Publication number | USRE42534 E1 |
Publication type | Grant |
Application number | US 12/767,997 |
Publication date | Jul 12, 2011 |
Filing date | Apr 27, 2010 |
Priority date | Jul 28, 2000 |
Fee status | Paid |
Publication number | 12767997, 767997, US RE42534 E1, US RE42534E1, US-E1-RE42534, USRE42534 E1, USRE42534E1 |
Inventors | Adrian Sfarti |
Original Assignee | Adrian Sfarti |
Export Citation | BiBTeX, EndNote, RefMan |
Patent Citations (24), Non-Patent Citations (9), Classifications (5), Legal Events (2) | |
External Links: USPTO, USPTO Assignment, Espacenet | |
The present invention is a continuation of U.S. application Ser. No. 10/732,398, now U.S. Pat. No. 7,245,299, entitled “Bicubic Surface Real-Time Tesselation Unit”, (1935CIP2) filed Dec. 9, 2003, issued on Jul. 17, 2007, which is a continuation-in-part of abandoned U.S. application Ser. No. 10/436,698, entitled “Bicubic Surface Rendering,” (1935CIP) filed on May 12, 2003, which is a continuation-in-part of Ser. No. 09/734,438 filed Dec. 11, 2000, now U.S. Pat. No. 6,563,501 entitled “Bicubic Surface Rendering,” issued May 13, 2003, which claims priority of provisional application No. 60/222,105, filed on Jul. 28, 2000, which are hereby incorporated by reference.
The present invention relates to computer graphics, and more specifically to a method and apparatus for rendering bicubic surfaces in real-time on a computer system.
Object models are often stored in computer systems in the form of surfaces. The process of displaying the object (corresponding to the object model) generally requires rendering, which usually refers to mapping the object model onto a two dimensional surface. At least when the surfaces are curved, the surfaces are generally subdivided or decomposed into triangles in the process of rendering the images.
A cubic parametric curve is defined by the positions and tangents at the curve's end points. A Bezier curve, as shown in
Cubic curves may be generalized to bicubic surfaces by defining cubic equations of two parameters, s and t. In other words, bicubic surfaces are defined as parametric surfaces where the (x,y,z) coordinates in a space called “world coordinates” (WC) of each point of the surface are functions of s and t, defined by a geometry matrix P comprising 16 control points (
While the parameters s and t describe a closed unidimensional interval (typically the interval [0,1]) the points (x,y,z) describe the surface:
x=f(s,t), y=g(s,t), z=h(s,t) sε[0,1], t.ε[0,1], where ε represents an interval between the two coordinates in the parenthesis.
The space determined by s and t, the bidimensional interval [0,1]×[0,1] is called “parameter coordinates” (PC). Textures described in a space called “texture coordinates” (TC) that can be two or even three dimensional are described by sets of points of two ((u,v)) or three coordinates ((u,v,q)). The process of attaching a texture to a surface is called “texture—object association” and consists of associating u, v and q with the parameters s and t via some function:
u=a(s,t) v=b(s,t) (and q=c(s,t))
This process is executed off-line because the subdivision of the surfaces and the measurement of the resulting curvature are very time consuming. As shown in
Furthermore, each vertex or triangle plane normal needs to be transformed when the surface is transformed in response to a change of view of the surface, a computationally intensive process that may need dedicated hardware. Also, there is no accounting for the fact that the surfaces are actually rendered in a space called “screen coordinates” (SC) after a process called “projection” which distorts such surfaces to the point where we need to take into consideration the curvature in SC, not in WC.
The state of the art in today's hardware architecture for rendering relies overwhelmingly on triangle databases such as meshes, strips, fans. The current state of the art in the computer graphics industry is described in
The object modeling in the application is executed on parametric surfaces such as nurbs, Bezier, splines, and the surfaces are subdivided or tessellated off-line and stored as triangle vertices in a triangle database by means of commercially available tools, such as the Alias suite. The triangle vertices are then transmitted from the CPU 1 (the triangle server) to the GPU 5 (the rendering engine) at the time for rendering. Previous attempts to execute the tessellation in hardware in real-time have not been successful because of the severe limitations of the implementation so the current state of the art has been off-line tessellation.
