Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE42219 E1
Publication typeGrant
Application numberUS 12/147,104
Publication dateMar 15, 2011
Filing dateJun 26, 2008
Priority dateNov 24, 1998
Also published asUS6128330, US6466610, US6757322, US7068705, US20030095587, US20050008065, USRE43812
Publication number12147104, 147104, US RE42219 E1, US RE42219E1, US-E1-RE42219, USRE42219 E1, USRE42219E1
InventorsDonald L. Schilling
Original AssigneeLinex Technologies Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Multiple-input multiple-output (MIMO) spread spectrum system and method
US RE42219 E1
Abstract
A system and method for transmitting a plurality of spread-spectrum signals over a communications channel having fading. The plurality of spread-spectrum signals are radiated by a plurality of antennas, with each antenna preferably spaced by one-quarter wavelength. A plurality of receiver antennas receive the plurality of spread-spectrum signals and a plurality of fading spread-spectrum signals. Each receiver antenna is coupled to a plurality of matched filters having a respective plurality of impulse responses matched to the chip-sequence signals of the plurality of spread-spectrum signals. A RAKE and space-diversity combiner combines, for each respective chip-sequence signal, a respective plurality of detected spread-spectrum signals and a respective multiplicity of detected-multipath-spread-spectrum signals, to generate a plurality of combined signals. The symbol amplitudes can be measured and erasure decoding employed to improve performance.
Images(6)
Previous page
Next page
Claims(145)
1. A multiple-input-multiple-output (MIMO) method for receiving data having symbols, with the data having symbols demultiplexed into a plurality of subchannels of data, with the plurality of subchannels of data spread-spectrum processed with a plurality of chip-sequence signals, respectively, with each chip-sequence signal different from other chip-sequence signals in the plurality of chip-sequence signals, thereby generating a plurality of spread-spectrum-subchannel signals, respectively, with the plurality of spread-spectrum-subchannel signals radiated, using radio waves, from a plurality of antennas as a plurality of spread-spectrum signals, respectively, with the plurality of spread-spectrum signals passing through a communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, at least a first spread-spectrum signal having a first channel of data arriving from a first path of the multipath, and a second spread-spectrum signal having a second channel of data arriving from a second path of the multipath, comprising the steps of:
receiving the first spread-spectrum signal and the second spread-spectrum signal with a plurality of receiver antennas;
detecting, at each receiver antenna of the plurality of receiver antennas, the first spread-spectrum signal as a first plurality of detected spread-spectrum signals, respectively;
detecting, at each receiver antenna of the plurality of receiver antennas, the second spread-spectrum signal as a second plurality of detected spread-spectrum signals, respectively;
combining, from each receiver antenna of the plurality of receiver antennas, each of the first plurality of detected spread-spectrum signals, thereby generating a first combined signal; and
combining, from each receiver antenna of the plurality of receiver antennas, each of the second plurality of detected spread-spectrum signals, thereby generating a second combined signal.
2. The MIMO method as set forth in claim 1, further comprising the step of multiplexing the first combined signal with the second combined signal, thereby generating a multiplexed signal.
3. The MIMO method, as set forth in claim 1, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a third spread-spectrum signal having a third channel of data arriving from any of the first path, the second path, or a third path of the multipath, further comprising the steps of:
receiving the third spread-spectrum signal with the plurality of receiver antennas;
detecting, at each receiver antenna of the plurality of receiver antennas, the third spread-spectrum signal, as a third plurality of detected spread-spectrum signals; and
combining, from each receiver antenna of the plurality of receiver antennas, each of the third plurality of detected spread-spectrum signals, thereby generating a third combined signal.
4. The MIMO method as set forth in claim 3, further comprising the step of multiplexing the first combined signal, the second combined signal, and the third combined signal, thereby generating a multiplexed signal.
5. The MIMO method, as set forth in claim 3, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a fourth spread-spectrum signal having a fourth channel of data arriving from any of the first path, the second path, the third path, or a fourth path of the multipath, further comprising the steps of:
receiving the fourth spread-spectrum signal with the plurality of receiver antennas;
detecting, at each receiver antenna of the plurality of receiver antennas, the fourth spread-spectrum signal, as a fourth plurality of detected spread-spectrum signals; and
combining, from each receiver antenna of the plurality of receiver antennas, each of the fourth plurality of detected spread-spectrum signals, thereby generating a fourth combined signal.
6. The MIMO method as set forth in claim 5, further comprising the step of multiplexing the first combined signal, the second combined signal, the third combined signal, and the fourth combined signal, thereby generating a multiplexed signal.
7. The MIMO method, as set forth in claim 5, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a fifth spread-spectrum signal having a fifth channel of data arriving from any of the first path, the second path, the third path of the multipath, the fourth path, or a fifth path, further comprising the steps of:
receiving the fifth spread-spectrum signal with the plurality of receiver antennas;
detecting, at each receiver antenna of the plurality of receiver antennas, the fifth spread-spectrum signal, as a fifth plurality of detected spread-spectrum signals; and
combining, from each receiver antenna of the plurality of receiver antennas, each of the fifth plurality of detected spread-spectrum signals, thereby generating a fifth combined signal.
8. The MIMO method as set forth in claim 7, further comprising the step of multiplexing the first combined signal, the second combined signal, the third combined signal, the fourth combined signal, and the fifth combined signal, thereby generating a multiplexed signal.
9. A multiple-input-multiple-output (MIMO) system for receiving data having symbols, with the data having symbols demultiplexed into a plurality of subchannels of data, with the plurality of subchannels of data spread-spectrum processed with a plurality of chip-sequence signals, respectively, with each chip-sequence signal different from other chip-sequence signals in the plurality of chip-sequence signals, thereby generating a plurality of spread-spectrum-subchannel signals, respectively, with the plurality of spread-spectrum-subchannel signals radiated, using radio waves, from a plurality of antennas as a plurality of spread-spectrum signals, respectively, with the plurality of spread-spectrum signals passing through a communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, at least a first spread-spectrum signal having a first channel of data arriving from a first path of the multipath, and a second spread-spectrum signal having a second channel of data arriving from a second path of the multipath, comprising:
a plurality of receiver antennas for receiving the first spread-spectrum signal and the second spread-spectrum signal;
a plurality of despreading devices for detecting, at each receiver antenna of the plurality of receiver antennas, the first spread-spectrum signal and the second spread-spectrum signal, as a first plurality of detected spread-spectrum signals and a second plurality of detected spread-spectrum signals, respectively; and
a plurality of combiners for combining, from each receiver antenna of the plurality of receiver antennas, each of the first plurality of detected spread-spectrum signals, thereby generating a first combined signal, and for combining, from each receiver antenna of the plurality of receiver antennas, each of the second plurality of detected spread-spectrum signals, thereby generating a second combined signal.
10. The MIMO system as set forth in claim 9, further comprising a multiplexer for multiplexing the first combined signal with the second combined signal, thereby generating a multiplexed signal.
11. The MIMO system as set forth in claim 9, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a third spread-spectrum signal having a third channel of data arriving from any of the first path, the second path, or a third path of the multipath, further comprising:
said plurality of receiver antennas for receiving the third spread-spectrum signal;
said plurality of despreading devices for detecting, at each receiver antenna of the plurality of receiver antennas, the third spread-spectrum signal, as a third plurality of detected spread-spectrum signals; and
said plurality of combiners for combining, from each receiver antenna of the plurality of receiver antennas, each of the third plurality of detected spread-spectrum signals, thereby generating a third combined signal.
12. The MIMO system as set forth in claim 11, further comprising a multiplexer for multiplexing the first combined signal, the second combined signal, and the third combined signal, thereby generating a multiplexed signal.
13. The MIMO system, as set forth in claim 11, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a fourth spread-spectrum signal having a fourth channel of data arriving from any of the first path, the second path, the third path, or a fourth path of the multipath, further comprising:
said plurality of receiver antennas for receiving the fourth spread-spectrum signal;
said plurality of despreading devices for detecting, at each receiver antenna of the plurality of receiver antennas, the fourth spread-spectrum signal, as a fourth plurality of detected spread-spectrum signals; and
said plurality of combiners for combining, from each receiver antenna of the plurality of receiver antennas, each of the fourth plurality of detected spread-spectrum signals, thereby generating a fourth combined signal.
14. The MIMO system as set forth in claim 13, further comprising a multiplexer for multiplexing the first combined signal, the second combined signal, the third combined signal, and the fourth combined signal, thereby generating a multiplexed signal.
15. The MIMO system, as set forth in claim 13, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a fifth spread-spectrum signal having a fifth channel of data arriving from any of the first path, the second path, or the third path of the multipath, the fourth path, or a fifth path, further comprising:
said plurality of receiver antennas for receiving the fifth spread-spectrum signal;
said plurality of spread-spectrum detectors for detecting, at each receiver antenna of the plurality of receiver antennas, the fifth spread-spectrum signal, as a fifth plurality of detected spread-spectrum signals; and
said plurality of combiners for combining, from each receiver antenna of the plurality of receiver antennas, each of the fifth plurality of detected spread-spectrum signals, thereby generating a fifth combined signal.
16. The MIMO system set forth in claim 15, further comprising a multiplexer for multiplexing the first combined signal, the second combined signal, the third combined signal, the fourth combined signal, and the fifth combined signal, thereby generating a multiplexed signal.
17. A MIMO system for receiving data having symbols, with the data having symbols demultiplexed into a plurality of subchannels of data, with the plurality of subchannels of data spread-spectrum processed with a plurality of chip-sequence signals, respectively, with each chip-sequence signal different from other chip-sequence signals in the plurality of chip-sequence signals, thereby generating a plurality of spread-spectrum-subchannel signals, respectively, with the plurality of spread-spectrum-subchannel signals radiated, using radio waves, from a plurality of antennas as a plurality of spread-spectrum signals, respectively, with the plurality of spread-spectrum signals passing through a communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, at least a first spread-spectrum signal having a first channel of data arriving from a first path of the multipath, and a second spread-spectrum signal having a second channel of data arriving from a second path of the multipath, comprising:
receiver-antenna means for receiving the first spread-spectrum signal and the second spread-spectrum signal;
despreading means, coupled to said receiver-antenna means, for detecting, at each receiver antenna of the plurality of receiver antennas, the first spread-spectrum signal and the second spread-spectrum signal, as a first plurality of detected spread-spectrum signals and a second plurality of detected spread-spectrum signals, respectively; and
combiner means, coupled to said despreading means, for combining, from each receiver antenna of the plurality of receiver antennas, each of the first plurality of detected spread-spectrum signals, thereby generating a first combined signal, and for combining, from each receiver antenna of the plurality of receiver antennas, each of the second plurality of detected spread-spectrum signals, thereby generating a second combined signal.
18. The MIMO system as set forth in claim 17, further comprising multiplexer means for multiplexing the first combined signal with the second combined signal, thereby generating a multiplexed signal.
19. The MIMO system as set forth in claim 17, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a third spread-spectrum signal having a third channel of data arriving from any of the first path, the second path, or a third path of the multipath, further comprising:
said receiver-antenna means for receiving the third spread-spectrum signal;
said despreading means for detecting, at each receiver antenna of the plurality of receiver antennas, the third spread-spectrum signal, as a third plurality of detected spread-spectrum signals; and
said combiner means for combining, from each receiver antenna of the plurality of receiver antennas, each of the third plurality of detected spread-spectrum signals, thereby generating a third combined signal.
20. The MIMO method as set forth in claim 19, further comprising multiplexer means for multiplexing the first combined signal, the second combined signal, and the third combined signal, thereby generating a multiplexed signal.
21. The MIMO system, as set forth in claim 19, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a fourth spread-spectrum signal having a fourth channel of data arriving from any of the first path, the second path, the third path, or a fourth path of the multipath, further comprising:
said receiver-antenna means for receiving the fourth spread-spectrum signal;
said despreading means for detecting, at each receiver antenna of the plurality of receiver antennas, the fourth spread-spectrum signal, as a fourth plurality of detected spread-spectrum signals; and
said combiner means for combining, from each receiver antenna of the plurality of receiver antennas, each of the fourth plurality of detected spread-spectrum signals, thereby generating a fourth combined signal.
22. The MIMO system as set forth in claim 21, further comprising multiplexer means for multiplexing the first combined signal, the second combined signal, the third combined signal, and the fourth combined signal, thereby generating a multiplexed signal.
23. The MIMO system, as set forth in claim 21, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a fifth spread-spectrum signal having a fifth channel of data arriving from any of the first path, the second path, or the third path of the multipath, the fourth path, or a fifth path, further comprising:
said receiver-antenna means for receiving the fifth spread-spectrum signal;
said despreading means for detecting, at each receiver antenna of the plurality of receiver antennas, the fifth spread-spectrum signal, as a fifth plurality detected spread-spectrum signals; and
said combiner means for combining, from each receiver antenna of the plurality of receiver antennas, each of the fifth plurality of detected spread-spectrum signals, thereby generating a fifth combined signal.
24. The MIMO system as set forth in claim 23, further comprising multiplexer means for multiplexing the first combined signal, the second combined signal, the third combined signal, the fourth combined signal, and the fifth combined signal, thereby generating a multiplexed signal.
25. A multiple input multiple output (MIMO) method improvement, for transmitting data having symbols, over a communications channel, comprising the steps of:
demultiplexing the data into a plurality of subchannels of data;
spread-spectrum processing the plurality of subchannels of data, with the plurality of subchannels of data spread-spectrum processed with a plurality of chip-sequence signals, respectively, with each chip-sequence signal different from other chip-sequence signals in the plurality of chip-sequence signals, thereby generating a plurality of spread-spectrum-subchannel signals, respectively;
radiating from a plurality of antennas, using radio waves, the plurality of spread-spectrum-subchannel signals, over the communications channel, as a plurality of spread-spectrum signals, respectively;
imparting, from the communications channel, multipath on the plurality of spread-spectrum signals, thereby generating at least a first spread-spectrum signal having a first channel of data arriving from a first path of the multipath, and a second spread-spectrum signal having a second channel of data arriving from a second path of the multipath;
receiving the first spread-spectrum signal and the second spread-spectrum signal with a plurality of receiver antennas;
detecting, at each receiver antenna of the plurality of receiver antennas, the first spread-spectrum signal and the second spread-spectrum signal, as a first plurality of detected spread-spectrum signals and a second plurality of detected spread-spectrum signals, respectively;
combining, from each receiver antenna of the plurality of receiver antennas, each of the first plurality of detected spread-spectrum signals, thereby generating a first combined signal; and
combining, from each receiver antenna of the plurality of receiver antennas, each of the second plurality of detected spread-spectrum signals, thereby generating a second combined signal.
26. The MIMO method as set forth in claim 25, further comprising the step of multiplexing the first combined signal with the second combined signal, thereby generating a multiplexed signal.
27. The MIMO method, as set forth in claim 25, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, with a third spread-spectrum signal having a third channel of data arriving from any of the first path, the second path, or a third path of the multipath, further comprising the steps of:
receiving the third spread-spectrum signal with the plurality of receiver antennas;
detecting, at each receiver antenna of the plurality of receiver antennas, the third spread-spectrum signal, as a third plurality of detected spread-spectrum signals; and
combining, from each receiver antenna of the plurality of receiver antennas, each of the third plurality of detected spread-spectrum signals, thereby generating a third combined signal.
28. The MIMO method as set forth in claim 27, further comprising the step of multiplexing the first combined signal, the second combined signal, and the third combined signal, thereby generating a multiplexed signal.
29. The MIMO method, as set forth in claim 27, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, with a fourth spread-spectrum signal having a fourth channel of data arriving from any of the first path, the second path, the third path, or a fourth path of the multipath, further comprising the steps of:
receiving the fourth spread-spectrum signal with the plurality of receiver antennas;
detecting, at each receiver antenna of the plurality of receiver antennas, the fourth spread-spectrum signal, as a fourth plurality of detected spread-spectrum signals; and
combining, from each receiver antenna of the plurality of receiver antennas, each of the fourth plurality of detected spread-spectrum signals, thereby generating a fourth combined signal.
30. The MIMO method as set forth in claim 29, further comprising the step of multiplexing the first combined signal, the second combined signal, the third combined signal, and the fourth combined signal, thereby generating a multiplexed signal.
31. The MIMO method, as set forth in claim 29, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a fifth spread-spectrum signal having a fifth channel of data arriving from any of the first path, the second path, the third path of the multipath, the fourth path, or a fifth path, further comprising the steps of:
receiving the fifth spread-spectrum signal with the plurality of receiver antennas;
detecting, at each receiver antenna of the plurality of receiver antennas, the fifth spread-spectrum signal, as a fifth plurality of detected spread-spectrum signals; and
combining, from each receiver antenna of the plurality of receiver antennas, each of the fifth plurality of detected spread-spectrum signals, thereby generating a fifth combined signal.
32. The MIMO method as set forth in claim 31, further comprising the step of multiplexing the first combined signal, the second combined signal, the third combined signal, the fourth combined signal, and the fifth combined signal, thereby generating a multiplexed signal.
33. A multiple input multiple output (MIMO) system, for transmitting data having symbols, over a communications channel, comprising:
a demultiplexer for demultiplexing the data into a plurality of subchannels of data;
a plurality of spread-spectrum devices for spread-spectrum processing the plurality of subchannels of data, with the plurality of subchannels of data spread-spectrum processed with a plurality of chip-sequence signals, respectively, with each chip-sequence signal different from other chip-sequence signals in the plurality of chip-sequence signals, thereby generating a plurality of spread-spectrum-subchannel signals, respectively;
a plurality of transmitter antennas for radiating, using radio waves, the plurality of spread-spectrum-subchannel signals, over the communications channel, as a plurality of spread-spectrum signals, respectively;
said communications channel for imparting multipath on the plurality of spread-spectrum signals, thereby generating at least a first spread-spectrum signal having a first channel of data arriving from a first path of the multipath, and a second spread-spectrum signal having a second channel of data arriving from a second path of the multipath;
a plurality of receiver antennas for receiving the first spread-spectrum signal and the second spread-spectrum signal;
a plurality of despreading devices for detecting, at each receiver antenna of the plurality of receiver antennas, the first spread-spectrum signal and the second spread-spectrum signal, as a first plurality of detected spread-spectrum signals and a second plurality of detected spread-spectrum signals, respectively; and
a plurality of combiners for combining, from each receiver antenna of the plurality of receiver antennas, each of the first plurality of detected spread-spectrum signals, thereby generating a first combined signal, and for combining, from each receiver antenna of the plurality of receiver antennas, each of the second plurality of detected spread-spectrum signals, thereby generating a second combined signal.
34. The MIMO system as set forth in claim 33, further comprising a multiplexer for multiplexing the first combined signal with the second combined signal, thereby generating a multiplexed signal.
35. The MIMO system as set forth in claim 33, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a third spread-spectrum signal having a third channel of data arriving from any of the first path, the second path, or a third path of the multipath, further comprising:
said plurality of receiver antennas for receiving the third spread-spectrum signal;
said plurality of despreading devices for detecting, at each receiver antenna of the plurality of receiver antennas, the third spread-spectrum signal, as a third plurality of detected spread-spectrum signals; and
said plurality of combiners for combining, from each receiver antenna of the plurality of receiver antennas, each of the third plurality of detected spread-spectrum signals, thereby generating a third combined signal.
36. The MIMO system as set forth in claim 35, further comprising a multiplexer for multiplexing the first combined signal, the second combined signal, and the third combined signal, thereby generating a multiplexed signal.
37. The MIMO system, as set forth in claim 35, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a fourth spread-spectrum signal having a fourth channel of data arriving from any of the first path, the second path, the third path, or a fourth path of the multipath, further comprising:
said plurality of receiver antennas for receiving the fourth spread-spectrum signal;
said plurality of despreading devices for detecting, at each receiver antenna of the plurality of receiver antennas, the fourth spread-spectrum signal, as a fourth plurality of detected spread-spectrum signals; and
said plurality of combiners for combining, from each receiver antenna of the plurality of receiver antennas, each of the fourth plurality of detected spread-spectrum signals, thereby generating a fourth combined signal.
38. The MIMO system as set forth in claim 37, further comprising a multiplexer for multiplexing the first combined signal, the second combined signal, the third combined signal, and the fourth combined signal, thereby generating a multiplexed signal.
39. The MIMO system, as set forth in claim 37, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a fifth spread-spectrum signal having a fifth channel of data arriving from any of the first path, the second path, or the third path of the multipath, the fourth path, or a fifth path, further comprising:
said plurality of receiver antennas for receiving the fifth spread-spectrum signal;
said plurality of spread-spectrum detectors for detecting, at each receiver antenna of the plurality of receiver antennas, the fifth spread-spectrum signal, as a fifth plurality of detected spread-spectrum signals; and
said plurality of combiners for combining, from each receiver antenna of the plurality of receiver antennas, each of the fifth plurality of detected spread-spectrum signals, thereby generating a fifth combined signal.
