z, and
Z is CR2R3 or SiR2R3 or a unit Si—(CR2R3)x—Si which links two fragments LnM+XX′A—R1 m with one another, where x is an integer from 0 to 10,
X and X′ together form a three-membered to five-membered (C3-C5)-alkyl chain which is saturated or unsaturated and are optionally substituted by C1-C20-hydrocarbon radicals,
A is a metal of group Ib, IIb, IIIb, IVa, Vb, of the Periodic Table of the Elements,
R1 are identical or different and are each a pentafluorinated alkyl or aryl group having from 1 to 20 carbon atoms,
R2 and R3 are identical or different and are each a hydrogen atom, a halogen atom, a C1-C20-alkyl group, a C1-C10-fluoroalkyl group, a C1-C10-alkoxy group, a C6-C14-aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl group and
m is equal to 3.
17. The catalyst as claimed in claim 8, wherein
M is zirconium,
n is equal to 2,
L are identical or different and are each a substituted cyclopentadienyl group, where two radicals L are bonded to one another via a bridge Z, where Z is CR2R3 or SiR2R3,
X and X′ together form an unsaturated four-membered (C4)-alkyl chain whose hydrogen atoms can also be replaced by C1-C20-alkyl groups,
A is a boron atom,
R1 are identical and are each a pentafluorophenyl group (C6F5),
R2 and R3 are identical or different and are each a hydrogen atom, a halogen atom, a C1-C20-alkyl group, a C1-C10-fluoroalkyl group, a C1-C10-alkoxy group, a C6-C14-aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl group and m is equal to 3.
18. The compound as claimed in claim 1, wherein the transition metal compound of the formula I is selected from the group consisting of
bis(cyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
bis(methylcyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
bis(n-butylcyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
bisindenylZr+CH2CHCHCH2B(C6F5)3;
(tert-butylamido)dimethyl(tetramethyl-η5-cyclopentadienyl)silaneZr+CH 2CHCHCH2B(C6F5)3;
bis(2-methylbenzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbisindenylZr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-methylbenzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
isopropylidene(cyclopentadienyl(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
isopropylidene(cyclopentadienyl)(indenyl)Zr+CH2CHCHCH2B(C6F5)3;
[4-η5-cyclopentadienyl-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)Zr+CH2CHCHCH2B(C6F5)3;
45-cyclopentadienyl-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)Zr+CH 2 CHCHCH 2B−(C 6F5)3;
dimethylsilanediylbis(2-methylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediylbisindenylZr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediylbis(2-methylbenzoindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediylbis(2-methylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbisindenylZr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbis(2-methylbenzoindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2CH2B(CF3)3;
dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbis(2-methylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediylbisindenylZr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediylbis(2-methylbenzoindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2C(CH3)C(CH3)C2B(CF3)3;
dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
methylphenylmethylene(fluorenyl)(cyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
diphenylmethylene(fluorenyl)(cyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
isopropylidene(3-methylcyclopentadienyl)(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediyl(3-tert-butylcyclopentadienyl)(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
diphenylsilanediyl(3-(trimethylsilyl)cyclopentadienyl)(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbisindenylZr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediyl(2-methyl-4,5-benzoindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediyl(2-methyl-4,5-benzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebisindenylZr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylene(2-methyl-4,5-benzoindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylene(2-methyl-4,5-benzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylene(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-ethyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-ethyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2,3,5-trimethylcyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
1,6-{bis[methylsilylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
1,6-{bis[methylsilylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
1,6-{bis[methylsilylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
1,6-{bis[methylsilylbis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
1,6-{bis[methylsilyl(2-methyl-4-phenylindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
1,2-{bis[methylsilylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane;
1,2-{bis[methylsilylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane;
1,2-{bis[methylsilylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane;
1,2-{bis[methylsilylbis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane; and
1,2-{bis[methylsilyl(2-methyl-4-phenylindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane.
19. The catalyst as claimed in claim 8, wherein the transition metal compound of the formula I is selected from the group consisting of
bis(cyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
bis(methylcyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
bis(n-butylcyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
bisindenylZr+CH2CHCHCH2B(C6F5)3;
(tert-butylamido)dimethyl(tetramethyl-η5-cyclopentadienyl)silaneZr+CH2CHCHCH2B(C6F5)3;
bis(2-methylbenzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbisindenylZr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-methylbenzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-methylbenzoindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbis(2-methylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediylbisindenylZr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediylbis(2-methylbenzoindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
isopropylidene(cyclopentadienyl)(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
isopropylidene(cyclopentadienyl)(indenyl)Zr+CH2CHCHCH2B(C6F5)3;
[4-η5-cyclopentadienyl-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)Zr+CH2CHCHCH2B(C6F5)3;
45-cyclopentadienyl-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)Zr + CH 2 CHCHCH 2 B (C 6 F 5)3;
dimethylsilanediylbis(2-methylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediylbisindenylZr+OCH2CH2C2B(C6F5)3;
dimethylsilanediylbis(2-methylbenzoindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
dimethylsilanediylbis(2-methylindenyl)Zr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbisindenylZr+CH2CHCHCH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
methylphenylmethylene(fluorenyl)(cyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
diphenylmethylene(fluorenyl)(cyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
isopropylidene(3-methylcyclopentadienyl)(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediyl(3-tert-butylcyclopentadienyl)(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
diphenylsilanediyl(3-(trimethylsilyl)cyclopentadienyl)(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbisindenylZr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediyl(2-methyl-4,5-benzoindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediyl(2-methyl-4,5-benzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
phenylmethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebisindenylZr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylene(2-methyl-4,5-benzoindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylene(2-methyl-4,5-benzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylene(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-ethyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
ethylenebis(2-ethyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
dimethylsilanediylbis(2,3,5-trimethylcyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
1,6-{bis[methylsilylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
1,6-{bis[methylsilylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
1,6-{bis[methylsilylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
1,6-{bis[methylsilylbis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
1,6-{bis[methylsilyl(2-methyl-4-phenylindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
1,2-{bis[methylsilylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane;
1,2-{bis[methylsilylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane;
1,2-{bis[methylsilylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane;
1,2-{bis[methylsilylbis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane; and
1,2-{bis[methylsilyl(2-methyl-4-phenylindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane.
20. The compound as claimed in claim 1, wherein M is zirconium.
21. The compound as claimed in claim 1, wherein M is a metal atom group IVb of the Periodic Table of Elements.
Description

Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,002,032. The reissue applications are application Ser. Nos. 09/851,643 (the present application), and 10/893,057 which is divisional reissue of U.S. Pat. No. 6,002,032.

The present invention relates to a zwitterionic, neutral transition metal compound which can be advantageously used for the polymerization of olefins. In this way, the use of aluminoxanes such as methylaluminoxane (MAO) as cocatalyst can be omitted while still achieving high catalyst activities.

The role of cationic 14-electron complexes of the formula R3M+ (M=Ti, Zr, Hf) in Ziegler-Natta polymerization using metallocenes is generally recognized (M. Bochmann, Nachr. Chem. Lab. Techn. 1993, 41, 1220).

While MAO, as the hitherto most effective cocatalyst, has to be used in a high excess, the synthesis of cationic alkyl complexes of the formula R3M+ (M=Ti, Zr, Hf) provides a route to MAO-free catalysts, some of which have comparable activity.

Cationic alkyl complexes can be prepared by

  • a) oxidation of metallocene-dialkyl complexes with, for example, AgBPh4 or [Cp2Fe][BPh4],
  • b) by protolysis of metallocene-alkyl compounds with, for example, weakly acid ammonium salts of the very stable, nonbasic tetra(pentafluorophenyl)borate anion (e.g. [PhMe2NH]+[B(C6F5)4]) or by
  • c) abstraction of an alkyl group from metallocene-alkyl compounds by means of strong Lewis acids. Lewis acids which can be used here are salts (Ph3C+BR4 ) or strong neutral Lewis acids such as B(C6F5)3.

