USRE41927E1 - TFT LCD device having multi-layered pixel electrodes - Google Patents

TFT LCD device having multi-layered pixel electrodes Download PDF

Info

Publication number
USRE41927E1
USRE41927E1 US11/433,903 US43390306A USRE41927E US RE41927 E1 USRE41927 E1 US RE41927E1 US 43390306 A US43390306 A US 43390306A US RE41927 E USRE41927 E US RE41927E
Authority
US
United States
Prior art keywords
layer
drain electrode
electrode
tft
tft lcd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US11/433,903
Inventor
Woo-Suk Chung
Chang-Won Hwang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US11/433,903 priority Critical patent/USRE41927E1/en
Application granted granted Critical
Publication of USRE41927E1 publication Critical patent/USRE41927E1/en
Assigned to SAMSUNG DISPLAY CO., LTD. reassignment SAMSUNG DISPLAY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAMSUNG ELECTRONICS CO., LTD.
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode

Definitions

  • the present invention relates to a thin film transistor liquid crystal display (TFT LCD) device, and more particularly to a reflective or transflective TFT LCD device having multi-layered pixel electrodes connected to drain electrodes with interposing an insulating layer therebetween.
  • TFT LCD thin film transistor liquid crystal display
  • TFT LCD devices are generally classified into a reflective TFT LCD device using a reflective layer as pixel electrodes, a transmissive TFT LCD device using transparent pixel electrodes, and a transflective TFT LCD device using a reflective layer having a transmissive region in a portion of a reflective region as pixel electrodes, according to reflectance or permeability of pixel electrodes.
  • a reflective TFT LCD device using a reflective layer as pixel electrodes to supply voltage for controlling arrangement of liquid crystal to the pixel electrodes
  • drain electrodes of thin film transistors formed in each pixel are connected to the corresponding pixel electrodes.
  • the pixel electrodes are generally connected to the drain electrodes through via holes formed in an interlayer insulating layer.
  • drain electrodes are formed of a single layer of metal such as chromium (Cr), or a two-layered conductive layer having an Al-contained metal layer and a molybdenum tungsten (MoW) or Cr layer formed on the Al-contained metal layer.
  • pixel electrodes In a reflective TFT LCD device, pixel electrodes usually use aluminum neodymium (AlNd). In this case, materials forming drain electrodes are also limited.
  • AlNd aluminum neodymium
  • FIG. 1 a pixel portion of the reflective TFT LCD device using an easily oxidized metal such as Al as source and drain electrodes 21 , 21 ′ is illustrated.
  • a protecting layer 23 On the source and drain electrodes 21 , 21 ′, a protecting layer 23 , for example a photosensitive organic insulating layer is disposed.
  • the protecting layer 23 has via holes for connecting the drain electrodes 21 ′ to the pixel electrodes 27 .
  • the upper layer of the drain electrodes 21 ′ may form insulating oxides 25 .
  • the insulating oxides 25 increase contact resistance between the drain electrodes 21 ′ and pixel electrodes 27 .
  • an upper layer 212 ′ of the drain electrode 21 ′ can be formed of metal such as MoW that is resistant against oxidation, as shown in FIG. 2 .
  • battery effect like inside a chemical battery, can be occurred due to difference of electro-negativity between the upper layer 212 ′ of the drain electrode 21 ′ and an Al-containing reflective layer forming the pixel electrodes 27 .
  • gaps 29 similar to spike phenomenon generating at the interface between a silicon layer and an Al layer can be formed at the interface between the upper layer 212 ′ and the Al-containing reflective layer.
  • the Al-containing reflective layer can generate cracks 31 around the via holes. These gaps 29 or cracks 31 cause a problem increasing contact resistance between the pixel electrodes 27 and the drain electrodes 21 ′.
  • the battery effect increases in proportion to the difference of surface area and electronegativity between two metal layers. Accordingly, the drain electrodes 21 ′ that usually has relatively very small surface area compared to the pixel electrodes 27 enforces the battery effect more, thereby increasing the contact resistance between the pixel electrodes 27 and the drain electrodes 21 ′ more.
  • a new TFT LCD device which can prevent increase of contact resistance due to the battery effect or surface oxidation at the interface between the pixel electrodes and the drain electrodes with maintaining highly reflectance and conductivity, is required.
  • a TFT LCD device having pixel electrodes formed of a multi-layered conductive layer.
  • drain electrodes are composed of multiple layers, and the most upper layer of the multiple layers is composed of a metal layer that is strongly resistant against oxidation.
  • the multi-layered conductive layer is composed of two-layered conductive layer having a lower layer of metal that has small electro-negativity difference between itself and the most upper layer of the drain electrodes and an upper layer of Al-containing metal.
  • the lower layer of the two-layered conductive layer is preferably composed of the same material as that of the most upper layer of the drain electrodes, for example one selected from a Cr layer and a MoW layer.
  • the Al-containing metal usually uses pure Al or AlNd. Accordingly, the two-layered conductive layer is formed by depositing the lower layer of one selected from a Cr layer and a MoW layer and the upper layer of Al-containing metal and then patterning them.
  • the multi-layered conductive layer is not limited to the two-layered conductive layer.
  • an intermediate metal layer can be interposed between the lower and upper layers of the two-layered conductive layer.
  • the multiple layers of the drain electrodes usually use metal having a high conductivity to prevent a signal voltage drop due to the data line resistance.
  • the drain electrodes are formed of the same conductive material as that of the data lines connected to source electrodes. Accordingly, the multiple layers forming the drain electrodes are preferably composed of a two-layered layer having an Al layer for increasing conductivity and a Cr or MoW layer strongly resistant to oxidation formed on the Al layer, or a three-layered layer having an intermediate Al layer and an upper and a lower Cr or MoW layers formed on and under the intermediate Al-contained layer to prevent spike phenomenon due to silicon layers over an active area.
  • the MoW layer as the lower and upper layer preferably is better than the Cr layer since it is easy to be patterned along with the intermediate Al-containing layer.
  • the upper layer of the drain electrodes and the lower layer of the pixel electrodes are formed of same material or metals having small differences in electro-negativity, the battery effect therebetween can be ignored. Also, in the two-layered conductive layer of the pixel electrodes, the upper layer and the lower layer are concurrently formed to have the same surface area by means of same patterning process. This may result in difference in electro-negativity, but battery effect can be prevented. Thus, at the interface between the pixel electrodes and the drain electrodes, the battery effect is considerably reduced and the spike phenomenon or cracks is prevented.
  • the upper layer of the drain electrodes is composed of a metal layer strongly resistant to oxidation, insulating oxides are not formed on the upper surface thereof even though it is exposed to oxidizing material such as developer or detergent, and thereby preventing contact resistance increase.
  • FIG. 1 and FIG. 2 are cross-sectional views of a pixel portion of a conventional reflective TFT LCD device.
  • FIG. 3 is a top plan view showing a layout of pixel portions of a top gate type polysilicon TFT LCD device in accordance with one embodiment of the present invention.
  • FIG. 4 shows a cross-section taken along line 1 — 1 of FIG. 3 .
  • FIGS. 5 , 6 , 7 and 8 are diagrams showing the process steps of a method for manufacturing a pixel portion of the top gate type polysilicon TFT LCD device shown in FIG. 4 .
  • FIG. 3 is a top plan view showing a layout of pixel portions of a top gate type polysilicon TFT LCD device in accordance with one embodiment of the present invention.
  • the pixel portions of the TFT LCD device of the present invention has the same structure as a general reflective or transmissive TFT LCD device.