40. The MIMO system set forth in claim 39, further comprising a multiplexer for multiplexing the first combined signal, the second combined signal, the third combined signal, the fourth combined signal, and the fifth combined signal, thereby generating a multiplexed signal.
41. A multiple input multiple output (MIMO) system, for transmitting data having symbols, over a communications channel, comprising:
demultiplexer means for demultiplexing the data into a plurality of subchannels of data;
spread-spectrum processing means for spread-spectrum processing the plurality of subchannels of data, with the plurality of subchannels of data spread-spectrum processed with a plurality of chip-sequence signals, respectively, with each chip-sequence signal different from other chip-sequence signals in the plurality of chip-sequence signals, thereby generating a plurality of spread-spectrum-subchannel signals, respectively;
a plurality of transmitter-antenna means for radiating, using radio waves, the plurality of spread-spectrum-subchannel signals, over the communications channel, as a plurality of spread-spectrum signals, respectively;
said communications channel for imparting multipath on the plurality of spread-spectrum signals, thereby generating at least a first spread-spectrum signal having a first channel of data arriving from a first path of the multipath, and a second spread-spectrum signal having a second channel of data arriving from a second path of the multipath;
receiver-antenna means for receiving the first spread-spectrum signal and the second spread-spectrum signal;
despreading means, coupled to said receiver-antenna means, for detecting, at each receiver antenna of the plurality of receiver antennas, the first spread-spectrum signal and the second spread-spectrum signal, as a first plurality of detected spread-spectrum signals and a second plurality of detected spread-spectrum signals, respectively; and
combiner means, coupled to said despreading means, for combining, from each receiver antenna of the plurality of receiver antennas, each of the first plurality of detected spread-spectrum signals, thereby generating a first combined signal, and for combining, from each receiver antenna of the plurality of receiver antennas, each of the second plurality of detected spread-spectrum signals, thereby generating a second combined signal.
42. The MIMO system as set forth in claim 41, further comprising multiplexer means for multiplexing the first combined signal with the second combined signal, thereby generating a multiplexed signal.
43. The MIMO system as set forth in claim 41, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a third spread-spectrum signal having a third channel of data arriving from any of the first path, the second path, or a third path of the multipath, further comprising:
said receiver-antenna means for receiving the third spread-spectrum signal;
said despreading means for detecting, at each receiver antenna of the plurality of receiver antennas, the third spread-spectrum signal, as a third plurality of detected spread-spectrum signals; and
said combiner means for combining, from each receiver antenna of the plurality of receiver antennas, each of the third plurality of detected spread-spectrum signals, thereby generating a third combined signal.
44. The MIMO system as set forth in claim 43, further comprising multiplexer means for multiplexing the first combined signal, the second combined signal, and the third combined signal, thereby generating a multiplexed signal.
45. The MIMO system, as set forth in claim 43, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a fourth spread-spectrum signal having a fourth channel of data arriving from any of the first path, the second path, the third path, or a fourth path of the multipath, further comprising:
said receiver-antenna means for receiving the fourth spread-spectrum signal;
said despreading means for detecting, at each receiver antenna of the plurality of receiver antennas, the fourth spread-spectrum signal, as a fourth plurality of detected spread-spectrum signals; and
said combiner means for combining, from each receiver antenna of the plurality of receiver antennas, each of the fourth plurality of detected spread-spectrum signals, thereby generating a fourth combined signal.
46. The MIMO system as set forth in claim 45, further comprising multiplexer means for multiplexing the first combined signal, the second combined signal, the third combined signal, and the fourth combined signal, thereby generating a multiplexed signal.
47. The MIMO system, as set forth in claim 45, for receiving data having symbols, from the communications channel having multipath, thereby generating, from the plurality of spread-spectrum signals, a fifth spread-spectrum signal having a fifth channel of data arriving from any of the first path, the second path, or the third path of the multipath, the fourth path, or a fifth path, further comprising:
said receiver-antenna means for receiving the fifth spread-spectrum signal;
said despreading means for detecting, at each receiver antenna of the plurality of receiver antennas, the fifth spread-spectrum signal, as a fifth plurality detected spread-spectrum signals; and
said combiner means for combining, from each receiver antenna of the plurality of receiver antennas, each of the fifth plurality of detected spread-spectrum signals, thereby generating a fifth combined signal.
48. The MIMO system as set forth in claim 47, further comprising multiplexer means for multiplexing the first combined signal, the second combined signal, the third combined signal, the fourth combined signal, and the fifth combined signal, thereby generating a multiplexed signal.
49. The MIMO method as set forth in claim 1 with the step of detecting the first spread-spectrum signal and the second spread-spectrum signal, including the step of detecting, responsive to a first chip-sequence signal and to a second chip-sequence signal, the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
50. The MIMO method as set forth in claim 3 with the step of detecting the third spread-spectrum signal, including the step of detecting, responsive to a third chip-sequence signal, the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
51. The MIMO method as set forth in claim 5 with the step of detecting the fourth spread-spectrum signal, including the step of detecting, responsive to a fourth chip-sequence signal, the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
52. The MIMO method as set forth in claim 7 with the step of detecting the fifth spread-spectrum signal, including the step of detecting, responsive to a fifth chip-sequence signal, the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
53. The MIMO system as set forth in claim 9 with said plurality of despreading devices, responsive to a first chip-sequence signal and to a second chip-sequence signal, for detecting the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
54. The MIMO method as set forth in claim 11 with said plurality of despreading devices, responsive to a third chip-sequence signal, for detecting the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
55. The MIMO system as set forth in claim 13 with said plurality of despreading devices, responsive to a fourth chip-sequence signal, for detecting the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
56. The MIMO system as set forth in claim 15 with said plurality of despreading devices, responsive to a fifth chip-sequence signal, for detecting the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
57. The MIMO system as set forth in claim 17 with said despreading means, responsive to a first chip-sequence signal and to a second chip-sequence signal, for detecting the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
58. The MIMO system as set forth in claim 19 with said despreading means, responsive to a third chip-sequence signal, for detecting the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
59. The MIMO system as set forth in claim 21 with said despreading means, responsive to a fourth chip-sequence signal, for detecting the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
60. The MIMO system as set forth in claim 23 with said despreading means, responsive to a fifth chip-sequence signal, for detecting the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
61. The MIMO method as set forth in claim 25 with the step of detecting the first spread-spectrum signal and the second spread-spectrum signal, including the step of detecting, responsive to a first chip-sequence signal and to a second chip-sequence signal, the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
62. The MIMO method as set forth in claim 27 with the step of detecting the third spread-spectrum signal, including the step of detecting, responsive to a third chip-sequence signal, the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
63. The MIMO method as set forth in claim 29 with the step of detecting the fourth spread-spectrum signal, including the step of detecting, responsive to a fourth chip-sequence signal, the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
64. The MIMO method as set forth in claim 31 with the step of detecting the fifth spread-spectrum signal, including the step of detecting, responsive to a fifth chip-sequence signal, the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
65. The MIMO system as set forth in claim 33 with said plurality of despreading devices, responsive to a first chip-sequence signal and to a second chip-sequence signal, for detecting the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
66. The MIMO system as set forth in claim 35 with said plurality of despreading devices, responsive to a third chip-sequence signal, for detecting the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
67. The MIMO system as set forth in claim 37 with said plurality of despreading devices, responsive to a fourth chip-sequence signal, for detecting the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
68. The MIMO system as set forth in claim 39 with said plurality of despreading devices, responsive to a fifth chip-sequence signal, for detecting the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
69. The MIMO system as set forth in claim 41 with said despreading means, responsive to a first chip-sequence signal and to a second chip-sequence signal, for detecting the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
70. The MIMO system as set forth in claim 42 with said despreading means, responsive to a third chip-sequence signal, for detecting the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
71. The MIMO system as set forth in claim 43 with said despreading means, responsive to a fourth chip-sequence signal, for detecting the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
72. The MIMO system as set forth in claim 44 with said despreading means, responsive to a fifth chip-sequence signal, for detecting the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
73. The MIMO method as set forth in claim 1 with the step of detecting the first spread-spectrum signal and the second spread-spectrum signal, including the step of detecting, using a first filter matched to a first chip-sequence signal and a second filter matched to a second chip-sequence signal, the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
74. The MIMO method as set forth in claim 3 with the step of detecting the third spread-spectrum signal, including the step of detecting, using a third filter matched to a third chip-sequence signal, the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
75. The MIMO method as set forth in claim 5 with the step of detecting the fourth spread-spectrum signal, including the step of detecting, using a fourth filter matched to a fourth chip-sequence signal, the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
76. The MIMO method as set forth in claim 7 with the step of detecting the fifth spread-spectrum signal, including the step of detecting, using a fifth filter matched to a fifth chip-sequence signal, the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
77. The MIMO system as set forth in claim 9 with said plurality of despreading devices including a first filter matched to a first chip-sequence signal and a second filter matched to a second chip-sequence signal, for detecting the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
78. The MIMO system as set forth in claim 13 with said plurality of despreading devices including a third filter matched to a third chip-sequence signal, for detecting the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
79. The MIMO system as set forth in claim 13 with said plurality of despreading devices including a fourth filter matched to a fourth chip-sequence signal, for detecting the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
80. The MIMO system as set forth in claim 15 with said plurality of despreading devices including a fifth filter matched to a fifth chip-sequence signal, for detecting the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
81. The MIMO system as set forth in claim 17 with said despreading means including a first filter matched to a first chip-sequence signal and a second filter matched to a second chip-sequence signal, for detecting the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
82. The MIMO system as set forth in claim 19 with said despreading means including a third filter matched to a third chip-sequence signal, for detecting the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
83. The MIMO system as set forth in claim 21 with said despreading means including a fourth filter matched to a fourth chip-sequence signal, for detecting the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
84. The MIMO system as set forth in claim 23 with said despreading means including a fifth filter matched to a fifth chip-sequence signal, for detecting the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
85. The MIMO method as set forth in claim 25 with the step of detecting the first spread-spectrum signal and the second spread-spectrum signal, including the step of detecting, using a first filter matched to a first chip-sequence signal and a second filter matched to a second chip-sequence signal, the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
86. The MIMO method as set forth in claim 27 with the step of detecting the third spread-spectrum signal, including the step of detecting, using a third filter matched to a third chip-sequence signal, the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
87. The MIMO method as set forth in claim 29 with the step of detecting the fourth spread-spectrum signal, including the step of detecting, using a fourth filter matched to a fourth chip-sequence signal, the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
88. The MIMO method as set forth in claim 31 with the step of detecting the fifth spread-spectrum signal, including the step of detecting, using a fifth filter matched to a fifth chip-sequence signal, the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
89. The MIMO system as set forth in claim 33 with said plurality of despreading devices including a first filter matched to a first chip-sequence signal and a second filter matched to a second chip-sequence signal, for detecting the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
90. The MIMO system as set forth in claim 35 with said plurality of despreading devices, including a third filter matched to a third chip-sequence signal, for detecting the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
91. The MIMO system as set forth in claim 37 with said plurality of despreading devices including a fourth filter matched to a fourth chip-sequence signal, for detecting the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
92. The MIMO system as set forth in claim 39 with said plurality of despreading devices including a fifth filter matched to a fifth chip-sequence signal, for detecting the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
93. The MIMO system as set forth in claim 41 with said despreading means including a first filter matched to a first chip-sequence signal and a second filter matched to a second chip-sequence signal, for detecting the first spread-spectrum signal and the second spread-spectrum signal as the first plurality of detected spread-spectrum signals and the second plurality of detected spread-spectrum signals, respectively.
94. The MIMO system as set forth in claim 42 with said despreading means including a third filter matched to a third chip-sequence signal, for detecting the third spread-spectrum signal as the third plurality of detected spread-spectrum signals, respectively.
95. The MIMO system as set forth in claim 43 with said despreading means including a fourth filter matched to a fourth chip-sequence signal, for detecting the fourth spread-spectrum signal as the fourth plurality of detected spread-spectrum signals, respectively.
96. The MIMO system as set forth in claim 44 with said despreading means including a fifth filter matched to a fifth chip-sequence signal, for detecting the fifth spread-spectrum signal as the fifth plurality of detected spread-spectrum signals, respectively.
97. A receiver system for recovering data conveyed in data symbols by a plurality of different signals transmitted on separate carrier waves from a single source over a wireless channel, said signals being differentiated by different codes conveyed along with said signals, comprising:
plural receiving antennas for receiving said signals;
receiver circuitry connected to each receiving antenna for demodulating said received signals and for separating said signals by detecting said different codes conveyed in said signals;
combiner circuits for combining received data symbols transmitted in signals with the same code and received by different receiving antennas, thereby forming plural streams of combined data symbols; and
a multiplexer for multiplexing data derived from said plural streams of combined data symbols to form a single stream of data.
98. The receiver system of claim 97 wherein said receiver circuitry includes matched filter detector circuits for detecting said different codes.
99. The receiver system of claim 97 wherein said different codes are chip sequence codes.
100. The receiver system of claim 98 wherein each receiving antenna is connected to a plurality of matched filter detector circuits.
101. The receiver system of claim 100 wherein each of the matched filter detector circuits connected to an antenna is matched to a different one of said different codes.
102. The receiver system of claim 101 wherein said combiner circuits include plural combiners and wherein each combiner is connected to receive the outputs from all the matched filter detector circuits that are matched to the same code.
103. The receiver system of claim 102 wherein said combiners employ RAKE signal combining.
104. The receiver system of claim 102 wherein said combiners add the strength of the strongest outputs from the matched filter detector circuits.
105. The receiver system of claim 102 wherein said combiners utilize maximal ratio combining to combine the outputs from the matched filter detector circuits.
106. The receiver system of claim 102 wherein said combiners utilize maximal likelihood combining to combine the outputs from the matched filter detector circuits.
107. The receiver system of claim 97 wherein said combiner circuits form a number of combined symbol streams equal to the number of receiving antennas.
108. The receiver system of claim 97 wherein said different codes are mutually orthogonal.
109. A method for recovering data conveyed in data symbols by a plurality of different signals transmitted on separate carrier waves from a single source over a wireless channel, said signals being differentiated by different codes conveyed along with said signals, comprising the steps of:
receiving said signals at plural receiving antennas;
demodulating the signals received at each receiving antenna and separating said signals by detecting said different codes conveyed in said signals;
recovering the data symbols conveyed in said signals and combining received data symbols transmitted in signals with the same code and received by different receiving antennas, thereby forming plural streams of combined data symbols; and
multiplexing data derived from said plural streams of combined data symbols to form a single stream of data.
110. The method of claim 109 wherein said detecting step is performed by matched filter detector circuits.
111. The method of claim 109 wherein said different codes are chip sequence codes.
112. The method of claim 110 wherein a plurality of matched filter detector circuits is connected to each receiving antenna.
113. The method of claim 112 wherein each of the plurality of matched filter detector circuits connected to an antenna is matched to a different one of said different codes.
114. The method of claim 113 wherein said step of combining combines the outputs from the matched filter detector circuits that are matched to the same code.
115. The method of claim 114 wherein said step of combining employs RAKE signal combining.
116. The method of claim 114 wherein said step of combining adds the strength of the strongest outputs from the matched filter detector circuits.
117. The method of claim 114 wherein said step of combining utilizes maximal ratio combining to combine the outputs from the matched filter detector circuits.
118. The method of claim 114 wherein said step of combining utilizes maximal likelihood combining to combine the outputs from the matched filter detector circuits.
119. The method of claim 109 wherein the step of combining forms a number of combined symbol streams equal to the number of receiving antennas.
120. The method of claim 109 wherein said different codes are mutually orthogonal.
121. A receiver system for recovering data in spread spectrum signals, the data conveyed in data symbols by a plurality of different signals transmitted on separate carrier waves from a single source over a wireless channel, said signals being differentiated by different codes conveyed along with said signals, comprising:
plural receiving antennas for receiving said spread spectrum signals;
receiver circuitry connected to each receiving antenna for despreading and separating said received spread spectrum signals by detecting said different codes conveyed in said spread spectrum signals;
combiner circuits for combining received data symbols transmitted in signals with the same code and received by different receiving antennas, thereby forming plural streams of combined data symbols; and
a multiplexer for multiplexing data derived from said plural streams of combined data symbols to form a single stream of data symbols.
122. The receiver system of claim 121 wherein said receiver circuitry includes matched filter detector circuits for detecting said different codes.
123. The receiver system of claim 121 wherein said different codes are chip sequence codes.
124. The receiver system of claim 121 wherein each receiving antenna is connected to a plurality of matched filter detector circuits.
125. The receiver system of claim 124 wherein each of the matched filter detector circuits connected to an antenna is matched to a different one of said different codes.
126. The receiver system of claim 125 wherein said combiner circuits include plural combiners and wherein each combiner is connected to receive the outputs from all the matched filter detector circuits that are matched to the same code.
127. The receiver system of claim 126 wherein said combiners employ RAKE signal combining.
128. The receiver system of claim 126 wherein said combiners add the strength of the strongest outputs from the matched filter detector circuits.
129. The receiver system of claim 126 wherein said combiners utilize maximal ratio combining to combine the outputs from the matched filter detector circuits.
130. The receiver system of claim 126 wherein said combiners utilize maximal likelihood combining to combine the outputs from the matched filter detector circuits.
131. The receiver system of claim 121 wherein said combiner circuits form a number of combined symbol streams equal to the number of receiving antennas.
132. The receiver system of claim 121 wherein said different codes are mutually orthogonal.
133. A method for recovering data in spread spectrum signals, the data conveyed in data symbols by a plurality of different signals transmitted on separate carrier waves from a single source over a wireless channel, said signals being differentiated by different codes conveyed along with said signals, comprising the steps of:
receiving said spread spectrum signals at plural receiving antennas;
despreading and separating the spread spectrum signals received at each receiving antenna by detecting said different codes conveyed in said spread spectrum signals;
recovering the data symbols conveyed in said spread spectrum signals and combining received data symbols transmitted in signals with the same code and received by different receiving antennas, thereby forming plural streams of combined data symbols; and
multiplexing data derived from said plural streams of combined data symbols to form a single stream of data.
134. The method of claim 133 wherein said detecting step is performed by matched filter detector circuits.
135. The method of claim 133 wherein said different codes are chip sequence codes.
136. The method of claim 133 wherein a plurality of matched filter detector circuits is connected to each receiving antenna.
137. The method of claim 136 wherein each of the plurality of matched filter detector circuits connected to an antenna is matched to a different one of said different codes.
138. The method of claim 137 wherein said step of combining combines the outputs from the matched filter detector circuits that are matched to the same code.
139. The method of claim 138 wherein said step of combining employs RAKE signal combining.
140. The method of claim 138 wherein said step of combining adds the strength of the strongest outputs from the matched filter detector circuits.
141. The method of claim 138 wherein the step of combining forms a number of combined symbol streams equal to the number of receiving antennas.
142. The method of claim 138 wherein said step of combining utilizes maximal ratio combining to combine the outputs from the matched filter detector circuits.
143. The method of claim 138 wherein said step of combining utilizes maximal likelihood combining to combine the outputs from the matched filter detector circuits.
144. The method of claim 133 wherein the step of combining forms a number of combined symbol streams equal to the number of receiving antennas.
145. The method of claim 133 wherein said different codes are mutually orthogonal.
Description
RELATED PATENTS