J. Organomet. Chem. 1970, 22, 659, describes a reaction of tetramethyltitanium with triphenylborane or tribenzylborane.

J. Am. Chem. Soc. 1991, 113, 3623, describes the synthesis of “cation-like” metallocene polymerization catalysts which are prepared by alkyl abstraction from metallocene-alkyl compounds using tris(pentafluorophenyl)borane. The crystal structure of [1,2-(CH3)2C5H3]2—ZrCH3]+[CH3B (C6F5)3] shows a salt-like structure with weak coordination of the CH3 group of the borate anion to the metal center. EP 427,697 claims this synthetic principle and a corresponding catalyst system comprising a neutral metallocene species (eg. Cp2ZrMe2), a Lewis acid (eg. B(C6F5)3) and aluminum alkyls. EP 520,732 claims a process for preparing salts of the general formula LMX+XA according to the abovesdescribed principle.

EP 558,158 claims zwitterionic catalyst systems prepared from metallocene-dialkyl compounds and salts of the formula [R3NH]+[BPh4]. Reaction of such a salt with Cp*2ZrMe2 generates, by means of protolysis with elimination of methane, an intermediate zirconocene-methyl cation which reacts, after C—H activation of a tetraphenylborate carbon-hydrogen bond and renewed elimination of methane, to give the zwitterion Cp*2Zr+-(m-C6H4)-BPh3. The Zr atom is here covalently bonded to a carbon atom of the phenyl ring and is stabilized via an agostic hydrogen bond. According to this reaction principle, protolysis of a metallocene-dialkyl species with a perfluorinated [R3NH]+ [B(C6F5)4] salt in the first step likewise forms a cationic species, with the subsequent reaction (C—H activation) to give zwitterionic complexes (i.e. the metal atom is covalently bonded to the “former” anion) not being possible. This process also uses metallocenes CP2MR2 in which the alkyl radicals R are cyclically bonded to one another, for example Cp2Zr(2,3-dimethyl-1,3-butadiene). Salts of the formula [Cp2Zr—R—RH]+[B(C6F5)4] are formed after protonolysis.

U.S. Pat. No. 5,198,401 claims corresponding systems in which dimethylanilinium salts having perfluorinated tetraphenylborate anions are used. This reference also uses metallocenes Cp2MR2 in which the alkyl radicals R are cyclically bonded to one another, for example Cp2Zr-(2,3-dimethyl-1,3-butadiene). After protonolysis, salts of the formula [Cp2Zr—R—RH]+[B(C6F5)4] are likewise formed. EP 277,003, EP 277,004, EP 495,375 and WO 91/14713 claim systems according to a similar process principle.

The processes described for preparing the cationic systems of the formula [R3M]+[BR4] (M=Ti, Zr, Hf) have the disadvantage that the cationizing reagents [R3NH+BR4 ] are sometimes complicated to synthesize and costly. In addition, there is the problem that an amine R3N is formed from the ammonium salt after protonolysis, which amine, in the case of sterically unhindered metal centers, can coordinate to the strong Lewis acid R3M+ cation (U.S. Pat. No. 5,198,401) and thus leads to low polymerization activities.

The zwitterionic complexes of the structure Cp2Zr+-m-C6H4BPh3 have the disadvantage that the starting compounds are expensive and complicated to synthesize and have low polymerization activity.

Owing to their salt-like character, cationic systems of the structure [Cp2MR]+[RB(C6F5)3] have very high hydrolysis sensitivities and can be used on an industrial scale only to a limited extent. The activities observed for these systems are low owing to the abovementioned stability problems and the presumably sometimes strong coordination of the alkyl group of the borate anion to the metal center.

It is an object of the invention to find a transition metal compound which avoids the disadvantages of the prior art.

It has now been found that this object can be achieved by specific zwitterionic transition metal compounds.

The present invention accordingly provides a zwitterionic transition metal compound of the formula I


where

    • L are identical or different and are each a π-ligand or an electron donor, n is equal to 1, 2, 3 or 4,
    • M is a metal atom of group IIIb, IVb, Vb or VIb of the Periodic Table of the Elements,
    • X is a heteroatom or a hydrocarbon group having 1-40 carbon atoms,
    • B is a hydrocarbon group having 1-40 carbon atoms,
    • A is a metal atom of group Ib, IIb, IIIa, IIIb, IVa, Va, Vb, VIb, VIIb or VIIIb of the Periodic Table of the Elements,
    • R1 are identical or different and are each a perhalogenated C1-C40-hydrocarbon radical, and m is equal to 1, 2, 3, 4 or 5.

The metal atoms M and A bonded to one another by covalent bonds via the structural elements X and B. If X is an allyl unit, the bonding of X to the metal atom X can be a σ-allyl or a π-allyl bond. π-Ligands are preferably unsubstituted or substituted cyclopentadienyl groups such as 2-methylcyclopentadienyl, indenyl, 2-methylindenyl, 2-methyl-4-phenylindenyl, 2-methyl-4,5-benzoindenyl, 2-methyl-4,6-diisopropylindenyl, 4,5-benzoindenyl, fluorenyl, 4,7-tert-butylfluorenyl or 2-methyl-4-(2-pyridyl) indenyl.

For the purposes of the present invention, an electron donor is an atom of group IVa, Va, VIa or VIIa of the Periodic Table of the Elements, which can bear substituents such as C1-C20-hydrocarbon groups. Preference is given to O, NR4 2, NR4, NR4 3, PR4 2, PR4, PR4 3, S, P(OR4)2, P(OR4) or Cl, where R4 is C1-C20-alkyl or C6-C14-aryl.

Two radicals L can be linked to one another via a bridge (Z).

The bridge Z is preferably


═BR2, —AIR2, —Ge—, —O—, —S—, ═SO, ═SO2, —NR2, ═CO, ═PR2 or ═P(O)R2, where R2 and R3 are identical or different and are each a hydrogen atom, a halogen atom, a C1-C20-alkyl group, a C1-C1-fluoroalkyl group, a C1-C10-alkoxy group, a C6-C14-aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl group and x is a number from zero to 18, or R2 and R3 together with the atoms-connecting them form one or more rings and R2 or/and R3 can be bonded to L and M2 is silicon, germanium or tin.

Z can also link two or more identical or different groups LnM+XBAR1 m with one another.

For the purposes of the present invention, a heteroatom is any atom of the Periodic Table of the Elements with the exceptions of carbon and hydrogen. Preference is given to O, S and N.

Hydrocarbon groups X and B can be saturated or unsaturated, linear or branched, eg. a C1-C20-alkyl group, a C6-C14-aryl group, a C2-C10-alkenyl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group or a C8-C40-arylalkenyl group. Preference is given to substituted or unsubstituted alkyl groups which can also have aromatic structural elements.

Preference is given to n=1 when M is an element of group IIIb of the Periodic Table of the Elements; n=2 when M is a metal atom of group IVb of the Periodic Table of the Elements; n=3 when M is an element of group Vb of the Periodic Table of the Elements; and n=4 when M is an element of group VIb of the Periodic Table of the Elements.

R1 is a C1-C40-hydrocarbon radical which is perhalogenated with halogen such as fluorine, chlorine, bromine or iodine, in particular a perhalogenated C1-C30-alkyl group such as trifluoromethyl, pentachloroethyl, heptafluoroisopropyl, or monofluoroisobutyl or a perhalogenated C6-C30-aryl group such as pentafluorophenyl, heptachloronaphthyl, heptafluoronaphthyl or heptafluorotolyl.