  • the TFT LCD device has an active region pattern 13 formed on a substrate, a gate insulating layer ( 15 of FIG. 4 ) formed on the active region pattern 13 , and thin film transistors formed on the gate insulating layer 15 .
  • the thin film transistors have gate lines 17 including a plurality of gate electrodes, each of which divides a line or bar shaped sub-region of the active region pattern 13 into two portions with crossing the active region pattern 13 .
  • the gate electrodes which form a portion of the gate lines 17 formed in a transverse direction are covered by an interlayer insulating layer ( 19 of FIG. 4 ) formed on the gate lines 17 .
  • interlayer insulating layer 19 contact holes 22 are formed to connect source and drain electrodes 121 , 121 ′ with the two portions of each line shaped sub-region of the active region pattern 13 divided by the gate electrodes.
  • the source and drain electrodes 121 , 121 ′ formed respectively over the two portions are composed of a conductive layer.
  • the source electrodes 121 are connected to data lines 210 .
  • the data lines 210 composed of a conductive layer of the same material as the source and drain electrodes 121 , 121 ′ are disposed in a direction vertical to the gate lines 17 .
  • a protecting layer ( 23 of FIG. 4 ) is formed on the source and drain electrodes 121 , 121 ′ and the data line 210 .
  • the protecting layer has via holes 24 exposing a portion of each drain electrode 121 ′.
  • Pixel electrodes 127 composed of a conductive layer are formed on the protecting layer to be connected with the drain electrodes 121 ′ through 20 the via holes 24 .
  • Storage lines 53 for supplying capacitance are formed parallel to the gate lines 17 .
  • the structure of the pixel portions of the TFT LCD device of the present invention described above is the same as that of a conventional TFT LCD device, since the present invention is characterized that pixel electrodes are not formed of a single layer, but of a multi-layered conductive layer.
  • FIG. 4 shows a cross-section taken along line 1 — 1 of FIG. 3.
  • a top gate polysilicon type thin film transistor is disposed on a substrate 10 .
  • Source and drain electrodes 121 , 121 ′ of the transistor formed on an interlayer insulating layer 19 are connected to source and a drain regions through the contact holes 22 in the interlayer insulating layer 19 .
  • the source and drain electrodes 121 , 121 ′ are composed of three-layered metal layer having a lower MoW layer 122 , an intermediate AlNd layer 123 , and an upper MoW layer 124 .
  • the protecting layer 23 composed of a photo-sensitive organic insulating layer is formed to a thickness of several ⁇ m.
  • the protecting layer 23 has via holes formed on the drain electrodes 121 ′.
  • the drain electrodes 121 ′ are connected through the via holes to the pixel electrodes 127 formed on the protecting layer 23 .
  • the pixel electrodes 127 are composed of a lower MoW layer 271 and an upper AlNd layer 272 .
  • FIG. 5 through FIG. 8 are diagrams showing the process steps of forming a pixel portion of the TFT LCD device of FIG. 4 .
  • an amorphous silicon layer is formed on a substrate 10 .
  • the amorphous silicon layer is transformed into a polysilicon layer by performing a laser annealing process.
  • a silicon oxide layer can be formed as a blocking layer 11 to a thickness of several hundred to 1000 ⁇ .
  • the polysilicon layer is patterned to form an active region pattern 13 having a plurality of line or bar shaped portions.
  • a gate insulating layer 15 is deposited.
  • the gate insulating layer 15 is formed by depositing a silicon oxide layer or a silicon nitride layer to a thickness of one hundred to several hundred A by a chemical vapor deposition (CVD) method. On the gate insulating layer 15 , gate lines 17 are formed. Storage lines 53 are also formed along with the gate lines 17 .
  • the gate lines 17 are composed of a single metal layer containing Al, or a multi-layered metal layer including an Al-containing metal layer and a MoW layer or a Cr layer. It will be noted that each gate line 17 includes a gate electrode and a gate pad in a pixel.
  • An ion implantation is performed to the active region pattern 13 by using the gate electrodes as an ion implantation mask.
  • a line shaped portion of the active region pattern 13 is divided into an source and an drain regions.
  • the ion implantation process is performed twice to each of n-type and p-type impurities since in the polysilicon LCD device, n-type transistors along with p-type transistors are generally disposed at a peripheral portion.
  • an ion implantation mask is formed.
  • a silicon nitride layer or a silicon oxide layer is deposited on the gate line 17 to form a interlayer insulating layer 19 by a CVD method.
  • the interlayer insulating layer 19 and the gate insulating layer 15 are removed to form contact holes 22 exposing a portion of the active region pattern 13 .
  • a three-layered metal layer having a lower MoW layer 122 , an intermediate AlNd layer 123 , and an upper MoW layer 124 is formed over the whole surface of the substrate by a sputtering method. Thereafter, the three-layered metal layer is patterned by using a photo-resist pattern as an etch mask to form source and drain electrodes 121 , 121 ′ and data lines (not shown in FIG. 5 ).
  • the embodiment of the present invention described above shows an example of a low temperature polysilicon TFT LCD device having an active region formed of polysilicon, but the present invention can be also applied to an amorphous silicon TFT LCD device having an active region formed of amorphous silicon, which a laser annealing process is not performed after a amorphous silicon layer is formed. Also, the present invention can be applied to a bottom gate type TFT LCD devices as well as a top gate type TFT LCD device.
  • a protecting layer 23 is formed of a photo-sensitive organic insulating layer over the whole surface of the substrate 10 .
  • the photo-sensitive organic insulating layer is convenient compared with other insulating layers since it can be patterned without a separate etching process.
  • via holes are formed to exposure a portion of each drain electrode 121 ′ by means of a photo-exposure and development process.
  • a developer of strong oxidizing properties contacts the drain electrodes 121 ′ through the via holes.
  • the upper layer 124 of the drain electrodes 121 ′ is composed of MoW that is strongly resistant to oxidation, it does not form insulating oxides.
  • coarse projections can be formed on the upper surface of the protecting layer 23 .
  • the coarse projections form micro lens to enhance condensing efficiency of reflective plates or pixel electrodes 127 which are formed later.
  • a lower MoW and an upper AlNd layers 271 , 272 are continuously formed as lower and upper layers of pixel electrodes 127 by a sputtering process. Then, the lower MoW and the upper AlNd layers 271 , 272 are etched by using a photoresist pattern as an etch mask to form double layered reflection plates, i.e., double layered pixel electrodes 127 .
  • the MoW layer is convenient compared with a Cr layer since it can be continuously etched with the AlNd layer. It is possible that other conductive metal layer is interposed between the MoW layer and the AlNd layer.
  • the embodiment of the present invention described above shows a reflective TFT LCD device using a reflective layer as pixel electrodes, but the present invention is not limited to the embodiment.
  • the present invention can be also applied to a transflective TFT LCD as well as the reflective TFT LCD.
  • a pixel electrode pattern is formed in a pixel area.
  • the pixel electrode pattern is composed of transparent electrodes.
  • a Cr and an Al layers are continuously formed over the whole surface of a substrate over which the transparent electrode are formed, and patterned to form a reflective layer pixel electrode pattern having windows in a portion of the pixel area.
  • the drain electrodes are composed of three-layered metal layer having a lower MoW layer, an intermediate Al layer, and an upper MoW layer.
  • the upper layer of the drain electrodes and the lower layer of the pixel electrodes are not formed of same materials, but a problem due to direct contact between the lower Al layer of the pixel electrodes and the upper layer of the drain electrodes can be considerably reduced.
  • the present invention provides a TFT LCD device which can prevent electrochemical effect such as battery effect having bad influence on the fabrication process, thereby preventing damage of reflective electrodes and increasing reflectance thereof to obtain more high definition.