This patent is a continuation of application Ser. No. 10/254,461, filed Sep. 25, 2002, now U.S. Pat. No. 6,757,322 and stems from a continuation application of U.S. patent application Ser. No. 09/665,322, and filing date of Sep. 19, 2000 now U.S. Pat. No. 6,466,610, entitled SPREAD-SPECTRUM SPACE DIVERSITY AND CODING ANTENNA SYSTEM AND METHOD, with inventor DONALD L. SCHILLING, and a continuation application of U.S. patent application Ser. No. 09/198,630, and filing date of Nov. 24, 1998, entitled EFFECT SHADOW REDUCTION ANTENNA SYSTEM FOR SPREAD SPECTRUM, with inventor DONALD L. SCHILLING which issued on Oct. 3, 2000, as U.S. Pat. No. 6,128,330. The benefit of the earlier filing date of the parent patent application is claimed for common subject matter pursuant to 35 U.S.C. § 120.

BACKGROUND OF THE INVENTION

This invention relates to antennas, and more particularly to reducing the effects of shadowing from a multipath environment, using space diversity and coding.

DESCRIPTION OF THE RELEVANT ART

Data sent from terminal to base, or vice versa, are often shadowed. Shadowing is a function of time, and may be caused by buildings, foliage, vehicles, people, motion of the terminal, etc. Shadowing is the blocking, or attenuating, of the transmitted signal. Shadowing may occur in fixed or mobile systems, and can vary slowly or quickly depending on the situation.

While shadowing has an effect which is similar to multipath, the causes and statistics of shadowing may be very different. For example, the presence of a building may result in total shadowing, independent of time, while multipath, caused by numerous multipath returns, produces a Rayleigh or Ricean fading distribution. Fading due to shadowing and multipath may be reduced by adding a receiver antenna to increase receiver diversity.

Coding techniques using space diversity as well as time, are known as “space-time” codes. In the prior art, with a multiple antenna system, the input to each receive antenna is assumed to have Rayleigh fading. A problem with multiple antenna systems is that a particular antenna output may be shadowed by 6 dB or more to a particular receive antenna. Such shadowing leaves the other antennas to receive a desired signal, effectively destroying one source of data.

SUMMARY OF THE INVENTION

A general object of the invention is to reduce the effects of shadowing and multipath in a fading environment.

Another object of the invention is to improve performance of a spread-spectrum communications system.

An additional object of the invention is to increase capacity of a spread-spectrum communications system.

A further object of the invention is to minimize fading and enhance overall performance in a spread-spectrum communications system.

According to the present invention, as embodied and broadly described herein, an antenna system is provided employing space diversity and coding, for transmitting data having symbols, over a communications channel. The transmitted signal passes through a communications channel having fading caused by multipath as well as shadowing.

In a first embodiment of the invention, the antenna system comprises a forward error correction (FEC) encoder, an interleaver, a demultiplexer, a plurality of spread-spectrum devices, a plurality of transmit antennas, and a plurality of receiver subsystems. Each receiver subsystem includes a receiver antenna and a plurality of matched filters. The receiver system further includes a RAKE and space-diversity combiner, a multiplexer, a de-interleaver, and a decoder.

The FEC encoder encodes the data using an error correction code to generate FEC data. The interleaver interleaves the symbols of the FEC data to generate interleaved data. The demultiplexer demultiplexes the interleaved data into a plurality of subchannels of data. The plurality of spread-spectrum devices, spread-spectrum processes the plurality of subchannels of data with a plurality of chip-sequence signals, respectively. Each chip-sequence signal of the plurality of chip-sequence signals is different from other chip-sequence signals in the plurality of chip-sequence signals. The plurality of spread-spectrum devices thereby generates a plurality of spread-spectrum subchannel signals, respectively. The plurality of transmit antennas radiate, at a carrier frequency using radio waves, the plurality of spread-spectrum-subchannel signals over a communications channel as a plurality of spread-spectrum signals. The plurality of spread-spectrum signals could use binary phase-shift-keying (BPSK) modulation, quadrature phase-shift-keying (QPSK) modulation, differential encoding, etc., and other modulations, which are all well known carrier modulation techniques.

The communications channel imparts fading on the plurality of spread-spectrum signals. The multipath generates a multiplicity of fading spread-spectrum signals. The fading also may include shadowing.

The plurality of receiver subsystems receive the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals from the communications channel. Each receiver subsystem has the receiver antenna for receiving the plurality of spread-spectrum signals, and the plurality of matched filters. Each receiver antenna in the plurality of receiver antennas is spaced from other receiver antennas in the plurality of receiver antennas preferably by at least one-quarter (¼) wavelength, and preferably as far apart as practicable. The present invention includes spacings less than one-quarter wavelength, but with degradation in performance The plurality of matched filters has a plurality of impulse responses matched to the plurality of chip-sequence signals, respectively. The plurality of matched filters detect the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, as a plurality of detected spread-spectrum signals and a multiplicity of detected-fading spread-spectrum signals, respectively.

A plurality of RAKE and space-diversity combiners combine the plurality of detected spread-spectrum signals and the multiplicity of the detected-fading spread-spectrum signals from each of the plurality of receiver subsystems, to generate a plurality of combined signals. A multiplexer multiplexes a plurality of combined signals thereby generating the multiplexed signal. The de-interleaver de-interleaves the multiplexed signal from the multiplexer, and thereby generates de-interleaved data. The decoder decodes the de-interleaved data.