Particular preference is given to compounds of the formula I, where

    • M is a metal atom of group IVb of the Periodic Table of the Elements, such as titanium, zirconium or hafnium,
    • n is equal to 2,
    • L are identical or different and are each a substituted or unsubstituted cyclopentadienyl group, where two radicals L can be linked to one another via a bridge Z and
    • Z is CR2R3 or SiR2R3 or a unit Si—(CR2R3)x—Si which links two fragments LnM+XBA—R1 m with one another, where x is an integer from 0 to 10, preferably x=6,
    • X and B together form a three-membered to five-membered (C3-C5)-alkyl chain which is saturated or unsaturated and can be substituted by C1-C20-hydrocarbon radicals,
    • A is a metal of group Ib, IIb, IIIa, IVa, Va, Vb of the Periodic Table of the Elements,
    • R1 are identical or different and are each a perfluorinated alkyl or aryl group having from 1 to 20 carbon atoms and
    • m is equal to 2, 3 or 4.

Very particular preference is given to compounds of the formula I, where

    • M is zirconium,
    • n is equal to 2,
    • L are identical or different and are each a substituted cyclopentadienyl group, where two radicals L are linked to one another via a bridge Z, where Z is CR2R3 or SiR2R3,
    • X and B together form an unsaturated four-membered (C4)-alkyl chain whose hydrogen atoms can also be replaced by C1-C20-alkyl groups,
    • A is a boron atom,
    • R1 are identical and are each a pentafluorophenyl group (C6F5) and
    • m is equal to 3.

Examples of the compounds of the invention are:

  • bis(cyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
  • bis(methylcyclopentadienyl)Zr+C2CHCHCH2B(C6F5)3;
  • bis(n-butylcyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
  • bisindenylZr+CH2CHCHCH2B(C6F5)3;
  • (tert-butylamido)dimethyl(tetramethyl-η5-cyclopentadienyl)silaneZr+CH2CHCHCH2B(C6F5)3;
  • bis(2-methylbenzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • dimethylsilanediylbis(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • dimethylsilanediylbisindenylZr+CH2CHCHCH2B(C6F5)3;
  • dimethylsilanediylbis(2-methylbenzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+CH 2CHCHCH2B(C6F5)3;
  • dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • isopropylidene(cyclopentadienyl)(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • isopropylidene(cyclopentadienyl)(indenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • [4-η5-cyclopentadienyl-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • 45-clopentadienyl-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)Zr+ CH 2 CHCHCH 2B−(C 6F5)3;
  • dimethylsilanediylbis(2-methylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
  • dimethylsilanediylbisindenylZr+OCH2CH2CH2B(C6F5)3;
  • dimethylsilanediylbis(2-methylbenzoindenyl)Zr+OCH2CH2CH2B(C6F5)3;
  • dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
  • dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
  • dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
  • dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
  • dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+OCH2CH2CH2B(C6F5)3;
  • dimethylsilanediylbis(2-methylindenyl)Zr+CH2CHCHCH2B(CF3)3;
  • dimethylsilanediylbisindenylZr+CH2CHCHCH2B(CF3)3;
  • dimethylsilanediylbis(2-methylbenzoindenyl)Zr+CH2CHCHCH2B(CF3)3;
  • dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(CF3)3;
  • dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(CF3)3;
  • dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(CF3)3;
  • dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(CF3)3;
  • dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(CF3)3;
  • dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(CF3)3;
  • dimethylsilanediylbis(2-methylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
  • dimethylsilanediylbisindenylZr+CH2C(CH3)C(CH3)CH2B(CF3)3;
  • dimethylsilanediylbis(2-methylbenzoindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
  • dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
  • dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
  • dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
  • dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
  • dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
  • dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2C(CH3)C(CH3)CH2B(CF3)3;
  • methylphenylmethylene(fluorenyl)(cyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
  • diphenylmethylene(fluorenyl)(cyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
  • isopropylidene(3-methylcyclopentadienyl)(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • dimethylsilanediyl(3-tert-butylcyclopentadienyl)(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • diphenylsilanediyl(3-(trimethylsilyl)cyclopentadienyl)(fluorenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • phenylmethylsilanediylbis(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • phenylmethylsilanediylbisindenylZr+CH2CHCHCH2B(C6F5)3;
  • phenylmethylsilanediylbis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • phenylmethylsilanediyl(2-methyl-4,5-benzoindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • phenylmethylsilanediyl(2-methyl-4,5-benzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • phenylmethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • phenylmethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • phenylmethylsilanediylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • phenylmethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • phenylmethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylenebis(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylenebisindenylZr+CH2CHCHCH2B(C6F5)3;
  • ethylenebis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylene(2-methyl-4,5-benzoindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylene(2-methyl-4,5-benzoindenyl)(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylene(2-methylindenyl)(4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylenebis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylenebis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylenebis(2-methyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylenebis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylenebis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylenebis(2-ethyl-4,6-diisopropylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • ethylenebis(2-ethyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • dimethylsilanediylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3;
  • dimethylsilanediylbis(2,3,5-trimethylcyclopentadienyl)Zr+CH2CHCHCH2B(C6F5)3;
  • 1,6-{bis[methylsilylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
  • 1,6-{bis[methylsilylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
  • 1,6-{bis[methylsilylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
  • 1,6-{bis[methylsilylbis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
  • 1,6-{bis[methylsilyl(2-methyl-4-phenylindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}hexane;
  • 1,2-{bis[methylsilylbis(2-methyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane;
  • 1,2-{bis[methylsilylbis(2-ethyl-4-phenylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane;
  • 1,2-{bis[methylsilylbis(2-methyl-4-naphthylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane;
  • 1,2-{bis[methylsilylbis(2-methyl-4,5-benzoindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane; and
  • 1,2-{bis[methylsilyl(2-methyl-4-phenylindenyl)(2-methylindenyl)Zr+CH2CHCHCH2B(C6F5)3]}ethane.

The preparation of the novel transition metal compound of the formula I is illustrated by the following reaction schemes.

L, n, M, X, B, A, R1 and m in the formulae II, III and IV are as defined in formula I and Hal is a halogen atom such as fluorine, chlorine, bromine or iodine.

Compounds of the formula II are described in the literature (J. Okuda, Topics in Current Chemistry, Vol. 160; Springer Verlag, Berlin Heidelberg 1991, page 97). Reaction of compounds of the formula II in inert solvents with dianion compounds of the formula III, for example 1,4-butanediyllithium or 2-butene-1,4-diylmagnesium, leads to elimination of a salt and formation of the cyclic systems IV in which the M—X or the M—B bond can be a covalent bond or a coordination of the compound X—B to the metal atom M.

The compound of the formula IV can be reacted with Lewis acids of the formula AR1 m in organic solvents, for example toluene, benzene, methylene chloride, carbon tetrachloride and petroleum spirit, to give the compound of the formula I.

The novel transition metal compounds of the formula I can be isolated or directly used for further reactions. The compounds of the formula I can also be prepared without isolation of intermediate and end stages in a single-vessel reaction from metallocene dihalides, dianion compounds and Lewis acids and be directly used for the polymerization.

Suitable solvents for this purpose are aliphatic or aromatic solvents, such as hexane or toluene, or halogenated hydrocarbons, such as methylene chloride, or halogenated aromatic hydrocarbons such as o-dichlorobenzene.

A further possibility for preparing the novel compounds of the formula I comprises the formation of metallocycles of the formula IV by electrocyclic ring-closure reaction of, for example, metallocene-bisolefin complexes or metallocene-olefin-aldehyde complexes and subsequent reaction with Ar1 m.

The present invention also relates to a process for preparing the olefin polymer by polymerization of at least one olefin in the presence of a catalyst containing at least one transition metal compound of the formula I. The polymerization can be a homopolymerization or a copolymerization.