Abstract

In a TFT LCD device comprising a substrate, at least one thin film transistor formed on the substrate, having a source electrode and a drain electrode, an insulating layer formed over the whole surface of the substrate on which the thin film transistor is formed, having at least one contact hole exposing a portion of the drain electrode, and reflective layer pixel electrode corresponding to the thin film transistor, formed on the insulating layer to be connected with the drain electrode through the contact hole, the pixel electrode is formed of a multi-layered conductive layer. The drain electrode is composed of multiple layers, and the most upper layer of the multiple layers is one selected from a Cr layer and a MoW layer. Preferably, the multi-layered conductive layer is composed of two-layered conductive layer having a lower layer of the same material as that of the most upper layer and an upper layer of Al-containing metal.

Description

CROSS REFERENCE TO PRIOR APPLICATIONS
This application is a reissue application from U.S. patent application Ser. No. 09/911,613 filed on Jul. 25, 2001 and issued as U.S. Pat. No. 6,836,299, which claims priority to and the benefit of Korean Patent Application No. 2001 - 06820 filed on Feb. 12, 2001, which are all hereby incorporated by reference for all purposes as if fully set forth herein.
FIELD OF THE INVENTION
The present invention relates to a thin film transistor liquid crystal display (TFT LCD) device, and more particularly to a reflective or transflective TFT LCD device having multi-layered pixel electrodes connected to drain electrodes with interposing an insulating layer therebetween.
BACKGROUND OF THE INVENTION
TFT LCD devices are generally classified into a reflective TFT LCD device using a reflective layer as pixel electrodes, a transmissive TFT LCD device using transparent pixel electrodes, and a transflective TFT LCD device using a reflective layer having a transmissive region in a portion of a reflective region as pixel electrodes, according to reflectance or permeability of pixel electrodes. In the TFT LCD devices, to supply voltage for controlling arrangement of liquid crystal to the pixel electrodes, drain electrodes of thin film transistors formed in each pixel are connected to the corresponding pixel electrodes. The pixel electrodes are generally connected to the drain electrodes through via holes formed in an interlayer insulating layer.
In a transmissive TFT LCD device, pixel electrodes use indium oxides to form transparent electrodes. However, this material may cause a problem that oxidizes wires of aluminum (Al) to form insulating oxides and thereby hinders in supplying voltage to the pixel electrodes. Therefore, in the transmissive TFT LCD device, drain electrodes are formed of a single layer of metal such as chromium (Cr), or a two-layered conductive layer having an Al-contained metal layer and a molybdenum tungsten (MoW) or Cr layer formed on the Al-contained metal layer.
In a reflective TFT LCD device, pixel electrodes usually use aluminum neodymium (AlNd). In this case, materials forming drain electrodes are also limited. Referring to FIG. 1, a pixel portion of the reflective TFT LCD device using an easily oxidized metal such as Al as source and drain electrodes 21, 21′ is illustrated. On the source and drain electrodes 21, 21′, a protecting layer 23, for example a photosensitive organic insulating layer is disposed. The protecting layer 23 has via holes for connecting the drain electrodes 21′ to the pixel electrodes 27. Therefore, in an exposure, development and cleaning process of photolithography for forming the via holes, if developer or detergent of strong oxidant contacts the drain electrodes 21′ through the via holes, the upper layer of the drain electrodes 21′ may form insulating oxides 25. The insulating oxides 25 increase contact resistance between the drain electrodes 21′ and pixel electrodes 27.
To solve the problem, an upper layer 212′ of the drain electrode 21′ can be formed of metal such as MoW that is resistant against oxidation, as shown in FIG. 2. However, in this case, battery effect, like inside a chemical battery, can be occurred due to difference of electro-negativity between the upper layer 212′ of the drain electrode 21′ and an Al-containing reflective layer forming the pixel electrodes 27. For example, due to corroding by the battery effect, gaps 29 similar to spike phenomenon generating at the interface between a silicon layer and an Al layer can be formed at the interface between the upper layer 212′ and the Al-containing reflective layer. Also, as a portion of the Al-containing reflective layer around the gaps 29 falls, the Al-containing reflective layer can generate cracks 31 around the via holes. These gaps 29 or cracks 31 cause a problem increasing contact resistance between the pixel electrodes 27 and the drain electrodes 21′.
Generally, the battery effect increases in proportion to the difference of surface area and electronegativity between two metal layers. Accordingly, the drain electrodes 21′ that usually has relatively very small surface area compared to the pixel electrodes 27 enforces the battery effect more, thereby increasing the contact resistance between the pixel electrodes 27 and the drain electrodes 21′ more.
To solve the battery effect, it can be considered to use a MoW or Cr layer as reflective plates or pixel electrodes 27. However, such a choice deteriorates reflectance and conductivity of the pixel electrodes.
Accordingly, a new TFT LCD device, which can prevent increase of contact resistance due to the battery effect or surface oxidation at the interface between the pixel electrodes and the drain electrodes with maintaining highly reflectance and conductivity, is required.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an improved TFT LCD device that can prevent battery effect at the interface between pixel electrodes and drain electrodes, while maintaining high reflectance and conductivity.
It is another object of the present invention to provide an improved TFT LCD device that can prevent insulating oxides at the interface between pixel electrodes and drain electrodes, while maintaining high reflectance and conductivity.
It is other object of the present invention to provide an improved TFT LCD device that can prevent contact resistance increase at the interface between pixel electrodes and drain electrodes, while maintaining high reflectance and conductivity.
These and other objects are provided, according to the present invention, by a TFT LCD device having pixel electrodes formed of a multi-layered conductive layer. Preferably, drain electrodes are composed of multiple layers, and the most upper layer of the multiple layers is composed of a metal layer that is strongly resistant against oxidation. Also, the multi-layered conductive layer is composed of two-layered conductive layer having a lower layer of metal that has small electro-negativity difference between itself and the most upper layer of the drain electrodes and an upper layer of Al-containing metal.
In the present invention, the lower layer of the two-layered conductive layer is preferably composed of the same material as that of the most upper layer of the drain electrodes, for example one selected from a Cr layer and a MoW layer. The Al-containing metal usually uses pure Al or AlNd. Accordingly, the two-layered conductive layer is formed by depositing the lower layer of one selected from a Cr layer and a MoW layer and the upper layer of Al-containing metal and then patterning them.
It is noted that the multi-layered conductive layer is not limited to the two-layered conductive layer. To reduce the battery effect efficiently, if necessary, an intermediate metal layer can be interposed between the lower and upper layers of the two-layered conductive layer.
The multiple layers of the drain electrodes usually use metal having a high conductivity to prevent a signal voltage drop due to the data line resistance. Also, the drain electrodes are formed of the same conductive material as that of the data lines connected to source electrodes. Accordingly, the multiple layers forming the drain electrodes are preferably composed of a two-layered layer having an Al layer for increasing conductivity and a Cr or MoW layer strongly resistant to oxidation formed on the Al layer, or a three-layered layer having an intermediate Al layer and an upper and a lower Cr or MoW layers formed on and under the intermediate Al-contained layer to prevent spike phenomenon due to silicon layers over an active area. When the drain electrodes formed along with the data lines are of the three-layered layer, the MoW layer as the lower and upper layer preferably is better than the Cr layer since it is easy to be patterned along with the intermediate Al-containing layer.
According to the present invention, since the upper layer of the drain electrodes and the lower layer of the pixel electrodes are formed of same material or metals having small differences in electro-negativity, the battery effect therebetween can be ignored. Also, in the two-layered conductive layer of the pixel electrodes, the upper layer and the lower layer are concurrently formed to have the same surface area by means of same patterning process. This may result in difference in electro-negativity, but battery effect can be prevented. Thus, at the interface between the pixel electrodes and the drain electrodes, the battery effect is considerably reduced and the spike phenomenon or cracks is prevented.
Also, since the upper layer of the drain electrodes is composed of a metal layer strongly resistant to oxidation, insulating oxides are not formed on the upper surface thereof even though it is exposed to oxidizing material such as developer or detergent, and thereby preventing contact resistance increase.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 and FIG. 2 are cross-sectional views of a pixel portion of a conventional reflective TFT LCD device.
FIG. 3 is a top plan view showing a layout of pixel portions of a top gate type polysilicon TFT LCD device in accordance with one embodiment of the present invention.
FIG. 4 shows a cross-section taken along line 11 of FIG. 3.
