Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE41531 E1
Publication typeGrant
Application numberUS 11/859,364
Publication dateAug 17, 2010
Filing dateSep 21, 2007
Priority dateFeb 19, 1998
Fee statusPaid
Also published asUS6118789, US6233369, US6307847, USRE41530, USRE42900, USRE43254
Publication number11859364, 859364, US RE41531 E1, US RE41531E1, US-E1-RE41531, USRE41531 E1, USRE41531E1
InventorsClifton W. Wood, Jr.
Original AssigneeRound Rock Research, Llc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Communications systems for radio frequency identification (RFID)
US RE41531 E1
Abstract
A method ofsystem for establishing wireless communications between an interrogator and individual ones of multiple wireless identification devices, the method comprising utilizing a tree search method to establish communications without collision between the interrogator and individual ones of the multiple wireless identification devices, a search tree being defined for the tree search method, the tree having multiple levels respectively representing subgroups of the multiple wireless identification devices, the method further comprising starting the tree search at a selectable level of the search tree. A communications system comprising an interrogator, and a plurality of wireless identification devices configured to communicate with the interrogator in a wireless fashion, the respective wireless identification devices having a unique identification number, the interrogator being configured to employ a tree search technique to determine the unique identification numbers of the different wireless identification devices so as to be able to establish communications between the interrogator and individual ones of the multiple wireless identification devices without collision by multiple wireless identification devices attempting to respond to the interrogator at the same time, wherein the interrogator is configured to start the tree search at a selectable level of the searched tree.The interrogator transmits a first request comprising a bit string comprising a plurality of bits for use in selecting one or more wireless identification devices to participate in a slotted anticollision algorithm. Wireless identification devices in a field of the interrogator use the bit string to determine whether or not they are selected for participation. Those wireless identification devices that are selected for participation respond to the interrogator in a slot with a certain probability in accordance with the slotted anticollision algorithm.
Images(4)
Previous page
Next page
Claims(78)
1. A method of establishing wireless communications between an interrogator and individual ones of multiple wireless identification devices, the wireless identification devices having respective identification numbers and being addressable by specifying identification numbers with any one of multiple possible degrees of precision, the method comprising utilizing a tree search in an arbitration scheme to determine a degree of precision necessary to establish one-on-one communications between the interrogator and individual ones of the multiple wireless identification devices, a search tree being defined for the tree search method, the tree having multiple selectable levels respectively representing subgroups of the multiple wireless identification devices, the level at which a tree search starts being variable the method further comprising starting the tree search at any selectable level of the search tree.
2. A method in accordance with claim 1 and further comprising determining the maximum possible number of wireless identification devices that could communicate with the interrogator, and selecting a level of the search tree based on the determined maximum possible number of wireless identification devices that could communicate with the interrogator.
3. A method in accordance with claim 2 and further comprising starting the tree search at a level determined by taking the base two logarithm of the determined maximum possible number, wherein the level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively.
4. A method in accordance with claim 2 and further comprising starting the tree search at a level determined by taking the base two logarithm of the determined maximum possible number, wherein the level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively, and wherein the maximum number of devices in a subgroup in one level is half of the maximum number of devices in the next higher level.
5. A method in accordance with claim 2 and further comprising starting the tree search at a level determined by taking the base two logarithm of the power of two nearest the determined maximum possible number, wherein the level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively, and wherein the maximum number of devices in subgroup in one level is half of the maximum number of devices in the next higher level.
6. A method in accordance with claim 1 wherein the wireless identification device comprises an integrated circuit including a receiver, a modulator, and a microprocessor in communication with the receiver and modulator.
7. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices, the method comprising:
establishing for respective devices unique identification numbers respectively having a first predetermined number of bits;
establishing a second predetermined number of bits to be used for random values;
causing the devices to select random values, wherein respective devices choose random values independently of random values selected by the other devices;
determining the maximum number of devices potentially capable of responding to the interrogator;
transmitting a command from the interrogator requesting devices having random values within a specified group of random values to respond, by using a subset of the second predetermined number of bits, the specified group being chosen in response to the determined maximum number;
receiving the command at multiple devices, devices receiving the command respectively determining if the random value chosen by the device falls within the specified group and, if so, sending a reply to the interrogator; and
determining using the interrogator if a collision occurred between devices that sent a reply and, if so, creating a new, smaller, specified group.
8. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 7 wherein sending a reply to the interrogator comprises transmitting the unique identification number of the device sending the reply.
9. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 7 wherein sending a reply to the interrogator comprises transmitting the random value of the device sending the reply.
10. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 7 wherein sending a reply to the interrogator comprises transmitting both the random value of the device sending the reply and the unique identification number of the device sending the reply.
11. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 7 wherein, after receiving a reply without collision from a device, the interrogator sends a command individually addressed to that device.
12. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices, the method comprising:
causing the devices to select random values for use as arbitration numbers, wherein respective devices choose random values independently of random values selected by the other devices, the devices being addressable by specifying arbitration numbers with any one of multiple possible degrees of precision;
transmitting a command from the interrogator requesting devices having random values within a specified group of a plurality of possible groups of random values to respond, the specified group being less than the entire set of random values, the plurality of possible groups being organized in a binary tree defined by a plurality of nodes at respective levels, wherein the size of groups of random values decrease in size by half with each node descended, wherein the specified group is below a node on the tree selected based on the maximum number of devices capable of communicating with the interrogator;
receiving the command at multiple devices, devices receiving the command respectively determining if the random value chosen by the device falls within the specified group and, if so, sending a reply to the interrogator; and, if not, not sending a reply; and
determining using the interrogator if a collision occurred between devices that sent a reply and, if so, creating a new, smaller, specified group by descending in the tree.
13. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 12 and further including establishing a predetermined number of bits to be used for the random values.
14. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 13 wherein the predetermined number of bits to be used for the random values comprises an integer multiple of eight.
15. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 13 wherein devices sending a reply to the interrogator do so within a randomly selected time slot of a number of slots.
16. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices, the method comprising:
establishing for respective devices a predetermined number of bits to be used for random values, the predetermined number being a multiple of sixteen;
causing the devices to select random values, wherein respective devices choose random values independently of random values selected by the other devices;
transmitting a command from the interrogator requesting devices having random values within a specified group of a plurality of possible groups of random values to respond, the specified group being equal to or less than the entire set of random values, the plurality of possible groups being organized in a binary tree defined by a plurality of nodes at respective levels, wherein the maximum size of groups of random values decrease in size by half with each node descended, wherein the specified group is below a node on a level of the tree selected based on the maximum number of devices known to be capable of communicating with the interrogator;
receiving the command at multiple devices, devices receiving the command respectively determining if the random value chosen by the device falls within the specified group and, only if so, sending a reply to the interrogator, wherein sending a reply to the interrogator comprises transmitting both the random value of the device sending the reply and the unique identification number of the device sending the reply;
using the interrogator to determine if a collision occurred between devices that sent a reply and, if so, creating a new, smaller, specified group using a level of the tree different from the level used in the interrogator transmitting, the interrogator transmitting a command requesting devices having random values within the new specified group of random values to respond; and
if a reply without collision is received from a device, the interrogator subsequently sending a command individually addressed to that device.
17. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 16 and further comprising determining the maximum possible number of wireless identification devices that could communicate with the interrogator.
18. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 16 wherein selecting the level of the tree comprises taking the base two logarithm of the determined maximum possible number, wherein a level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively.
19. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 16 wherein selecting the level of the tree comprises taking the base two logarithm of the determined maximum possible number, wherein a level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively, and wherein the maximum number of devices in a subgroup in one level is half of the maximum number of devices in the next higher level.
20. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 16 wherein selecting the level of the tree comprises taking the base two logarithm of the power of two nearest the determined maximum possible number, wherein the level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively, and wherein the maximum number of devices in a subgroup in one level is half of the maximum number of devices in the next higher level.
21. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 16 wherein the wireless identification device comprises an integrated circuit including a receiver, a modulator, and a microprocessor in communication with the receiver and modulator.
22. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 16 and further comprising, after the interrogator transmits a command requesting devices having random values within the new specified group of random values to respond, determining, using devices receiving the command, if their chosen random values fall within the new smaller specified group and, if so, sending a reply to the interrogator.
23. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 22 and further comprising, after the interrogator transmits a command requesting devices having random values within the new specified group of random values to respond, determining if a collision occurred between devices that sent a reply and, if so, creating a new specified group and repeating the transmitting of the command requesting devices having random values within a specified group of random values to respond using different specified groups until all of the devices within communications range are identified.
24. A communications system comprising an interrogator, and a plurality of wireless identification devices configured to communicate with the interrogator in a wireless fashion, the wireless identification devices having respective identification numbers, the interrogator being configured to employ a tree search in a search tree having multiple selectable levels, to determine the identification numbers of the different wireless identification devices with sufficient precision so as to be able to establish one-on-one communications between the interrogator and individual ones of the multiple wireless identification devices, wherein the interrogator is configured to start the tree search at any selectable level of the search tree.
25. A communications system in accordance with claim 24 wherein the tree search is a binary tree search.
26. A communications system in accordance with claim 24 wherein the wireless identification device comprises an integrated circuit including a receiver, a modulator, and a microprocessor in communication with the receiver and modulator.
27. A system comprising:
an interrogator;
a number of communications devices capable of wireless communications with the interrogator;
means for establishing a predetermined number of bits to be used as random numbers, and for causing respective devices to select random numbers respectively having the predetermined number of bits;
means for inputting a predetermined number indicative of the maximum number of devices possibly capable of communicating with the receiver;
means for causing the interrogator to transmit a command requesting devices having random values within a specified group of random values to respond, the specified group being chosen in response to the inputted predetermined number;
means for causing devices receiving the command to determine if their chosen random values fall within the specified group and, if so, send a reply to the interrogator; and
means for causing the interrogator to determine if a collision occurred between devices that sent a reply and, if so, create a new, smaller, specified group.
28. A system in accordance with claim 27 wherein sending a reply to the interrogator comprises transmitting the random value of the device sending the reply.
29. A system in accordance with claim 27 wherein the interrogator further includes means for, after receiving a reply without collision from a device, sending a command individually addressed to that device.
30. A system comprising:
an interrogator configured to communicate to a selected one or more of a number of communications devices;
a plurality of communications devices;
the devices being configured to select random values, wherein respective devices choose random values independently of random values selected by the other devices, different sized groups of devices being addressable by specifying random values with differing levels of precision;
the interrogator being configured to transmit a command requesting devices having random values within a specified group of a plurality of possible groups of random values to respond, the specified group being less than the entire set of random values, the plurality of possible groups being organized in a binary tree defined by a plurality of nodes at respective levels, wherein the size of groups of random values decrease in size by half with each node descended, wherein the specified group is below a node on the tree selected based on a predetermined maximum number of devices capable of communicating with the interrogator;
devices receiving the command being configured to respectively determine if their chosen random values fall within the specified group and, if so, send a reply to the interrogator; and, if not, not send a reply; and
the interrogator being configured to determine if a collision occurred between devices that sent a reply and, if so, create a new, smaller, specified group by descending in the tree.
31. A system in accordance with claim 30 wherein the random values respectively have a predetermined number of bits.
32. A system in accordance with claim 30 wherein respective devices are configured to store unique identification numbers of a predetermined number of bits.
33. A system in accordance with claim 30 wherein respective devices are configured to store unique identification numbers of sixteen bits.
34. A system comprising:
an interrogator configured to communicate to a selected one or more of a number of RFID devices;