Preference is given to polymerizing olefins of the formula Ra—CH═CH—Rb, where Ra and Rb are identical or different and are each a hydrogen atom, a halogen atom, an alkoxy group, a hydroxy group, an alkylhydroxy group, an aldehyde group, a carboxylic acid group or a carboxylic ester group or a saturated or unsaturated hydrocarbon radical having from 1 to 20 carbon atoms, in particular from 1 to 10 carbon atoms, which can be substituted by an alkoxy group, a hydroxy group, an alkylhydroxy group, an aldehyde group, a carboxylic acid group or a carboxylic ester group, or Ra and Rb together with the atoms connecting them can form a one or more rings. Examples of such olefins are 1-olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, styrene, cyclic olefins such as norbornene, vinylnorbornene, tetracyclododecene, ethylidenenorbornene, dienes such as 1,3-butadiene or 1,4-hexadiene, biscyclopentadiene or methyl methacrylate. In particular, propylene or ethylene are homopolymerized, ethylene is copolymerized with one or more C3-C20-1-olefins, in particular propylene, and/or one or more C4-C20-dienes, in particular 1,3-butadiene, or norbornene and ethylene are copolymerized.

The polymerization is preferably carried out at a temperature of from −60 to 300° C., particularly preferably from 30 to 250° C. The pressure is from 0.5 to 2500 bar, preferably from 2 to 1500 bar. The polymerization can be carried out continuously or batchwise, in one or more stages, in solution, in suspension, in the gas phase or in a supercritical medium.

It is also possible to use mixtures of two or more transition metal compounds of the formula I. By this means, polyolefins having a broad or multimodal molecular weight distribution can be obtained.

A prepolymerization can be carried out by means of the compound of the formula I. For the prepolymerization, preference is given to using the (or one of the) olefin(s) used in the polymerization.

The compounds of the formula I can also be applied to a support, particularly for controlling the particle morphology. Suitable support materials are, for example, silica gels, aluminum oxides, solid aluminoxane or other inorganic support materials such as, for example, magnesium chloride. Another suitable support material is a polyolefin powder in finely divided form.

The support catalyst system can be resuspended as powder or still together with solvent and can be metered into the polymerization system as a suspension in an inert suspension medium.

To remove catalyst poisons present in the olefin, purification using an aluminum alkyl, for example trimethylaluminum, triethylaluminum or triisobutylaluminum, is advantageous. This purification can be carried out either in the polymerization system itself or the olefin is contacted with the Al compound and subsequently separated again prior to its addition to the polymerization system.

Hydrogen is added, if required, as molecular weight regulator and/or to increase the activity. The total pressure in the polymerization system is from 0.5 to 2500 bar, preferably from 2 to 1500 bar.

The compound of the formula I is here used in a concentration, based on the transition metal, of preferably from 10−3 to 10−8, particularly preferably from 10−4 to 10−7, mol of transition metal per dm3 of solvent or per dm3 of reactor volume.

If the polymerization is carried out as a suspension or solution polymerization, an inert solvent customary for the Ziegler low-pressure process is used. For example, the polymerization is carried out in an aliphatic or cycloaliphatic hydrocarbon; examples of such solvents which may be mentioned are propane, butane, hexane, heptane, isooctane, cyclohexane, methylcyclohexane. Furthermore, a petroleum or hydrogenated diesel oil fraction can be used. It is also possible to use toluene. Preference is given to carrying out the polymerization in the liquid monomer.

If inert solvents are used, the monomers are metered in in gaseous or liquid form.

The duration of the polymerization can be as desired, since the catalyst system to be used according to the invention has only a small fall in polymerization activity with time.

Prior to addition of the catalyst, in particular the supported catalyst system (containing at least one novel compound of the formula I, support material and/or a polyolefin powder in finely divided form), another aluminum alkyl compound such as, for example, trimethylaluminum, triethylaluminum, triisobutylaluminum, trioctylaluminum or isoprenylaluminum can additionally be added to the reactor to stabilize the polymerization systems (for example for removing catalyst poisons present in the olefin). This is added to the polymerization system in a concentration of from 100 to 0.01 mmol of Al per kg of reactor contents. Preference is given to triisobutylaluminum and triethylaluminum in a concentration of from 10 to 0.1 mmol of Al per kg of reactor contents. This enables a small Al/M molar ratio to be selected in the synthesis of a supported catalyst system.

The novel compounds of the formula I are highly active catalyst components for olefin polymerization.

In principle, the use of cocatalysts in the polymerization reaction is not required, i.e. the novel compounds of the formula I can be used as catalyst for olefin polymerization without the need for a cocatalyst such as aluminoxane.

The following examples serve to illustrate the invention.

General procedures: Preparation and handling of organometallic compounds were carried out with exclusion of air and moisture under argon protection (Schlenk technique). All solvents required were dried prior to use by boiling for a number of hours over a suitable desiccant and subsequent distillation.

The compounds were characterized using 1H-NMR, 13C-NMR and IR spectroscopy.

A. Synthesis of the Compounds of the Formula IV

The preparation of the butadiene complexes was carried out according to G. Erker, K. Engel, Ch. Sarter in R. B. King, J. J. Eisch, Organometallic Synthesis, Vol 3, Academic Press, New York 1986, 529:

EXAMPLE 1 Dimethylsilanediylbis(2-methyl-4,5-benzoindenyl) zirconium(η4-butadiene)

100 ml of toluene (precooled to −40° C.) are added to a mixture of 5.0 g (8.67 mmol) of dimethylsilanediylbis(2-methyl-4,5-benzoindenyl)zirconium dichloride and 2.3 g (10.4 mmol, 1.2 equivalents) of (2-butene-1,4-diyl) magnesium bistetrahydrofuran (“butadienemagnesium”) which has been cooled to −40° C. While stirring vigorously, the mixture is allowed slowly to warm up to room temperature. After stirring for four hours, the dark red solution is separated via a frit from unreacted butadienemagnesium and magnesium chloride formed. The filtrate is evaporated to dryness and the residue is washed with 10 ml of pentane. This gives 4.4 g (70%) of a deep red powder.

EXAMPLE 2 Dimethylsilanediylbis(2-methyl-4-phenylindenyl) zirconium(η4-butadiene)

100 ml of toluene (precooled to −40° C.) are added to a mixture of 5.0 g (7.95 mmol) of dimethylsilanediylbis(2-methyl-4-phenylindenyl)zirconium dichloride and 2.1 g (9.5 mmol, 1.2 equivalents) of (2-butene-1,4-diyl)magnesium bistetrahydrofuran (“butadienemagnesium”) which has been cooled to −40° C. While stirring vigorously, the mixture is allowed slowly to warm up to room temperature. After stirring for four hours, the dark red solution is separated via a frit from unreacted butadienemagnesium and magnesium chloride formed. The filtrate is evaporated to dryness and the residue is washed with 10 ml of pentane. This gives 3.5 g (72%) of a red-brown powder.

B. Synthesis of the Compounds of the Formula I

EXAMPLE 3 Dimethylsilanediylbis(2-methyl-4,5-benzoindenyl) Zr+CH2CHCHCH2B(C6F6)3;

3.0 g (5.35 mmol) of dimethylsilanediylbis(2-methyl-4,5-benzoindenyl)zirconium(η4-butadiene) are dissolved in 100 ml of toluene and admixed with 3.01 g (5.88 mmol, 1.1 equivalents) of tris(pentafluorophenyl)borate. The reaction solution is left stirring for 24 hours at room temperature and the strongly dark brown suspension is subsequently evaporated to half its volume. The precipitate is filtered off and washed with 10 ml of pentane. This gives 5.27 g (92%) of a sparingly soluble reddish brown powder.