Unfortunately, the off-line tessellation produces a fixed triangulation that may exhibit an excessively large number of very small triangles when the object is far away. Triangle rendering in this case is dominated by the processing of vertices (transformation, lighting) and by the triangle setup (the calculation of the color and texture gradients). Since triangles may reduce to a pixel or less, it is obvious that this is an inefficient treatment.
Conversely, when the object is very close to the viewer, the composing triangles may appear very large and the object looses its smoothness appearance, looking more like a polyhedron.
The increase in the scene complexity has pushed up the number of triangles, which has pushed up the demands for higher bus bandwidth. For example, the bus 6 that connects the CPU 1 with the GPU 5 has increased 8× in frequency, from AGP 1× to AGP 8× in the PC space in the last few years. There are physical constraints in terms of signal propagation that preclude the continuation of the frequency increase in bus design.
With the advent of faster arithmetic it has become possible to change the current architecture such that the CPU 1 will serve parametric patches and the renderer 5 will triangulate such patches in real-time. There are very few past attempts of implementing real-time tesselation in hardware. Sun Corporation tried in the mid-80's to implement such a machine. The implementation was based on an architecture described in a paper by Lien, Sheue-Ling, Shantz, Michael, Pratt, Vaughan “Adaptive Forward Differencing for Rendering Curves and Surfaces”, Siggraph '87 Proceedings, pp. 111-118 and in a series of associated patents. The implementation was not a technical and commercial success because it made no good use of triangle based rendering, trying instead to render the surfaces pixel by pixel. The idea was to use adaptive forward differencing in interpolating infinitesimally close parallel cubic curves imbedded into the bicubic. The main drawback was that sometimes the curves were too close together, resulting into pixel overstrikes and other times the curves were too far apart, leaving gaps. Another drawback was that the method is slow.
In the early 90's Nvidia Corporation made an attempt to introduce a biquadric based hardware renderer. The attempt was not a technical and commercial success because biquadrics have an insufficient number of degrees of freedom, all the models use bicubics, none of the models uses biquadrics.
More currently, Henry Moreton from Nvidia has resurrected the real-time tesselation unit described in the U.S. Pat. No. 6,597,356 entitled “Integrated Tesselator in a Graphics Processing Unit,” issued Jul. 22, 2003. Moreton's invention doesn't directly tesselate patches in real-time, but rather uses triangle meshes pre-tesselated off-line in conjunction with a proprietary stitching method that avoids cracking and popping at the seams between the triangle meshes representing surface patches. His tesselator unit outputs triangle databases to be rendered by the existing components of the 3D graphics hardware.
Accordingly, what is needed is a system and method for performing tessellation in real-time. The present invention addresses such a need.
The present invention provides a graphics processing unit for rendering objects from a software application executing on a processing unit in which the objects to be rendered are received as control points of bicubic surfaces. According to the method and system disclosed herein, the graphics processing unit includes a transform unit, a lighting unit, a renderer unit, and a tessellate unit for tessellating both rational and non-rational object surfaces in real-time.
The present invention will be described with reference to the accompanying drawings, wherein:
The present invention is directed to a method and apparatus for minimizing the number of computations required for the subdivision of bicubic surfaces into triangles for real-time tessellation. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
Because prior art methods for performing surface subdivision are so slow and limited, a method is needed for rendering a curved surface that minimizes the number of required computations, such that the images can potentially be rendered in real-time (as opposed to off-line).
U.S. Pat. No. 6,563,501, by the Applicant of the present application, provides an improved method and system for rendering bicubic surfaces of an object on a computer system. Each bicubic surface is defined by sixteen control points and bounded by four boundary curves, and each boundary curve is formed by boundary box of line segments formed between four of the control points. The method and system include transforming only the control points of the surface given a view of the object, rather than points across the entire bicubic surface. Next, a pair of orthogonal boundary curves to process is selected. After the boundary curves have been selected, each of the curves is iteratively subdivided, as shown in FIG. 6, wherein two new curves are generated with each subdivision. The subdivision of each of the curves is terminated when the curves satisfy a flatness threshold expressed in screen coordinates, whereby the number of computations required to render the object is minimized.
