Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE42838 E1
Publication typeGrant
Application numberUS 11/526,292
Publication dateOct 11, 2011
Filing dateSep 22, 2006
Priority dateNov 12, 1999
Also published asUS6598226, USRE42764, USRE43988, USRE44495, USRE44514
Publication number11526292, 526292, US RE42838 E1, US RE42838E1, US-E1-RE42838, USRE42838 E1, USRE42838E1
InventorsTom L. Sorensen
Original AssigneeLg Electronics Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus and method for providing, retrieving, and using data guide information supplied in a digital vestigial sideband signal
US RE42838 E1
Abstract
A device for provisioning, retrieving, and using data guide information transmitted in a digital broadcast signal is disclosed. A receiver receives the digital broadcast signal which includes digital television programming packets multiplexed with data packets and thereafter routes the received signal to a demodulator. The demodulator provides a demodulated signal to a detector which identifies data packets contained therein. A processor then determines the types of data in the data packets, as well as the respective channels on which the identified types of data are transmitted. The processor prepares a menu for a display screen enabling a user to select the channel of interest, and enables the user to be connected accordingly.
Images(3)
Previous page
Next page
Claims(31)
1. A device for identifying types of data transmitted on multiple channels of a digital broadcast signal, displaying the identified types of data transmitted on each channel, and enabling a user to access the data transmitted on a particular channel, the device comprising:
a scanning receiver adapted to tune to the digital broadcast signal on selected channels, the digital broadcast signal including at least one digital television programming packet and at least one data packet;
a demodulator coupled to the receiver and adapted to demodulate the digital broadcast signal;
a detector coupled to the demodulator and adapted to detect the at least one data packet;
a memory coupled to the detector, the memory being adapted to store data guide software code for identifying the type of data contained in the at least one data packet and the channel on which the identified type of data is available, the data guide software further being adapted to enable the data on any channel selected by an operator to be accessed;
a processor coupled to the memory and adapted to execute the data guide software code; and,
an operator interface module coupled to the processor, the operator interface module being adapted to display the identified types of data and the channels on which the identified types of data are available, the operator interface module further being adapted to enable any displayed channel to be selected.
2. The device of claim 1 wherein the processor comprises a central processing unit of a personal computer, and the operator interface module comprises a video monitor and an input device.
3. The device of claim 1 wherein the operator interface module comprises a display of a personal digital assistant.
4. The device of claim 1 wherein the operator interface module comprises a display of a telephone.
5. The device of claim 4 wherein the telephone comprises a cellular telephone.
6. The device of claim 1 wherein the processor comprises a processing unit of a television, and the operator interface module comprises a display screen of the television.
7. The device of claim 1 wherein the at least one data packet includes at least one link to a website, the operator interface module enables the at least one website to be selected, and wherein the processor enables the at least one website to be accessed.
8. The device of claim 1 wherein the data guide software code generates a data guide in menu format for display on the operator interface module.
9. The device of claim 8 wherein the operator interface module enables the operator to scroll through the menu before selecting a particular channel.
10. A method of providing a data guide summarizing types of data transmitted in a digital broadcast signal and the channels corresponding to the types of data comprising the steps of:
receiving the digital broadcast signal containing digital programming packets and data packets;
demodulating the digital broadcast signal;
detecting the data packets;
storing the data guide based on information contained in the data packets; and,
displaying the data guide.
11. The method of claim 10 wherein the digital broadcast signal is transmitted in multiple channels, and wherein the receiving step is performed by scanning through the multiple channels.
12. The method of claim 10 further including the step of selecting one of the identified channels and gaining access to data transmitted on the selected channel.
13. The method of 10 performed by a central processing unit of a personal computer, wherein the displaying step is performed using a video monitor connected to the personal computer.
14. The method of claim 10 performed by a processor of a television, wherein the displaying step is performed using a video screen of the television.
15. The method of claim 10 wherein the displaying of the data guide comprises displaying the data guide on a display of a personal digital assistant.
16. The method of claim 10 wherein the displaying of the data guide comprises displaying the data guide on a display of a telephone.
17. The method of claim 16 wherein the telephone comprises a cellular telephone.
18. A data casting system comprising:
a receiver adapted to receive a digital broadcast signal containing at least one digital television programming packet and at least one data packet;
a detector coupled to the receiver and adapted to detect the at least one data packet, the detector further adapted to detect types of data transmitted within the at least one data packet and channels on which the detected types of data are available; and,
an operator interface module coupled to the detector and adapted to display the detected types of data and the channels on which the detected types of data are available.
19. The data casting system of claim 18 further including a processor coupled to the detector, the processor being adapted to execute data guide software, the data guide software generating a menu based on the types of data and channels detected by the detector, the menu being displayed on the operator interface module.
20. The data casting system of claim 19 wherein the operator interface module allows any of the displayed channels to be selected, and the data guide software and processor connect the operator interface module to the selected channel.
21. The data casting system of claim 20 wherein the at least one channel includes at least one link to a website.
22. A computer readable storage medium of a digital program receiver having a data guide stored thereon, wherein the data guide contains a list of the types of data receivable by the digital program receiver and the corresponding RF channels in which the data is present.
23. The computer readable storage medium of claim 22 wherein the data guide is a menu.
24. The computer readable storage medium of claim 23 wherein the menu contains selectable items.
25. A method for controlling an error while processing data providing full information on a data broadcast in a digital television, the method comprising:
receiving both a broadcast program and the data providing full information on the data broadcast, wherein the data is comprised of a header and a body, and wherein the header includes information which is used to identify data types;
monitoring the data that the digital television can decode;
detecting an error located in a portion of the data providing full information on the data broadcast; and,
discarding the portion having the detected error.
26. The method of claim 25, wherein the discarding step further comprises:
discarding the data if the error is located in the header.
27. The method of claim 25, wherein the discarding step further comprises:
discarding a portion of the body if the error is located in the body.
28. The method of claim 25, wherein the data broadcast includes a data broadcast service.
29. The method of claim 25, wherein the discarding step further comprises:
continuing to process a next portion if there is the next portion.
30. The method of claim 29, wherein the continuing step is performed with regard to a next channel.
31. The method of claim 25, further comprising:
displaying an additional EPG for guiding data types of at least one data broadcast, wherein the additional EPG is independent of general broadcast programs.
Description

Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,598,225. The reissue applications are the present application, which is a continuation of reissue application Ser. No. 11/187,031, which is a reissue of U.S. Pat. No. 6,598,225.

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of reissue application Ser. No. 11/187,031, filed Jul. 21, 2005, which is a reissue application for U.S. Pat. No. 6,598,225, which issued on Jul. 22, 2003.

TECHNICAL FIELD OF THE INVENTION

The present invention relates to an apparatus that enables a user to receive and utilize data which is broadcast via a digital vestigial sideband (VSB) broadcast signal.

BACKGROUND OF THE INVENTION AND PRIOR ART

The ATSC digital broadcast standard for digital television allows for the transmission of 19 Mbits/sec in an RF channel having a 6 MHZ bandwidth. Although this allocated bandwidth is adequate for a single analog NTSC television channel, the ATSC bit rate permits the same channel to support the concurrent transmission of several standard definition television (SDTV) programs (i.e., programs displayable with a resolution comparable to that of the NTSC analog program). Alternatively, the allocated bandwidth at the ATSC bit rate permits a channel to support the transmission of a single high definition television (HDTV) program at a time. Moreover, the ATSC digital broadcast standard permits data to be transmitted in the channel along with the digital program being transmitted. Therefore, data packets may be multiplexed in the channel with video and audio packets of one or more of the programs.

While channel guides in the form of a table displayed on a dedicated channel and providing channels, titles, and show times, currently exist for analog television programming, none exist which provide a similar guide or key for digital television as to the type of data transmitted on various channels. Moreover, no channel or data guides exists which enable various entries in the guide to be selected by a user for access to further information.

The present invention contemplates using the data transmission feature of the ATSC standard in order to transmit data guide information in the data packets. The data guide may include identifying information as to the channels under which data is transmitted with the digital VSB broadcast signals, as well as the type of data provided on each channel. The invention further contemplates displaying the transmitted data guide in a format enabling a user to select and access the data on any of the displayed channels.

SUMMARY OF THE INVENTION

In accordance with one aspect of the present invention, a device identifies types of data transmitted on multiple channels of a digital broadcast signal, displays the identified types of data transmitted on each channel, and enables a user to access the data transmitted on a particular channel. The device comprises a scanning receiver, a demodulator, a detector, a memory, a processor, and an operator interface module. The scanning receiver is adapted to tune to the digital broadcast signal on selected channels, and the digital broadcast signal includes at least one digital television programming packet and at least one data packet. The demodulator is coupled to the receiver and is adapted to demodulate the digital broadcast signal. The detector is coupled to the demodulator and is adapted to detect the at least one data packet. The memory is coupled to the detector, and the memory is adapted to store data guide software code for identifying the type of data contained in the at least one data packet and the channel on which the identified type of data is available. The data guide software is further adapted to enable the data on any channel selected by an operator to be accessed. The processor is coupled to the memory and is adapted to execute the data guide software code. The operator interface module is coupled to the processor, and is adapted to display the identified types of data and the channels on which the identified types of data are available. The operator interface module is further adapted to enable any displayed channel to be selected.