EXAMPLE 4 Dimethylsilanediylbis(2-methyl-4-phenylindenyl) Zr+CH2CHCHCH2B(C6F5)3;

3.0 g (4.90 mmol) of dimethylsilanediylbis(2-methyl-4-phenylindenyl)zirconium(η4-butadiene) are dissolved in 100 ml of toluene and admixed with 2.76 g (5.39 mmol, 1.1 equivalents) of tris(pentafluorophenyl)borate. The reaction solution is left stirring for 24 hours at room temperature and the strongly dark brown suspension is subsequently evaporated to half its volume. The precipitate is filtered off and washed with 10 ml of pentane. This gives 4.84 g (88%) of a sparingly soluble reddish brown powder.

C. Polymerization Examples

EXAMPLE 5

The catalyst solution is prepared by mixing 11 mg of biscyclopentadienylzirconium(η4-butadiene) in 20 ml of toluene with a solution of 20.4 mg of tris(pentafluorophenyl)borane in 20 ml of toluene. 900 ml of toluene are admixed with 1 ml of a 10% strength by weight TIBA solution in toluene and subsequently with 1 ml of this catalyst solution.

For the polymerization, this solution is placed in an inert 1.5 dm3 stirred reactor, heated to 70° C. and polymerization is carried out at a pressure of 7 bar of ethylene. After 2 hours, the reactor is vented, the polymer is filtered from the suspension, washed with acetone and dried for 12 hours in a vacuum drying oven. This gives 38 g of polyethylene having an Mw of 297,000 g/mol and an Mw/Mn of 2.5 according to GPC.

EXAMPLE 6

The polymerization of Example 5 is repeated using high-purity ethylene, except that no TIBA was added. This gives 37 g of polyethylene having identical properties.

EXAMPLE 7

The polymerization of Example 5 is repeated, except that 2 ml of the catalyst solution are added and 100 ml of 1-hexene were first added to the reactor and 5 bar of ethylene were subsequently added. After 30 minutes, the reactor is vented, the polymerization is stopped using methanol and the polymer is filtered from the suspension, washed with acetone and dried for 12 hours in a vacuum drying oven. This gives 25 g of an ethylene/1-hexene copolymer containing 5.2 mol % of hexene (according to 13C-NMR) and having an Mw of 60,000 g/mol and an Mw/Mn of 2.6 according to GPC. The DSC melting point of the 2nd heating is 110° C.

EXAMPLE 8

A 1.5 dm3 autoclave, which was thoroughly flushed with ethene beforehand, is charged with 600 cm3 of an 85% strength by weight solution of norbornene in toluene. The solution is saturated with ethene by repeated pressurization with ethene (18 bar). A suspension of 2.28 mg of 4-(η5-cyclopentadienyl)-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)Zr+CH2CHCHCH2B(C6F5)3 in 10 ml of toluene was added to the reactor thus prepared (in the case of hydrogen regulation, hydrogen can be injected at this point). Polymerization was carried out for one hour while stirring, with the ethene pressure being kept at 18 bar by metering in further amounts.

After the end of the reaction time, the polymerization mixture was drained into a vessel and immediately introduced into 5 dm3 of acetone, the mixture was stirred for 10 min and the precipitated product was subsequently filtered off. The filter cake was washed alternately three times each with 10% strength hydrochloric acid and acetone. It was subsequently washed to neutrality with water, the residue was slurried in acetone and filtered again. The polymer thus purified was dried at 80° C. for 15 hours in vacuo (0.2 bar). After drying, there were obtained 224 g of colorless polymer which had a glass transition temperature of 179° C., a viscosity number of 52 cm3/g, a tensile strength of 59 MPa and an elongation at break of 3.1%. The activity was 80.5 kg of polymer/h×mmol.

EXAMPLE 9

106 mg (0.385 mmol) of biscyclopentadienylzirconium (η4-butadiene) were dissolved in toluene and admixed with a solution of 186 mg (0.363 mmol) of B(C6F5)3 in toluene. The formation of the catalyst can be recognized by the appearance of turbidity or of a precipitate. In parallel thereto, a dry 16 dm3 reactor was flushed first with nitrogen and subsequently with propylene and then charged with 10 dm3 of liquid propylene. 15 cm3 of triisobutylaluminum (20% strength in hydrocarbon, 12 mmol) were then added to the reactor and the mixture was stirred at 30° C. for 15 minutes. The catalyst suspension was subsequently added to the reactor, heated to the polymerization temperature of 70° C.(4° C./min) and the polymerization system was held for 1 hour at 70° C. by means of cooling. The polymerization was stopped by addition of 20 ml of isopropanol. The excess monomer was vented and residues of solvent were taken off in vacuo. This gave 850 g of liquid, atactic polypropylene. The catalyst activity was 8 kg of PP/(g of metallocene×h).

VN=5 cm3/g, Mw=1500 g/mol, Mw/Mn=3.2.

EXAMPLE 10

10 mg (17.9 μmol) of rac-dimethylsilanediylbis(2-methyl-4,5-benzo-1-indenyl)zirconium(η4-butadiene) were dissolved in 10 ml of toluene and admixed with 10 ml of a solution of 9.2 mg (18 mmol) of B(C6F5)3 in toluene. The formation of the catalyst can be recognized by the appearance of turbidity or of a dark precipitate. The polymerization was carried out by a method similar to Example 9 at 70° C. The excess monomer was vented and the polymer powder was dried in vacuo. This gave 2500 g of isotactic polypropylene powder.

The catalyst activity was 250 kg of PP/(g of metallocene×h).

VN=240 cm3/g, mp.=148.7° C., Mw=298,000 g/mol, Mw/Mn=2.2, MFI(230/2.16)=3.2 dg/min.

EXAMPLE 11

The preparation of the catalyst suspension from Example 10 was repeated, except that 3 mg (4.8 μmol) of rac-dimethylsilanediylbis(2-methyl-4-phenyl-1-indenyl)zirconium(η4-butadiene) dissolved in 10 cm3 of toluene were reacted with 2.5 mg (4.9 μmol) of B(C6F5)3 dissolved in 10 cm3 of toluene. The polymerization was carried out at 60° C. after adding the catalyst suspension to the reactor. The polymerization gave 2250 g of isotactic polypropylene powder.

The catalyst activity was 750 kg of PP/(g of metallocene×h).

VN=620 cm3/g, mp.=155° C., MFI(230/5)=0.35 dg/min.

EXAMPLE 12

The preparation of the catalyst suspension from Example 10 was repeated, except that 10 mg (21 μmol) of rac-dimethylsilanediylbis(2-methyl-1-indenyl)zirconium(η4-butadiene) dissolved in 10 cm3 of toluene were reacted with 10.7 mg (21 μmol) of B(C6F5)3 dissolved in 10 cm3 of toluene. The polymerization gave 1900 g of isotactic polypropylene powder. The catalyst activity was 190 kg of PP/(g of metallocene×h).

VN=180 cm3/g, mp.=145° C., Mw=192,000, Mw/Mn=2.2, MFI(230/2.16)=12 dg/min.

EXAMPLE 13

The preparation of the catalyst suspension from Example 10 was repeated, except that 10 mg (20.2 μmol) of phenylmethylmethylenefluorenylcyclopentadienyl-zirconium-(η4-butadiene) dissolved in 10 cm3 of toluene were reacted with 10.7 mg (21 μmol) of B(C6F5)3 dissolved in 10 cm3 of toluene. The polymerization gave 1100 g of syndiotactic polypropylene powder.

The catalyst activity was 110 kg of PP/(g of metallocene×h).

VN=137 cm3/g, mp.=133° C., Mw=122,000 g/mol, Mw/Mn=2.3.

EXAMPLE 14

Reactor Preparation

A 1500 ml reactor which had been repeatedly flushed with nitrogen was charged with 1000 ml of an 85% strength by weight solution of norbornene in toluene and the solution was heated to 70° C. The solution was saturated with ethylene by repeated pressurization with ethylene (16 bar gauge pressure). 2 ml of a 20% strength triethylaluminum solution in toluene were added to the depressurized reactor in a countercurrent of ethylene and the mixture was subsequently stirred for 15 minutes.