FIGS. 5, 6, 7 and 8 are diagrams showing the process steps of a method for manufacturing a pixel portion of the top gate type polysilicon TFT LCD device shown in FIG. 4.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which a preferred embodiment of the invention is shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiment set forth herein. Like numbers refer to like elements throughout.
FIG. 3 is a top plan view showing a layout of pixel portions of a top gate type polysilicon TFT LCD device in accordance with one embodiment of the present invention. Referring to FIG. 3, it can be appreciated that in the top plan view, the pixel portions of the TFT LCD device of the present invention has the same structure as a general reflective or transmissive TFT LCD device. Namely, the TFT LCD device has an active region pattern 13 formed on a substrate, a gate insulating layer (15 of FIG. 4) formed on the active region pattern 13, and thin film transistors formed on the gate insulating layer 15. The thin film transistors have gate lines 17 including a plurality of gate electrodes, each of which divides a line or bar shaped sub-region of the active region pattern 13 into two portions with crossing the active region pattern 13.
The gate electrodes which form a portion of the gate lines 17 formed in a transverse direction are covered by an interlayer insulating layer (19 of FIG. 4) formed on the gate lines 17. In the interlayer insulating layer 19, contact holes 22 are formed to connect source and drain electrodes 121, 121′ with the two portions of each line shaped sub-region of the active region pattern 13 divided by the gate electrodes. The source and drain electrodes 121, 121′ formed respectively over the two portions are composed of a conductive layer. Of the source and drain electrodes 121, 121′, the source electrodes 121 are connected to data lines 210. The data lines 210 composed of a conductive layer of the same material as the source and drain electrodes 121, 121′ are disposed in a direction vertical to the gate lines 17.
On the source and drain electrodes 121, 121′ and the data line 210, a protecting layer (23 of FIG. 4) is formed. The protecting layer has via holes 24 exposing a portion of each drain electrode 121′. Pixel electrodes 127 composed of a conductive layer are formed on the protecting layer to be connected with the drain electrodes 121′ through 20 the via holes 24. Storage lines 53 for supplying capacitance are formed parallel to the gate lines 17.
It is natural that the structure of the pixel portions of the TFT LCD device of the present invention described above is the same as that of a conventional TFT LCD device, since the present invention is characterized that pixel electrodes are not formed of a single layer, but of a multi-layered conductive layer.
FIG. 4 shows a cross-section taken along line 11 of FIG. 3. A top gate polysilicon type thin film transistor is disposed on a substrate 10. Source and drain electrodes 121, 121′ of the transistor formed on an interlayer insulating layer 19 are connected to source and a drain regions through the contact holes 22 in the interlayer insulating layer 19. The source and drain electrodes 121, 121′ are composed of three-layered metal layer having a lower MoW layer 122, an intermediate AlNd layer 123, and an upper MoW layer 124. On the source and drain electrodes 121, 121′, the protecting layer 23 composed of a photo-sensitive organic insulating layer is formed to a thickness of several μm. The protecting layer 23 has via holes formed on the drain electrodes 121′. The drain electrodes 121′ are connected through the via holes to the pixel electrodes 127 formed on the protecting layer 23. The pixel electrodes 127 are composed of a lower MoW layer 271 and an upper AlNd layer 272.
A method for manufacturing a TFT LCD device in accordance with the present invention will now be described. FIG. 5 through FIG. 8 are diagrams showing the process steps of forming a pixel portion of the TFT LCD device of FIG. 4.
Referring to FIG. 5, first, an amorphous silicon layer is formed on a substrate 10. Then, the amorphous silicon layer is transformed into a polysilicon layer by performing a laser annealing process. Generally, before the amorphous silicon layer is formed, a silicon oxide layer can be formed as a blocking layer 11 to a thickness of several hundred to 1000 Å. An then, the polysilicon layer is patterned to form an active region pattern 13 having a plurality of line or bar shaped portions. On the active region pattern 13, a gate insulating layer 15 is deposited. The gate insulating layer 15 is formed by depositing a silicon oxide layer or a silicon nitride layer to a thickness of one hundred to several hundred A by a chemical vapor deposition (CVD) method. On the gate insulating layer 15, gate lines 17 are formed. Storage lines 53 are also formed along with the gate lines 17. The gate lines 17 are composed of a single metal layer containing Al, or a multi-layered metal layer including an Al-containing metal layer and a MoW layer or a Cr layer. It will be noted that each gate line 17 includes a gate electrode and a gate pad in a pixel.
An ion implantation is performed to the active region pattern 13 by using the gate electrodes as an ion implantation mask. Thus, a line shaped portion of the active region pattern 13 is divided into an source and an drain regions. The ion implantation process is performed twice to each of n-type and p-type impurities since in the polysilicon LCD device, n-type transistors along with p-type transistors are generally disposed at a peripheral portion. In each ion implantation process, an ion implantation mask is formed.
Referring to FIG. 6, a silicon nitride layer or a silicon oxide layer is deposited on the gate line 17 to form a interlayer insulating layer 19 by a CVD method. On the source and drain regions, the interlayer insulating layer 19 and the gate insulating layer 15 are removed to form contact holes 22 exposing a portion of the active region pattern 13. Then, a three-layered metal layer having a lower MoW layer 122, an intermediate AlNd layer 123, and an upper MoW layer 124 is formed over the whole surface of the substrate by a sputtering method. Thereafter, the three-layered metal layer is patterned by using a photo-resist pattern as an etch mask to form source and drain electrodes 121, 121′ and data lines ( not shown in FIG. 5).
The embodiment of the present invention described above shows an example of a low temperature polysilicon TFT LCD device having an active region formed of polysilicon, but the present invention can be also applied to an amorphous silicon TFT LCD device having an active region formed of amorphous silicon, which a laser annealing process is not performed after a amorphous silicon layer is formed. Also, the present invention can be applied to a bottom gate type TFT LCD devices as well as a top gate type TFT LCD device.
Referring to FIG. 7, a protecting layer 23 is formed of a photo-sensitive organic insulating layer over the whole surface of the substrate 10. The photo-sensitive organic insulating layer is convenient compared with other insulating layers since it can be patterned without a separate etching process. Then, via holes are formed to exposure a portion of each drain electrode 121′ by means of a photo-exposure and development process. At this time, a developer of strong oxidizing properties contacts the drain electrodes 121′ through the via holes. However, since the upper layer 124 of the drain electrodes 121′ is composed of MoW that is strongly resistant to oxidation, it does not form insulating oxides. Also, by controlling the photo-exposure, coarse projections can be formed on the upper surface of the protecting layer 23. The coarse projections form micro lens to enhance condensing efficiency of reflective plates or pixel electrodes 127 which are formed later.
Referring to FIG. 8, a lower MoW and an upper AlNd layers 271, 272 are continuously formed as lower and upper layers of pixel electrodes 127 by a sputtering process. Then, the lower MoW and the upper AlNd layers 271, 272 are etched by using a photoresist pattern as an etch mask to form double layered reflection plates, i.e., double layered pixel electrodes 127. The MoW layer is convenient compared with a Cr layer since it can be continuously etched with the AlNd layer. It is possible that other conductive metal layer is interposed between the MoW layer and the AlNd layer. For example, since a large electro-negativity between the lower and the upper metal layers 271, 272 of the pixel electrodes 127 forming the reflective plate can increase the battery effect due to material difference, it can be considered that a buffer metal layer of electro-negativity having a middle level of the lower and the upper metal layers 271, 272 be interposed therebetween.
The embodiment of the present invention described above shows a reflective TFT LCD device using a reflective layer as pixel electrodes, but the present invention is not limited to the embodiment. The present invention can be also applied to a transflective TFT LCD as well as the reflective TFT LCD. For example, After a protecting layer exposing a portion of each drain electrode is formed, a pixel electrode pattern is formed in a pixel area. The pixel electrode pattern is composed of transparent electrodes. Then, a Cr and an Al layers are continuously formed over the whole surface of a substrate over which the transparent electrode are formed, and patterned to form a reflective layer pixel electrode pattern having windows in a portion of the pixel area. The drain electrodes are composed of three-layered metal layer having a lower MoW layer, an intermediate Al layer, and an upper MoW layer. In this example, the upper layer of the drain electrodes and the lower layer of the pixel electrodes are not formed of same materials, but a problem due to direct contact between the lower Al layer of the pixel electrodes and the upper layer of the drain electrodes can be considerably reduced.
As apparent from the foregoing description, it can be appreciated that the present invention provides a TFT LCD device which can prevent electrochemical effect such as battery effect having bad influence on the fabrication process, thereby preventing damage of reflective electrodes and increasing reflectance thereof to obtain more high definition.
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purpose of limitation, the scope of the invention being set forth in the following claims.