a plurality of RFID devices, respective devices being configured to store unique identification numbers respectively having a first predetermined number of bits, respective devices being further configured to store a second predetermined number of bits to be used for random values, respective devices being configured to select random values independently of random values selected by the other devices;
the interrogator being configured to transmit an identify command requesting a response from devices having random values within a specified group of a plurality of possible groups or random values, the specified group being less than or equal to the entire set of random values, the plurality of possible groups being organized in a binary tree defined by a plurality of nodes at respective levels, wherein the maximum size of groups of random values decrease in size by half with each node descended, wherein the specified group is below a node on a level of the tree selected based on the maximum number of devices known to be capable of communicating with the interrogator;
devices receiving the command respectively being configured to determine if their chosen random values fall within the specified group and, only if so, send a reply to the interrogator, wherein sending a reply to the interrogator comprises transmitting both the random value of the device sending the reply and the unique identification number of the device sending the reply;
the interrogator being configured to determine if a collision occurred between devices that sent a reply and, if so, create a new, smaller, specified group using a level of the tree different from the level used in previously transmitting an identify command, the interrogator transmitting an identify command requesting devices having random values within the new specified group of random values to respond; and
the interrogator being configured to send a command individually addressed to a device after communicating with a device without a collision.
35. A system in accordance with claim 34 wherein the interrogator is configured to input and store the predetermined number.
36. A system in accordance with claim 34 wherein the devices are configured to respectively determine if their chosen random values fall within a specified group and, if so, send a reply, upon receiving respective identify commands.
37. A system in accordance with claim 34 wherein the interrogator is configured to determine if a collision occurred between devices that sent a reply in response to respective identify commands and, if so, create further new specified groups and repeat the transmitting of the identify command requesting devices having random values within a specified group of random values to respond using different specified groups until all responding devices are identified.
38. A system, comprising:
an interrogator comprising:
one or more antennas,
a transmitter and a receiver coupled to the one or more antennas, and
a controller coupled to the transmitter and the receiver, the controller to cause the transmitter to transmit, via the one or more antennas, an initial command to select one or more radio frequency identification (RFID) devices from among a potential plurality of RFID devices that are within communications range, the initial command specifying a bit string having multiple bits; and
the one or more RFID devices, each respective device of the one or more RFID devices including:
memory to store a respective identification code,
a receiver to receive the initial command from the interrogator,
a circuit to compare the bit string specified in the initial command against corresponding bits stored in the respective device to determine whether the respective device is a member of a population of RFID devices selected according to the initial command, and if the respective device is a member of the population, pick a respective random value from a range of values to determine a respective slot, and
a transmitter to communicate a respective reply, including at least a portion of an identifier of the respective device, to the interrogator in accordance with the respective slot.
39. The system of claim 38, wherein the interrogator is configured to send an acknowledge command in response to the interrogator receiving the respective reply from the respective device and in response to the interrogator determining the respective reply to be collision-free; and the respective reply includes the bit string.
40. The system of claim 38, wherein the respective device is to communicate a respective identification code to identify a person with whom the respective device is associated.
41. The system of claim 38, wherein the interrogator is to further access the respective device individually by sending the identifier to the respective device after receiving the identifier from the respective device.
42. The system of claim 38, wherein the interrogator is to indicate the range of values.
43. The system of claim 38, wherein the identifier comprises a random number generated by the respective device, and the random number is sixteen bits in length.
44. A system comprising:
an interrogator having a transmitter to send an initial command to select one or more radio frequency identification (RFID) devices, the initial command specifying a bit string having multiple bits; and
an RFID device comprising:
a device memory to store a plurality of bits,
a receiver to receive the initial command,
a circuit to, in response to the initial command, determine whether the RFID device is selected via a comparison between the bit string and the plurality of bits stored in the memory and, if the RFID device is determined to be selected, communicate a response in accordance with a slotted anticollision algorithm, and
a transmitter to communicate one or more identifiers of the RFID device to the interrogator in accordance with the slotted anticollision algorithm, wherein in accordance with the slotted anticollision algorithm the transmitter is to communicate the one or more identifiers in a time slot with a certain probability.
45. The system of claim 44, wherein the one or more identifiers comprise a sixteen bit random number and the interrogator is configured to send an acknowledge command to the RFID device if the interrogator receives the random number without a collision error.
46. The system of claim 44, wherein the RFID device is further configured to communicate an identification code to the interrogator to identify a person with whom the RFID device is associated.
47. The system of claim 44, wherein the interrogator is further configured to individually address the RFID device using an access command, wherein the access command includes a random number to be included in the one or more identifiers.
48. The system of claim 44, wherein the one or more identifiers comprise both a random number dynamically generated by the RFID device and a static number programmed into the RFID device.
49. The system of claim 44, wherein the transmitter is to further communicate the plurality of bits, along with the one or more identifiers, to the interrogator in accordance with the slotted anticollision algorithm.
50. A system, comprising:
a radio frequency identification (RFID) device disposed in a communication field of an interrogator, the RFID device including:
a receiver to receive a first command from the interrogator after the RFID device is disposed in the field and before the interrogator transmits any other command, the first command specifying a bit string comprising two or more bits,
a circuit to, in response to the first command, use the bit string to determine if the RFID device is selected for participation in a slotted anticollision algorithm, and
a transmitter to communicate one or more responses to the interrogator in accordance with the slotted anticollision algorithm if the RFID device is determined to be selected for participation in the slotted anticollision algorithm, wherein the one or more responses include at least a portion of a first identifier and at least a portion of a second identifier stored in the RFID device.
51. The system of claim 50, wherein the first identifier comprises a random number dynamically generated by the RFID device for the interrogator to use to individually address the RFID device, and the second identifier is a static number stored in the RFID device.
52. The system of claim 51, wherein the receiver is to further receive from the interrogator an indication of a number of slots from which the RFID device is to randomly select a slot in which to communicate the one or more responses in accordance with the slotted anticollision algorithm.
53. The system of claim 51, wherein the receiver is to further receive from the interrogator an indication of a change in a number of slots in accordance with the slotted anticollision algorithm.
54. The system of claim 51, wherein the RFID device is configured for use in a wireless payment application and further comprises memory storing an identification code to identify a person to be charged for payment.
55. The system of claim 51, wherein the random number is sixteen bits long and the transmitter is to communicate the bit string back to the interrogator with the one or more responses.
56. The system of claim 51, wherein the RFID device is configured to pick a random value from a range of values and to communicate the one or more responses with a probability corresponding to the random value in accordance with the slotted anticollision algorithm, wherein the first command is to indicate the range of values.
57. The system of claim 56, wherein the receiver is to further receive a second command comprising an indication of a change in the range of values.
58. The system of claim 51, wherein the transmitter is to communicate the bit string back to the interrogator with the one or more responses.
59. The system of claim 50, wherein the RFID device is configured to receive a signal from the interrogator, after the interrogator sends the first command to the RFID device and before the RFID device communicates the one or more responses to the interrogator, wherein the signal indicates the RFID device when to communicate the identifier to the interrogator.
60. The system of claim 50, wherein the RFID device communicates the one or more responses via modulating an radio frequency (RF) field provided by the interrogator.
61. The system of claim 50, wherein the transmitter is to communicate the bit string back to the interrogator with the one or more responses.
62. The system of claim 50, wherein the RFID device is configured for use in a wireless payment system and further comprises memory storing an identification code to identify a person to be charged for payment.
63. The system of claim 50, wherein the RFID device is configured to randomly pick an integer from a number of integers and to communicate the one or more responses in a first slot with a probability corresponding to the randomly picked integer in accordance with the slotted anticollision algorithm, wherein the first command is to indicate the number of integers.
64. The system of claim 63, wherein the receiver is to further receive from the interrogator a second command, the second command to indicate a different number of integers for the RFID device to use in accordance with the slotted anticollision algorithm.
65. A system comprising:
an interrogator including:
at least one antenna to provide a radio frequency (RF) field, a plurality of radio frequency identification (RFID) devices to modulate the RF field to transmit responses to the interrogator;
a transmitter to send a first signal after the plurality of RFID devices are disposed in the field and before any of the plurality of RFID devices transmit responses to the interrogator, the first signal including a bit string comprising multiple bits; and
a receiver to receive responses to the first signal in accordance with a slotted anticollision algorithm;
wherein the plurality of RFID devices include:
a first RFID device configured to store a first set of bits,
receive the first signal and determine if the first RFID device is selected by the interrogator, including comparing the bit string with the first set of bits, and if so,
pick a first random integer from a variable range of random integers and associate the first random integer with a first time slot in accordance with the anticollision algorithm, and
modulate the RF field to communicate a first identification code of the first RFID device during the first time slot; and
a second RFID device to
store a second set of bits,
receive the first signal and determine if the second device is selected by the interrogator, including comparing the bit string with the second set of bits, and if so,
pick a second random integer from a variable range of random integers and associate the second random integer with a second time slot in accordance with the anticollision algorithm, and
modulate the RF field to communicate a second identification code of the second RFID device during the second time slot.
66. The system of claim 65, wherein the first identification code includes a first random number generated by the first RFID device; and the second identification code includes a second random number generated by the second RFID device.
67. The system of claim 66, wherein the interrogator is configured to receive the first random number from the first RFID device during a period of time associated with the first slot and, in response thereto, to send a first acknowledge signal to acknowledge the first RFID device; and the interrogator is configured to receive the second random number from the second RFID device during a period of time associated with the second slot and, in response thereto, to send a second acknowledge signal to acknowledge the second RFID device.
68. The system of claim 66, wherein after receiving the first random number and the first identification code from the first RFID device, the interrogator is to send a command that includes the first random number to individually identify the first RFID device.
69. The system of claim 68, wherein the interrogator is configured to receive a first identifier from the first RFID device to identify a person with whom the first RFID device is associated and to receive a second identifier from the second RFID device to identify a person with whom the second RFID device is associated.
70. The system of claim 69, wherein the interrogator is configured to send a second signal after sending the first signal; and wherein the first RFID device is configured to communicate the first identification code in response to receiving the second signal.
71. The system of claim 65, wherein the interrogator is configured to send a first acknowledge signal to acknowledge the first RFID device and a second acknowledge signal to acknowledge the second RFID device.
72. A system comprising:
an interrogator including:
an antenna to provide a radio frequency (RF) field to interrogate;
a transmitter to send an initial command to identify radio frequency identification (RFID) devices disposed in the field, the initial command to be sent after the RFID devices are disposed in the field and before any of the RFID devices communicate any responses to the interrogator, the initial command to include a first specifying a plurality of bit values to select one or more of the RFID devices to participate in a slotted anticollision algorithm; and
a receiver to receive responses to the initial command in accordance with the slotted anticollision algorithm; and
an RFID device disposed in the RF field of the interrogator, the RFID device comprising:
a receiver to wirelessly receive the initial command;
a random number generator to randomly select an integer value from a range of integer values in accordance with the slotted anticollision algorithm, the range to be adjustable and to be indicated to the RFID device by the interrogator; and
a transmitter to modulate the RF field to communicate a one or more responses to the interrogator based at least in part on whether the plurality of bit values received from the interrogator identify the RFID device for response, wherein the one or more responses are to include a first identifier and are to be communicated in accordance with the randomly selected integer value in accordance with the slotted anticollision algorithm.
73. The system of claim 72, wherein the RFID device is configured to communicate at least a portion of an identification code to the interrogator, wherein the identification code identifies a person with whom the RFID device is associated.
74. The system of claim 72, wherein the one or more responses are to further include a second identifier to be communicated in accordance with the randomly selected integer value in accordance with the slotted anticollision algorithm.
75. The system of claim 74, wherein the first identifier comprises a random number generated by the RFID device; and the second identifier comprises a static code programmed into the RFID device.
76. The system of claim 72, wherein the RFID device is to compare the plurality of bit values to at least a portion of a number stored in the RFID device to determine whether the plurality of bit values received from the interrogator identify the RFID device for response, wherein the one or more responses to the interrogator are to include the number as a second identifier from the RFID device; and wherein the interrogator is configured to send a subsequent command specifically addressed to the RFID device using the identifier.
77. The system of claim 76, wherein the RFID device is to communicate the one or more responses in a first slot in accordance with the slotted anticollision algorithm with a first probability corresponding to the integer value.
78. The system of claim 72, wherein the range is to be indicated to the RFID device by the initial command, and a different range is to be indicated to the RFID device by a subsequent command, wherein the subsequent command includes a field re-specifying the plurality of bit values to select one or more of the RFID devices.
Description
CROSS REFERENCE TO RELATED APPLICATION