Catalyst Preparation

A solution of 12.6 mg of tris(pentafluorophenyl)borane (0.025 mmol) in 1.26 ml of toluene was added to the solution of 9.0 mg of (butadiene)isopropylene(1-indenyl) cyclopentadienylzirconium (0.025 mmol) in 0.9 ml of toluene. The catalyst mixture was preactivated for 25 minutes at room temperature.

Polymerization and Isolation

The catalyst mixture was added to the prepared reaction solution and an ethylene pressure of 16 bar was subsequently applied as quickly as possible. Polymerization was carried out for 2 hours at 70° C. while stirring at about 750 rpm, with the ethylene pressure being kept constant at 16 bar.

To end the reaction, the reactor was first vented and the reaction solution was subsequently drained into a vessel. The polymer was precipitated in 2500 ml of acetone and filtered after stirring for 5 minutes. The filter cake was repeatedly washed alternately with 10% strength hydrochloric acid and acetone. It was subsequently washed to neutrality with water and, after addition of 1000 ml of acetone, filtered. The powder thus purified was dried for 15 hours at 80° C. at a pressure of 0.2 bar.

Characterization

After drying, 30 g of colorless powder were obtained; this corresponds to an activity of 610 g of polymer/h×mmol of metallocene. A viscosity number of 106 cm3/g and a glass transition temperature of 135° C. were measured on the polymer. No melting point was able to be detected by means of thermal analysis.

EXAMPLE 15

30 mg (31 μmol) of rac-dimethylsilanediylbis(2-methyl-1-indenyl)Zr+CH2CHCHCH2B(C6F5)3 are dissolved in 30 ml of toluene. 10 g of SiO2 are stirred into the catalyst solution until a homogeneous distribution is achieved.

The solid is then filtered off from the solvent and washed twice with 10 ml of toluene.

In parallel thereto, a dry 16 dm3 reactor was flushed first with nitrogen and subsequently with propylene and charged with 10 dm3 of liquid propylene. 15 cm3 of triisobutylaluminum (20% strength in hydrocarbon, 12 mmol) were then added to the reactor and the mixture was stirred at 30° C. for 15 minutes. The catalyst suspension was subsequently added to the reactor, heated to the polymerization temperature of 70° C. (4° C./min) and the polymerization system was held at 70° C. for 1 hour by cooling. The polymerization was stopped by addition of 20 ml of isopropanol. The excess monomer was vented and solvent residues were taken off in vacuo.

The polymerization gives 2.5 kg of isotactic polypropylene powder. The catalyst activity was 83 kg of PP/(g of metallocene×h).

VN=184 cm3/g, mp.=145° C., Mw=193,000 g/mol, Mw/Mn=2.2.

The reactor shows no deposits on walls or stirrer.

EXAMPLE 16

a) Preparation of the Catalyst Component

A solution of 1 μmol of biscyclopentadienylzirconium (η4-butadiene) in 1 ml of toluene is admixed with a solution of 1 μmol of tris(pentafluorophenyl)borane in 10 ml of toluene and, after a reaction time of 15 minutes, evaporated in vacuo to a volume of 2 ml. In parallel thereto, 4 g of RAccurel LDPE powder in a sieve fraction of smaller than 200 μm are dried in vacuo and flushed with argon. The support powder is stirred into the catalyst solution until a homogeneous distribution is achieved.

b) Polymerization

A dry 1.5 dm3 stirred reactor is flushed with nitrogen to remove the oxygen and charged with 0.9 dm3 of an inert diesel oil (bp. from 100 to 120° C.). After flushing with ethylene, it is heated to 70° C. and the catalyst is added as powder. Polymerization is subsequently carried out without additional activator at a pressure of 7 bar of ethylene. After 1 hour, the reactor is vented, the polymer is filtered from the suspension and dried for 12 hours in a vacuum drying oven. This gives 18 g of polyethylene powder having a bulk density of 0.253 kg/dm3 and a viscosity number VN of 389 cm3/g. The polydispersity Mw/Mn is 2.6 (according to GPC). The reactor shows no deposits on walls or stirrer.

EXAMPLE 17

a) Preparation of the Catalyst Component

BiscyclopentadienylZr+CH2CHCHCH2B(C6F5)3 was supported on SiO2 using a method similar to Example 15.

b) Gas-Phase Polymerization of Ethylene

A gas-phase polymerization of ethylene was carried out in a 2 dm3 steel autoclave having polished walls. The fluidized bed was generated mechanically by means of a double-helix stirrer going around the wall, using an initial charge of 10 g of polyethylene powder as seed bed. Via a pressure burette, first the cocatalyst (2 mmol) of triisobutylaluminum in 2 cm3 of isopentane and subsequently 1 g of the catalyst mixture (19.2 μmol of Zr) were metered in. The polymerization was subsequently carried out at 8 bar partial pressure of ethylene at a temperature of 80° C. for 1 hour and ended by venting the autoclave.

This gave 118 g of polyethylene having a VN of 309 ml/g, corresponding to an activity of 6.2 kg of PE/mmol of metallocene.

EXAMPLE 18

The preparation of the catalyst suspension of Example 10 was repeated, except that 10 mg (24 μmol) of dimethylmethylene-9-fluorenylcyclopentadienylzirconium (4-butadiene) dissolved in 10 cm3 of toluene were reacted with 12.8 mg (25 μmol) of B(C6F5)3 dissolved in 10 cm3 of toluene. The polymerization was carried out after metering the catalyst suspension into the reactor at 60° C. The polymerization gave 900 g of syndiotactic polypropylene powder. The catalyst activity was 90 kg of PP/(g of metallocene×h).

VN=92 cm3/g, m.p.=126° C., Mw=63,000 g/mol, Mw/Mn=2.1.

EXAMPLE 19

The preparation of the catalyst suspension of Example 10 was repeated, except that 5 mg (8 μmol) of rac-dimethylsilanediylbis(2-methyl-4,6-diisopropyl-1-indenyl) zirconium(4-butadiene) dissolved in 10 cm3 of toluene were reacted with 4.1 mg (8.1 μmol) of B(C6F5)3 dissolved in 10 cm3 of toluene. The polymerization was carried out after metering the catalyst suspension into the reactor at 60° C. The polymerization gave 2100 g of isotactic polypropylene powder.

The catalyst activity was 420 kg of PP/(g of metallocene×h).

VN=423 cm3/g, mp.=154° C., MFI(230/5)=3.1 dg/min, Mw=588,000 g/mol, Mw/Mn=3.5.

EXAMPLE 20

The preparation of the catalyst suspension of Example 11 was repeated. The polymerization was carried out after metering the catalyst suspension into the reactor at 70° C. The polymerization gave 2800 g of isotactic polypropylene powder.

The catalyst activity was 933 kg of PP/(g of metallocene×h).

VN=544 cm3/g, mp.=154° C., MFI(230/5)=1.3 dg/min, Mw=741,000 g/mol, Mw/Mn=2.8.

EXAMPLE 21

The preparation of the catalyst suspension of Example 12 was repeated, except that the 16 dm3 reactor was charged with 10 dm3 of liquid propylene and 2.5 standard 1 of hydrogen gas. 10 cm3 of triisobutylaluminum (20% in hydrocarbon, 10 mmol) were then added to the reactor and the mixture was stirred at 30° C. for 15 minutes. The catalyst suspension was subsequently added to the reactor, heated to the polymerization temperature of 70° C. (4° C./min) and the polymerization system was kept at 70° C. for 1 hour by cooling. The polymerization gave 3200 g of isotactic polypropylene powder.

The catalyst activity was 320 kg of PP/(g of metallocene×h).

VN=164 cm3/g, mp.=147° C., MFI(230/2.16)=25 dg/min.