Claims (15)

1. A thin film transistor liquid crystal device (TFT LCD), comprising:
a substrate;
a thin film transistor TFT formed on said substrate and having a source electrode and a drain electrode, wherein the drain electrode is formed of multiple layers comprising an uppermost layer formed of Cr or MoW;
an insulating layer formed over said thin film transistor TFT formed of a photosensitive insulating material and having a contact hole exposing a portion of the drain electrode; and
a pixel electrode formed on said insulating layer, and connected to the drain electrode through the contact hole, wherein the pixel electrode is formed of multiple layers comprising a lower layer formed of the same material as the uppermost layer of the drain electrode and an upper layer formed of metal containing Al,
wherein the pixel electrode further comprises a intermediate layer formed between the lower layer and the upper layer and formed of a material having an electro-negativity ranging between that of the lower layer and that of the upper layer.
2. The TFT LCD according to claim 1, wherein the pixel electrode further comprises an intermediate layer formed between the upper layer and the lower layer and formed of a material having an electro-negativity that is between that of the lower layer and that of the upper layer.
3. The TFT LCD according to claim 1, A thin film transistor liquid crystal device (TFT LCD), comprising:
a substrate;
a TFT formed on said substrate and having a source electrode and a drain electrode, wherein the drain electrode is formed of multiple layers comprising an uppermost layer formed of Cr or MoW;
an insulating layer formed over said TFT, formed of a photosensitive insulating material and having a contact hole exposing a portion of the drain electrode; and
a pixel electrode formed on said insulating layer, and connected to the drain electrode through the contact hole, wherein the pixel electrode is formed of multiple layers comprising a lower layer formed of the same material as the uppermost layer of the drain electrode and an upper layer formed of metal containing Al, wherein the drain electrode is formed of multiple layers further comprisescomprising a lower layer formed of MoWand , an intermediate metal layer containing Al, and the uppermost layer formed of Cr or MoW.
4. The TFT LCD according to claim 1, wherein said thin film transistor is a top-gate type polysilicon thin film transistor.
5. The TFT LCD according to claim 1, wherein said insulating layer is formed of a photo-sensitive organic insulating layer.
6. The TFT LCD according to claim 1, further comprising a plurality of small projections formed on an upper surface of said insulating layer and works as micro lens.
7. A thin film transistor liquid crystal device (TFT LCD), comprising:
a substrate;
a thin film transistor formed on said substrate and having a source electrode and a drain electrode, wherein the drain electrode is formed of Cr or MoW;
an insulating layer formed over said thin film transistor and having a contact hole exposing a portion of the drain electrode; and
a pixel electrode formed on said insulating layer and connected to the drain electrode through the contact hole,
wherein said pixel electrode is multi-layered and comprises a lower layer formed of the same material as the drain electrode.
8. The TFT LCD of claim 7, wherein the pixel electrode further comprises an upper layer formed of metal containing Al.
9. The TFT of claim 7, wherein the pixel electrode further comprises A thin film transistor liquid crystal device (TFT LCD), comprising:
a substrate;
a TFT formed on said substrate and having a source electrode and a drain electrode, wherein the drain electrode is formed of multiple layers comprising an uppermost layer formed of Cr or MoW;
an insulating layer formed over said TFT having a contact hole exposing a portion of the drain electrode; and
a pixel electrode formed on said insulating layer and connected to the drain electrode through the contact hole, wherein said pixel electrode is multi-layered and comprises a lower layer formed of same material as the uppermost layer of the drain electrode, an upper layer formed of metal containing Al, and
an intermediate layer formed between the upper layer and the lower layer and formed of a material having an electro-negativity ranging that is between that of the lower layer and that of the upper layer.
10. The TFT LCD according to claim 7, A thin film transistor liquid crystal device (TFT LCD), comprising:
a substrate;
a TFT formed on said substrate and having a source electrode and a drain electrode, wherein the drain electrode is formed of multiple layers comprising an uppermost layer formed of Cr or MoW;
an insulating layer formed over said TFT having a contact hole exposing a portion of the drain electrode; and
a pixel electrode formed on said insulating layer and connected to the drain electrode through the contact hole, wherein said pixel electrode is multi-layered and comprises a lower layer formed of same material as the uppermost layer of the drain electrode; and
wherein the drain electrode is multi-layered and comprises an upper the uppermost layer formed of Cr or MoW, a lower layer formed of MoW and an intermediate metal layer containing Al.
11. The TFT LCD according to claim 7, wherein said thin film transistor is a top-gate type polysilicon thin film transistor.
12. The TFT LCD according to claim 7, wherein said insulating layer is formed of a photo-sensitive organic insulating layer.
13. The TFT LCD according to claim 7, further comprising a plurality of small projections formed on an upper surface of said insulating layer and works as micro lens.
14. A thin film transistor liquid crystal device (TFT LCD), comprising:
a substrate;
a TFT formed on the substrate and having a source electrode and a drain electrode, wherein the drain electrode is formed of multiple layers comprising an uppermost layer formed of Cr or MoW;
an insulating layer formed over said TFT and having a contact hole exposing a portion of the drain electrode; and
a pixel electrode formed on the insulating layer, wherein the pixel electrode is formed of multiple layers comprising:
a lower layer formed of a same metal as the uppermost layer and in contact with the drain electrode through the contact hole, and
a upper layer formed over the lower layer and formed of a different metal from the uppermost layer;
wherein the pixel electrode further comprises an intermediate layer formed between the lower layer and the upper layer and formed of a material having an electro-negativity ranging between that of the lower layer and that of the upper layer.
15. A thin film transistor liquid crystal device (TFT LCD), comprising:
a substrate;
a TFT formed on the substrate and having a source electrode and a drain electrode,
wherein the drain electrode is formed of multiple layers comprising an uppermost layer formed of Cr or Mo;
an insulating layer formed over said TFT and having a contact hole exposing a portion of the drain electrode; and
a pixel electrode formed on the insulating layer, wherein the pixel electrode is formed of multiple layers comprising:
a lower layer formed of a same metal as the uppermost layer and in contact with the drain electrode through the contact hole, and
an upper layer formed over the lower layer and formed of a different metal from the uppermost layer;
wherein the drain electrode is formed of multiple layers comprising:
the uppermost layer formed of Cr or MoW,
a second electrode layer formed of Al and formed under a first electrode layer, and
a third electrode layer formed of MoW and formed under the second electrode layer.
US11/433,903 2001-02-12 2006-05-11 TFT LCD device having multi-layered pixel electrodes Expired - Lifetime USRE41927E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/433,903 USRE41927E1 (en) 2001-02-12 2006-05-11 TFT LCD device having multi-layered pixel electrodes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR2001-06820 2001-02-12
KR1020010006820A KR100766493B1 (en) 2001-02-12 2001-02-12 Tft lcd
US09/911,613 US6836299B2 (en) 2001-02-12 2001-07-25 TFT LCD device having multi-layered pixel electrodes
US11/433,903 USRE41927E1 (en) 2001-02-12 2006-05-11 TFT LCD device having multi-layered pixel electrodes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/911,613 Reissue US6836299B2 (en) 2001-02-12 2001-07-25 TFT LCD device having multi-layered pixel electrodes