According to another aspect of the present invention, a method of providing a data guide summarizing types of data transmitted in a digital broadcast signal and the channels corresponding to the types of data is provided. The method includes the steps of receiving a digital broadcast signal containing digital programming packets and data packets, demodulating the digital broadcast signal, detecting the data packets, storing the data guide based on information contained in the data packets, and displaying the data guide.

According to another aspect of the present invention, a data casting system is provided which comprises a receiver, a detector coupled to the receiver, and a operator interface module coupled to the detector. The receiver is adapted to receive a digital broadcast signal containing at least one digital television programming packet and at least one data packet. The detector is adapted to detect the at least one data packet and is further adapted to detect types of data transmitted within the at least one data packet and channels on which the detected types of data are available. The screen is adapted to display the detected types of data and the channels on which the detected types of data are available.

According to a further aspect of the present invention, a computer readable storage medium of a digital program receiver having a data guide stored thereon is provided, wherein the data guide contains a list of the types of data receivable by the digital program receiver and the corresponding RF channels in which the data is present.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will become more apparent from a detailed consideration of the invention taken in conjunction with the drawings in which:

FIG. 1 illustrates a data guide system according to one embodiment of the present invention;

FIG. 2 illustrates a sample portion of a digital vestigial sideband (VSB) signal having a set of digital programming packets multiplexed with a set of data packets;

FIG. 3 illustrates data packets and digital television programming packets having an identification header;

FIG. 4 illustrates a sample data guide display screen according to the present invention; and

FIG. 5 illustrates a flow chart of a method for retrieving a digital VSB broadcast signal, extracting at least one data packet from the digital VSB broadcast signal, determining the type of data received, and generating a data guide according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several figures, and more particularly to FIG. 1, a data guide system according to the present invention is generally depicted by reference numeral 10. The data guide system 10 includes a digital vestigial sideband (VSB) broadcast signal transmitter 11 (such as a digital television provider), and a datacasting receiver 12.

The datacasting receiver 12 includes a digital scanning receiver 13, a demodulator 14, a detector 16, a processor 18, a memory 20, and an operator interface module 21. The digital scanning receiver 13 is a tunable receiver which is able to scan through and be tuned to the RF channels within the bands allocated to the digital scanning receiver 13, including, for example, any of the RF channels in any of the bands allocated for digital television viewing. In operation, the digital scanning receiver 13 receives a digital VSB broadcast signal which is defined to include any of a 2 digital VSB, a 4 digital VSB, an 8 digital VSB, an 8T digital VSB or a 16 digital VSB signal, transmitted via one of the RF channels. As will be discussed in further detail herein, the digital scanning receiver 13 may be an existing receiver of a device such as a digital television or personal computer, or may be a separate receiver dedicated to the data guide system 10.

Referring to FIG. 2, a sample portion of a digital VSB broadcast signal 22 to which the digital scanning receiver 13 may be tuned is depicted. As shown therein, the digital VSB broadcast signal 22 includes a set of digital television (DTV) programming packets 24 having audio and video components multiplexed with a set of data packets 26. The DTV programming packets 24 and data packets 26 are both formatted in conformance with the ATSC standard and thus have symbols and symbol rates as specified therein.

The digital scanning receiver 13 scans through all available channels, and at each channel tunes to the corresponding digital VSB broadcast signal 22. The demodulator 14 demodulates the digital VSB broadcast signal 22 from the digital scanning receiver 13.

In accordance with the ATSC standard and as shown in FIG. 3, each of the data packets 26 and each of the digital television programming packets 24 are identifiable via a pre-defined sequence of identification bits [not shown in detail] residing at a location allocated as a header 30.

Preferably, the detector 16 is implemented with a software application that is stored in the memory 20. The software application preferably has search engine capabilities, such that in order to enable identification of the DTV programming packets 24 and the data packets 26, the software application compares the header 30 of each DTV programming packet 24 and each incoming data packet 26 to pre-defined bit sequences used to identify the relevant packets. The detector 16 then passes the identified DTV programming packets 24 to appropriate video and/or audio processors (not shown). When the detector 16 recognizes that a relevant data packet 26 is received on the particular channel to which the digital scanning receiving 13 is currently tuned, the detector 16 transmits an appropriate signal to the processor 18.