EXAMPLE 22

The preparation of the catalyst suspension of Example 10 was repeated, except that 2 mg (3.1 μmol) of rac-dimethylsilanediylbis(2-ethyl-4-phenyl-1-indenyl) zirconium(4-butadiene) dissolved in 5 cm3 of toluene were reacted with 1.7 mg (3.3 μmol) of B(C6F5)3 dissolved in 5 cm3 of toluene. The polymerization gave 2150 g of isotactic polypropylene powder.

The catalyst activity was 1075 kg of PP/(g of metallocene×h).

VN=656 cm3/g, mp.=162° C., MFI(230/5)=0.8 dg/min, Mw=957,000 g/mol, Mw/Mn=3.0.

EXAMPLE 23

The preparation of the catalyst suspension of Example 10 was repeated, except that 2 mg (2.8 μmol) of rac-dimethylsilanediylbis(2-methyl-4-naphthyl-1-indenyl) zirconium(4-butadiene) dissolved in 5 cm3 of toluene were reacted with 1.4 mg (2.8 μmol) of B(C6F5)3 dissolved in 5 cm3 of toluene. The polymerization gave 2500 g of isotactic polypropylene powder.

The catalyst activity was 1250 kg of PP/(g of metallocene×h).

VN=777 cm3/g, mp.=163° C., MFI(230/5)=0.5 dg/min, Mw=1,200,000 g/mol, Mw/Mn=3.2.

EXAMPLE 24

10 g of silica gel (Davison 948), which had been conditioned at 800° C., were admixed with 0.5 g of B(C6F5)3 dissolved in 15 cm3 of toluene and homogenized. The solvent was taken off in vacuo. This resulted in a free-flowing powder. 200 mg of rac-dimethylsilanediylbis(2-methyl-1-indenyl)zirconium(4-butadiene) (435 μmol) were dissolved in 15 cm3 of toluene and applied in small portions to the intensively stirred, free-flowing powder. The powder acquires an intense dark red color. The toluene was subsequently taken off in vacuo. This resulted in 11.3 g of supported catalyst as free-flowing powder. 1.5 g of the supported catalyst were suspended in 10 ml of hexane and introduced into the polymerization reactor. The polymerization was carried out by a method similar to Example A at 70° C. The excess monomer was drawn off and the polymer powder was dried in vacuo. This gave 2350 g of isotactic polypropylene powder having a bulk density of 0.44 g/ml and a mean particle size of the polymer particles of 650 μm. Analysis of the polymer gave VN=172 cm3/g, mp.=145° C., Mw=192,000 g/mol, Mw/Mn=2.2, MFI(230/2.16)=13 dg/min.

EXAMPLE 25 Comparative Example

The preparation of the catalyst suspension of Example 10 was repeated, except that 5 mg (11.1 μmmol) of rac-dimethylsilanediylbis-1-indenylzirconium(η4-butadiene) dissolved in 10 cm3 of toluene were reacted with 5.7 mg (11.1 μmol) of B(C6F5)3 dissolved in 10 cm3 of toluene. The polymerization resulted in 2200 g of isotactic polypropylene powder.

The catalyst activity was 440 kg of PP/(g of metallocene×h).

VN=52 cm3/g, mp.=140° C., Mw=49,000 g/mol, Mw/Mn=2.2.

16.6 g (40.7 μmol) of rac-dimethylsilanediylbis-1-indenylzirconiumdimethyl were dissolved in 10 cm3 of toluene and reacted with 21 mg (41 μmol) of B(C6F5)3 dissolved in 10 cm3 of toluene. No turbidity or precipitate formation can be observed. The catalyst solution is used for the polymerization as in Example 9. This resulted in 130 g of isotactic polypropylene powder.

The catalyst activity was 8 kg of PP/g(g of metallocene×h).