The method disclosed in the '501 patent minimizes the number of computations required for rendering of an object model by requiring that only two orthogonal curves of the surface be subdivided, as shown in
The present invention utilizes the above method for minimizing the number of computations required for the subdivision of bicubic surfaces into triangles in order to provide an improved architecture for the computer graphics pipeline hardware. The improved architecture replaces triangle mesh transformation and rendering with a system that transforms bicubic patches and tesselates the patches in real-time. This process is executed in a real-time tesselation unit that replaces the conventional transformation unit present in the prior art hardware 3D architectures.
According to the present invention, the reduction in computations is attained by reducing the subdivision to the subdivision on only two orthogonal curves. In addition, the criteria for sub-division may be determined in SC. The description is provided with reference to Bezier surfaces for illustration. Due to such features, the present invention may enable objects to be subdivided and rendered in real-time. The partition into triangles may also be adapted to the distance between the surface and the viewer resulting in an optimal number of triangles. As a result, the effect of automatic level of detail may be obtained, whereby the number of resulting triangles is inversely proportional with the distance between the surface and the viewer. The normals to the resulting tiles are also generated in real-time by using the cross product of the vectors that form the edges of the tiles. The texture coordinates associated with the vertices of the resulting triangles are computed in real-time by evaluating the functions: u=a(s,t) v=b(s,t). The whole process is directly influenced by the distance between viewer and object, the SC space plays a major role in the computations.
The steps involved in the combined subdivision and rendering of bicubic surfaces in accordance with the present invention are described below in pseudo code. As will be appreciated by one of ordinary skill in the art, the text between the “/*” and “*/” symbols denote comments explaining the pseudo code. All steps are performed in real-time, and steps 0 through 4 are transformation and tessellation, while steps 5-7 are rendering.
Step 0
/* For each surface transform only 16 points instead of transforming all the vertices inside the surface. There is no need to transform the normals to the vertices since they are generated at step 4*/.
For each bicubic surface
Step 1
/* Simplify the three dimensional surface subdivision by reducing it to the subdivision of two cubic curves */.
For each bicubic surface
Subdivide the boundary curve representing s interval until the projection of the length of the height of the
Subdivide the boundary curve representing t interval until the projection of the length of the height of the curve bounding box is below a certain predetermined number of pixels as measured in screen coordinates. /*Simplify the subdivision termination criteria by expressing it in screen coordinates (SC) and by measuring the curvature in pixels. For each new view, a new subdivision can be generated, producing automatic level of detail */.
Step 2
For all bicubic surfaces sharing a same parameter (either s or t) boundary Choose as the common subdivision the reunion of the subdivisions in order to prevent cracks showing along the common boundary. —OR—
Choose as the common subdivision the finest subdivision (the one with the most points inside the set)
/* Prevent cracks at the boundary between adjacent surfaces by using a common subdivision for all surfaces sharing a boundary */
Step 3
/* Generate the vertices, normals, the texture coordinates, and the displacements used for bump and displacement mapping for the present subdivision */
For each bicubic surface
For each pair (si,tj) of parameters /*All calculations employ some form of direct evaluation of the variables. Here, i and j represent a number of rows and columns, respectively */
Calculate (texture coordinates (u_{i,j }v_{i,j }q_{i,j}) and displacement cooredinates (p_{i,j }r_{i,j}) for vertex V_{i,j}) thru interpolation
/*texture-, displacement map and vertex coordinates as a function of (si,tj)*/
Look up vertex displacement (dx_{i,j}, dy_{i,j}, dz_{i,j}) corresponding to the displacement coordinates (p_{i,j }r_{i,j})
Generate triangles by connecting neighboring vertices.