Publications (1)

Publication Number Publication Date
USRE41927E1 true USRE41927E1 (en) 2010-11-16

Family

ID=19705643

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/911,613 Ceased US6836299B2 (en) 2001-02-12 2001-07-25 TFT LCD device having multi-layered pixel electrodes
US11/433,903 Expired - Lifetime USRE41927E1 (en) 2001-02-12 2006-05-11 TFT LCD device having multi-layered pixel electrodes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/911,613 Ceased US6836299B2 (en) 2001-02-12 2001-07-25 TFT LCD device having multi-layered pixel electrodes

Country Status (4)

Country Link
US (2) US6836299B2 (en)
JP (1) JP4707263B2 (en)
KR (1) KR100766493B1 (en)
TW (1) TWI240839B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8841662B2 (en) 2009-11-06 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20160246142A1 (en) * 2012-05-09 2016-08-25 Japan Display Inc. Display device

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620655B2 (en) * 2000-11-01 2003-09-16 Lg.Phillips Lcd Co., Ltd. Array substrate for transflective LCD device and method of fabricating the same
KR100467944B1 (en) * 2002-07-15 2005-01-24 엘지.필립스 엘시디 주식회사 Transflective Liquid Crystal Display Device and Method for fabricating the same
KR100886268B1 (en) * 2002-10-18 2009-03-04 하이디스 테크놀로지 주식회사 Liquid Crystal Display and manufacturing method thereof
KR100872470B1 (en) * 2002-10-21 2008-12-05 삼성전자주식회사 Array substrate and method of manufacturing the same
US7714820B2 (en) * 2003-06-27 2010-05-11 Samsung Electronics Co., Ltd. Contact structure of conductive films and thin film transistor array panel including the same
JP4552407B2 (en) * 2003-09-17 2010-09-29 カシオ計算機株式会社 Thin film transistor
KR100752214B1 (en) * 2003-10-16 2007-08-28 엘지.필립스 엘시디 주식회사 Method For Fabricating Transflective Type Liquid Crystal Display Device
KR100623247B1 (en) * 2003-12-22 2006-09-18 삼성에스디아이 주식회사 flat panel display device and fabrication method of the same
CN100353244C (en) * 2004-01-17 2007-12-05 统宝光电股份有限公司 Liquid crystal display device, and its manufacturing method anbd transistor array substrate and manufacturing method
KR100741966B1 (en) * 2004-01-27 2007-07-23 삼성에스디아이 주식회사 Organic Electro Luminescence Display device and Fabrication Method thereof
KR100603336B1 (en) * 2004-04-07 2006-07-20 삼성에스디아이 주식회사 Electro-luminescence display device and method for producing the same
KR100616708B1 (en) * 2004-04-12 2006-08-28 엘지.필립스 엘시디 주식회사 array board of liquid crystal display and fabrication method thereof
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
KR100626008B1 (en) * 2004-06-30 2006-09-20 삼성에스디아이 주식회사 Thin film transistor, and flat panel display device therewith
KR100696471B1 (en) * 2004-07-02 2007-03-19 삼성에스디아이 주식회사 Electro luminescence device
KR100731733B1 (en) * 2004-11-24 2007-06-22 삼성에스디아이 주식회사 LCD and fabricating method of the same
US7858451B2 (en) * 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
KR20060104708A (en) * 2005-03-31 2006-10-09 엘지.필립스 엘시디 주식회사 An array substrate for in-plane switching mode lcd and method of fabricating of the same
US8218120B2 (en) * 2005-03-31 2012-07-10 Lg Display Co., Ltd. Array substrate for in-plane switching liquid crystal display device and method of fabricating the same
TW200710471A (en) * 2005-07-20 2007-03-16 Samsung Electronics Co Ltd Array substrate for display device
KR20070114533A (en) * 2006-05-29 2007-12-04 삼성전자주식회사 Transflective display device and manufacturing method of the same
KR101284697B1 (en) * 2006-06-30 2013-07-23 엘지디스플레이 주식회사 An array substrate for LCD and method for fabricating thereof
JP5128091B2 (en) 2006-08-04 2013-01-23 三菱電機株式会社 Display device and manufacturing method thereof
JP5007171B2 (en) * 2007-02-13 2012-08-22 三菱電機株式会社 Thin film transistor array substrate, manufacturing method thereof, and display device
JP2010530634A (en) 2007-06-19 2010-09-09 サムスン エレクトロニクス カンパニー リミテッド Oxide semiconductor and thin film transistor including the same
US9041202B2 (en) * 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
KR101002665B1 (en) * 2008-07-02 2010-12-21 삼성모바일디스플레이주식회사 Thin Film Transistor, The method for Using The Same and Organic Light Emitting Display Device Comprising the TFT
US20100224878A1 (en) 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN103053027A (en) * 2010-08-03 2013-04-17 夏普株式会社 Thin film transistor substrate
KR20120089505A (en) 2010-12-10 2012-08-13 삼성전자주식회사 Display device and method of manufacturing the same
KR20140094188A (en) * 2013-01-21 2014-07-30 삼성디스플레이 주식회사 Liquid crystal display device and method for manufacturing the same
CN106229260A (en) 2016-08-31 2016-12-14 深圳市华星光电技术有限公司 A kind of thin film transistor (TFT) and manufacture method thereof
WO2020206492A1 (en) * 2019-04-09 2020-10-15 3DM Biomedical Pty Ltd Electropolishing method
CN113707559B (en) * 2021-08-02 2023-12-01 深圳市华星光电半导体显示技术有限公司 Preparation method of thin film transistor, thin film transistor and display panel