VN=67 cm3/g, mp.=139.5° C., Mw=62,000 g/mol, Mw/Mn=2.1.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4567244Mar 28, 1984Jan 28, 1986California Institute Of TechnologyRing opening polymerization of mono-olefin ring compounds
US4590287Feb 2, 1984May 20, 1986Ciba-Geigy CorporationFluorinated titanocenes and photopolymerizable composition containing same
US4857654Jul 24, 1987Aug 15, 1989Ciba-Geigy CorporationTitanocenes and their use
US4963470Jan 19, 1990Oct 16, 1990Ciba-Geigy CorporationTitanocenes and their use
US5026625Nov 21, 1988Jun 25, 1991Ciba-Geigy CorporationTitanocenes, the use thereof, and n-substituted fluoroanilines
US5189192 *Jan 16, 1991Feb 23, 1993The Dow Chemical CompanyProcess for preparing addition polymerization catalysts via metal center oxidation
US5198401Jul 30, 1991Mar 30, 1993Exxon Chemical Patents Inc.Ionic metallocene catalyst compositions
US5241025 *Oct 2, 1992Aug 31, 1993Exxon Chemical Patents Inc.Catalyst system of enhanced productivity
US5527929Jun 7, 1995Jun 18, 1996The Dow Chemical CompanyZwitterionic biscyclopentadienyl complexes
US5594081 *Jul 20, 1995Jan 14, 1997Mitsubishi Chemical CorporationCatalyst component for the polymerization of α-olefins and a process for preparing α-olefin polymers with use of same
US5616664Jun 7, 1995Apr 1, 1997The Dow Chemical CompanyPolymerization process with biscyclopentadienyl diene complex containing catalysts
US5631202 *Sep 24, 1993May 20, 1997Montell Technology Company B.V.Stereospecific metallocene catalysts with stereolocking α-CP substituents
US5631391 *Aug 19, 1993May 20, 1997Canich; Jo Ann M.Monocyclopentadienyl titanium metal compounds for ethylene-α-olefin-copolymer production catalysts
US5633394 *May 3, 1994May 27, 1997Exxon Chemical Patents Inc.Catalyst compounds for olefin polymerization
US5972822Jun 7, 1995Oct 26, 1999The Dow Chemical CompanyBiscyclopentadienyldiene complex containing addition polymerization catalysts
CA1337142C *Aug 12, 1994Sep 26, 1995Howard William TurnerCatalysts, method of preparing these catalysts and method of using said catalyst
CA2072058A1 *Jun 23, 1992Dec 25, 1992Dow Chemical CoHomogeneous olefin polymerization catalyst by abstraction with lewis acids
EP0122223A2Feb 6, 1984Oct 17, 1984Ciba-Geigy AgMetallocenes and a photopolymerisable composition containing them
EP0227004A1 *Dec 16, 1986Jul 1, 1987Wojskowa Akademia Techniczna im. Jaroslawa DabrowskiegoLiquid crystalline ethane derivatives, their preparation and the liquid crystal compositions containing same
EP0255486A2Jul 27, 1987Feb 3, 1988Ciba-Geigy AgTitanocenes and their use
EP0256981A2Jul 27, 1987Feb 24, 1988Ciba-Geigy AgTitanocenes and their use
EP0277003A1Jan 27, 1988Aug 3, 1988Exxon Chemical Patents Inc.Catalysts, method of preparing these catalysts, and polymerization processes wherein these catalysts are used
EP0318893A2Nov 28, 1988Jun 7, 1989Ciba-Geigy AgTitanocenes, their use and N-substituted fluoroanilines
EP0420436A1Sep 10, 1990Apr 3, 1991Exxon Chemical Patents Inc.Olefin polymerization catalysts
EP0553491A1Dec 28, 1992Aug 4, 1993Tosoh CorporationCatalyst for polymerization of olefins and process for production of olefin polymers
EP0587141A1Sep 8, 1993Mar 16, 1994Tosoh CorporationOrganic transition metal complex
EP0587143A1Sep 8, 1993Mar 16, 1994Tosoh CorporationCatalyst for the polymerization of vinyl compounds
JPH0539229A Title not available
JPH0687677A Title not available
JPH06239913A Title not available
WO1988005793A1Jan 27, 1988Aug 11, 1988Exxon Chemical Patents IncCatalysts, method of preparing these catalysts and method of using said catalysts
WO1992005208A1Sep 16, 1991Apr 2, 1992Exxon Chemical Patents IncIONIC CATALYST FOR THE PRODUCTION OF POLY-α-OLEFINS OF CONTROLLED TACTICITY
WO1994000500A1Jun 24, 1993Jan 6, 1994Exxon Chemical Patents IncSolution phase polymerization process utilizing metallocene catalyst with production of olefin polymers
WO1996004290A1Jul 14, 1995Feb 15, 1996Dow Chemical CoBiscyclopentadienyl diene complexes
Non-Patent Citations
Reference
1Abstract XP-002212054 Buchwald et al., "Synthesis of (alkoxymethyl) zirconocene chlorides: stereochemistry of carbon-carbon bond formation in a zirconocene-Wittig rearrangement", Organometallics, 8(7), pp. 1593-1598, (1989).
2Abstract XP-002212055 Buchwald et al., "Synthesis, Structure, and reactions of (1-ethoxyethyl) zirconocene chloride, a stable acyclic secondary zirconocene alkyl", Organometallics, 7(11) pp. 2324-2328 (1988).
3Abstract XP-002212056 Arnold et al., "Reaction of an early-transition metal.eta.2-silaacyl complex with pyridine. Diastereoselectivity in the formation of a (2-pyridyl) silylmetyhoxy ligand", Organometallics, 7(9), pp. 2045-2049 (1988).
4Abstract XP-002212057 Choukroun et al., "Zirconium (III) chemistry: influence of olefins in thermolytic behavior of (Cp2ZrHX)n (X=Cl, CH2PPh2)", Polyhedron, 8(13-14), pp. 1758-1759 (1989).
5Abstract XP-002212058 Choukroun et al., "Substituted cyclopentadienyl phosphinomethyl complexes of zirconium. Synthesis, chemical characteristics, complexation with rhodium complexes, and catalytic properties. Molecular and crystal structure of (<SUP>5</SUP>-tert-BuC5H4) 2Zr (CH2PPh2)2[Rh2(-S-tret-Bu)2(CO)2]", Organometallilcs, 9(6), pp. 1982-1987 (1990).
6Bunel, E., et al., Carbon-Carbon Bond Activation via ⊖-Alkyl Elimiation, Reversible.
7 *Chemical Abstracts, vol. 119, No. 23, p. 997.Base-free Cationic Mono . . . Olefin Polymerization.
8Choukroun, R. et al., "Zirconium(III) Chemistry: Influence of Olefins in Thermolytic Behavior of (Cp<SUB>2</SUB>ZrHX)n", Polyhedron, 1989, vol. 8, No. 13/14, pp. 1758-1759.
9Collins, S. et al., "Additions of Chiral Allyltitanocenes to Aldehydes: Diastereoselective Synthesis of Homoallytic Alcohols with a Recyclable Chiral Transition Metal Reagent", J. Org. Chem., 1989, vol. 54, pp. 4154-4158.
10Collman, J.P. et al., "Survey According to Ligand," Principles and Applications of Organotransition Metal Chemistry, 1987, pp. 94-182.
11Diamond, G.M. et al., "Diene and Arena Compounds of Zirconium and Hafnium", J. Chem. Soc. Dalton Trans., 1992, pp. 2641-2646.
12Erker et al., "(s-trans-eta<SUP>4</SUP>-Dien)zirconocen-Komplexe", Chem. Ber., 115, pp. 3300-3310 (1982).
13 *European Search Report No. 95108411, Sep. 27, 1995.
14Gomez, R. et al., "Dialkyl-and Chloroalkyltitanium ansa-Metallocene Complexes: Synthesis and Characterization, Crystal Structure of [eta<SUP>6</SUP>-eta<SUP>6</SUP>-(C<SUB>5</SUB>H<SUB>4</SUB>)<SUB>2</SUB>Si(CH<SUB>3</SUB>)<SUB>2</SUB>]TiCiCH<SUB>3</SUB>", Organometallics, 1991, vol. 10, pp. 2516-2518.
15Grossman, R.B. et al., "Enantioselective, Zirconium-Mediated Synthesis of Allylic Amines", J. Am. Chem. Soc., 1991, vol. 113, pp. 2321-2322.
16Horton, A.D., "Double-Insertion Reaction of Alkynes with [Cp'<SUB>2</SUB>ZrMe]<SUP>+</SUP>; Formation of an Unusual Distorted eta<SUP>5</SUP>-Pentadienyl Ligand", Organometallics, 1992, vol. 11, pp. 8-10.
17 *Journal of American Chemical Society, 1995, 117, 3008-3021, Polymerization of Alpha...1-Alkynes.
18Krüger et al., "The Remarkable Features of eta<SUP>4</SUP>-Conjugated Diene)zirconocene and -hafnocene Complexes", Advances In Organometallic Chemistry, vol. 24, pp. 1-39 (1985).
19 *M. Bochmann, "Kationische Alkylkomplexe . . . ", Nachr. Chem. Tech. Lab., 1993, vol. 41, pp. 1220-1228.
20 *P. Zdunneck et al., "Über Die Reaktion . . . ", J. Organomet. Chem., 1970, vol. 22, pp. 659-663.
21Sikora, D.J. et al., "Reactions of Cp<SUB>2</SUB>M(CO)<SUB>2 </SUB>and Cp<SUB>2</SUB>M(CO)(PPh<SUB>3</SUB>) (M=Zr, Hf0 with Acetylenes: Formation of Some Metallacyclopentadiene Complexes of Zirconocene and Hafnocene", Journal of Organometallic Chemistry, 1984, vol. 276, pp. 21-37.
22Smith, J.A. et al., "Ansa-Metallocane Derivatives, III*, Influence of an Interannular Ethylene Bridge on the Reactivity of Titanocene Derivatives", Journal of Organometallic Chemistry, 1981, vol. 218, pp. 159-167.
23 *Van der Linden et al., J.A.C.S., 1995, vol. 117, pp. 3008-3021.
24Wild, F.R.W.P. et al., "ansa-Metallocene Derivatives, IV,* Synthesis and Molecular Structure of Chiral ansa-Titanocene Derivatives with Bridged Tetrahydroindenyl Ligands", Journal of Organometallic Chemistry, 1982, vol. 232, pp. 233-247.
25 *X. Yang et al., "'Cation-like' Homogeneous . . . ", J. Am. Chem. Soc., 1991, vol. 113, 3623-3625.
26Yasuda, H. et al., "Regio-and Stereochemistry in the Sequential insertion of Carbonyl Compounds into Zirconium-Diene Comlexes", Journal of Organometallic Chemistry, 1989, vol. 363, pp. 61-76.
27Yasuda, H. et al., "Zironocene-eta<SUP>4</SUP>-1,3-Pentadiene Complex and its Higher Homologues. A New Synthetic Method Involving alpha-pi Rearrangement of the Hydrido-2-, 4-pentadienylzirconium Species", Organometallics, 1984, vol. 3, pp. 1470-1478.
Legal Events
DateCodeEventDescription
Nov 12, 2003ASAssignment
Owner name: BASELL POLYPROPYLEN GMBH, GERMANY
Free format text: CHANGE OF NAME;ASSIGNOR:TARGOR GMBH;REEL/FRAME:014122/0127
Effective date: 19990105
Nov 13, 2003ASAssignment
Owner name: BASELL POLYOLEFINE GMBH, GERMANY
Free format text: MERGER;ASSIGNOR:BASELL POLYPROPYLEN GMBH;REEL/FRAME:014125/0104
Effective date: 20020903
Jun 14, 2011FPAYFee payment
Year of fee payment: 12