As an alternative, a preferred embodiment is to select the received version of each received chip-sequence signal at each antenna and combine them in a RAKE. In this embodiment, the space and time combining of each channel from a respective chip-sequence signal occur in a single RAKE receiver. The total number of RAKE receivers is equal to the number of chip-sequence signals, or one or more RAKEs could be time multiplexed to represent the number of chip-sequence signals.

A second embodiment of the invention has an antenna system for transmitting data having symbols over the communications channel having fading caused by multipath and shadowing. In the second embodiment of the invention, as previously described for the first embodiment of the invention, a multiplicity of delay devices is coupled between the interleaver and the plurality of spread-spectrum devices, respectively. A first signal of the plurality of signals of the interleaved data need not be delayed. The other signals of the plurality of signals of interleaved data are delayed, at least one symbol, one from the other, by the multiplicity of delay devices. Each delay device of the multiplicity of delay devices has a delay different from other delay devices of the multiplicity of delay devices relative to the first signal. The multiplicity of delay devices thereby generate a plurality of time-channel signals.

The plurality of spread-spectrum devices has a first spread-spectrum device coupled to the interleaver, and with the other spread-spectrum devices coupled to the multiplicity of delay devices, respectively. The plurality of spread-spectrum devices spread-spectrum process, with a plurality of chip-sequence signals, the first signal and the plurality of time-channel signals as a plurality of spread-spectrum signals. The plurality of transmit antennas radiate at the carrier frequency, using radio waves, the plurality of spread-spectrum signals over the communications channel.

The communications channel imparts fading due to multipath and shadowing on the plurality of spread-spectrum signals. The multipath generates a multiplicity of fading spread-spectrum signals.

The plurality of receiver subsystems receive the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals from the communications channel. Each receiver subsystem includes a receiver antenna for receiving the plurality of spread-spectrum signals and a plurality of matched filters; the plurality of matched filters has a plurality of impulse responses matched to the plurality of chip-sequence signals, respectively. The plurality of matched filters detects the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, as a plurality of detected spread-spectrum signals and a multiplicity of detected-fading spread-spectrum signals.

A RAKE and space-diversity combiner combines the detected spread-spectrum signal and the multiplicity of detected-fading spread-spectrum signals from each of the plurality of receiver subsystems. This generates a plurality of combined signals. The FEC decoder decodes the deinterleaved signal as decoded data.

Additional objects and advantages of the invention are set forth in part in the description which follows, and in part are obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention also may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention, and together with the description serve to explain the principles of the invention.

FIG. 1 is a block diagram of a four code transmitter, using four antennas;

FIG. 2 is a block diagram of a four code transmitter, using four antennas and separate FEC encoders and bit interleavers for each channel;

FIG. 3 is a block diagram of a receiver system having four antennas, with four matched filters per antenna;

FIG. 4 is a block diagram of a transmitter having two codes and two antennas, and a delay on data;

FIG. 5 is a block diagram of a transmitter having two codes and two antennas, and a delay on data, with a separate FEC encoder and bit interleaver for each channel;

FIG. 6 is a block diagram of a receiver system having two receiver antennas, and two matched filters per antenna; and

FIG. 7 is a block diagram of a receiver having three antennas and three rake and space combiners, coupled to a multiplexer.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference now is made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals indicate like elements throughout the several views.

The present invention provides a novel approach for reducing the effect of fading due to shadowing and multipath, through the use of multiple antennas at the terminal and also at the base station, as well as a single RAKE/maximal ratio combiner to combine all time and space signals. Previous solutions have assumed multiple antennas at the base, where space diversity is then applied. Also, each antenna receiver has an individual RAKE. Placing multiple antennas at the terminal, however, can result in a significant improvement in system performance. The use of maximal ratio combining, RAKE and erasure decoding further enhance system performance.

As illustratively shown in FIGS. 1-6, the present invention broadly includes an antenna system employing time (RAKE) and space (antenna) diversity and coding of spread-spectrum signals. The antenna system is for transmitting data having symbols over a communications channel. The symbols may be bits, or may be based on pairs of bits or groups of bits. The communications channel is assumed to have fading due to multipath and shadowing.

The antenna system broadly includes forward error correction (FEC) means, interleaver means, demultiplexer means, spread-spectrum means, a plurality of transmit antennas, a plurality of receiver subsystems, RAKE and space-diversity means, multiplexer means, de-interleaver means, and decoder means. Each receiver subsystem includes receiver-antenna means and matched-filter means.

The interleaver means is coupled between the demultiplexer means and the FEC means. The spread-spectrum means is coupled between the demultiplexer means and the plurality of transmit antennas. Alternatively, the FEC means is coupled between the demultiplexer means and the interleaver means, and the spread-spectrum means is coupled to the interleaver means. The communications channel is between the plurality of transmit antennas and the plurality of receiver subsystems.

Each receiver subsystem has receiver-antenna means exposed to the communications channel. The matched filter means is coupled to the receiver-antenna means.

The RAKE and space-diversity means is coupled to each matched filter means of the plurality of receiver subsystems, and the multiplexer means is coupled to the RAKE and space-diversity means. The de-interleaver means is coupled to the RAKE and space-diversity means, and the decoder means is coupled to the de-interleaver means.

The FEC means FEC encodes the data, thereby generating FEC data. FEC data is defined herein to be FEC encoded data. Forward-error-correction encoding is well known in the art, and the use of a particular FEC code is a design choice. The interleaver means interleaves symbols of the FEC data, thereby generating interleaved data. Interleaved data is defined herein to be interleaved FEC data. Interleaving, as is well known in the art, randomizes the errors. The demultiplexer means demultiplexes the interleaved data into a plurality of subchannels of data.

The spread-spectrum means spread-spectrum processes the plurality of subchannels of data with a plurality of chip-sequence signals, respectively. Each chip-sequence signal is different from other chip-sequence signals in the plurality of chip-sequence signals. The spread-spectrum means thereby generates a plurality of spread-spectrum-subchannel signals, respectively. Each spread-spectrum-sub-channel signal is defined by the code represented by a respective chip-sequence signal. In a preferred embodiment, each chip-sequence signal is designed to be orthogonal to other chip-sequence signals in the plurality of chip-sequence signals, when received at the receiver, neglecting multipath. In practice, however, orthogonality may not be realized.

The plurality of transmit antennas has each transmitter antenna spaced from other antennas in the plurality of transmit antennas, preferably by at least a quarter wavelength at a carrier frequency. If the transmitter antennas are spaced by less than a quarter wavelength, performance degrades. The present invention includes antennas spaced less than a quarter wavelength, with spacing of at least a quarter wavelength being a preferred embodiment. The plurality of transmit antennas radiates at the carrier frequency, using radio waves, the plurality of spread-spectrum-subchannel signals, respectively, over the communications channel, as a plurality of spread-spectrum signals. The carrier frequency typically is the frequency of a carrier signal generated by an oscillator, as is well known in the art. The plurality of spread-spectrum signals is mixed or multiplied by the carrier signal. Appropriate oscillator, mixer, amplifier and filter can be employed to assist radiating the plurality of spread-spectrum signals at the carrier frequency. Various modulations, such as QPSK, BPSK, differential encoding, etc., may be use as a carrier modulation for the plurality of spread-spectrum signals.

The communications channel imparts fading due to multipath and shadowing on the plurality of spread-spectrum signals. The communications channel thereby generates a plurality of fading spread-spectrum signals.

The plurality of receiver subsystems receive the plurality of spread-spectrum signals, arriving from the plurality of transmit antennas through the communications channel, and the multiplicity of fading spread-spectrum signals from the communications channel. Within each receiver subsystem, the receiver-antenna means receives a plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals. The matched-filter means has a plurality of impulse responses matched to the plurality of chip-sequence signals, respectively. The matched-filter means detects the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, as a plurality of detected spread-spectrum signals and a multiplicity of detected-fading spread-spectrum signals, respectively.

The RAKE and space-diversity means combines the plurality of detected spread-spectrum signals and the multiplicity of detected-fading spread-spectrum signals from each of the plurality of receiver subsystems. The RAKE and space-diversity means thereby generates a plurality of combined signals.

The multiplexer means multiplexes the plurality of combined signals, as a multiplexed signal. The de-interleaver means de-interleaves the multiplexed signal from the multiplexer, thereby generating a de-interleaved signal. The decoder means decodes the de-interleaved signal.

FIGS. 1-3 illustratively show a system with four transmit antennas TA1, TA2, TA3, TA4 and four receive antennas RA1, RA2, RA3, RA4. The number of transmit antennas usually is not the same as the number of receiver antennas. In FIG. 1, the data are first forward-error-correction (FEC) encoded by FEC encoder 21 and interleaved by interleaver 22, and then demultiplexed by demultiplexer 32 into four data streams. The interleaving, FEC encoding, demultiplexing process alters the system performance. Alternatively, as shown in FIG. 2, the data could first be demultiplexed by demultiplexer 32 and then each data stream could be FEC encoded by a plurality of FEC encoders 521, 621, 721, 821 and interleaved by a plurality of interleavers 522, 622, 722, 822. The multipath FEC/interleavers could be built as individual devices, or as a single time-multiplexed device.

The first, second, third and fourth chip-sequence signals, g1(t), g2(t), g3(t), and g4(t), typically are pseudonoise (PN) spreading sequences. Since the transmit antennas are spaced more than one-quarter wavelength with respect to the carrier frequency, the chip-sequence signals can be adjusted to be orthogonal to a specific receiver antenna but not to all receiver antennas simultaneously. Thus, orthogonality is not required. The antenna could be “smart”, e.g., steerable or phased array, however, ordinary omnidirectional antennas at the terminal are often most practical. Thus, on a car, omnidirectional antennas may be preferred, while in an office or home, a directional antenna may be preferred.

In the exemplary arrangement shown in FIG. 1, the FEC means is embodied as a forward-error-correction (FEC) encoder 21 and the interleaver means is embodied as an interleaver 22. The demultiplexer means is embodied as a demultiplexer 32 and the spread-spectrum means is embodied as a plurality of spread-spectrum devices 23, 33, 43, 53, and a chip-sequence signal generator 31. The spread-spectrum means alternatively may be embodied as an application specific integrated circuit (ASIC) with a plurality of matched filters, charged coupled devices (CCD) or, alternatively, surface-acoustic-wave (SAW) devices, as is well known in the art. The interleaver 22 is coupled between FEC encoder 21 and the demultiplexer 32. The plurality of spread-spectrum devices 23, 33, 43, 53 is coupled to the chip-sequence signal generator 31, and between the demultiplexer 32, and the plurality of transmit antennas TA1, TA2, TA3, and TA4.

The FEC encoder 21 encodes the data to generate FEC data. FEC encoding is well known in the art. A particular choice of an FEC encoding technique and code is a design choice. The interleaver 22 interleaves the FEC data to generate interleaved data. The interleaver selection is a design choice. The demultiplexer 32 demultiplexes the interleaved data into a plurality of subchannels of data.

In FIG. 2, the FEC means is embodied as a plurality of FEC encoders 521, 621, 721, 821 and the interleaver means is embodied as a plurality of interleavers 522, 622, 722, 822. The demultiplexer 32 first demultiplexes the data into a plurality of sub-data streams. The plurality of FEC encoders 521, 621, 721, 821 FEC encode the plurality of sub-data streams into a plurality of FEC-sub-data streams, respectively. The plurality of interleavers 522, 622, 722, 822 interleave the plurality of FEC-sub-data streams into the plurality of subchannels, respectively.

In FIGS. 1 and 2, a chip-sequence generator 31 generates the plurality of chip-sequence signals. A chip-sequence signal typically is generated from a pseudonoise (PN) sequence, as is well known in the art. Each chip-sequence signal is different from other chip-sequence signal in the plurality of chip-sequence signals. In an embodiment, each chip-sequence signal may be orthogonal to other chip-sequence signals in the plurality of chip-sequence signals.

The plurality of spread-spectrum devices 23, 33, 43, 53 spread-spectrum process the plurality of subchannels of data with the plurality of chip-sequence signals, respectively. Each spread-spectrum-subchannel signal of the plurality of spread-spectrum-subchannel signals is defined by a respective chip-sequence signal from the plurality of chip-sequence signals. The plurality of spread-spectrum devices thereby generate a plurality of spread-spectrum-subchannel signals, respectively.

The plurality of transmit antennas TA1, TA2, TA3, TA4 has each transmitter antenna of the plurality of transmit antennas preferably spaced from other antennas of the plurality of transmit antennas preferably by at least a quarter wavelength at a carrier frequency. This provides independence of transmitted signals. The plurality of transmit antennas TA1, TA2, TA3, TA4 radiate at the carrier frequency using radio waves, the plurality of spread-spectrum-sub-channel signals over the communications channel as a plurality of spread-spectrum signals. Appropriate oscillator product device and filter may be added to shift the plurality of spread-spectrum-subchannel signals to a desired carrier frequency. Amplifiers may be added as required.

The communications channel imparts fading on the plurality of spread-spectrum signals. The fading generates a multiplicity of fading spread-spectrum signals, some of which may have shadowing and multipath. The shadowing may be from buildings, foliage, and other causes of multipath and shadowing.

The spread-spectrum processing typically includes multiplying the plurality of subchannels of data by the plurality of chip-sequence signals, respectively. In an alternative embodiment, if a plurality of matched filters or SAW devices was employed in place of the spread-spectrum devices, then the plurality of matched filters or SAW devices would have a plurality of impulse responses, respectively, matched to the plurality of chip-sequence signals, respectively. If programmable matched filters were employed, then the plurality of impulse responses of the plurality of matched filters may be set by the plurality of chip-sequence signals or other control signals, from the chip-sequence signal generator 31 or other controller.

At the receiver, the plurality of receiver subsystems receives the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals from the communications channel. Each receiver subsystem of the plurality of receiver subsystem has a receiver antenna. As illustratively shown in FIG. 3, the plurality of receiver subsystems includes a plurality of receiver antennas RA1, RA2, RA3, RA4, respectively. The plurality of receiver antennas RA1, RA2, RA3, RA4 has each receiver antenna of the plurality of receiver antennas preferably spaced from other antennas of the plurality of receiver antennas preferably by at least one-quarter wavelength at the carrier frequency. Each receiver subsystem may include receiver circuitry which amplifies, filters, translates and demodulates received signals to baseband or an intermediate frequence (IF) for processing by the matched filter. Such receiver circuitry is well known in the art.

Each receiver subsystem has a respective receiver antenna coupled to a respective plurality of matched filters. The first receiver subsystem, by way of example, has the first receiver antenna RA1 coupled to a first plurality of matched filters 24, 34, 44, 54. The second receiver antenna RA2 is coupled to a second plurality of matched filters 25, 35, 45, 55. The third receiver antenna RA3 is coupled to a third plurality of matched filters 26, 36, 46, 56. The fourth receiver antenna RA4 is coupled to a fourth plurality of matched filters 27, 37, 47, 57. Each receiver antenna in the plurality of receiver antennas RA1, RA2, RA3, RA4, receives a plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals.