Step 4
For each vertex V_{i,j }
Calculate the normal N_{i,j }to that vertex /* Already transformed in WC */
Calculate (dN_{i,j})/*normal displacement for bump mapping as a function of (si,tj)*/
N′_{i,j}=N_{i,j}+dN_{i,j}/*displace the normal for bump mapping*/
V′_{i,j}=V_{i,j}+(dx_{i,j}, dy_{i,j}, dz_{i,j})*N_{i,j }/*displace the vertex for displacement mapping*/
/* bump and displacement mapping are executed in the renderer, pixel by pixel for all the points inside each triangle */
For each triangle
Calculate the normal to the triangle /*used for culling */
Step 5
For each triangle
Clip against the viewing viewport
Calculate lighting for the additional vertices produced by clipping
Cull backfacing triangles
Step 6
Project all the vertices Vi,j into screen coordinates (SC)
Step 7
Render all the triangles produced after clipping and projection
Referring now to
In operation, the CPU 1 executes a software application and transmits over the AGP bus 6 the object database expressed in a compressed format as control points of the bicubic surfaces. The control points of the bicubic surfaces are transformed by the transform unit 2, and then the surfaces are tessellated into triangles by the tessellate unit 9. The tessellate unit 9 executes the microcode described above in the Step 1 through Step 4, thereby affecting the real-time tessellation. The vertices of the triangles are then lit by the lighting unit 3 and the triangles are rendered by the renderer unit 4 executing steps 5 through 7.
Referring again to U.S. Pat. No. 6,563,501, we use the described subdivision algorithm while applying our termination criterion. The geometric adaptive subdivision induces a corresponding parametric subdivision.
L1=P1
L2=(P1+P2)/2
H=(P2+P3)/2
L3=(L2+H)/2
R4=P4
R3=(P3+P4)/2
R2=(R3+H)/2
R1=L4=(L3+R2)/2
The geometry vectors of the resulting left and right cubic curves may be expressed as follows:
The edge subdivision results into a subdivision of the parametric intervals s {s_{0},s_{1}, . . . s_{i}, . . . s_{m}} and t{t_{0},t_{1}, . . . t_{j}, . . . t_{n}}. Only these two parametric subdivisions are stored for each surface since this is all the information needed to calculate the vertices,
V_{i,j}=V(x(s_{i},t_{j}),y(s_{i},t_{j}),z(s_{i},t_{j})) i=1,m, j=1,n
x(s,t)=S*Mb*Px*Mb^{t}*T wherein S=[s3 s2 s 1] T=[t3 t2 t 1]^{t }The superscript t indicates transposition
For s=constant the matrix M=S*Mb*Pz*Mb^{t }is constant and the calculation of the vertices V(x(s,t),y(s,t),z(s,t)) reduces to the evaluation of the vector T and of the product M*T. Therefore, the generation of vertices is comparable with vertex transformation. Note that the vertices are generated already transformed in place because the parent bicubic surface has already been transformed.
In order to determine the vertex normals for each generated vertex V_{i,j }we calculate the cross product between the edge entering the vertex and the edge exiting it and we make sure that we pick the sense that makes an acute angle with the normal to the surface:
N_{i,j}=P_{i−1,j}P_{i,j}×P_{i,j}P_{i,j+1}/length(P_{i−1,j}P_{i,j}×P_{i,j}P_{i,j+1})
If bump mapping or displacement mapping are enabled we need to calculate additional data:
N′_{i,j}=N_{i,j}+dN_{i,j}/*displace the normal for bump mapping, pixel by pixel in the renderer section */
P′_{i,j}=P_{i,j}+(dx_{i,j}, dy_{i,j}, dz_{i,j})*N_{i,j}/*displace the point P for displacement mapping, pixel by pixel */
We calculate the texture coordinates through bilinear interpolation, as shown in
The subdivision algorithm described in U.S. Pat. No. 6,563,501 applied to non rational surfaces. In a further embodiment of the present invention, the algorithm is extended to another class of surfaces, non uniform rational B-spline surfaces, or NURBS. Nurbs are a very important form of modeling 3-D objects in computer graphics. A non-uniform rational B-spline surface of degree (p, q) is defined by
S(s,t)=[Σ^{m} _{i=1}Σ^{n} _{j=1}N_{i,p}(s)N_{j,q}(t)w_{i,j}P_{i,j}]/Σ^{m} _{i=1}Σ^{n} _{j=1}N_{i,p}(s)N_{j,q}(t)w_{i,j }
Such a surface lies within a convex hull formed by its control points. To fix the idea, let's pick m=n=4. There are 16 control points, P11 through P44 (similar to the Bezier surfaces). The surface lies within the convex hull formed by P11 thru P44.