ThisMore than one reissue has been filed for the resissue of U.S. Pat. No. 6,307,847. The reissue applications are the initial reissue application Ser. No. 10/693,696, filed Oct. 23, 2003, a continuation reissue application Ser. No. 11/859,360, field Sep. 21, 2007, the present continuation resissue application Ser. No. 11/859,364, filed Sep. 21, 2007, and a continuation reissue application Ser. No. 12/493,542, filed Jun. 29, 2009. The present application is a continuation application of U.S. patent application Ser. No. 10/693,696, filed Oct. 23, 2003, which is a reissue application of U.S. Pat. No. 6,307,847 having U.S. patent application Ser. No. 09/617,390, filed Jul. 17, 2000, which is a Continuationcontinuation application of U.S. patent application Ser. No. 09/026,043, filed Feb. 19, 1998, and titled “Method of Addressing Messages and Communications System”, now U.S. Pat. No. 6,118,789, each of which is incorporated by reference.

TECHNICAL FIELD

This invention relates to communications protocols and to digital data communications. Still more particularly, the invention relates to data communications protocols in mediums such as radio communication or the like. The invention also relates to radio frequency identification devices for inventory control, object monitoring, determining the existence, location or movement of objects, or for remote automated payment.

BACKGROUND OF THE INVENTION

Communications protocols are used in various applications. For example, communications protocols can be used in electronic identification systems. As large numbers of objects are moved in inventory, product manufacturing, and merchandising operations, there is a continuous challenge to accurately monitor the location and flow of objects. Additionally, there is a continuing goal to interrogate the location of objects in an inexpensive an streamlined manner. One way of tracking objects is with an electronic identification system.

One presently available electronic identification system utilizes a magnetic coupling system. In some cases, an identification device may be provided with a unique identification code in order to distinguish between a number of different devices. Typically, the devices are entirely passive (have no power supply), which results in a small and portable package. However, such identification systems are only capable of operation over a relatively short range, limited by the size of a magnetic field used to supply power to the devices and to communicate with the devices.

Another wireless electronic identification system utilizes a large active transponder device affixed to an object to be monitored which receives a signal from an interrogator. The device receives the signal, then generates and transmits a responsive signal. The interrogation signal and the responsive signal are typically radio-frequency (RF) signals produced by an RF transmitter circuit. Because active devices have their own power sources, and do not need to be in close proximity to an interrogator or reader to receive power via magnetic coupling. Therefore, active transponder devices tend to be more suitable for applications requiring tracking of a tagged device that may not be in close proximity to an interrogator. For example, active transponder devices tend to be more suitable for inventory control or tracking.

Electronic identification systems can also be used for remote payment. For example, when a radio frequency identification device passes an interrogator at a toll booth, the toll booth can determine the identity of the radio frequency identification device, and thus of the owner of the device, and debit an account held by the owner for payment of toll or can receive a credit card number against which the toll can be charged. Similarly, remote payment is possible for a variety of other goods or services.

A communication system typically includes two transponders: a commander station or interrogator, and a responder station or transponder device which replies to the interrogator.

If the interrogator has prior knowledge of the identification number of a device which the interrogator is looking for, it can specify that a response is requested only from the device with that identification number. Sometimes, such information is not available. For example, there are occasions where the interrogator is attempting to determine which of multiple devices are within communication range.

When the interrogator sends a message to a transponder device requesting a reply, there is a possibility that multiple transponder devices will attempt to respond simultaneously, causing a collision, and thus causing an erroneous message to be received by the interrogator. For example, if the interrogator sends out a command requesting that all devices within a communications range identity themselves, and gets a large number of simultaneously replies, the interrogator may not be able to interpret any of these replies. Thus, arbitration schemes are employed to permit communications free of collision.

In one arbitration scheme or system, described in commonly assigned U.S. Pat. Nos. 5,627,544; 5,583,850; 5,500,650; and 5,365,551, all to Snodgrass et al. and all incorporated herein by reference, the interrogator sends a command causing each device of a potentially large number of responding devices to select a random number from a known range and use it as that device's arbitration number. By transmitting requests for identification to various subsets of the full range of arbitration numbers, and checking for an error-free response, the interrogator determines the arbitration number of every responder station capable of communicating at the same time. Therefore, the interrogator is able to conduct subsequent uninterrupted communication with devices, one at a time, by addressing only one device.

Another arbitration scheme is referred to as the Aloha or slotted Aloha scheme. This scheme is discussed in various references relating to communications, such as Digital Communications: Fundamentals and Applications, Bernard Sklar, published January 1988 by Prentice Hall. In this type of scheme, a device will respond to an interrogator using one of many time domain slots selected randomly by the device. A problem with the Aloha scheme is that if there are many devices, or potentially many devices in the field (i.e. in communications range, capable of responding) then there must be many available slots or many collisions will occur. Having many available slots slows down replies. If the magnitude of the number of devices in a field is unknown, then many slots are needed. This results in the system slowing down significantly because the reply time equals the number of slots multiplied by the time period required for one reply.

An electronic identification system which can be used as a radio frequency identification device, arbitration schemes, and various applications for such devices are described in detail in commonly assigned U.S. patent application Ser. No. 08/705,043, filed Aug. 29, 1996, andnow U.S. Pat. No. 6,130,602, which is incorporated herein by reference.

SUMMARY OF THE INVENTION

The invention provides a wireless identification device configured to provide a signal to identify the device in response to an interrogation signal.

One aspect of the invention provides a method of establishing wireless communications between an interrogator and individual ones of multiple wireless identification devices. The method comprises utilizing a tree search method to establish communications without collision between the interrogator and individual ones of the multiple wireless identification devices. A search tree is defined for the tree search method. The tree has multiple levels respectively representing subgroups of the multiple wireless identification devices. The method further comprising starting the tree search at a selectable level of the search tree. In one aspect of the invention, the method further comprises determining the maximum possible number of wireless identification devices that could communicate with the interrogator, and selecting a level of the search tree based on the determined maximum possible number of wireless identification devices that could communicate with the interrogator. In another aspect of the invention, the method further comprises starting the tree search at a level determined by taking the base two logarithm of the determined maximum possible number, wherein the level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively.

Another aspect of the invention provides a communications system comprising an interrogator, and a plurality of wireless identification devices configured to communicate with the interrogator in a wireless fashion. The respective wireless identification devices have a unique identification number. The interrogator is configured to employ a tree search technique to determine the unique identification numbers of the different wireless identification so as to be able to establish communications between the interrogator and individual ones of the multiple wireless identification devices without collision by multiple wireless identification devices attempting to respond to the interrogator at the same time. The interrogator is configured to start the tree search at a selectable level of the search tree.