For each receiver antenna, as shown in FIG. 3, by way of example, the plurality of matched filters includes a matched filter having a impulse response MF1 matched to a first chip-sequence signal g1(t); a matched filter having a impulse response MF2 matched to a second chip-sequence signal g2(t); a matched filter having an impulse response MF3 matched to a third chip-sequence signal g3(t); and, a matched filter having an impulse response MF4 matched to a fourth chip-sequence signal g4(t). More particularly, the first plurality of matched filters 24, 34, 44, 54, in FIG. 3, has a first matched filter 24 with an impulse response MF1 matched to a first chip-sequence signal g1(t) in the plurality of chip-sequence signals; a second matched filter 34 with an impulse response MF2 matched to a second chip-sequence signal g2(t) in the plurality of chip-sequence signals; a third matched filter 44 with an impulse response MF3 matched to a third chip-sequence signal g3(t) in the plurality of chip-sequence signals; and a fourth matched filter with an impulse response MF4 matched to a fourth chip-sequence signal g4(t) in the plurality of chip-sequence signals. The second plurality of matched filters 25, 35, 45, 55, in FIG. 3, has a fifth matched filter 25 with an impulse response MF1 matched to the first chip-sequence signal g1(t) in the plurality of chip-sequence signals; a sixth matched filter 35 with an impulse response MF2 matched to the second chip-sequence signal g2(t) in the plurality of chip-sequence signals; a seventh matched filter 45 with an impulse response MF3 matched to the third chip-sequence signal g3(t) in the plurality of chip-sequence signals; and an eighth matched filter 55 with an impulse response MF4 matched to the fourth chip-sequence signal g4(t) in the plurality of chip-sequence signals. The third plurality of matched filters 26, 36, 46, 56, in FIG. 3, has a ninth matched filter 26 with an impulse response MF1 matched to the first chip-sequence signal g1(t) in the plurality of chip-sequence signals; a tenth matched filter 36 with an impulse response MF2 matched to the second chip-sequence signal g2(t) in the plurality of chip-sequence signals; an eleventh matched filter 46 with an impulse response MF3 matched to a third chip-sequence signal g3(t) in the plurality of chip-sequence signals; and a twelfth matched filter 56 with an impulse response MF4 matched to a fourth chip-sequence signal g4(t) in the plurality of chip-sequence signals. The fourth plurality of matched filters 27, 37, 47, 57, in FIG. 3, has a thirteenth matched filter 27 with an impulse response MF1 matched to the first chip-sequence signal g1(t) in the plurality of chip-sequence signals; a fourteenth matched filter 37 with an impulse response MF2 matched to the second chip-sequence signal g2(t) in the plurality of chip-sequence signals; a fifteenth matched filter 47 with an impulse response MF3 matched to the third chip-sequence signal g3(t) in the plurality of chip-sequence signals; and a sixteenth matched filter 57 with an impulse response MF4 matched to the fourth chip-sequence signal g4(t) in the plurality of chip-sequence signals. Thus, each plurality of matched filters has a plurality of impulse responses MF1, MF2, MF3, MF4 matched to the plurality of chip-sequence signals, g1(t), g2(t), g3(t), g4(t), respectively.

Alternatively, all four antennas could be coupled to a single radio frequence (RF) RF-IF down converter, with in-phase and quadrature-phase components being formed, and a single matched filer for each impulse response. Thus, there would be a single matched filter with the impulse response MF1, there would be a single matched filter with the impulse response MF2, there would be a single matched filter with the impulse response MF3, and there would be a single matched filter with the impulse response MF4.

In FIG. 3, the first plurality of matched filters 24, 34, 44, 54, by way of example, detects from the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, a first plurality of detected spread-spectrum signals and a first multiplicity of detected fading spread-spectrum signals, respectively. The second plurality of matched filters 25, 35, 45, 55 detects from the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, a second plurality of detected spread-spectrum signals and a second multiplicity of detected fading spread-spectrum signals, respectively. The third plurality of matched filters 26, 36, 46, 56 detects from the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, a third plurality of detected spread-spectrum signals and a third multiplicity of detected fading spread-spectrum signals, respectively. The fourth plurality of matched filters 27, 37, 47, 57 detects from the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, a fourth plurality of detected spread-spectrum signals and a fourth multiplicity of detected fading spread-spectrum signals, respectively.

The plurality of RAKE and space-diversity combiners combines each plurality of detected spread-spectrum signals and each multiplicity of detected-fading spread-spectrum signals, respectively, from each receiver subsystem. This generates a plurality of combined signals. More particularly, as depicted in FIG. 3, four RAKE and space-diversity combiners are used, with each respective RAKE and space-diversity combiner corresponding to a chip-sequence signal. A first RAKE and space-diversity combiner 161 is coupled to the first matched filter 24, the fifth matched filter 25, the ninth matched filter 26, and the thirteenth matched filter 27, all of which have an impulse response matched to the first chip-sequence signal. The plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, which have a spread-spectrum subchannel defined by the first chip-sequence signal, and detected by any or all of the first matched filter 24, the fifth matched filter 25, the ninth matched filter 26 and the thirteenth matched filter 27, are combined by the first RAKE and space-diversity combiner 161. At the output of the first RAKE and space-diversity combiner 161 is a first combined signal. The first RAKE and space-diversity combiner 161 may use any of a number of techniques for combining signals, such as selecting the four strongest signals and adding their strengths, maximal ratio combining, maximal likelihood combining, etc. RAKE and combining techniques are well known in the art.

A second RAKE and space-diversity combiner 162 is coupled to the second matched filter 34, the sixth matched filter 35, the tenth matched filter 36, and the fourteenth matched filter 37, all of which have an impulse response matched to the second chip-sequence signal. The plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, which have a spread-spectrum subchannel defined by the second chip-sequence signal, and detected by any or all of the second matched filter 34, the sixth matched filter 35, the tenth matched filter 36 and the fourteenth matched filter 37, are combined by the second RAKE and space-diversity combiner 162. At the output of the second RAKE and space-diversity combiner 162 is a second combined signal. The second RAKE and space-diversity combiner 162 may use any of a number of techniques for combining signals, such as selecting the four strongest signals and adding their strengths, maximal ratio combining, maximal likelihood combining, etc. RAKE and combining techniques are well known in the art.

A third RAKE and space-diversity combiner 163 is coupled to the third matched filter 44, the seventh matched filter 45, the eleventh matched filter 46, and the fifteenth matched filter 47, all of which have an impulse response matched to the third chip-sequence signal. The plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, which have a spread-spectrum subchannel defined by the third chip-sequence signal, and detected by any or all of the third matched filter 44, the seventh matched filter 45, the eleventh matched filter 46 and the fifteenth matched filter 47, are combined by the third RAKE and space-diversity combiner 163. At the output of the third RAKE and space-diversity combiner 163 is a third combined signal. The third RAKE and space-diversity combiner 163 may use any of a number of techniques for combining signals, such as selecting the four strongest signals and adding their strengths, maximal ratio combining, maximal likelihood combining, etc. RAKE and combining techniques are well known in the art.

A fourth RAKE and space-diversity combiner 164 is coupled to the fourth matched filter 54, the eighth matched filter 55, the twelfth matched filter 56, and the sixteenth matched filter 57, all of which have an impulse response matched to the fourth chip-sequence signal. The plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, which have a spread-spectrum subchannel defined by the fourth chip-sequence signal, and detected by any or all of the fourth matched filter 54, the eighth matched filter 55, the twelfth matched filter 56 and the sixteenth matched filter 57, are combined by the fourth RAKE and space-diversity combiner 164. At the output of the fourth RAKE and space-diversity combiner 164 is a fourth combined signal. The fourth RAKE and space-diversity combiner 164 may use any of a number of techniques for combining signals, such as selecting the four strongest signals and adding their strengths, maximal ratio combining, maximal likelihood combining, etc. RAKE and combining techniques are well known in the art.

The multiplexer 132 is coupled to the plurality of RAKE and space-diversity combiners. As illustratively shown in FIG. 3, the multiplexer 132 is coupled to the first RAKE and space-diversity combiner 161, to the second RAKE and space-diversity combiner 162, to the third RAKE and space-diversity combiner 163, and to the fourth RAKE and space-diversity combiner 164. The multiplexer 132 multiplexes the first combined signal, the second combined signal, the third combined signal and the fourth combined signal, to generate a multiplexed signal. Thus, more generally, the multiplexer 132 multiplexes the plurality of combined signals to generate the multiplexed signal. The de-interleaver 61 de-interleaves the multiplexed signal from the multiplexer 132 to generate a de-interleaved signal, and the FEC decoder 62 decodes the de-interleaved signal to output the data. Buffer or memory circuits may be inserted between the multiplexer 132 and de-interleaver 61, for storing a plurality of multiplexed signals before the de-interleaver. Alternatively, the memory circuits may be incorporated as part of the de-interleaver.

In use, data are encoded by FEC encoder 21 as FEC data, and the FEC data are interleaved by interleaver 22 generating interleaved data. The demultiplexer 32 demultiplexes the interleaved data into a plurality of subchannels and the plurality of spread-spectrum devices 23, 33, 43, 53 spread-spectrum process the plurality of subchannels of data with a plurality of chip-sequence signals, respectively. The spread-spectrum processing generates a plurality of spread-spectrum-subchannel signals, respectively.

The plurality of transmit antennas radiate the plurality of spread-spectrum-subchannel signals as a plurality of spread-spectrum signals, respectively, over the communications channel.

At the receiver, a plurality of receiver antennas RA1, RA2, RA3, RA4 receive the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals. At each receiver antenna, and by way of example, the first receiver antenna RA1, there are a plurality of matched filters which detect the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, as a plurality of detected spread-spectrum signals and a multiplicity of detected-fading spread-spectrum signals, respectively. The plurality of RAKE and space-diversity combiners 161, 162, 163, 164 combine the plurality of detected spread-spectrum signals and the multiplicity of detected-fading spread-spectrum signals from each of the plurality of receiver subsystems, thereby generating a plurality of combined signals.

The multiplexer 132 multiplexes the plurality of combined signals as a multiplexed signal. The de-interleaver 61 de-interleaves the multiplexed signal, and the FEC decoder 62 decodes the de-interleaved signal.

Since the symbol amplitudes are readily available, the presence of a small or low level symbol amplitude, even after coding, is a good indication of a processing error. Thus, erasure decoding is preferred in this system to improve performance. During RAKE and space combining, the noise level in each symbol also is measured. This is readily done in a matched filter by sampling the matched filter at a time, not being the symbol sampling time. The noise level at each symbol is recorded or stored in memory, and any significant increase above a predefined threshold, such as 3 dB, is transmitted to the FEC decoder for erasure decoding. Erasure decoding is well known in the art.

As an example of the performance improvement resulting from the present invention, consider that a single transmitter antenna and a single receiver antenna are employed in a system. Let the probability of being shadowed be q. Then q represents the fractional outage time. The order of combining is important if each transmitter antenna sends different data. If each transmitter antenna sent the same data, then the ordering, with appropriate delays, is not important.

Consider using a single transmitter antenna and M receiver antennas. Assuming independence, the probability of a blocked transmission is qM. Further, the multipath outputs at each receiver are combined using RAKE (time diversity), and then the resulting output at each receiver is combined (space diversity). In the antenna system, the transmitted power, to each receiver antenna, is PT and the processing gain is PG.

In the above example, assume independence, that is, the probability of being blocked to a first receiver antenna, RA1, does not alter the probability of being blocked to a second receiver antenna, RA2, for example. In many cases, however, this assumption may not be correct. A large building may block a first receiver antenna, RA1, a second receiver antenna, RA2, and a third receiver antenna, RA3, from a user's transmitter antenna. In such a situation it is often beneficial to transmit from several transmitting antennas. In a system employing N transmit antennas and M receiver antennas, the transmitted power from each transmitter antenna is reduced by N and the processing gain is increased by N. However, the interference also is increased by N. Thus, there is no signal-to-noise ratio (SNR) improvement in a Gaussian channel, and the advantage of such a system is increased access, i.e., significantly less outage time in a fading channel, a consideration needed for wireless system performance to approach that of a wired system.

A space coding technique is shown in FIGS. 4, 5 and 6. Note that the data are interleaved and FEC encoded using a rate R=½ code, such as a convolutional code. The same data then is transmitted over all transmit antennas. In FIGS. 4 and 5, two transmit antennas are shown. In this system, after performing the RAKE operation, two receiver systems perform a standard space diversity maximal-ratio-combining to optimize performance.

Assume that each transmission is received by all four receiver antennas. Then such receiver performs a RAKE reception for each transmitter antenna's signal. These signals are then combined using maximal ratio combining for space diversity. The resulting output of each antenna can then be combined. Of course, any order of combining yields the same result and all combining from all receiver antennas can be done simultaneously (RAKE and space diversity). The order depends on system implementation and does not affect performance. Erasure decoding may be employed at the FEC decoder.

The second embodiment of the antenna system is shown in FIGS. 4, 5 and 6. In FIG. 4, the invention includes FEC encoder 21, coupled to the interleaver 22. From the interleaver 22, the system includes at least one delay device 181 and at least two spread-spectrum devices 23, 33. The system may include a plurality of delay devices, with each delay device having a delay different from other delay devices in the plurality of delay devices. The delay device 181 delays the interleaved data going to the second spread-spectrum device 33. The first spread-spectrum device 23 spread-spectrum processes the interleaved data with the first chip-sequence signal from the chip-sequence generator 31, and the second spread-spectrum device 33 spread-spectrum processes the delayed version of the interleaved data with the second chip-sequence signal from chip-sequence sequence signal generator 31. The first transmitter antenna TA1 radiates the first spread-spectrum signal from the first spread-spectrum device 23, and the second transmitter antenna TA2 radiates the second spread-spectrum signal from the second spread-spectrum device 33.

An alternative to FIG. 4 is shown in FIG. 5. Data are first demultiplexed by demultiplexer 32 into a first stream of data and a second stream of data. The second stream of data is delayed by delay device 181 with respect to the first stream of data. The first stream of data is FEC encoded by first FEC encoder 521 and interleaved by first interleaver 622. The delayed second stream of data is FEC encoded by second FEC encoder 621 and interleaved by second interleaver 622.

The receiver has a multiplicity of receiver subsystems which include a plurality of receiver antennas. Each sub-system corresponding to a receiver antenna has a plurality of matched filters. As shown in FIG. 6, by way of example, a first receiver antenna RA1 and a second receiver antenna RA2 are shown. The first receiver antenna RA1 is coupled to a first matched filter 24 and a second matched filter 34. The second receiver antenna RA2 is coupled to a fifth matched filter 25 and a sixth matched filter 35. The RAKE and space-diversity combiner 60 combines the outputs from the first matched filter 24, the second matched filter 34, the fifth matched filter 25, and the sixth matched filter 35 to form a combined signal. The de-interleaver 61 de-interleaves the combined signal, and the FEC decoder 62 decodes the de-interleaved signal.

As an alternative to the embodiments described in FIGS. 4-6, an identical chip-sequence signal can be used for the plurality of chip-sequence signals. In this alternative, only a single matched filter having an impulse response matched to the chip-sequence signal, is required. Each transmitted signal is delayed by at least one chip.