Now consider any one of the curves:
C(s)=[Σ^{m} _{i=1}N_{i,p}(s)w_{i,j}P_{i}]/Σ^{m} _{i=1}N_{i,p}(s)w_{i }
where p is the order, N_{i,p}(s) are the B-spline basis functions, P_{i }are control points, and with the weight of is the last ordinate of the homogeneous point. The curve lies within the convex hull formed by the control points.
Such a curve can be obtained by fixing one of the two parameters s or t in the surface description. For example s=variable, t=0 produces such a curve. Like in the case of Bezier surfaces, there are 8 such curves, 4 boundary ones and 4 internal ones.
The subdivision of the surface reduces to the subdivision of the convex hull of the boundary curves or of the internal curves as described in the case of the Bezier surfaces.
Referring to
Maximum {distance (P12 to line (P11, P14), distance (P13 to line (P11, P14)}*2d/(P12z+P13z)<n
AND
Maximum {distance (P24 to line (P14, P44), distance (P34 to line (P14, P44)}*2d/(P24z+P34z)<n
where n is a number expressed in pixels or fraction of pixels. However, artifacts may be produced with n starting at 1, especially along a silhouette. Starting values for n may also include 0.5 and n>1, for reasons of rapid prototyping and previewing.
According to a further aspect of the present invention, a more general criterion is provided:
Maximum {distance (P22 to line (P42, P12), distance (P32 to line (P42, P12)}*2d/(P42z+P12z) AND
Maximum {distance (P33 to line (P43, P13), distance (P23 to line (P43, P13)}*2d/(P43z+P13z)<n
AND
Maximum {distance (P22 to line (P21, P24), distance (P23 to line (P21, P24)}*2d/(P21z+P24z) AND
Maximum {distance (P32 to line (P31, P34), distance (P33 to line (P31, P34)}*2d/(P31z+P34z)<n
AND
Maximum {distance (P12 to line (P11, P14), distance (P13 to line (P11, P14)}*2d/(P12z+P13z) AND
Maximum {distance (P42 to line (P41, P44), distance (P43 to line (P41, P44)}*2d/(P42z+P43z)<n
AND
Maximum {distance (P24 to line (P14, P44), distance (P34 to line (P14, P44)}*2d/(P24z+P34z) AND
Maximum {distance (P21 to line (P11, P41), distance (P31 to line (P11, P41)}*2d/(P11z+P41z)<n
The above criterion is the most general criterion and it will work for any class of surface, both rational and non-rational. It will also workfordeformable surfaces. It will work for surfaces that are more curved along the boundary or more curved internally. Since the curvature of deformable surfaces can switch between being boundary-limited and internally-limited the flatness of both types of curves will need to be measured at the start of the tesselation associated with each instance of the surface. The pair of orthogonal curves used for tesselation can then be one of: both boundary, both internal, one boundary and one internal.
Yet another embodiment, the subdivision termination criteria may be used for the control of the numerically controlled machines. The criterion described below is calculated in object coordinates. In the formulas described below “tol” represents the tolerance, expressed in units of measurement (typically micrometers) accepted for the processing of the surfaces of the machined parts:
Maximum {distance (P22 to line (P42, P12), distance (P32 to line (P42, P12)} AND
Maximum {distance (P33 to line (P43, P13), distance (P23 to line (P43, P13)}<tol
AND
Maximum {distance (P22 to line (P21, P24), distance (P23 to line (P21, P24)} AND
Maximum {distance (P32 to line (P31, P34), distance (P33 to line (P31, P34)}<tol
AND
Maximum {distance (P12 to line (P11, P14), distance (P13 to line (P11, P14)} AND
Maximum {distance (P42 to line (P41, P44), distance (P43 to line (P41, P44)}<tol
AND
Maximum {distance (P24 to line (P14, P44), distance (P34 to line (P14, P44)} AND
Maximum {distance (P21 to line (P11, P41), distance (P31 to line (P11, P41)}<tol
If there are no special prevention methods, cracks may appear at the boundary between abutting patches. This is mainly due to the fact that the patches are subdivided independently of each other. Abutting patches may and do exhibit different curvatures resulting into different subdivisions. For example, in
One of the approaches disclosed herein exhibits identical straight edges for the two patches sharing the boundary. The other implementation exhibits even stronger continuity; the subpatches generated through subdivision form continuous strips orthogonal to the shared boundary. This is due to the fact that abutting patches are forced to have the same parametric subdivision. The present invention provides two different crack prevention methods, each employing a slightly different subdivision algorithm.