One aspect of the invention provides a radio frequency identification device comprising an integrated circuit including a receiver, a transmitter, and a microprocessor. In one embodiment, the integrated circuit is a monolithic single die single metal layer integrated circuit including the receiver, the transmitter, and the microprocessor. The device of this embodiment includes an active transponder, instead of a transponder which relies on magnetic coupling for power, and therefore has a much greater range.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are described below with reference to the following accompanying drawings.

FIG. 1 is a high level circuit schematic showing an interrogator and a radio frequency identification device embodying the invention.

FIG. 2 is a front view of a housing, in the form of a badge or card, supporting the circuit of FIG. 1 according to one embodiment the invention.

FIG. 3 is a front view of a housing supporting the circuit of FIG. 1 according to another embodiment of the invention.

FIG. 4 is a diagram illustrating a tree splitting sort method for establishing communication with a radio frequency identification device in a field of a plurality of such devices.

FIG. 5. is a diagram illustrating a modified tree splitting sort method for establishing communication with a radio frequency identification device in a field of a plurality of such devices.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).

FIG. 1 illustrates a wireless identification device 12 in accordance with one embodiment of the invention. In the illustrated embodiment, the wireless identification device is a radio frequency data communication device 12, and includes RFID circuitry 16. The device 12 further includes at least one antenna 14 connected to the circuitry 16 for wireless or radio frequency transmission and reception by the circuitry 16. In the illustrated embodiment, the RFID circuitry is defined by an integrated circuit as described in the above-incorporated patent application Ser. No. 08/705,043, filed Aug. 29, 1996, now U.S. Pat. No. 6,130,602. Other embodiments are possible. A power source or supply 18 is connected to the integrated circuit 16 to supply power to the integrated circuit 16. In one embodiment, the power source 18 comprises a battery.

The device 12 transmits and receives radio frequency communications to and from an interrogator 26. An exemplary integrator is described in commonly assigned U.S. patent application Ser. No. 08/907,689, filed Aug. 8, 1997 and, now U.S. Pat. No. 6,289,209, which is incorporated herein by reference. Preferably, the interrogator 26 includes an antenna 28, as well as dedicated transmitting and receiving circuitry, similar to that implemented on the integrated circuit 16.

Generally, the interrogator 26 transmits an interrogation signal or command 27 via the antenna 28. The device 12 receives the incoming interrogation signal via its antenna 14. Upon receiving the signal 27, the device 12 responds by generating and transmitting a responsive signal or reply 29. The responsive signal 29 typically includes information that uniquely identifies, or labels the particular device 12 that is transmitting, so as to identify any object or person with which the device 12 is associated.

Although only one device 12 is shown in FIG. 1, typically there will be multiple devices 12 that correspond with the interrogator 26, and the particular devices 12 that are in communication with the interrogator 26 will typically change over time. In the illustrated embodiment in FIG. 1, there is no communication between multiple devices 12. Instead, the devices 12 respectively communicate with the interrogator 26. Multiple devices 12 can be used in the same field of an interrogator 26 (i.e., within communications range of an interrogator 26).

The radio frequency data communication device 12 can be included in any appropriate housing or packaging. Various methods of manufacturing housings are described in commonly assigned U.S. patent application Ser. No. 08/800,037, filed Feb. 13, 1997, andnow U.S. Pat. No. 5,988,510, which is incorporated herein by reference.

FIG. 2 shows but one embodiment in the form of a card or badge 19 including a housing 11 of plastic or other suitable material supporting the device 12 and the power supply 18. In one embodiment, the front face of the badge has visual identification features such as graphics, text, information found on identification or credit cards, etc.

FIG. 3 illustrates but one alternative housing supporting the device 12. More particularly, FIG. 3 shows a miniature housing 20 encasing the device 12 and power supply 18 to define a tag which can be supported by an object (e.g., hung from an object, affixed to an object, etc.). Although two particular types of housings have been disclosed, the device 12 can be included in any appropriate housing.

If the power supply 18 is a battery, the battery can take any suitable form. Preferably, the battery type will be selected depending on weight, size, and life requirements for a particular application. In one embodiment, the battery 18 is a thin profile button-type cell forming a small, thin energy cell more commonly utilized in watches and small electronic devices requiring a thin profile. A conventional button-type cell has a pair of electrodes, an anode formed by one face and a cathode formed by an opposite face. In an alternative embodiment, the power source 18 comprises a series connected pair of button type cells. Instead of using a battery, any suitable power source can be employed.

The circuitry 16 further includes a backscatter transmitter and is configured to provide a responsive signal to the interrogator 26 by radio frequency. More particularly, the circuitry 16 includes a transmitter, a receiver, and memory such as is described in U.S. patent application Ser. No. 08/705,043, now U.S. Pat. No. 6,130,602.

Radio frequency identification has emerged as a viable and affordable alternative to tagging or labeling small to large quantities of items. The interrogator 26 communicates with the devices 12 via an electromagnetic link, such as via an RF link (e.g., at microwave frequencies, in one embodiment), so all transmissions by the interrogator 26 are heard simultaneously by all devices 12 within range.

If the interrogator 26 sends out a command requesting that all devices 12 within range identify themselves, and gets a large number of simultaneous replies, the interrogator 26 may not be able to interrupt any of these replies. Therefore, arbitration schemes are provided.

If the interrogator 26 has prior knowledge of the identification number of a device 12 which the interrogator 26 is looking for, it can specify that a response is requested only from the device 12 with that identification number. To target a command at a specific device 12, (i.e., to initiate point-on-point communication), the interrogator 26 must send a number identifying a specific device 12 along with the command. At start-up, or in a new or changing environment, these identification numbers are now known by the interrogator 26. Therefore, the interrogator 26 must identify all devices 12 in the field (within communication range) such as by determining the identification numbers of the devices 12 in the field. After this is accomplished, point-to-point communication can proceed as desired by the interrogator 26.

Generally speaking, RFID systems are a type of multi-access communication system. The distance between the interrogator 26 and devices 12 within the field is typically fairly short (e.g., several meters), so packet transmission time is determined primarily by packet size and baud rate. Propagation delays are negligible. In such systems, there is a potential for a large number of transmitting devices 12 and there is a need for the interrogator 26 to work in a changing environment, where different devices 12 are swapped in and out frequently (e.g., as inventory is added or removed). In such systems, the inventors have determined that the use of random access methods work effectively for contention resolution (i.e., for dealing with collisions between devices 12 attempting to respond to the interrogator 26 at the same time).

RFID systems have some characteristics that are different from other communications systems. For example, one characteristic of the illustrated RFID systems is that the devices 12 never communicate without being prompted by the interrogator 26. This is in contrast to typical multiaccess systems where the transmitting units operate more independently. In addition, contention for the communication medium is short lived as compared to the ongoing nature of the problem in other multiaccess systems. For example, in a RFID system, after the devices 12 have been identified, the interrogator can communicate with them in a point-to-point fashion. Thus, arbitration in a RFID system is a transient rather than steady-state phenomenon. Further, the capability of a device 12 is limited by practical restriction on size, power, and cost. The lifetime of a device 12 can often be measured in terms of number of transmissions before battery power is lost. Therefore, one of the most important measures of system performance in RFID arbitration is total time required to arbitrate a set of devices 12. Another measure is power consumed by the devices 12 during the process. This is in contrast to the measure of throughout and packet delay in other types of multiaccess systems.

FIG. 4 illustrates one arbitration scheme that can be employed for communication between the interrogator and devices 12. Generally, the interrogator 26 sends a command causing each device 12 of a potentially large number of responding devices 12 to select a random number from a known range and use it as that device's arbitration number. By transmitting requests for identification to various subsets of the full range of arbitration numbers, and checking for an error-free response, the interrogator 26 determines the arbitration number of every responder station capable of communicating at the same time. Therefore, the interrogator 26 is able to conduct subsequent uninterrupted communication with devices 12, one at a time, by addressing only one device 12.

Three variables are used: an arbitration value (AVALUE), an arbitration mask (AMASK), and a random value ID (RV). The interrogator sends an Identify command (IdentifyCmnd) causing each device of a potentially large number of responding devices to select a random number from a known range and use it as that device's arbitration number. The interrogator sends an arbitration value (AVALUE) and an arbitration mask (AMASK) to a set of devices 12. The receiving devices 12 evaluate the following equation: (AMASK & AVALUE)==(AMASK & RV) wherein “&” is a bitwise AND function, and wherein “==” is an equality function. If the equation evaluates to “1” (TRUE), then the device 12 will reply. If the equation evaluates to “0” (FALSE), then the device 12 will not reply. By performing this in a structured manner, with the number of bits in the arbitration mask being increased by one each time, eventually a device 12 will respond with no collisions. Thus, a binary search tree methodology is employed.

An example using actual numbers will now be provided using only four bits, for simplicity, reference being made to FIG. 4. In one embodiment, sixteen bits are used for AVALUE and AMASK. Other numbers of bits can also be employed depending, for example, on the number of devices 12 expected to be encountered in a particular application, on desired cost points. etc.

Assume, for this example, that there are two devices 12 in the field, one with a random value (RV) of 1100 (binary), and another with a random value (RV) of 1010 (binary). The interrogator is trying to establish communications without collisions being caused by the two devices 12 attempting to communicate at the same time.

The interrogator sets AVALUE to 0000 (or “don't care” for all bits, as indicated by the character “X” in FIG. 4) and AMASK to 0000. The interrogator transmits a command to all devices 12 requesting that they identify themselves. Each of the devices 12 evaluate (AMASK & AVALUE)==(AMASK & RV) using the random value RV that the respective devices 12 selected. If the equation evaluates to “1” (TRUE), then the device 12 will reply. If the equation evaluates to “0” (FALSE), then the device 12 will not reply. In the first level of the illustrated tree, AMASK is 0000 and anything bitwise ANDed with all zeros results in all zeros, so both the devices 12 in the field respond, and there is a collision.