FIG. 7 is a block diagram of a receiver system having a plurality of matched filters 24, 25, 26, 34, 35, 36, 44, 45, 46, coupled to a receiver antenna. As with FIG. 3, the plurality of matched filters 24, 25, 26, 34, 35, 36, 44, 45, 46 has a plurality of impulse responses matched to the plurality of chip-sequence signals, respectively. The plurality of matched filters 24, 25, 26, 34, 35, 36, 44, 45, 46 detects the plurality of spread-spectrum signals and the multiplicity of fading spread-spectrum signals, as a plurality of detected spread-spectrum signals and a multiplicity of detected-fading spread-spectrum signals, respectively.

Also illustrated in FIG. 7 is a plurality of RAKE and space-diversity combiners 761, 762, 763, coupled to the plurality of matched filters 24, 25, 26, 34, 35, 36, 44, 45, 46, with a first RAKE and space-diversity combiner 761 coupled to each matched filter 24, 25, 26 having an impulse response matched to a first chip-sequence signal, and with respective RAKE and space-diversity combiners coupled to respective matched filters having impulse responses matched to respective chip-sequence signals. The plurality of RAKE and space-diversity combiners 761, 762, 763 combines, for a respective chip-sequence signal, the plurality of detected spread-spectrum signals and the multiplicity of detected-fading spread-spectrum signals from the plurality of matched filters 24, 25, 26, 34, 35, 36, 44, 45, 46. The combining generates a plurality of combined signals and a plurality of signal amplitudes, respectively. A first combined signal is from the first RAKE and space-diversity combiner 761, and respective combined signals are from respective RAKE and space-diversity combiners.

A multiplexer 765 is coupled to the plurality of RAKE and space diversity combiners 761, 762, 763. The multiplexer 765 multiplexes the plurality of combined signals, thereby generating a multiplexed signal. A de-interleaver 61 is coupled to the multiplexer 765 for de-interleaving the multiplexed signal from the multiplexer, thereby generating a de-interleaved signal. The decoder is coupled to the de-interleaver. The decoder 62 decodes the de-interleaved signal.