The signal from the detector 16 to the processor 18 indicates to the processor 18 that the received data and channel on which it has been received should be stored in the memory 20, and that the processor 18 must interpret the data packet 26 to determine the particular type of data received. This interpretation may be accomplished similar to the manner in which the presence of the data packet 26 is determined. More specifically, the header 30 or the data portions of a data packet may include a predetermined bit stream which the processor 18 may compare to a database of bit streams stored in memory 20. For example, the bit streams may indicate that the data following the header comprises: price update information for a grocery shopping service program, addresses of relevant websites related to the digital television programming packet 24, business news, sports statistics, government tax forms, etc. If website addresses are included, they may allow an HTML link program, such as a web browser, to seek out a website that is associated with the DTV programming packet 24.

Alternatively, once the processor 18 receives the signal from the detector indicating that a data packet 26 has been received, the processor 18 may utilize a template stored in the memory 20 which automatically indicates the type of data received based on the channel to which the receiver 13 is tuned at the time of reception. In other words, it may be known that a particular channel always and only transmits business data, while another channel always and only transmits sports statistics. As a result, once the detector 16 determines that data is received, the processor 18 can reference the template to determine which type of data corresponds to the tuned channel.

Upon identifying the specific type of data received, the data packets 26 are checked for errors. The processor 18 uses an error checking program to examine the data packets 26 for errors, such as those typically caused by discontinuities from storms or multi-path interferences. If an error is detected, data is erased and the system tunes to the next channel to retrieve data. The data from the current channel can be retrieved the next time it is transmitted.

If no error is detected, the processor 18 determines if the data type corresponding to the data transmitted in the current channel is new or updated since the last time that data type was received on that particular channel. Such checking can be performed through a comparison-of the received data packets 26 to the previous data type stored in the memory 20. If the received data type of the data contained in the current channel is not new, it is erased. If this data type is new, the data type is stored in the memory 20, replacing the previously stored data type.

Also, if the data type is determined to be new, the processor 18 executes data guide software to generate or update a menu 32 containing that data type. The operator interface module 21 can display the menu 32 at any time the user selects. The operator interface module 21 can be in the form of, for example, a computer monitor, a television screen, a liquid crystal display screen of a cellular telephone or personal digital assistant, or the like. The menu 32 could be displayed on a designated channel to which the user could tune when desired. Using a peripheral input device (not shown) associated with the operator interface module 21, such as a mouse, trackball, keyboard, remote control, or touch screen, a user can scroll through the displayed menu 32 and select the channel of interest. Once a particular channel is selected the processor 18 then directly connects the user to the desired channel, or if a website is selected, to the desired website. A representative menu 32 generated by the processor 18 is depicted in FIG. 4.

Referring now to FIG. 5, the method by which the data guide system 10 may function is depicted. As shown, the method begins at a block 60 where the digital scanning receiver 13 tunes to a channel containing the digital VSB broadcast signal 22. Once the signal 22 is tuned, control proceeds to a block 62 where the received VSB broadcast signal 22 is provided to the demodulator 14. The demodulator 14 demodulates the VSB broadcast signal 22. The digital television programming packets 24 and the data packets 26 are then transferred to the detector 16 at a block 64.

At a block 66, the detector 16 identifies the data packets 26. As will be understood by one having ordinary skill in the art, the data packets 26 may be transmitted by the digital television transmitter 11 at selected times during the day and may be transmitted repeatedly at convenient intervals. If the digital receiver 12 contains a single tuner in the form of the digital scanning receiver 13, the data monitoring step 66 may be performed during non-prime time hours so as not interfere with heavier prime time usage of the digital broadcast. Alternatively, the datacasting receiver 12 could include one tuner for normal usage and reception of the digital television broadcast, and a separate scanning tuner dedicated to scanning through all channels in search of data being received. Accordingly, the tuning step 60 and monitoring step 66 need not be limited to any particular period of usage.

As described earlier, the monitoring process preferably involves launching a search engine application that causes the detector 16 to search for a predefined sequence of identification bits located in the header 30 of each DTV programming packet 24 and each data packet 26 wherein the predefined sequence of bits indicate a data packet 26.

If it is determined that a data packet 26 has been detected, the data and the channel on which this data packet 26 was received are stored in the memory 20 as indicated by a block 68, and the detector 16 generates a signal which causes control to pass to a block 70 where the processor 18 determines the type of data detected. As indicated above this can be performed in numerous ways including performing a comparison of bit streams to a database of known bit streams, or using a template to determine the type of data always transmitted on the channel to which the receiver 13 is tuned.