Next, the interrogator set AMASK to 0001 and AVALUE to 0000 and transmits an identify command. Both devices 12 in the field have a zero for their least significant bit, and (AMASK & AVALUE)==(AMASK & RV) will be true for both devices 12. For the device 12 with a random value of 1100, the left side of the equation is evaluated as follows (0001 & 0000)==0000. The right side is evaluated as (0001 & 1100)=0000. The left side equals the right side, so the equation is true for the device 12 with the random value of 1100. For the device 12 with a random value of 1010, the left side of the equation is evaluated as (0001 & 0000)=0000. The right side is evaluated as (0001 & 1010)=0000. The left side equals the right side, so the equation is true for the device 12 with the random value of 1010. Because the equation is true for both devices 12 in the field, both devices 12 in the field respond, and there is another collision.

Recursively, the interrogator next sets AMASK to 0011 with AVALUE still at 0000 and transmits an Identity command. (AMASK & AVALUE)==(AMASK & RV) is evaluated for both devices 12. For the device 12 with a random value of 1100, the left side of the equation is evaluated as follows (0011 & 0000)=0000. The right side is evaluated as (0011 & 1100)=0000. The left side equals the right side, so the equation is true for the device 12 with the random value of 1100, so this device 12 responds. For the device 12 with a random value of 1010, the left side of the equation is evaluated as (0011 & 0000)=0010. The right side is evaluated as (0011 & 1010)=0000. The left side does not equal the right side, so the equation is false for the device 12 with the random value of 1010, and this device 12 does not respond. Therefore, there is no collision, and the interrogator can determine the identity (e.g., an identification number) for the device 12 that does respond.

De-recursion takes place, and the device 12 to the right for the same AMASK level are accessed when AVALUE is set at 0010, and AMASK is set to 0011.

The device 12 with the random value of 1010 receives a command and evaluates the equation (AMASK & AVALUE)==(AMASK & RV). The left side of the equation is evaluated as (0011 & 0010)=0010. The right side of the equation is evaluated as (0011 & 1010)=0010. The right side equals the left side, so the equation is true for the device 12 with the random value of 1010. Because there are no other devices 12 in the substrate, a good reply is returned by the device 12 with the random value of 1010. There is no collision, and the interrogator 26 can determine the identity (e.g., an identification number) for the device 12 that does respond.

By recursion, what is meant is that a function makes a call to itself. In other words, the function calls itself within the body of the function. After the called function returns, de-recursion takes place and execution continues at the place just after the function call; i.e. at the beginning of the statement after the function call.

For instance, consider a function that has four statements (numbered 1,2,3,4 ) in it, and the second statement is a recursive call. Assume that the fourth statement is a return statement. The first time through the loop (iteration 1) the function executes the statement 2 and (because it is a recursive call) calls itself causing iteration 2 to occur. When iteration 2 gets to statement 2, it calls itself making iteration 3. During execution in iteration 3 of statement 1, assume that the function does a return. The information that was saved on the stack from iteration 2 is loaded and the function resumes execution at statement 3 (in iteration 2), followed by the execution of statement 4 which is also a return statement. Since there are no more statements in the function, the function de-recurses to iteration 1. Iteration 1, has previously recursively called itself in statement 2. Therefore, it now executes statement 3 (in iteration 1 ). Following that it executes a return at statement 4. Recursion is known in the art.

Consider the following code which can be used to implement operation of the method shown in FIG. 4 and described above.

Arbitrate(AMASK, AVALUE)
{
collision=IdentifyCmnd(AMASK,AVALUE)
if (collision) then
{
/* recursive call for left side */
Arbitrate((AMASK>>1)+1, AVALUE)
/* recursive call for right side */
Arbitrate((AMASK>>1)+1, AVALUE+(AMASK+1))
} /* endif */
}/* return */

The symbol “<<” represents a bitwise left shift. “<<” means shift left by one place. Thus, 0001<<1 would be 0010. Note, however, that AMASK is originally called with a value of zero, and 0000<<1 is still 0000. Therefore, for the first recursive call, AMASK=(AMASK=(AMASK<<1)+1. So for the first recursive call, the value of AMASK is 0000+0001=0001. For the second call, AMASK=(0001<<)+1=0010+1=0011. For the third recursive call, AMASK=(0011<<1)+1=0110+1=0111.

The routine generates values for AMASK and AVALUE to be used by the interrogator in an identify command “IdentifyCmnd.” Note that the routine calls itself if there is a collision. De-recursion occurs when there is no collision. AVALUE and AMASK would have values such as the following assuming collisions take place all the way down to the bottom of the tree.

AVALUE AMASK
0000 0000
0000 0001
0000 0011
0000 0111
0000  1111*
1000  1111*
0100 0111
0100  1111*
1100  1111*

This sequence of AMASK, AVALUE binary numbers assumes that there are collisions all the way down to the bottom of the tree, at which point the Identify command sent by the interrogator is finally successful so that no collision occurs. Rows in the table for which the interrogator is successful in receiving a reply without collision are marked with the symbol “*”. Note that if the Identify command was successful at, for example, the third line in the table then the interrogator would stop going down that branch of the tree and start down another, so the sequence would be as shown in the following table.

AVALUE AMASK
0000 0000
0000 0001
0000  0011*
0010 0011
. . . . . .

This method is referred to as a splitting method. It works by splitting groups of colliding devices 12 into subsets that are resolved in turn. The splitting method can also be viewed as a type of tree search. Each split moves the method one level deeper in the tree.

Either depth-first or breadth-first traversals of the tree can be employed Depth first traversals are performed by using recursion, as is employed in the code listed above. Breadth-first traversals are accomplished by using a queue instead of recursion. The following is an example of code for performing a breadth-first traversal.

Arbitrate(AMASK, AVALUE)
{
enqueue(0,0)
while (queue != empty)
(AMASK, AVALUE) = dequeue( )
collision=IdentifyCmnd(AMASK,AVALUE)
if (collision) then
{
TEMP = AMASK+1
NEW_AMASK = (AMASK>>1)+1
enqueue(NEW_AMASK, AVALUE)
enqueue(NEW_AMASK, AVALUE+TEMP)
} /* endif */
endwhile
}/* return */

The symbol “!=” means not equal to. AVALUE and AMASK would have values such as those indicated in the following table for such code.

AVALUE AMASK
0000 0000
0000 0001
0001 0001
0000 0011
0010 0011
0001 0011
0011 0011
0000 0111
0100 0111
. . . . . .

Rows in the table for which the interrogator is successful in receiving a reply without collision are marked with the symbol “*”.

FIG. 5 illustrates an embodiment wherein the interrogator 26 starts the tree search at a selectable level of the search tree. The search tree has a plurality of nodes 51, 52, 53, 54 etc. at respective levels. The size of subgroups of random values decrease in size by half with each node descended. The upper bound of the number of devices 12 in the field (the maximum possible number of devices that could communicate with the interrogator) is determined, and the tree search method is started at a level 32, 34, 36, 38, or 40 in the tree depending on the determined upper bound. In one embodiment, the maximum number of devices 12 potentially capable of responding to the interrogator is determined manually and input into the interrogator 26 via an input device such as a keyboard, graphical user interface, mouse, or other interface. The level of the search tree on which to start the tree search is selected based on the determined maximum possible number of wireless identification devices that could communicate with the interrogator.

The tree search is started at a level determined by taking the base two logarithm of the determined maximum possible number. More particularly, the tree search is started at a level determined by taking the base two logarithm of the power of two nearest the determined maximum possible number of devices 12. The level of the tree containing all subgroups of random values is considered level zero (see FIG. 5), and lower levels are numbered 1, 2, 3, 4, etc. consecutively.

By determining the upper bound of the number of devices 12 in the field, and starting the tree search at an appropriate level, the number of collisions is reduced, the battery life of the devices 12 is increased, and arbitration time is reduced.

For example, for the search tree shown in FIG. 5, if it is known that there are seven devices 12 in the field, starting at node 51 (level 0 ) results in a collision. Starting at level 1 (nodes 52 and 53 ) also results in a collision. The same is true for nodes 54, 55, 56, and 57 in level 2. If there are seven devices 12 in the field, the nearest power of two to seven is the level at which the tree search should be started. Log2 8=3, so the tree search should be started at level 3 if there are seven devices 12 in the field.

AVALUE and AMASK would have values such as the following assuming collisions take place from level 3 all the way down to the bottom of the tree.

AVALUE AMASK
0000 0111 
0000 1111*
1000 1111*
0100 0111 
0100 1111*
1100 1111*

Rows in the table for which the interrogator is successful in receiving a reply without collision are marked with the symbol “*”.

In operation, the interrogator transmits a command requesting devices 12 having random values RV within a specified group of random values to respond, the specified group being chosen in response to the determined maximum number. Devices 12 receiving the command respectively determine if their chosen random values fall within the specified group and, if so, send a reply to the interrogator. The interrogator determines if a collision occurred between devices that sent a reply and, if so, creates a new, smaller, specified group, descending in the tree, as described above in connection with FIG. 4.

Another arbitration method that can be employed is referred to as the “Aloha” method. In the Aloha method, every time a device 12 is involved in a collision, it waits a random period of time before retransmitting. This method can be improved by dividing time into equally sized slots and forcing transmissions to be aligned with one of these slots. This is referred to as “slotted Aloha.” In operation, the interrogator asks all devices 12 in the field to transmit their identification numbers in the next time slot. If the response is garbled, the interrogator informs the devices 12 that a collision has occurred, and the slotted Aloha scheme is put into action. This means that each device 12 in the field responds within an arbitrary slot determined by a randomly selected value. In other words, in each successive time slot, the devices 12 decide to transmit their identification number with a certain probability.

The Aloha method is based on a system operated by the University of Hawaii. In 1971, the University of Hawaii began operation of a system named Aloha. A communication satellite was used to interconnect several university computers by use of a random access protocol. The system operates as follows. Users or devices transmit at any time they desire. After transmitting, a user listens for an acknowledgment from the receiver or interrogator. Transmissions from different users will sometimes overlap in time (collide), causing reception errors in the data in each of the contending messages. The errors are detected by the receiver, and the receiver sends a negative acknowledgment to the users. When a negative acknowledgment is received, the messages are retransmitted by the colliding users after a random delay. If the colliding users attempted to retransmit without the random delay, they would collide again. If the user does not receive either an acknowledgment or a negative acknowledgment within a certain amount of time, the user “times out” and retransmits the message.