1. In order to avoid cracks between patches use a “zipper approach” to fix the triangle strips that result at the four borders of the surface. All four boundary curves for the patches situated at the edge of the object are used. See
2. In order to avoid cracks between patches, use a second pass that generates the reunion of the subdivisions for all the patches in a patch strip. All four boundary curves for the patches situated at the edge of the object are used. See
In a preferred embodiment, in order to facilitate the design of drivers for the architecture shown in
Below, the first three primitives are described. Referring to
Referring to
Referring to
A further embodiment of the present invention provides a method for accelerating rendering. A well known technique used for accelerating rendering is backface culling, which a method which discards triangles that are facing away from the viewer. It is beneficial to extend this technique to cover backfacing surfaces. This way, we avoid the computational costs of tesselating surfaces that face away from the user. Our proposed method discards such surfaces as a whole, before even starting the tesselation computation.
Referring to
If ANY of the panels of the type {P41, P44, P43, P42} is front facing then the patch should not be culled.
An alternative criterion can be given as:
If the bottom panel {P44, P41, P11, P14} is backfacing then the patch should not be culled. This criterion means that since the bottom panel {P44, P41, P11, P14} is backfacing, there may be other panels in the convex hull that may be front facing. This being the case, the patch should not be considered as being backfacing and should not be culled.
A method and system has been disclosed for performing tessellation in real-time in a GPU. Software written according to the present invention is to be stored in some form of computer-readable medium, such as memory or CD-ROM, or transmitted over a network, and executed by a processor. Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.
Cited Patent | Filing date | Publication date | Applicant | Title |
---|---|---|---|---|
US5125073 * | Nov 8, 1989 | Jun 23, 1992 | Sun Microsystems, Inc. | Method and apparatus for adaptive forward differencing in the rendering of curves and surfaces |
US5261029 | Aug 14, 1992 | Nov 9, 1993 | Sun Microsystems, Inc. | Method and apparatus for the dynamic tessellation of curved surfaces |
US5377320 * | Sep 30, 1992 | Dec 27, 1994 | Sun Microsystems, Inc. | Method and apparatus for the rendering of trimmed nurb surfaces |
US5428718 | Jan 22, 1993 | Jun 27, 1995 | Taligent, Inc. | Tessellation system |
US5488684 | Sep 23, 1994 | Jan 30, 1996 | International Business Machines Corporation | Method and apparatus for rendering trimmed parametric surfaces |
US5561754 * | Aug 17, 1993 | Oct 1, 1996 | Iowa State University Research Foundation, Inc. | Area preserving transformation system for press forming blank development |
US5771341 | Sep 26, 1996 | Jun 23, 1998 | Canon Kabushiki Kaisha | Graphics apparatus and method for dividing parametric surface patches defining an object into polygons |
US5903273 | Aug 26, 1997 | May 11, 1999 | Matsushita Electric Industrial Co., Ltd. | Apparatus and method for generating an image for 3-dimensional computer graphics |
US6057848 * | Aug 27, 1997 | May 2, 2000 | Lsi Logic Corporation | System for rendering high order rational surface patches |
US6100894 | Aug 27, 1997 | Aug 8, 2000 | Lsi Logic Corporation | Patch-division unit for high-order surface patch rendering systems |
US6211883 * | Aug 27, 1997 | Apr 3, 2001 | Lsi Logic Corporation | Patch-flatness test unit for high order rational surface patch rendering systems |