It will be apparent to those skilled in the art that various modifications can be made to the efficient shadow reduction antenna system for spread spectrum of the instant invention without departing from the scope or spirit of the invention, and it is intended that the present invention cover modifications and variations of the efficient shadow reduction antenna system for spread spectrum provided they come within the scope of the appended claims and their equivalents.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2520188Mar 24, 1948Aug 29, 1950Mackay Radio And Telegraph ComDiversity reception employing frequency shift keying
US3144647Dec 1, 1959Aug 11, 1964IttDiversity system
US3204035Nov 26, 1962Aug 31, 1965Ballard Arthur HOrthonormal pulse multiplex transmission systems
US3214691May 13, 1960Oct 26, 1965Nat Company IncFrequency diversity communications system
US3311832Mar 29, 1963Mar 28, 1967Schrader James HMultiple input radio receiver
US3383599Jan 13, 1964May 14, 1968Nippon Electric CoMultiple superheterodyne diversity receiver employing negative feedback
US3488445Nov 14, 1966Jan 6, 1970Bell Telephone Labor IncOrthogonal frequency multiplex data transmission system
US3500303Mar 14, 1968Mar 10, 1970Gen ElectricSignal generator for producing a set of signals of common frequency and adjustable phase slope
US3633107Jun 4, 1970Jan 4, 1972Bell Telephone Labor IncAdaptive signal processor for diversity radio receivers
US3652939Nov 7, 1969Mar 28, 1972Cit AlcatelApparatus for improving the signal to noise ratio of signals received at two antennas
US3751596Nov 29, 1971Aug 7, 1973IbmData transmission system using complementary coding sequences
US4075566Apr 15, 1974Feb 21, 1978Catv Components Co.Co-channel interference suppression apparatus
US4112370Aug 6, 1976Sep 5, 1978Signatron, Inc.Digital communications receiver for dual input signal
US4112430Jun 1, 1977Sep 5, 1978The United States Of America As Represented By The Secretary Of The NavyBeamformer for wideband signals
US4160952May 12, 1978Jul 10, 1979Bell Telephone Laboratories, IncorporatedSpace diversity receiver with combined step and continuous phase control
US4189677Mar 13, 1978Feb 19, 1980Purdue Research FoundationDemodulator unit for spread spectrum apparatus utilized in a cellular mobile communication system
US4203071Aug 8, 1978May 13, 1980The Charles Stark Draper Laboratory, Inc.Pseudo-random-number-code-detection and tracking system
US4210871Sep 1, 1978Jul 1, 1980The United States Of America As Represented By The Secretary Of The NavyOptimum diversity combining circuit for a plurality of channels
US4217586Aug 11, 1978Aug 12, 1980General Electric CompanyChannel estimating reference signal processor for communication system adaptive antennas
US4281411Jun 25, 1979Jul 28, 1981Signatron, Inc.High speed digital communication receiver
US4298871Jun 11, 1979Nov 3, 1981Motorola Inc.Desired signal estimator for null steerer FM reception using FSK modulation
US4347627Feb 26, 1979Aug 31, 1982E-Systems, Inc.Adaptive array processor and processing method for communication system
US4369520Mar 22, 1979Jan 18, 1983Motorola, Inc.Instantaneously acquiring sector antenna combining system
US4385378Aug 25, 1980May 24, 1983Communication Satellite CorporationHigh power multiplexer for dual polarized frequency reuse earth stations
US4425639Jan 12, 1981Jan 10, 1984Bell Telephone Laboratories, IncorporatedSatellite communications system with frequency channelized beams
US4528674Aug 22, 1983Jul 9, 1985E-Systems, Inc.Method and apparatus for baseband generation of a spread spectrum reference signal for use in an LMS adaptive array processor
US4608701Sep 19, 1984Aug 26, 1986Hollandse Signaalapparaten B.V.Communication receiving unit for the suppression of noise and interference signals
US4615040Jun 14, 1984Sep 30, 1986Coenco Ltd.High speed data communications system
US4656642Apr 18, 1984Apr 7, 1987Sanders Associates, Inc.Spread-spectrum detection system for a multi-element antenna
US4670885Feb 26, 1985Jun 2, 1987Signatron, Inc.Spread spectrum adaptive antenna interference canceller
US4694467Jul 3, 1986Sep 15, 1987Signatron, Inc.Modem for use in multipath communication systems
US4707839Sep 26, 1983Nov 17, 1987Harris CorporationSpread spectrum correlator for recovering CCSK data from a PN spread MSK waveform
US4715048May 2, 1986Dec 22, 1987Canadian Patents And Development LimitedFrequency offset diversity receiving system
US4723321Nov 7, 1986Feb 2, 1988American Telephone And Telegraph Company, At&T Bell LaboratoriesTechniques for cross-polarization cancellation in a space diversity radio system
US4731801Nov 5, 1985Mar 15, 1988Oy Nokia AbMethod for the reception and detection of digital signals
US4733402Apr 23, 1987Mar 22, 1988Signatron, Inc.Adaptive filter equalizer systems
US4748682Jan 7, 1986May 31, 1988Mitsubishi Denki Kabushiki KaishaCombined diversity receiving apparatus
US4789983Mar 5, 1987Dec 6, 1988American Telephone And Telegraph Company, At&T Bell LaboratoriesWireless network for wideband indoor communications
US4797950Oct 2, 1987Jan 10, 1989Kenneth RillingMultipath reduction system
US4817089Mar 27, 1987Mar 28, 1989International Mobile Machines CorporationSubscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels
US4849990Sep 13, 1985Jul 18, 1989Fumio IkegamiDigital communication system
US4901307Oct 17, 1986Feb 13, 1990Qualcomm, Inc.Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US5001723Nov 5, 1985Mar 19, 1991Allied-Signal Inc.Sinusoidal M-ary orthogonal keyed decoding
US5028931May 24, 1990Jul 2, 1991Stc PlcAdaptive array processor
US5048057Jan 2, 1990Sep 10, 1991At&T Bell LaboratoriesWireless local area network
US5063571Dec 27, 1989Nov 5, 1991Nynex CorporationMethod and apparatus for increasing the data rate for a given symbol rate in a spread spectrum system
US5081643Nov 16, 1990Jan 14, 1992Scs Mobilecom, Inc.Spread spectrum multipath receiver apparatus and method
US5081645Aug 6, 1990Jan 14, 1992Aware, Inc.Novel spread spectrum codec apparatus and method
US5109390Nov 7, 1989Apr 28, 1992Qualcomm IncorporatedDiversity receiver in a cdma cellular telephone system
US5155742May 3, 1991Oct 13, 1992Bell Communications Research, Inc.Time dispersion equalizer receiver with a time-reversal structure for TDMA portable radio systems
US5166951May 15, 1991Nov 24, 1992Scs Mobilecom, Inc.High capacity spread spectrum channel
US5228053Oct 17, 1991Jul 13, 1993Interdigital Technology CorporationSpread spectrum cellular overlay CDMA communications system
US5228055Jan 31, 1992Jul 13, 1993Clarion Co., Ltd.Spread spectrum communication device
US5249302Feb 11, 1991Sep 28, 1993Motorola, Inc.Mixed-mode transceiver system
US5260968Jun 23, 1992Nov 9, 1993The Regents Of The University Of CaliforniaMethod and apparatus for multiplexing communications signals through blind adaptive spatial filtering
US5276703Jan 13, 1992Jan 4, 1994Windata, Inc.Wireless local area network communications system
US5280472Mar 9, 1992Jan 18, 1994Qualcomm IncorporatedCDMA microcellular telephone system and distributed antenna system therefor
US5291515Jun 11, 1991Mar 1, 1994Clarion Co., Ltd.Spread spectrum communication device
US5345467Oct 8, 1992Sep 6, 1994Interdigital Technology Corp.CDMA cellular hand-off apparatus and method
US5345599Feb 21, 1992Sep 6, 1994The Board Of Trustees Of The Leland Stanford Junior UniversityIncreasing capacity in wireless broadcast systems using distributed transmission/directional reception (DTDR)
US5345602Aug 26, 1992Sep 6, 1994Blaupunkt Werke GmbhReceiver with multiple antennas
US5369663Mar 5, 1991Nov 29, 1994The United States Of America As Represented By The Secretary Of The NavySpatial combiner for a digital VLF/LF receiver
US5400359Mar 22, 1993Mar 21, 1995Sharp Kabushiki KaishaSpread spectrum communication system and an apparatus for communication utilizing this system
US5404374Jul 12, 1993Apr 4, 1995Apple Computer, Inc.In a communication system
US5416797Jan 24, 1992May 16, 1995Qualcomm IncorporatedSystem and method for generating signal waveforms in a CDMA cellular telephone system
US5422908Nov 22, 1993Jun 6, 1995Interdigital Technology Corp.Phased array spread spectrum system and method
US5422913Apr 30, 1991Jun 6, 1995The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern IrelandHigh frequency multichannel diversity differential phase shift (DPSK) communications system
US5437055Jun 3, 1993Jul 25, 1995Qualcomm IncorporatedAntenna system for multipath diversity in an indoor microcellular communication system
US5471497Nov 1, 1993Nov 28, 1995Zehavi; EphraimMethod and apparatus for variable rate signal transmission in a spread spectrum communication system using coset coding
US5479448Mar 31, 1992Dec 26, 1995At&T Corp.Method and apparatus for providing antenna diversity
US5504936Jun 21, 1994Apr 2, 1996Airtouch Communications Of CaliforniaMicrocells for digital cellular telephone systems
US5517686Sep 29, 1994May 14, 1996Delco Electronics CorporationDiversity receiver for FM stereo utilizing a pilot tone multiple for phase alignment of received signals
US5555257May 16, 1995Sep 10, 1996Ericsson Ge Mobile Communications Inc.Cellular/satellite communications system with improved frequency re-use
US5561686Aug 24, 1992Oct 1, 1996Kabushiki Kaisha ToshibaRadio information communication system using multi-carrier spread spectrum transmission system
US5592490Jan 20, 1995Jan 7, 1997Arraycomm, Inc.Spectrally efficient high capacity wireless communication systems
US5614914Sep 6, 1994Mar 25, 1997Interdigital Technology CorporationWireless telephone distribution system with time and space diversity transmission for determining receiver location
US5621752Jun 23, 1994Apr 15, 1997Qualcomm IncorporatedAdaptive sectorization in a spread spectrum communication system
US5625876Mar 13, 1995Apr 29, 1997Qualcomm IncorporatedMethod and apparatus for performing handoff between sectors of a common base station
US5633889Apr 1, 1996May 27, 1997Interdigital Technology Corp.Phased array spread spectrum system and method
US5642353Jun 5, 1995Jun 24, 1997Arraycomm, IncorporatedSpatial division multiple access wireless communication systems
US5648983Apr 24, 1995Jul 15, 1997Lucent Technologies Inc.CDMA rake receiver with sub-chip resolution
US5652764Jan 17, 1996Jul 29, 1997Kabushiki Kaisha ToshibaRadio communication system
US5657325Apr 26, 1996Aug 12, 1997Lucent Technologies Inc.Transmitter and method for transmitting information packets with incremental redundancy
US5657343Oct 12, 1995Aug 12, 1997Interdigital Technology CorporationFrequency hopping code division multiple access system and method
US5659572Jun 28, 1994Aug 19, 1997Interdigital Technology CorporationPhased array spread spectrum system and method
US5680419Aug 2, 1994Oct 21, 1997Ericsson Inc.Method of and apparatus for interference rejection combining in multi-antenna digital cellular communications systems
US5697084Sep 16, 1994Dec 9, 1997Bose CorporationReducing multipath fading using adaptive filtering
US5748623Sep 2, 1994May 5, 1998Ntt Mobile Communications Network, Inc.Code division multiple access transmitter and receiver
US5768685Dec 11, 1995Jun 16, 1998Hughes ElectronicsMethod and apparatus for converting signals in a base station receiver
US5771229Jan 31, 1997Jun 23, 1998Motorola, Inc.Method, system and mobile communication unit for communicating over multiple channels in a wireless communication system
US5781845Dec 3, 1996Jul 14, 1998The Aerospace CorporationAdaptive transmitting antenna
US5793744Jul 24, 1996Aug 11, 1998Nokia Telecommunications OyDigital mobile communication system
US5809060Dec 30, 1994Sep 15, 1998Micrilor, Inc.Apparatus for communicating data between at least two data devices
US5812542Mar 18, 1996Sep 22, 1998Motorola, Inc.Method for determining weighting coefficients in a CDMA radio receiver
US5828658Oct 23, 1996Oct 27, 1998Arraycomm, Inc.Spectrally efficient high capacity wireless communication systems with spatio-temporal processing
US5848103Oct 4, 1995Dec 8, 1998Lucent Technologies Inc.For a wireless communication system
US5856971Jul 20, 1995Jan 5, 1999At&T CorpCode division multiple access system providing variable data rate access to a user
US5859840May 31, 1996Jan 12, 1999Qualcomm IncorporatedSpread spectrum communication system which defines channel groups comprising selected channels that are additional to a primary channel and transmits group messages during call set up
US5859842Nov 8, 1995Jan 12, 1999Omnipoint CorporationWireless communication system
US6353626 *May 4, 1998Mar 5, 2002Nokia Mobile Phones LimitedMethods and apparatus for providing non-uniform de-multiplexing in a multi-carrier wide band CDMA system
US6704370 *Apr 13, 1999Mar 9, 2004Nortel Networks LimitedInterleaving methodology and apparatus for CDMA
Non-Patent Citations
Reference
148th IEEE Vehicular Technology Conference, May 18-21, 1998, Pathway to a Global Wireless Revolution, K.K. Wong et al, "Investigating the Performance of Smart Antenna Systems at the Mobile and Base Stations in the Down and Uplinks", Dept. of Electrical & Electronic Engineering, Hong Kong University of Science & Technology, Kowloon, Hong Kong, 7 pgs.
2A. Jalali et al, "On Fast Forward Link Power Control in CDMA Systems", Nortel Wireless Networks, Richardson, TX, Sep. 1998, 4 pages, IEEE.
3A. Jalali et al, "Performance of Fast Forward Link Power Control for CDMA Systems", Nortel Wireless Networks, Richardson, TX, Apr. 1998, 4 pages, IEEE.
4Agrawal, Dakshi et al, "Space-Time Coded OFDM for High Data-Rate Wireless Communication Over Wideband Channels", Coordinated Science Lab, University of IL, Urbana, IL and AT&T Labs Research, Florham Park, NJ, IEEE 1998, 5 pgs.
5Ashvin Chheda, "On the Forward Link Capacity of a cdma2000-1X System with Transmit Diversity", Nortel Networks, Richardson, TX, 2000, 6 pgs, IEEE.
6Baghaie, R., Werner, S., Laakso, T., "Pipelined Implementation of Adaptive Multiple-Antenna CDMA Mobile Receivers," Helsinki University of Technology, pp. 3229-3232, IEEE 1998.
7Ban, K., Katayama, M., Stark, W.E., Yamazato, T., Ogama, A., Convolutionally Coded DS/CDMA System Using Multi-Antenna Transmission, Department of Information Electronics, Nagoya University, Japan, pp. 92-96, IEEE 1997.
8Ban, K., Katayama, M., Yamazato, T., Ogawa, A., "A Simple Transmit/Receive Antenna Diversity for Indoor DS/CDMA Wireless Communications Systems," IEICE Transactions on Communications, vol. E80-B. No. 12, pp. 1790-1797, Dec. 1997.
9Ban, K., Katayama, M., Yamazato, T., Ogawa, A., "The DS/CDMA System Using Transmission Diversity for Indoor Wireless Communications," Dept. of Information Electr., pp. 808-812 Nagoya University, Nagoya, Japan, 1996 IEEE.
10Buljore, S., Diouris, J.F., Zeidler, J., Milstein, L., "Performance Enhancements for SD-CDMA Receivers Using Space-Path Diversity," Department of Electrical and Computer Engineering, University of California San Diego, pp. 1108-1112, IEEE 1997.
11Buljore, S., Honig, M.L., Zeidler, J., Milstein, L., "Adaptive Multi-Sensor Receivers for Frequency Selective Channels in DS-CDMA Communications Systems," Department of Electrical & Computer Engineering, University of California, La Jolla, California, 1998 IEEE.
12Chheda, Ashvin et al, "Performance Evaluation of Two Transmit Diversity Techniques for cdma2000", Nortel Wireless Networks, Richardson, TX, IEEE 1999, 5 pgs.
13Cimini, Jr. L. Chuang, J.C., Sollenberger, N.R., "Advanced Cellular Internet Services (ACIS)," IEEE Communications Magazine, pp. 150-159, Oct. 1998.
14Cimini, Leonard J., Sollenberger, Nelson R., "OFDM with Diversity and Coding for Advanced Cellular Internet Services", IEEE, Nov. 1997, pp. 305-309.
15Del Re, E., Fantacci, F., Morosi, S., Marapodi, S., "A Low-Complexity Multiuser Detector for Asynchronous CDMA QPSK Systems with Adaptive Antenna Arrays," Dipartimento di Ingegneria Elettronica IEEE 1998.
16Diouris, J.F., Buljore, S. Zeidler, J. Saillard, J., "Space-Time Diversity Received for DS-CDMA Systems," Department of Electrical and Computer Engineering, University of California, San Diego, pp. 367-370, IEEE 1997.
17Diouris, J.F., Zeidler, J., Buijore, S., "Space-Path Diversity in CDMA using a Compact Array," Anales de Telecommunications, Nov.-Dec. 1998, vol. 53, No. 11-12, pp. 425-434.
18Dixon, Robert C., "Spread Spectrum Systems with Commercial Applications. Third Edition", John Wiley & Sons, Inc., NY, 1994 (Only cover, title & pub. info pgs submitted).
19Ellersick, Fred W. et al, "Spread-Spectrum Communications", IEEE Press, NY, 1983, 293 pgs (Only cover and publication info pages submitted).
20Erceg, V., Ghassemzadeh, S., Taylor, M., Li, D., Schilling, D.L., "Urban/Suburban Out-of-Sight Propagation Modeling," IEEE Communications Magazine, pp. 56-61 Jun. 1992.
21G. J. Foschini et al, "On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas", Wireless Personal Communications 6:311-335, 1998.
22G.D. Golden et al, "Detection algorithm and initial laboratory results using V-Blast space-time communication architecture", Electronics Letters, Jan. 7, 1999, vol. 35, 2 pgs.
23G.D. Golden et al, "V-Blast: A High Capacity Space-Time Architecture for the Rich-Scattering Wireless Channel"; Wireless Communications Research Dept. Bell Laboratories, Lucent Technologies, International Symposium on Advanced Radio Technologies, Boulder, CO, Sep. 9-11, 1998, 14 pages.
24Gerald J. Foschini, "Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multi-Element Antennas", Bell Labs Technical Journal, Autumn 1996, 19 pages.
25Gohring, N., "Nortel Demos CDMA High Speed Data," (Internet Article) www.telephonyonline.com/telecom13nortel_demos_cdma, Jul. 13, 1998.
26Hanlen, L., Minyue, F., "Multiple Antenna Wireless Communication Systems: Limits to Capacity Growth", Wireless Communication & Networking Conf. 2002, 5 pp.
27Hemmati, F., Schilling, D.L., "Upper Bonds on the Partial Correlation of PN Sequences," IEEE Transactions on Communications, vol. COM-31, No. 7, Jul. 1983.
28Hottinen, Ari et al, "Transmit Diversity by Antenna Selection in CDMA Downlink", Nokia Research Center, Finland, 1998 IEEE, 4 pgs.
29Jensen, M., "A Guide to Improving Internet Access in Africa with Wireless Technologies," IDRC Study, Aug. 31, 1996, 3 pgs.
30Jeong, I., Nakagawa, M., "A Novel Transmission Diversity System in TDD-CDMA," 1988 IEEE International Symposium on Spread Spectrum Techniques and Applications-Proceedings, Sep. 2-4, 1998, 6 pgs.
31Jones, V.K. et al, "Channel Estimation for Wireless OFDM Systems", Clarity Wireless, Inc., Belmont, CA, 1998 IEEE, 6 pgs.
32Kato, O., Miya, K., Homma, K., Kitade, T., Hayashi, M., Watanabe, M., "Experimental Performance Results of Coherent Wideband DS-CDMA with TDD Scheme," IEICE Trans. Commun., vol. E81-B., No. 7, pp. 1337-1344, Jul. 1998.
33Khan, Sajid Anwar, "An Investigation into the Error Performance of Vertical-Bell Labs Layered Space-time Architecture V-Blast", Thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, May 2003, 180 pp. (only title, first page and abstract submitted).
34Kohno, Ryuji et al, "Adaptive Array Antenna Combined with Tapped Delay Line Using Processing Gain for Spread-Spectrum CDMA Systems", Yokahama National University, PIMRC '92, Oct. 19-21, 1992, Boston, MA, 6 pages.