There is a scheme known as slotted Aloha which improves the Aloha scheme by requiring a small amount of coordination among stations. In the slotted Aloha scheme, a sequence of coordination pulses is broadcast to all stations (devices). As is the case with the pure Aloha scheme, packet lengths are constant. Messages are required to be sent in a slot time between synchronization pulses, and can be started only at the beginning of a time slot. This reduces the rate of collisions because only messages transmitted in the same slot can interfere with one another. The retransmission mode of the pure Aloha scheme is modified for slotted Aloha such that if a negative acknowledgment occurs, the device retransmits after a random delay of an integer number of slot times.

Aloha methods are described in a commonly assigned patent application naming Clifton W. Wood, Jr. as an inventor, U.S. patent application Ser. No. 09/026,248, filed Feb. 19, 1998, titled “Method of Addressing Messages and Communications System,” filed concurrently herewith, and, now U.S. Pat. No. 6,275,476, which is incorporated herein by reference.

In one alternative embodiment, an Aloha method (such as the method described in the commonly assigned patent application mentioned above) is combined with determining the upper bound on a set of devices and staring at a level in the tree depending on the determined upper bound, such as by combining an Aloha method with the method shown and described in connection with FIG. 5. For example, in one embodiment, devices 12 sending a reply to the interrogator 26 do so within a randomly selected time slot of a number of slots.

In another embodiment, levels of the search tree are skipped. Skipping levels in the tree, after a collision caused by multiple devices 12 responding, reduces the number of subsequent collisions without adding significantly to the number of no replies. In real-time systems, it is desirable to have quick arbitration sessions on a set of devices 12 whose unique identification numbers are unknown. Level skipping reduces the number of collisions, both reducing arbitration time and conserving battery life on a set of devices 12. In one embodiment, every other level is skipped. In alternative embodiments, more than one level is skipped each time.

The trade off that must be considered in determining how many (if any) levels to skip with each decent down the tree is as follows. Skipping levels reduces the number of collisions, thus saving battery power in the devices 12. Skipping deeper (skipping more than one level) further reduces the number of collisions. The more levels that are skipped, the greater the reduction in collisions. However, skipping levels results in longer search times because the number of queries (Identify commands) increases. The more levels that are skipped, the longer the search times. Skipping just one level has an almost negligible effect on search time, but drastically reduces the number of collisions. If more than one level is skipped, search time increases substantially. Skipping every other level drastically reduces the number of collisions and saves battery power without significantly increasing the number of queries.

Level skipping methods are described in a commonly assigned patent application 09/026,045 naming Clifton W. Wood, Jr. and Don Hush as inventors, titled “Method of Addressing Messages, Method of Establishing Wireless Communications, and Communications Systems,” filed concurrently herewith, now U.S. Pat. No. 6,072,801, and incorporated herein by reference.

In one alternative embodiment, a level skipping method is combined with determining the upper bound on a set of devices and starting at a level in the tree depending on the determined upper bound, such as by combining a level skipping method with the method shown and described in connection with FIG. 5.

In yet another alternative embodiment, both a level skipping method and an Aloha method (as described in the commonly assigned applications described above) are combined with the method shown and described in connection with FIG. 5.