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650537A (en) * 1979-10-01 1981-05-07 Mitsubishi Electric Corp Formation of multilayered wiring for semiconductor device
JPH04253342A (en) 1991-01-29 1992-09-09 Oki Electric Ind Co Ltd Thin film transistor array substrate
JPH0582768A (en) 1991-06-24 1993-04-02 Hitachi Ltd Contact type image sensor
JPH05216069A (en) * 1991-12-09 1993-08-27 Oki Electric Ind Co Ltd Production of lower substrate of active matrix liquid crystal display
JPH06236893A (en) * 1992-12-15 1994-08-23 Matsushita Electric Ind Co Ltd Manufacture of tft liquid crystal display
JPH08328041A (en) 1995-05-30 1996-12-13 Xerox Corp Manufacture of active-matrix liquid-crystal device
JPH1090719A (en) * 1996-09-13 1998-04-10 Toshiba Corp Liquid crystal display device
JPH10173191A (en) 1996-12-06 1998-06-26 Mitsubishi Electric Corp Thin film transistor and manufacture thereof and liquid crystal display provided with the same
JPH10186412A (en) * 1996-12-26 1998-07-14 Seiko Epson Corp Active matrix liquid crystal display device and its production
JPH10282520A (en) * 1997-04-03 1998-10-23 Hitachi Ltd Liquid crystal display device
JPH1187716A (en) * 1997-09-02 1999-03-30 Toshiba Corp Thin film transistor device, fabrication thereof and array substrate for liquid crystal display
US5917563A (en) * 1995-10-16 1999-06-29 Sharp Kabushiki Kaisha Liquid crystal display device having an insulation film made of organic material between an additional capacity and a bus line
US5923390A (en) * 1997-06-26 1999-07-13 Hyundai Electronics Industries Co., Ltd. Liquid crystal display with high aperture ratio and method for manufacturing the same
JPH11218751A (en) 1997-11-25 1999-08-10 Sharp Corp Reflective type liquid crystal display device and its manufacture
US5989945A (en) * 1996-05-15 1999-11-23 Seiko Epson Corporation Thin film device provided with coating film, liquid crystal panel and electronic device, and method for making the thin film device
JP2000029053A (en) * 1998-07-14 2000-01-28 Mitsubishi Electric Corp Liquid crystal display device and is manufacture
KR20000020863A (en) 1998-09-24 2000-04-15 윤종용 Thin film transistor liquid crystal display
US20010020994A1 (en) * 2000-03-10 2001-09-13 Toshiki Kaneko Liquid crystal display device
US20010024187A1 (en) * 2000-03-22 2001-09-27 Kabushiki Kaisha Toshiba Display and method of driving display
US20010040649A1 (en) * 1999-03-16 2001-11-15 Fujitsu Limited Manufacturing method of a liquid crystal display
US6323490B1 (en) * 1998-03-20 2001-11-27 Kabushiki Kaisha Toshiba X-ray semiconductor detector
US6323521B1 (en) * 1997-11-01 2001-11-27 Lg Lcd, Inc. Thin film transistor with electrodes having compressive and tensile stress
US6358759B1 (en) * 1999-07-16 2002-03-19 Seiko Epson Corporation Method for manufacturing electro-optical device, electro-optical device, and electronic equipment
US20020057394A1 (en) * 2000-11-10 2002-05-16 Takuya Takahashi Liquid crystal display units
US20020066902A1 (en) * 2000-05-25 2002-06-06 Makoto Takatoku Method of fabricating thin film transistor
US20020106586A1 (en) * 2000-11-27 2002-08-08 Samsung Electronics Co., Ltd. Method for manufacturing a polysilicon type thin film transistor
US6509942B2 (en) * 2000-01-26 2003-01-21 Sharp Kabushiki Kaisha Liquid crystal display device, wiring substrate, and methods for fabricating the same
US6519014B2 (en) * 1999-12-31 2003-02-11 Lg. Philips Lcd Co., Ltd. Array substrate for a transflective liquid crystal display device and the fabricating method
US6620660B2 (en) * 1998-02-26 2003-09-16 Semiconductor Energy Laboratory Co., Ltd. Active matrix type display device and method of manufacturing the same
US6678017B1 (en) * 1998-06-08 2004-01-13 Casio Computer Co., Ltd. Display panel and method of fabricating the same
US6717632B2 (en) * 2000-10-30 2004-04-06 Lg. Philips Lcd Co., Ltd. Transflective liquid crystal display device and manufacturing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742021A (en) * 1980-08-28 1982-03-09 Toshiba Corp Liquid crystal display device
JP3149793B2 (en) * 1996-07-22 2001-03-26 日本電気株式会社 Reflective liquid crystal display device and method of manufacturing the same
JP4044187B2 (en) * 1997-10-20 2008-02-06 株式会社半導体エネルギー研究所 Active matrix display device and manufacturing method thereof
JP3372882B2 (en) * 1998-01-30 2003-02-04 シャープ株式会社 Method for manufacturing substrate in reflective liquid crystal display device
JP4366732B2 (en) * 1998-09-30 2009-11-18 ソニー株式会社 Method for manufacturing electro-optical device and method for manufacturing drive substrate for electro-optical device
JP2000148042A (en) * 1998-11-12 2000-05-26 Sharp Corp Manufacture of electrode wiring board and manufacture of liquid crystal display device
JP3517363B2 (en) * 1998-11-27 2004-04-12 シャープ株式会社 Manufacturing method of liquid crystal display device
JP2000199899A (en) * 1999-01-06 2000-07-18 Hitachi Ltd Liquid crystal display element and liquid crystal display device using the same
JP2000199912A (en) * 1999-01-06 2000-07-18 Hitachi Ltd Active matrix type liquid crystal display device and its production
JP4815659B2 (en) * 2000-06-09 2011-11-16 ソニー株式会社 Liquid crystal display
KR100858297B1 (en) * 2001-11-02 2008-09-11 삼성전자주식회사 Reflective-transmissive type liquid crystal display device and method of manufacturing the same