35Kohno, Ryuji et al, "Combination of an Adaptive Array Antenna and a Canceller of Interference for Direct-Sequence Spread-Spectrum Multiple-Access System", IEEE journal on Selected Areas in Communications, vol. 8., No. 4 May 1990, 8 pages.
36Kohno, Ryuji, "Spatially and Temporally Joint Optimum Transmitter-Receiver Based on Adaptive Array Antenna for Multi-User Detection in DS/CDMA", Yokohama University, Japan 1996 IEEE 4th Int'l Symposium on Spread Spectrum Techniques and Applications Proceedings, Sep. 22-25, 1996, Mainz, Germany, 7 pgs.
37Kohno, Ryuji, "Spatially and Temporally Joint Optimum Transmitter—Receiver Based on Adaptive Array Antenna for Multi-User Detection in DS/CDMA", Yokohama University, Japan 1996 IEEE 4th Int'l Symposium on Spread Spectrum Techniques and Applications Proceedings, Sep. 22-25, 1996, Mainz, Germany, 7 pgs.
38Kondo, Y. et al, "Linear Predictive Transmission Diversity for TDMA/TDD Personal Communication Systems," IEICE Transactions on Communications, vol. E79B. No. 10,10/96, 6 pgs.
39Li, Ye (Geoffrey) et al, "Transmitter Diversity for OFDM Systems and Its Impact on High-Rate Data Wireless Networks", IEEE Journal on Selected Areas in Communications, vol. 17, No. 7, Jul. 1999, 11 pgs.
40Li, Ye, (Geoffrey) et al, "Transmitter Diversity for OFDM Systems with Mobile Wireless Channels", AT&T Labs-Research, IEEE 1998, 6 pgs.
41Li, Ye, (Geoffrey) et al, "Transmitter Diversity for OFDM Systems with Mobile Wireless Channels", AT&T Labs—Research, IEEE 1998, 6 pgs.
42Liang, Jen-Wei, Interference Reduction & Equalization with Space-Time Processing in TDMA Cellular Networks, Dissertation, Stanford Univ, Jun. 1998, 144pp, (title, abstract, publ).
43Milstein, L., Davidovici, S., Schilling, D.L., "The Effect of Multiple-Tone Interfering Signals on a Direct Sequence Spread Spectrum Communication System," IEEE Transactions on Communications, vol. COM-30,. No. 3, pp. 436-446, Mar. 1982.
44Milstein, L., Pickholtz, R.L., Schilling. D.L., "Comparison of Performance in Digital Modulation Techniques in the Presence of Adjacent Channel Interference," IEEE Transactions on Communications, vol. COM-30, No. 8, pp. 1984-1993, Aug. 1982.
45Milstein, L., Schilling. D.L., Pickholtz, R.L., "Comparison of Performance of 16-ary QASK and MSK Over a Frequency Selective Rician Fading Channel," IEEE Transactions on Communications, vol. COM-29, No. 11, pp. 1622-1633, Nov. 1981.
46Milstein, L.B., Davidovici, S., Schilling, D.L., "Coding and Modulation Techniques for Frequency-Hopped Spread-Spectrum Communications over a Pulse-Burst Jammed Rayleigh Fading Channel," IEEE Journal on Selected Areas in Communications, vol. SAC-3, No. 5, pp. 644-651, Sep. 1985.
47Milstein, L.B., Schilling, D.L., "Performance of a Spread Spectrum Communication System Operating Over a Frequency-Selective Fading Channel in the Presence of Tone Interference," IEEE Transactions on Communications, vol. Com-30, No. 1., Jan. 1982, 6 pages.
48Milstein, L.B., Schilling, D.L., Pickholtz, R.L., Erceg, V., Kullback, M., Kanterakis, E., Fishman, D. S., Biederman, W.H., Salerno, D.C., "On the Feasibility of a CDMA Overlay for Personal Communications Networks," IEEE Journal on Selected Areas in Communications, vol. 10., No. 4, pp. 655-668, May 1992.
49Naguib, Ayman and Paulraj, Arogyaswami, "Performance of Wireless CDMA with M-ary Orthogonal Modulation and Cell Site Antenna Arrays", IEEE Journal on Selected Areas in Communications, vol. 14, No. 9, Dec. 1996, 14 pgs.
50Naguib, Ayman F., "Adaptive Antennas for CDMA Wireless Networks", Dissertation, Stanford University, Aug. 1996, 198 pgs. (Only cover page and Abstract submitted).
51Ojanpera, T., Prasad, R., "An Overview of Third-Generation Wireless Personal Communications, a European Perspective," IEEE Personal Communications, pp. 59-65, Dec. 1998.
52P.W. Wolniansky et al, "V-Blast: An Architecture for Realizing Very High Data Rates Over the Rich Scattering Wireless Channel", Bell Laboratories, Lucent Technologies, NJ, 7 pp. 1998 URSI Symposium on Signals, Systems and Electronics.
53Padgett, Jay E. et al, "Overview of Wireless Personal Communications", IEEE Communications Magazine, Jan. 1995, pp. 28-41.
54Pados, D.A., Batalama, S.N., "Fast Joint Space-Time Adaptive Processing for DS/SS Antenna Array Systems," Dept. of Electrical Engineering, pp. 328-332, State University of NY, Buffalo, NY IEEE 1998.
55Park, M., "Performance Evaluation of Multiuser Detectors with V-Blast to MIMO Channel," Thesis submitted to the faculty of Virginia Polytechnic Institute and State University Blacksburg, VA, May 2003.
56Paulrai, A. "Space-time Processing for Third-Generation Wireless Networks," First Annual UCSD Conference on Wireless Communications in Cooperation with the IEEE Communications Society, Conference Record, 1998, pp. 133-137, San Diego, CA.
57Paulraj, A.J., Ng, B.C., "Space-Time Modems for Wireless Personal Communications," IEEE Personal Communications, pp. 36-48, Feb. 1998.
58Pauw, C.K., Schilling, D.L., "Probability of Error for M-ary PSK and DPSK on a Rayleigh Fading Channel," IEEE Transactions on Communications, vol. 36, No. 6, Jun. 1988, 2 pgs.
59Pickholtz, R.L., Milstein, L.B., Schilling, D.L., "Spread Spectrum for Mobile Communications," IEEE Transactions on Vehicular Technology, vol. 40, No. 2, pp. 313-322 May 1991.
60Pickholtz, R.L., Milstein, L.B., Schilling, D.L., "Spread Spectrum for Mobile Communications," IEEE Transactions on Vehicular Tech., vol. 40, No. 2, pp. 313-322, May 1991.
61Pickholtz, Raymond L. et al, "Revisions to 'Theory of Spread-Spectrum Communications-A Tutorial'", IEEE, Feb. 1984, 2 pgs.
62Pickholtz, Raymond L. et al, "Theory of Spread-Spectrum Communications-A Tutorial", IEEE Transactions on Communications, vol. COM-30, No. 5, May 1982, 30 pgs.
63Pickholtz, Raymond L. et al, "Revisions to ‘Theory of Spread-Spectrum Communications—A Tutorial’", IEEE, Feb. 1984, 2 pgs.
64Pickholtz, Raymond L. et al, "Theory of Spread-Spectrum Communications—A Tutorial", IEEE Transactions on Communications, vol. COM-30, No. 5, May 1982, 30 pgs.
65Pottie, Gregory J., "Wireless Multiple Access Adaptive Communications Techniques", Univ. of CA, LA, Elect. Eng. Dept., Encycl. of Telecommun. vol. 18, 1999, pp. 1-41.
66Putman, C.A., Rappaport, S.S., Schilling, D.S., "A Comparison of Schemes for Coarse Acquisition of Frequency-Hopped Spread Spectrum Signals," IEEE Transactions on Communications, vol. COM-31, No. 2, pp. 183-189, Feb. 1983.
67Putman, C.A., Rappaport, S.S., Schilling, D.S., "Tracking of Frequency-Hopped Spread-Spectrum Signals in Adverse Environments," IEEE Transactions on Communications, vol. COM-31, No. 8, pp. 955-964, Aug. 1983.
68Rajan, Dinesh, Rice University, Houston, TX and Gray, Steven D., Nokia Ressearch Center, Irving, TX, Transmit Diversity Schemes for CDMA-2000, 1999 IEEE, 5 pgs.
69Raleigh, G.G. et al, "Spatio-Temporal Coding for Wireless Communications", Information Systems Lab, Stanford Univ. CA, 1996 IEEE, 6 pgs.
70Raleigh, G.G., Cioffi, J.M., "Spatio-Temporal Coding for Wireless Communication," IEEE Transactions on Commun., vol. 46, No. 3. pp. 357-366, Mar. 1998.
71Raleigh, G.G., Jones, V.K., "Multivariate Modulation and Coding for Wireless Communication," IEEE Journal on Selected Areas in Commun., vol. 17, No. 5, pp. 851-866, May 1999.
72Raleigh, G.G., Jones, V.K., Multivariate Modulation and Coding for Wireless Communication, Clarity Wireless, Inc., pp. 3261-3269, IEEE 1998.
73Raleigh, Gregory G. et al, "Multivariate Modulation and Coding for Wireless Communication", IEEE Journal on Selected Areas in Communications, vol. 17, No. 5, May 1999, 15 pgs.
74Raleigh, Gregory G. et al, "Spatio-Temporal Coding for Wireless Communication", IEEE Transactions on Communications, vol. 46, No. 3, Mar. 1998, 10 pgs.
75Ramos, J., Zoltowksi, M.D., Liu, H., "A Low-Complexity Space-Time RAKE Receiver for DS-CDMA Communications," IEEE Signal Processing Letters, vol. 4, No. 9, Sep. 1997.
76Ramos, J., Zoltowski, M.D., Martinez-Ramon, M., "Space-Time Optimal Combination for DS-SS. The 2D RAKE Receiver," Telecommunications Engineering Department, University Carlos III of Madrid, Spain, pp. 951-954. IEEE 1998.
77Rappaport, S.S., Schilling, D.L., "A Two-Level Coarse code Acquisition Scheme for Spread Sprectrum Radio," IEEE Transactions on Communications, vol. COM-28, No. 9, pp. 1734-1742, Sep. 1980.
78Rashid-Farrokhi Farrokh et al, "Transmit Beamforming and Power Control for Cellular Wireless Systems", IEEE Journal on Selected Areas in Communications, vol. 16, No. 8, Oct. 1998, 14 pages.
79Rashi-Farrokhi, F. et al, "Transmit and Receive Diversity and Equalization in Wireless Networks with Fading Channels", University of MD, College Park, MD, IEEE, 6 pgs.
80Rohani, K., Harrison, M., Kuchi, K., "A Comparison of Base Station Transmit Diversity Methods for Third Generation Cellular Standards," Motorola Labs, Access Technology Research, pp. 351-355. IEEE 1999.
81Rong, Z., Petrus, P., Rappaport, T.S., Reed, J.H., "Despread-Respread Multi-Target Constant Modulus Array for CDMA Systems," IEEE Communications Letters, vol. 1, No. 4. No. 4, pp. 114-116, Jul. 1997.
82Rong, Zhigang, "Simulation of Adaptive Array Algorithms for CDMA Systems", Thesis submitted to VPI & SU, Sep. 1996, 143 pgs. (Only Abstract submitted).
83Ryuji Kohno et al, "Adaptive Array Antenna Combined with Tapped Delay Line Using Processing Gain for Spread-Spectrum CDMA Systems"; Yokohama National University, Yokohama, Japan, IEEE 1992, 5 pages.
84Ryuji Kohno, "Spatial and Temporal Communication Theory Using Adaptive Antenna Array", Yokoham National University, Feb. 1998, 8 pgs.
85Saifuddin, Ahmed et al, "Performance Evaluation of DS/CDMA Scheme with Diversity Coding and MUI Cancellation over Fading Multipath Channel", Communication Research Laboratory Tokyo, Japan and Yokohama National University, Yokohama, Japan, IEEE 1996, 5 pgs.
86Schilling, D.L., "Wireless Communications Going into the 21st Century," IEEE Transactions on Vehicular Technology, vol. 43, No. 3, pp. 645, Aug. 1994.
87Schilling, D.L., Bozovic, R., "On the Performance of Spectrally Efficient Trellis Coded FM Modulation Employing Noncoherent FM Demodulation," IEEE Journal on Selected Areas in Communications, vol. 9, No. 9, pp. 1318-1327, Dec. 1989.
88Schilling, D.L., Millstein, L., Pickholtz, R.L., Brown, R.W., "Optimization of the Processing Gain of an M-ary Direct Sequence Spread Spectrum Communication System," IEEE Transactions on Communications, vol. COM-29, No. 8, pp. 1389-1398, Aug. 1980.
89Schilling, D.L., Milstein, L.B., Pickholtz, R.L., Brown, R.W., "Optimization of the Processing Gain of an M-ary Direct Sequence Spread Spectrum Communication System," IEEE Transactions on Communications, vol.-Com-28, No. 8, Aug. 1980, 10 pages.
90Schilling, D.L., Milstein, L.B., Pickholtz, R.L., Bruno, F., Kanterakis, E., Kullback, M., Erceg, V., Biederman, W., Fishman, D., Salemo, D., "Broadband CDMA for Personal Communications Systems," IEEE Communications Magazine, pp. 86-93, Nov. 1991.
91Schilling, D.L., Milstein, L.B., Pickholtz, R.L., Kullback, M., Miller, F., "Spread Spectrum for Commercial Communications," IEEE Communications Magazine, pp. 66-79 Apr. 1991.
92Seshadri, N. and Winters, Jack H., "Two Signaling Schemes for Improving the Error Performance of Frequency-Division-Duplex (FDD) Transmission Systems Using Transmitter Antenna Diversity", AT&T Bell Laboratories, Murray Hill and Holmdel, NJ. IEEE 1993, 4 pgs.
93Seshadri, N., Sundberg, C.E., Weerackody, V., "Advanced Techniques for Modulation Error Correction, Channel Equalization, and Diversity," AT&T Technical Journal, pp. 48-62, Jul./Aug. 1993.
94Shah, A., Haimovich, A.M., "On Spatial and Temporal Processing for CDMA Overlay Situations," Department of Electrical and Computer Engineering, New Jersey Institute of Technology, pp. 365-368, IEEE 1997.
95Shah, A., Haimovich, A.M., "Performance of Space-Time Receiver Architectecures for CDMA Overlay of Narrowband Waveforms for Personal Communication Systems," Dapartment of Electrical and Computer Engineering, New Jersey Institute of Technology, pp. 314-318, IEEE 1997.
96Snoeren, Alex C., "Adaptive Inverse Multiplexing for Wide-Area Wireless Networks", Laboratory for Computer Science, M.I.T., IEEE Globe Com. Rio de Janiero, Dec. 1999, 8 pgs.
97Subramanian, S., Shpak, D.J., Antoniou, A., "An Indoor Wireless Syste, Strategy Based on a Multiple-Antenna-Multiple-Equalizer System," pp. 206-209, Dept. of Electrical and ComputerEngineering, University of Victoria, B.C., Canada, 1997 IEEE.
98Takashi Inoue et al, "Two-Dimensional Rake Reception Scheme for DS/CDMA Systems in DBF Antenna Configuration", ATR Adaptive Communications Research Laboratories, Soraku-gun, Kyoto, Japan, IEEE, Oct. 1997, 5 pages.
99Tarokh, Vahid et al, "Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction", IEEE Transactions on Information Theory, vol. 44 No. 2, Mar. 1998, 22 pgs.
100Taub, Herbert and Schilling, Donald L., "Principles of Communication Systems, Second Edition", McGraw-Hill Book Company, 1986 (Only cover, title and pub. info pgs submitted).
101Tehrani A.M., Hassibi, A., Cioffi, J., Boyd, S., "An Implementation of Discrete Multi-Tone over Slowly Time-Varying Multiple-Input/Multiple-Output Channels," Information Systems Lab, Department of Electrical Engineering, Stanford University, Feb. 1998.
102Tehrani, Ardavan Maleki et al, "Space-Time Coding and Transmission Optimization for Wireless Channels", Information Systems Lab, Stanford University, CA, 1998 IEEE, 5 pgs.
103Tehrani, Ardavan Maleki et al, "Space-Time Coding Over A Code Division Multiple Access System", Information Systems Lab. Stanford University, CA, IEEE 1999, 5 pgs.
104Telatar, I. Emre, "Capacity of Multi-antenna Gaussian Channels", Lucent Tech., Bell Labs, NJ, Eur. Transactions on Telecomm, vol. 10, No. 6, Nov.-Dec. 1999, pp. 585-595.
105The Thirty-Second Asilomar Conference on Signals, Systems & Computers, Nov. 1-4, 1998, Pacific Grove, CA, Constantinos Papadias et al, "Adaptive Multi-User Detection of Fading CDMA Channels Using Antenna Arrays", Bell Laboratories/Lucent Technologies, Holmdel, NJ, 7 pgs.
106Thompson, John S. et al, "Smart Antenna Arrays for CDMA Systems", IEEE Personal Communications, Oct. 1996, 10 pgs.
107U.S. Appl. No. 60/103,770 issue date Oct. 9, 1998 Chheda et al.
108Vandendorpe, L. et al, "MIMO DFE Equalization for Multitone DS/SS Systems over Multipath Channels," IEEE Journal on Selected Areas in Communications, vol. 14. No. 3, Apr. 1996.
109Vandendorpe, L., Van De Wiel, O., "Performance Analysis of Linear MIMO Equalizers for Multitone DS/SS Systems in Multipath Channels," Wireless Personal Communications, 1995, vol. 2, No. 1-2, pp. 145-165.
110Vijitha Weerackody, Diversity for the Direct-Sequence Spread Spectrum System Using Multiple Transmit Antennas; AT&T Bell Laboratories, Murray Hill, NJ, IEEE 1993, 5 pages.
111Wang, Jian-Guo et al, "An Adaptive Antenna Array with Parallel Beamformers for Indoor Radio Channel Enhancement", University of Technology, Sydney, Australia, 1997 IEEE 47th Vehicular Technology Conference, Phoenix, Arizona, May 4-7, 1997, 7 pgs.
112Weerackody, V., "Diversity for the Direct-Sequence Spread Spectrum System Using Multiple Transmit Antennas", IEEE Int'l Conf. on Communications ICC '93, Geneva, Switzerland, May 23-26, 1993, 6 pgs.
113Weng, Jianfeng et al, "Multistage Interference Cancellation with Diversity Reception for QPSK Asynchronous DS/CDMA System over Multipath Fading Channels", Dept. of Electrical and Computer Engineering, Concordia University, Sept. 1998, 44 pgs, Ericcson Research Canada.
114Werner, S., Laakso, T., "Adaptive Multiple-Antenna Receiver for CDMA Mobile Reception," Helsinki University of Technology, pp/ 1053-1057, IEEE 1998.
115Winters, J.H., "Optimum Combining for Indoor Radio Systems with Multiple Users," IEEE Transactions on Communications, vol. COM-35, No. 11, pp. 1222-1230, Nov. 1987.
116Winters, J.H., "Optimum Combining in Digital Mobile Radion with Cochannel Interference," IEEE Journal on Selected areas in Communications, vol. SAC-2, No. 4, pp. 528-539, Jul. 1984.
117Winters, J.H., "On the Capacity of Radio Communication Systems with Diversity in a Rayleigh Fading Environment," IEEE Jour. Selected Areas in Comm., vol. SAC-5, No. 5, Jun. 1997.
118Winters, J.H., Gans, M.J., "The Range Increase of Adaptive Versus Phased Arrays in Mobile Radio Systems," ATT&T Bell Laboratories, pp. 109-115. IEEE 1995.
119Winters, Jack H., "On the Capacity of Radio Communication Systems with Diversity in a Rayleigh Fading Environment", IEEE Journal on Selected Areas in Communications, vol. SAC-5, No. 5, Jun. 1987, 8 pgs.
120Wornell, G.W., Trott, M.D., "Efficient Signal Processing Techniques for Exploiting Transmit Antenna Diversity on Fading Channels," IEEE Transactions on Signal Processing, vol. 45, No. 1, pp. 191-205, Jan. 1997.
121Xiang, W., Waters, D., Pratt, T.G., Barry, J., Walkenhorst, B., "Implementation and Experimental Results of a Three-Transmitter Three-Receiver OFDM/BLAST Testbed," IEEE Communications Magazine, pp. 88-95, Dec. 2004.
122Zacarias, Eduardo B., "BLAST Architectures", Signal Processing Laboratory, S-72.333 Postgraduate Course in Radio Communications, Autumn 2004, 6 pgs.
123Zetterberg, P., "An Advanced Base Station Antenna Array System for Future Mobile Radion," Royal Institute of Technology, pp. 617-621. Stockholm, Sweden, IEEE 1997.
124Ziemer, R.E. and Tranter, W.H., "Principles of Communications Systems, Modulation and Noise, Third Edition", Houghton Mifflin Company, Boston, MA, 1990 (Only cover, title and publication information pages submitted).
125Ziemer, Rodger E. and Peterson, Roger L., "Digital Communications and Spread Spectrum Systems", MacMillan Publishing Company, NY, 1985 (Only cover, title and pub info pgs).
126Zoltowski, M.D., Chen, Y-F-, Ramos, J., "Blind 2-D Rake Receivers Based on Space-Time Adaptive MVDR Processing for IS-95 CDMA System," School of Electrical Engineering, pp. 618-622, Purdue University, West Lafayette, Indiana, 1996 IEEE.
127Zoltowski, M.D., Chen, Y-F., "Joint Angle and Delay Estimation for Reduced Dimension Space-Time Rake Receiver with Application to IS-95 CDMA Uplink," pp. 606-610, School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, 1998 IEEE.
128Zvonar, Zoran, "Combined Multiuser Detection and Diversity Reception for Wireless CDMA Systems", IEEE Transactions on Vehicular Technology, vol. 45, No. 1, Feb. 1996, 7 pgs.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8032100 *Jun 29, 2007Oct 4, 2011Delphi Technologies, Inc.System and method of communicating multiple carrier waves
US8732769 *May 20, 2010May 20, 2014Hitachi Consumer Electronics Co., Ltd.Wireless video transmitter
US20110004909 *May 20, 2010Jan 6, 2011Yuya OgiWireless video transmitter
Classifications
U.S. Classification375/141, 375/267, 375/144, 375/347, 375/143
International ClassificationH04B1/707, H04B7/06, H04J13/00, H04B1/7115
Cooperative ClassificationH04B7/0697, H04B1/7115, H04B7/0678, H04B7/0891, H04B7/0671, H04J13/0077
European ClassificationH04B7/08S, H04B7/06C3, H04B1/7115