In compliance with the statue, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4075632May 24, 1976Feb 21, 1978The United States Of America As Represented By The United States Department Of EnergyInterrogation, and detection system
US4761778Apr 11, 1985Aug 2, 1988Massachusetts Institute Of TechnologyCoder-packetizer for random accessing in digital communication with multiple accessing
US4796023Dec 5, 1986Jan 3, 1989King Robert EStabilized binary tree protocol
US4799059Mar 14, 1986Jan 17, 1989Enscan, Inc.Automatic/remote RF instrument monitoring system
US4845504Apr 8, 1987Jul 4, 1989M/A-Com, Inc.Mobile radio network for nationwide communications
US4862453Oct 2, 1987Aug 29, 1989The Marconi Company LimitedCommunication system
US4926182May 29, 1987May 15, 1990Sharp Kabushiki KaishaMicrowave data transmission apparatus
US4955018Nov 8, 1988Sep 4, 1990Echelon Systems CorporationProtocol for network having plurality of intelligent cells
US4969146Nov 8, 1988Nov 6, 1990Echelon Systems CorporationProtocol for network having a plurality of intelligent cells
US5019813Apr 12, 1988May 28, 1991N.V. Nederlandsche Apparatenfabriek NedapSystem for the contactless exchange of data
US5025486Dec 9, 1988Jun 18, 1991Dallas Semiconductor CorporationWireless communication system with parallel polling
US5046066Feb 12, 1987Sep 3, 1991Telesystems Slw Inc.Wireless local area network
US5055968Jul 3, 1989Oct 8, 1991Sony CorporationThin electronic device having an integrated circuit chip and a power battery and a method for producing same
US5121407Sep 27, 1990Jun 9, 1992Pittway CorporationSpread spectrum communications system
US5124697Oct 16, 1989Jun 23, 1992Motorola, Inc.Acknowledge-back pager
US5142694Jul 24, 1989Aug 25, 1992Motorola, Inc.Reporting unit
US5144313Apr 24, 1991Sep 1, 1992Steffen KirknesMethod for processing transmitted and reflected signals for removing unwanted signals and noise from wanted signals
US5144668Jan 25, 1991Sep 1, 1992Motorola, Inc.Signal overlap detection in a communication system
US5150114Nov 6, 1990Sep 22, 1992U.S. Philips CorporationPolling-type information transmission system
US5150310Aug 30, 1989Sep 22, 1992Consolve, Inc.Method and apparatus for position detection
US5164985Oct 26, 1988Nov 17, 1992Nysen Paul APassive universal communicator system
US5168510Apr 5, 1989Dec 1, 1992Comsource SystemsSpread spectrum-time diversity communications systems and transceivers for multidrop area networks
US5194860Nov 15, 1990Mar 16, 1993The General Electric Company, P.L.C.Radio telemetry systems with channel selection
US5231646Mar 16, 1992Jul 27, 1993Kyros CorporationCommunications system
US5266925Sep 30, 1991Nov 30, 1993Westinghouse Electric Corp.Electronic identification tag interrogation method
US5307463Dec 7, 1992Apr 26, 1994Allen-Bradley Company, Inc.Programmable controller communication module
US5365551Dec 15, 1992Nov 15, 1994Micron Technology, Inc.Data communication transceiver using identification protocol
US5373503Apr 30, 1993Dec 13, 1994Information Technology, Inc.Group randomly addressed polling method
US5449296Mar 7, 1994Sep 12, 1995Cabel-Con, Inc. UsaCable connector apparatus for preventing radiation leakage
US5461627Dec 24, 1991Oct 24, 1995Rypinski; Chandos A.Access protocol for a common channel wireless network
US5479416Sep 30, 1993Dec 26, 1995Micron Technology, Inc.Apparatus and method for error detection and correction in radio frequency identification device
US5500650Dec 15, 1992Mar 19, 1996Micron Technology, Inc.Data communication method using identification protocol
US5530702May 31, 1994Jun 25, 1996Ludwig KippSystem for storage and communication of information
US5550547Sep 12, 1994Aug 27, 1996International Business Machines CorporationMultiple item radio frequency tag identification protocol
US5583850Jun 21, 1994Dec 10, 1996Micron Technology, Inc.Data communication system using identification protocol
US5608739Sep 8, 1995Mar 4, 1997Micron Technology, Inc.Apparatus and method for error detection and correction in radio frequency identification device
US5619648Nov 30, 1994Apr 8, 1997Lucent Technologies Inc.Message filtering techniques
US5621412Jun 7, 1995Apr 15, 1997Texas Instruments IncorporatedMulti-stage transponder wake-up, method and structure
US5625628Mar 15, 1995Apr 29, 1997Hughes ElectronicsAloha optimization
US5627544Mar 18, 1996May 6, 1997Micron Technology, Inc.Data communication method using identification protocol
US5640151Nov 8, 1993Jun 17, 1997Texas Instruments IncorporatedCommunication system for communicating with tags
US5649296Jun 19, 1995Jul 15, 1997Lucent Technologies Inc.Full duplex modulated backscatter system
US5686902Apr 23, 1996Nov 11, 1997Texas Instruments IncorporatedCommunication system for communicating with tags
US5790946Apr 19, 1995Aug 4, 1998Rotzoll; Robert R.Wake up device for a communications system
US5805586May 2, 1995Sep 8, 1998Motorola Inc.Method, device and data communication system for multilink polling
US5841770Oct 7, 1996Nov 24, 1998Micron Technology, Inc.Data communication system using indentification protocol
US5914671Feb 27, 1997Jun 22, 1999Micron Communications, Inc.System and method for locating individuals and equipment, airline reservation system, communication system
US5936560Jul 18, 1997Aug 10, 1999Fujitsu LimitedData compression method and apparatus performing high-speed comparison between data stored in a dictionary window and data to be compressed
US5940006Dec 12, 1995Aug 17, 1999Lucent Technologies Inc.Enhanced uplink modulated backscatter system
US5942987Aug 9, 1996Aug 24, 1999Intermec Ip Corp.Radio frequency identification system with write broadcast capability
US5952922Dec 31, 1996Sep 14, 1999Lucent Technologies Inc.In-building modulated backscatter system
US5966471Dec 23, 1997Oct 12, 1999United States Of AmericaMethod of codebook generation for an amplitude-adaptive vector quantization system
US5974078Feb 13, 1997Oct 26, 1999Micron Technology, Inc.Modulated spread spectrum in RF identification systems method
US5988510Feb 13, 1997Nov 23, 1999Micron Communications, Inc.Tamper resistant smart card and method of protecting data in a smart card
US6038455Aug 29, 1996Mar 14, 2000Cirrus Logic, Inc.Reverse channel reuse scheme in a time shared cellular communication system
US6061344Feb 19, 1998May 9, 2000Micron Technology, Inc.Method of addressing messages and communications system
US6072801Feb 19, 1998Jun 6, 2000Micron Technology, Inc.Method of addressing messages, method of establishing wireless communications, and communications system
US6075973May 18, 1998Jun 13, 2000Micron Technology, Inc.Method of communications in a backscatter system, interrogator, and backscatter communications system
US6097292Sep 19, 1997Aug 1, 2000Cubic CorporationContactless proximity automated data collection system and method
US6104333Dec 19, 1996Aug 15, 2000Micron Technology, Inc.Methods of processing wireless communication, methods of processing radio frequency communication, and related systems
US6118789Feb 19, 1998Sep 12, 2000Micron Technology, Inc.Method of addressing messages and communications system
US6130602Aug 29, 1996Oct 10, 2000Micron Technology, Inc.Radio frequency data communications device
US6130623Dec 31, 1996Oct 10, 2000Lucent Technologies Inc.Encryption for modulated backscatter systems
US6150921Oct 17, 1997Nov 21, 2000Pinpoint CorporationArticle tracking system
US6157633Jun 10, 1996Dec 5, 2000At&T Wireless Sucs. Inc.Registration of mobile packet data terminals after disaster
US6169474Apr 23, 1998Jan 2, 2001Micron Technology, Inc.Method of communications in a backscatter system, interrogator, and backscatter communications system
US6177858Nov 27, 1996Jan 23, 2001Pierre RaimbaultMethod for remotely interrogating tags, and station and tag implementing said method
US6185307Jan 13, 1998Feb 6, 2001Gilbarco Inc.Cryptography security for remote dispenser transactions
US6192222Sep 3, 1998Feb 20, 2001Micron Technology, Inc.Backscatter communication systems, interrogators, methods of communicating in a backscatter system, and backscatter communication methods
US6216132Nov 20, 1997Apr 10, 2001International Business Machines CorporationMethod and system for matching consumers to events
US6226300Apr 18, 2000May 1, 2001Micron Technology, Inc.Method of addressing messages, and establishing communications using a tree search technique that skips levels
US6229987Apr 26, 2000May 8, 2001Micron Technology, Inc.Method of communications in a backscatter system, interrogator, and backscatter communications system
US6243012 *Dec 31, 1996Jun 5, 2001Lucent Technologies Inc.Inexpensive modulated backscatter reflector
US6265962Jun 29, 2000Jul 24, 2001Micron Technology, Inc.Method for resolving signal collisions between multiple RFID transponders in a field
US6265963Jun 23, 2000Jul 24, 2001Micron Technology, Inc.Methods of processing wireless communication, methods of processing radio frequency communication, and related systems
US6275476Feb 19, 1998Aug 14, 2001Micron Technology, Inc.Method of addressing messages and communications system
US6282186Apr 24, 2000Aug 28, 2001Micron Technology, Inc.Method of addressing messages and communications system
US6288629 *May 23, 1997Sep 11, 2001Intermec Ip Corp.Method of using write—ok flag for radio frequency (RF) transponders (RF Tags)
US6289209Aug 8, 1997Sep 11, 2001Micron Technology, Inc.Wireless communication system, radio frequency communications system, wireless communications method, radio frequency communications method
US6307847Jul 17, 2000Oct 23, 2001Micron Technology, Inc.Method of addressing messages and communications systems
US6307848Jan 31, 2001Oct 23, 2001Micron Technology, Inc.Method of addressing messages, method of establishing wireless communications, and communications system
US6324211Apr 24, 1998Nov 27, 2001Micron Technology, Inc.Interrogators communication systems communication methods and methods of processing a communication signal
US6415439Feb 4, 1997Jul 2, 2002Microsoft CorporationProtocol for a wireless control system
US6459726Apr 24, 1998Oct 1, 2002Micron Technology, Inc.Backscatter interrogators, communication systems and backscatter communication methods
US6483427Mar 9, 2000Nov 19, 2002Rf Technologies, Inc.Article tracking system
US6566997Dec 3, 1999May 20, 2003Hid CorporationInterference control method for RFID systems
US6570487Apr 22, 1999May 27, 2003Axcess Inc.Distributed tag reader system and method
US6707376Aug 9, 2002Mar 16, 2004Sensormatic Electronics CorporationPulsed power method for increased read range for a radio frequency identification reader
US6714559Sep 21, 2001Mar 30, 2004Broadcom CorporationRedundant radio frequency network having a roaming terminal communication protocol
US6771634Apr 9, 1999Aug 3, 2004At&T Wireless Services, Inc.Registration of mobile packet data terminals after disaster
US6778096 *Nov 17, 1997Aug 17, 2004International Business Machines CorporationMethod and apparatus for deploying and tracking computers
US6784787May 15, 2000Aug 31, 2004Btg International LimitedIdentification system
US6850510May 8, 2002Feb 1, 2005Broadcom CorporationHierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
US6919793Aug 24, 1999Jul 19, 2005Intermec Ip Corp.Radio frequency identification system write broadcast capability
US7026935Apr 13, 2004Apr 11, 2006Impinj, Inc.Method and apparatus to configure an RFID system to be adaptable to a plurality of environmental conditions
US7315522Mar 28, 2001Jan 1, 2008Micron Technology, Inc.Communication methods using slotted replies
US7385477Nov 29, 2005Jun 10, 2008Keystone Technology Solutions, LlcRadio frequency data communications device
US7672260Nov 8, 2005Mar 2, 2010Keystone Technology Solutions, LlcMethod of addressing messages and communications system
US20030235184Jun 20, 2002Dec 25, 2003Dorenbosch Jheroen P.Method and apparatus for speaker arbitration in a multi-participant communication session
US20050060069Apr 12, 2004Mar 17, 2005Breed David S.Method and system for controlling a vehicle
US20050207364Jun 1, 2005Sep 22, 2005Wood Clifton W JrMethod of addressing messages and communications system
US20060022800Jul 29, 2005Feb 2, 2006Reva Systems CorporationScheduling in an RFID system having a coordinated RFID tag reader array
WO1997048216A2 *May 6, 1997Dec 18, 1997At & T Wireless Services IncRegistration of mobile packet data terminals after disaster
Non-Patent Citations
Reference
1Auto-ID Center, Massachusetts Institute of Technology, "13.56 MHz ISM Band Class 1 Radio Frequency Identification Tag Interface Specification: Recommended Standard," Technical Report, Feb. 1, 2003.
2Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels", IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979.
3Capetankis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979.
4CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/ticketheadlines/prn/cltu045.PI.09162003122727.24911.htm, Sep. 16, 2003.
5Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachuetts Institute of Technology, Technical Report, Feb. 1, 2003.