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650537A (en) * 1979-10-01 1981-05-07 Mitsubishi Electric Corp Formation of multilayered wiring for semiconductor device
JPH04253342A (en) 1991-01-29 1992-09-09 Oki Electric Ind Co Ltd Thin film transistor array substrate
JPH0582768A (en) 1991-06-24 1993-04-02 Hitachi Ltd Contact type image sensor
JPH05216069A (en) * 1991-12-09 1993-08-27 Oki Electric Ind Co Ltd Production of lower substrate of active matrix liquid crystal display
JPH06236893A (en) * 1992-12-15 1994-08-23 Matsushita Electric Ind Co Ltd Manufacture of tft liquid crystal display
JPH08328041A (en) 1995-05-30 1996-12-13 Xerox Corp Manufacture of active-matrix liquid-crystal device
US5917563A (en) * 1995-10-16 1999-06-29 Sharp Kabushiki Kaisha Liquid crystal display device having an insulation film made of organic material between an additional capacity and a bus line
US5989945A (en) * 1996-05-15 1999-11-23 Seiko Epson Corporation Thin film device provided with coating film, liquid crystal panel and electronic device, and method for making the thin film device
JPH1090719A (en) * 1996-09-13 1998-04-10 Toshiba Corp Liquid crystal display device
JPH10173191A (en) 1996-12-06 1998-06-26 Mitsubishi Electric Corp Thin film transistor and manufacture thereof and liquid crystal display provided with the same
JPH10186412A (en) * 1996-12-26 1998-07-14 Seiko Epson Corp Active matrix liquid crystal display device and its production
JPH10282520A (en) * 1997-04-03 1998-10-23 Hitachi Ltd Liquid crystal display device
US5923390A (en) * 1997-06-26 1999-07-13 Hyundai Electronics Industries Co., Ltd. Liquid crystal display with high aperture ratio and method for manufacturing the same
JPH1187716A (en) * 1997-09-02 1999-03-30 Toshiba Corp Thin film transistor device, fabrication thereof and array substrate for liquid crystal display
US6323521B1 (en) * 1997-11-01 2001-11-27 Lg Lcd, Inc. Thin film transistor with electrodes having compressive and tensile stress
JPH11218751A (en) 1997-11-25 1999-08-10 Sharp Corp Reflective type liquid crystal display device and its manufacture
US6081310A (en) * 1997-11-25 2000-06-27 Sharp Kabushiki Kaisha Reflection-type liquid crystal display having a silver or silver alloy upper electrode layer
US6620660B2 (en) * 1998-02-26 2003-09-16 Semiconductor Energy Laboratory Co., Ltd. Active matrix type display device and method of manufacturing the same
US6323490B1 (en) * 1998-03-20 2001-11-27 Kabushiki Kaisha Toshiba X-ray semiconductor detector
US6678017B1 (en) * 1998-06-08 2004-01-13 Casio Computer Co., Ltd. Display panel and method of fabricating the same
JP2000029053A (en) * 1998-07-14 2000-01-28 Mitsubishi Electric Corp Liquid crystal display device and is manufacture
US6291136B1 (en) * 1998-07-14 2001-09-18 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a liquid crystal display
KR20000020863A (en) 1998-09-24 2000-04-15 윤종용 Thin film transistor liquid crystal display
US20010040649A1 (en) * 1999-03-16 2001-11-15 Fujitsu Limited Manufacturing method of a liquid crystal display
US6358759B1 (en) * 1999-07-16 2002-03-19 Seiko Epson Corporation Method for manufacturing electro-optical device, electro-optical device, and electronic equipment
US6519014B2 (en) * 1999-12-31 2003-02-11 Lg. Philips Lcd Co., Ltd. Array substrate for a transflective liquid crystal display device and the fabricating method
US6509942B2 (en) * 2000-01-26 2003-01-21 Sharp Kabushiki Kaisha Liquid crystal display device, wiring substrate, and methods for fabricating the same
US20010020994A1 (en) * 2000-03-10 2001-09-13 Toshiki Kaneko Liquid crystal display device
US20010024187A1 (en) * 2000-03-22 2001-09-27 Kabushiki Kaisha Toshiba Display and method of driving display
US20020066902A1 (en) * 2000-05-25 2002-06-06 Makoto Takatoku Method of fabricating thin film transistor
US6717632B2 (en) * 2000-10-30 2004-04-06 Lg. Philips Lcd Co., Ltd. Transflective liquid crystal display device and manufacturing method thereof
US20020057394A1 (en) * 2000-11-10 2002-05-16 Takuya Takahashi Liquid crystal display units
US20020106586A1 (en) * 2000-11-27 2002-08-08 Samsung Electronics Co., Ltd. Method for manufacturing a polysilicon type thin film transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8841662B2 (en) 2009-11-06 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10002949B2 (en) 2009-11-06 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20160246142A1 (en) * 2012-05-09 2016-08-25 Japan Display Inc. Display device

Also Published As

Publication number Publication date
KR100766493B1 (en) 2007-10-15
KR20020066574A (en) 2002-08-19
US20020109797A1 (en) 2002-08-15
JP4707263B2 (en) 2011-06-22
TWI240839B (en) 2005-10-01
US6836299B2 (en) 2004-12-28
JP2002258325A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
USRE41927E1 (en) TFT LCD device having multi-layered pixel electrodes
US7593068B2 (en) Liquid crystal display device and method of fabricating the same
US7189998B2 (en) Thin film transistor array panel for a liquid crystal display
US7435629B2 (en) Thin film transistor array panel and a manufacturing method thereof
JP5096006B2 (en) Contact portion and manufacturing method thereof, thin film transistor array panel and manufacturing method thereof
US20070102770A1 (en) Thin film transistor array panel and manufacturing method thereof
US8173494B2 (en) Thin film transistor array and method of manufacturing the same
KR20020010212A (en) Thin film transistor array panel and method manufacturing the same
JP2008010440A (en) Active matrix tft array substrate, and manufacturing method thereof
JP4802462B2 (en) Method for manufacturing thin film transistor array substrate
US7422916B2 (en) Method of manufacturing thin film transistor panel
US7638375B2 (en) Method of manufacturing thin film transistor substrate
US7947985B2 (en) Thin film transistor array substrate and manufacturing method thereof
JPH11133455A (en) Production of liquid crystal display device
US8143116B2 (en) Thin film transistor array substrate and manufacturing method thereof
US7371592B2 (en) Manufacturing method of thin film transistor array panel using an optical mask
KR20070002497A (en) Thin film transistor substrate and fabricating method thereof
US7501297B2 (en) Thin film transistor array panel and manufacturing method thereof
KR100783702B1 (en) Thin film transistor array panel and method manufacturing the same
KR100655276B1 (en) Thin-Film Transistor Liquid Crystal Display And Method Of Fabricating The Same
KR100451849B1 (en) manufacturing method of an array panel of liquid crystal display
KR20070072114A (en) Liquid crystal display device and fabricating method
KR100572824B1 (en) Method for fabricating a substrate for LCD
JP2007518119A (en) Liquid crystal display device having ESD protection circuit and manufacturing method thereof
KR101713146B1 (en) Array substrate for organic electroluminescent device and method of fabricating the same

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAMSUNG ELECTRONICS CO., LTD.;REEL/FRAME:029008/0798

Effective date: 20120904

FPAY Fee payment

Year of fee payment: 12