US6256038 | Dec 10, 1998 | Jul 3, 2001 | The Board Of Trustees Of The Leland Stanford Junior University | Parameterized surface fitting technique having independent control of fitting and parameterization |
US6437795 | Jul 21, 1999 | Aug 20, 2002 | Sun Microsystems, Inc. | Method and apparatus for clipping a function |
US6563501 | Dec 11, 2000 | May 13, 2003 | Adrian Sfarti | Bicubic surface rendering |
US6597356 * | Nov 21, 2000 | Jul 22, 2003 | Nvidia Corporation | Integrated tessellator in a graphics processing unit |
US6600488 | Nov 4, 2002 | Jul 29, 2003 | Nvidia Corporation | Tessellation system, method and computer program product with interior and surrounding meshes |
US6624811 * | Aug 31, 2000 | Sep 23, 2003 | Nvidia Corporation | System, method and article of manufacture for decomposing surfaces using guard curves and reversed stitching |
US6906716 * | Apr 17, 2003 | Jun 14, 2005 | Nvidia Corporation | Integrated tessellator in a graphics processing unit |
US20030117405 * | Dec 21, 2001 | Jun 26, 2003 | Hubrecht Alain Yves Nestor | Systems and methods for performing memory management operations to provide displays of complex virtual environments |
US20040113909 * | May 9, 2003 | Jun 17, 2004 | Simon Fenney | Interface and method of interfacing between a parametric modelling unit and a polygon based rendering system |
US20040227755 | Dec 9, 2003 | Nov 18, 2004 | Adrian Sfarti | Bicubic surface real-time tesselation unit |
US20050057568 | Oct 5, 2004 | Mar 17, 2005 | Adrian Sfarti | Bicubic surface rendering |
US20060125824 | Dec 14, 2004 | Jun 15, 2006 | Adrian Sfarti | Rapid zippering for real time tesselation of bicubic surfaces |
WO2000031690A1 | Nov 19, 1999 | Jun 2, 2000 | Opticore Ab | Method and device for creating and modifying digital 3d models |
Reference | ||
---|---|---|
1 | Alyn Rockwood, et al., "Real-Time Rendering of Trimmed Surfaces", Jul. 1989, ACM Siggraph Computer Graphics, vol. 23, No. 3, pp. 107-116. | |
2 | Fuhua Cheng, "Estimating Subdivision Depths for Rational Curves and Surfaces", Apr. 1992, ACM Transactions on Graphics, vol. 11, No. 2, pp. 140-151. | |
3 | James Foley, et al., "Computer Graphics: Principles and Practice", 2d Edition, Addison-Wesley Publishing Company, 1990, pp. 511-527. | |
4 | Jatin Chhugani and Subodh Kumar, "View-Dependent Adaptive Tesselation of Spline Surfaces", Mar. 2001, Proceedings of The 2001 Symposium On Interactive 3D Graphics, pp. 59-62. | |
5 | Jeffrey M. Lane, et al, "Scan Line Methods for Displaying Parametrically Defined Surfaces", Jan. 1980, Communications of the ACM, vol. 23, No. 1, pp. 23-24. | |
6 | * | Kumar, S., Manocha, D., Interactive Display of Large NURBS Models, Dec. 1996, IEEE Transactions on Visualization and Computer Graphics, vol. 2, No. 4, pp. 323-336. |
7 | P.V. Sander, et al., "Multi-Chart Geometry Images", Jun. 2003, Proceedings of the 2003 Eurographics Symposium on Geometry Processing, pp. 146-155. | |
8 | * | Snyder, J., Barr, A., Ray Tracing Complex Models Containing Surface Tesselations, Jul. 1987, Proceedings of the 14th annual conference on Computer graphics and interactive techniques, vol. 21, No. 4, p. 119-128. |
9 | Xuejun Sheng and Ingo R. Meier, "Generating Topological Structures for Surface Models", Nov. 1995, IEEE Computer Graphics and Applications, vol. 15, No. 6, pp. 35-41. |
U.S. Classification | 345/423 |
International Classification | G06T15/30, G06T17/20 |
Cooperative Classification | G06T17/20 |
European Classification | G06T17/20 |
Date | Code | Event | Description |
---|---|---|---|
Sep 28, 2012 | FPAY | Fee payment | Year of fee payment: 4 |
Sep 22, 2016 | FPAY | Fee payment | Year of fee payment: 8 |