6EPC Globial, Inc. "EPC Radio Frequency Identify Protocols-Class-1 Generation-2 UHF RFID-Protocol for Communications at 860 MHz-960MHz," version 1.0.9, cover sheet and pp. 37-38, Jan. 2005.
7EPC Globial, Inc. "EPC Radio Frequency Identify Protocols—Class-1 Generation-2 UHF RFID—Protocol for Communications at 860 MHz-960MHz," version 1.0.9, cover sheet and pp. 37-38, Jan. 2005.
8eRetailNews, "The Electronic Product Code (EPC)-A Technology Revolution?" located at http://www.eretailnews.com/features/0105epc1.htm, accessed Oct. 15, 2003.
9eRetailNews, "The Electronic Product Code Schematic," located at http://eee.eretailnews.com/features/0105epcschema.htm, accessed Oct. 15, 2003.
10eRetailNews, "The Electronic Product Code(EPC)," located at http://www.ertailnews.com/features/epc/htm, accessed Oct. 15, 2003.
11eRetailNews, "The Electronic Product Code (EPC)—A Technology Revolution?" located at http://www.eretailnews.com/features/0105epc1.htm, accessed Oct. 15, 2003.
12Extended Search Report and Search Opinion for EP Patent Application No. 05016513.3, Jan. 22, 2007.
13Extended Search Report and Search Opinion for EP Patent Application No. 05016514.1, Jan. 26, 2007.
14Finkenzeller, Klaus, "Radio Frequency Identification-The Authors Homepage of the RFID Handbook," located at http://www.rfid-handbook.com, accessed Feb. 22, 2007.
15Finkenzeller, Klaus, "Radio Frequency Identification—The Authors Homepage of the RFID Handbook," located at http://www.rfid-handbook.com, accessed Feb. 22, 2007.
16High Tech Aid, "ISO/IEC 18000-RFID Air Interface Standards," located at http://www.hightechaid.com/standards/18000.htm, Feb. 1, 2003.
17High Tech Aid, "ISO/IEC 18000—RFID Air Interface Standards," located at http://www.hightechaid.com/standards/18000.htm, Feb. 1, 2003.
18Humblet, Pierre A. et al., "Efficient Accessing of a Multiaccess Channel," Proceedings of the 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, pp. 624-627, 1980.
19International Application No. PCT/US08/50630, International Search Report, Jun. 27, 2008.
20International Application No. PCT/US08/50630, Written Opinion, Jun. 27, 2008.
21International Application No. PCT/US99/02288, International Search Report, Aug. 3, 1999.
22International Application No. PCT/US99/02288, Written Opinion, Jan. 27, 2000.
23ISO/IEC, "Automatic Identification-Radio Frequency Identification for Item Management-Communications and Interfaces-Part 3: Physical Layer, Anti Collision System and Protocol Values at 13.56 MHz MODE 4," ISO/IEC 18000-3-4, Mar. 1, 2001.
24ISO/IEC, "Automatic Identification-Radio Frequency Identification for Item Management-Communications and Interfaces-Part 3: Physical Layer, Anti-Collision and Protocol Values at 13.56 MHz MODE 1," ISO/IEC 18000-3-1, Mar. 1, 2001.
25ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Proximity Cards-Part 1: Physical Characteristics," ISO/IEC FCD 14443-1, 1997.
26ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Proximity Cards-Part 2: Radio Frequency Power and Signal Interface," ISO/IEC FCD 14443-2, Mar. 26, 1999.
27ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Proximity Cards-Part 3: Initiation and Anticollision," ISO/IEC FDIS 14443-3:2000(E), Jul. 13, 2000.
28ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Proximity Cards-Part 4: Transmission Protocol," ISO/IEC FDIS 14443-4:2000(E), Jul. 13, 2000.
29ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Vicinity Cards-Part 1: Physical Characteristics," ISO/IEC FDIS 15693-1:2000(E), May 19, 2000.
30ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Vicinity Cards-Part 2: Interface and Initialization," ISO/IEC FDIS 15693-2:2000(E), Feb. 3, 2000.
31ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Vicinity Cards-Part 3: Anticollision and Transmission Protocol," ISO/IEC CD 15693-3:1999(E), Nov. 17, 1999.
32ISO/IEC, "Information Technology AIDC Techniques-RFID for Item Management-Air Interface-Part 3: Paramenters for Air Interface Communications at 13:56 MHz," ISO/IEC 18000-3 FCD, May 27, 2002.
33ISO/IEC, "Automatic Identification—Radio Frequency Identification for Item Management—Communications and Interfaces—Part 3: Physical Layer, Anti Collision System and Protocol Values at 13.56 MHz MODE 4," ISO/IEC 18000-3-4, Mar. 1, 2001.
34ISO/IEC, "Automatic Identification—Radio Frequency Identification for Item Management—Communications and Interfaces—Part 3: Physical Layer, Anti-Collision and Protocol Values at 13.56 MHz MODE 1," ISO/IEC 18000-3-1, Mar. 1, 2001.
35ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Proximity Cards—Part 1: Physical Characteristics," ISO/IEC FCD 14443-1, 1997.
36ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Proximity Cards—Part 2: Radio Frequency Power and Signal Interface," ISO/IEC FCD 14443-2, Mar. 26, 1999.
37ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Proximity Cards—Part 3: Initiation and Anticollision," ISO/IEC FDIS 14443-3:2000(E), Jul. 13, 2000.
38ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Proximity Cards—Part 4: Transmission Protocol," ISO/IEC FDIS 14443-4:2000(E), Jul. 13, 2000.
39ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Vicinity Cards—Part 1: Physical Characteristics," ISO/IEC FDIS 15693-1:2000(E), May 19, 2000.
40ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Vicinity Cards—Part 2: Interface and Initialization," ISO/IEC FDIS 15693-2:2000(E), Feb. 3, 2000.
41ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Vicinity Cards—Part 3: Anticollision and Transmission Protocol," ISO/IEC CD 15693-3:1999(E), Nov. 17, 1999.
42ISO/IEC, "Information Technology AIDC Techniques—RFID for Item Management—Air Interface—Part 3: Paramenters for Air Interface Communications at 13:56 MHz," ISO/IEC 18000-3 FCD, May 27, 2002.
43Mullin, Eileen, "Electronic Product Code," Baseline Magazine, located at www.baselinemag.com/article2/0,3959,655991,00.asp, Sep. 5, 2002.
44RFID Journal, "Second Source of Class 1 EPC Chips," located at http://www.rfidjournal.com/article/articleview/473/1/1/, Jun. 26, 2003.
45Smart Active Labels Consortium, organization homepage located at http://www.sal-c.org, accessed Feb. 22, 2007.
46Symbol Technologies, Inc., "Understanding Gen 2: What It Is, How You Will Benefit and Criteria for Vendor Assessment," white paper, Jan. 2006.
47Tuttle, John R., U.S. Appl. No. 11/755,073 entitled "Methods and Systems of Receiving Data Payload of RFID Tags," filed May 30, 2007.
48USPTO Transaction History of U.S. Appl. No. 09/026,043, filed Feb. 19, 1998, entitled "Method of Addressing Messages and Communications System," now U.S. Pat. No. 6,118,789.
49USPTO Transaction History of U.S. Appl. No. 09/026,045, filed Feb. 19, 1998, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System," now U.S. Pat. No. 6,072,801.
50USPTO Transaction History of U.S. Appl. No. 09/026,050, filed Feb. 19, 1998, entitled "Method of Addressing Messages and Communications System," now U.S. Pat. No. 6,061,344.
51USPTO Transaction History of U.S. Appl. No. 09/026,248, filed Feb. 19, 1998, entitled "Method of Addressing Messages and Communications System," now U.S. Pat. No. 6,275,476.
52USPTO Transaction History of U.S. Appl. No. 09/551,304, filed Apr. 18, 2000, entitled "Method of Addressing Messages and Communications System," now U.S. Pat. No. 6,282,186.
53USPTO Transaction History of U.S. Appl. No. 09/556,235, filed Apr. 18, 2000, entitled "Method of Addressing Messages, and Establishing Communications Using a Tree Search Technique That Skips Levels," now U.S. Pat. No. 6,226,300.
54USPTO Transaction History of U.S. Appl. No. 09/617,390, filed Jul. 17, 2000, entitled "Method of Addressing Messages and Communications System," now U.S. Pat. No. 6,307,847.
55USPTO Transaction History of U.S. Appl. No. 09/773,461, filed Jan. 31, 2001, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications Systems,"now U.S. Pat. No. 6,307,848.
56USPTO Transaction History of U.S. Appl. No. 09/820,467, filed Mar. 28, 2001, entitled "Method of Addressing Messages and Communications System," now U.S. Pat. No. 7,315,522.
57USPTO Transaction History of U.S. Appl. No. 10/652,573, filed Aug. 28, 2003, entitled "Method of Addressing Messages and Communications System."
58USPTO Transaction History of U.S. Appl. No. 10/693,696, filed Oct. 23, 2003, entitled "Method and Apparatus to Select Radio Frequency identification Devices in Accordance with an Arbitration Scheme."
59USPTO Transaction History of U.S. Appl. No. 10/693,697, filed Oct. 23, 2003, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System."
60USPTO Transaction History of U.S. Appl. No. 11/143,395, filed Jun. 1, 2005, entitled "Method of Addressing Messages and Communications System."
61USPTO Transaction History of U.S. Appl. No. 11/270,204, filed Nov. 8, 2005, entitled "Method of Addressing Messages and Communications System."
62USPTO Transaction History of U.S. Appl. No. 11/416,846, filed May 2, 2006, entitled "Method of Addressing Messages and Communications System."
63USPTO Transaction History of U.S. Appl. No. 11/855,855, filed Sep. 14, 2007, entitled "Method of Addressing Messages and Communications System."
64USPTO Transaction History of U.S. Appl. No. 11/855,860, filed Sep. 14, 2007, entitled "Method of Addressing Messages and Communications System."
65USPTO Transaction History of U.S. Appl. No. 11/859,360, filed Sep. 21, 2007, entitled "Method of Addressing Messages and Communications System."
66USPTO Transaction History of U.S. Appl. No. 11/862,121, filed Sep. 26, 2007, entitled "Method of Addressing Messages and Communications System."
67USPTO Transaction History of U.S. Appl. No. 11/862,124, filed Sep. 26, 2007, entitled "Method of Addressing Messages and Communications System."
68USPTO Transaction History of U.S. Appl. No. 11/862,130, filed Sep. 26, 2007, entitled "Method of Addressing Messages and Communications System."
69USPTO Transaction History of U.S. Appl. No. 11/865,580, filed Oct. 1, 2007, entitled "Method of Addressing Messages, Methods of Establishing Wirelsee Communications, and Communications System."
70USPTO Transaction History of U.S. Appl. No. 11/865,584, filed Oct. 1, 2007, entitled "Method of Addressing Messages, Methods of Establishing Wirelsee Communications, and Communications System."
71Wolf, Jack Keil, "Principles of Group Testing and an Application to the Design and Analysis of Multi-Access Protocols," Nato Asi Series E, Applied Sciences, No. 91, pp. 237-257, 1985.
72Wood, Jr., Clifton W., U.S. Reissue Appl. No. 10/693,696, filed Oct. 23, 2003.
73Wood, Jr., Clifton W., U.S. Reissue Appl. No. 10/693,697, filed Oct. 23, 2003.
74Wood, Jr., Clifton W., U.S. Reissue Appl. No. 11/859,360, filed Sep. 21, 2007.
75Wood, Jr., Clifton W., U.S. Reissue Appl. No. 11/862,121, filed Sep. 26, 2007.
76Wood, Jr., Clifton W., U.S. Reissue Appl. No. 11/862,124, filed Sep. 26, 2007.
77Wood, Jr., Clifton W., U.S. Reissue Appl. No. 11/862,130, filed Sep. 21, 2007.
78Wood, Jr., Clifton W., U.S. Reissue Appl. No. 11/865,580, filed Oct. 1, 2007.
79Wood, Jr., Clifton W., U.S. Reissue Appl. No. 11/865,584, filed Oct. 1, 2007.
80Wood, Jr., Clifton W., U.S. Reissue Appl. No. 12/493,542, filed Jun. 29, 2009.
81Wood, Jr., Clifton W., U.S. Reissue Appl. No. 12/541,882, filed Aug. 14, 2009.
82Wood, Jr., Clifton W., U.S. Reissue Pat. Appl. No. 10/652,573, filed Aug. 28, 2008.
83Wright, Jim, "Trends and Innovations in RF Indentification," Sun Microsystems Inc. presentation, Mar. 2005.
84Zebra Technologies Corporation, "Electronic Product Code (EPC)," located at http://www.rfid.zebra.com/epc/htm, accessed Oct. 15, 2003.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8181865Apr 22, 2008May 22, 2012Freedom Shopping, Inc.Radio frequency identification point of sale unassisted retail transaction and digital media kiosk
US8191780Dec 27, 2005Jun 5, 2012Freedom Shopping, Inc.Self checkout kiosk and retail security system
US8328096Jun 4, 2012Dec 11, 2012Freedom Shopping, Inc.Self checkout kiosk and retail security system
US8469269Nov 26, 2012Jun 25, 2013Freedom Shopping, Inc.Self checkout kiosk and retail security system
Classifications
U.S. Classification370/329, 370/347, 370/346
International ClassificationH04L12/44, G06T5/20, G06T1/60, G06F13/40, H04W4/00
Cooperative ClassificationH04L12/44, G06T1/60, G06F13/4027, G06T5/20, H04W4/00
European ClassificationH04W4/00, G06F13/40D5, G06T1/60, G06T5/20, H04L12/44
Legal Events
DateCodeEventDescription
Mar 6, 2013FPAYFee payment
Year of fee payment: 12
Mar 20, 2012RRRequest for reexamination filed
Effective date: 20120130
Jan 26, 2010ASAssignment
Owner name: MICRON TECHNOLOGY, INC., IDAHO
Effective date: 20091222
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEYSTONE TECHNOLOGY SOLUTIONS, LLC;REEL/FRAME:023839/0881
Jan 4, 2010ASAssignment
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416
Owner name: ROUND ROCK RESEARCH, LLC, NEW YORK
Effective date: 20091223