Once the type of data is determined, the processor 18 performs an error checking routine, as indicated at a block 72, to determine whether any of the received data has been tainted by, for example, discontinuities caused by storms or multi-path interference. If an error is detected, the retrieved data is erased as indicated by a block 74 and control returns to the block 60 to enable the next channel to be checked. As described hereinbefore, since the data is transmitted periodically, error-free data packets 26 can be retrieved from a later transmission. In alternative embodiments, the error checking step can be performed at a different time, including before the storing step 68.

If no error is detected at the block 72, control proceeds to a block 76 where the processor 18 determines if the data type is new or updated since the last time the monitoring step 66 was performed. The processor 18 compares the data type determined at the block 70 to the data type contained in the menu 32 stored in the memory 20 corresponding to the tuned channel. If the data type is determined not to be new, the data type is erased at the block 74 and control returns to the block 60 wherein the next channel is checked.

If the data type is determined to be new, control passes to a block 78 wherein the received data type replaces the old data contained in the menu 32 stored in the memory 20. The channel to which the receiver 13 is tuned at that time is also determined and stored in the memory 20. The channel on which the current data is received may be utilized as an address into the memory 20 corresponding to the relevant line in the menu 32.

At any time selected by the user, the processor 18 causes the menu 32 to be displayed by the operator interface module 21, such as on a channel dedicated to providing a data guide. When tuned to the dedicated data guide channel, the user can scroll through the menu 32 and select any one of the displayed channels. The processor 18 responds to the received user input by connecting to the selected channel, or if web links are included in the selected channel, to the selected website assuming that the datacasting receiver 12 is web enabled.

In an alternative embodiment, data guide information as contained in the menu 32 could be transmitted on a single channel. As a result, the step of scanning all channels need not be performed, but rather the single channel on which the data is transmitted could be periodically checked and the memory 20 and menu 32 could be updated when new data is received.

Although it is suggested that the detector 16 be implemented using a software application having search engine capabilities, it may instead be implemented using hardware or firmware. For example, the detector 16 may be implemented using an ASIC device configured to behave like a gate array such that the device, when presented with the proper pre-define data sequence, allows the data to pass therethrough.

Certain modifications of the present invention have been discussed above. Other modifications will occur to those practicing in the art of the present invention. For example, the present invention has been described above at least in part in relation to providing a data guide based upon data transmitted in a digital vestigial sideband (VSB) broadcast signal. However, it should be noted that the present invention also is applicable to providing a data guide based upon data transmitted in other types of digital broadcast signals such as COFDM signals, QAM signals, QPSK signals, and/or the like.

Accordingly, the description of the present invention is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details may be varied substantially without departing from the spirit of the invention, and the exclusive use of all modifications which are within the scope of the appended claims is reserved.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4568909Dec 19, 1983Feb 4, 1986United Technologies CorporationRemote elevator monitoring system
US4746983Dec 19, 1986May 24, 1988Sony CorporationPicture-in-picture television receiver with separate channel display
US4903129Apr 6, 1989Feb 20, 1990Thomson Consumer Electronics, Inc.Audio signal section apparatus
US5192854Feb 5, 1992Mar 9, 1993Counts Reginald DSystem for electronically recording and redeeming coupons
US5268928Oct 15, 1991Dec 7, 1993Racal-Datacom, Inc.Data modem with remote firmware update
US5371573Mar 25, 1993Dec 6, 1994Kabushiki Kaisha ToshibaImage forming apparatus providing a sheet tray in the image forming section when the stacking device is filled
US5380991Nov 16, 1993Jan 10, 1995Valencia; LuisPaperless coupon redemption system and method thereof
US5432561Oct 31, 1994Jul 11, 1995North American Philips CorporationSystem for automatically activating picture-in-picture when an auxiliary signal is detected
US5453796Jun 28, 1994Sep 26, 1995Thomson Consumer Electronics, Inc.Signal swap apparatus for a television receiver having an HDTV main picture signal processor and an NTSC Pix-in-Pix signal processor
US5519780Dec 3, 1993May 21, 1996Scientific-Atlanta, Inc.System and method for providing compressed digital teletext services and teletext support services
US5594509Jun 22, 1993Jan 14, 1997Apple Computer, Inc.Method and apparatus for audio-visual interface for the display of multiple levels of information on a display
US5604542Feb 8, 1995Feb 18, 1997Intel CorporationUsing the vertical blanking interval for transporting electronic coupons
US5638113Jun 7, 1995Jun 10, 1997Thomson, Multimedia, S.A.Transaction based interactive television system
US5650831Jul 17, 1995Jul 22, 1997Gateway 2000, Inc.Adjustable power remote control drive
US5665953Feb 14, 1996Sep 9, 1997Lobar Code Inc.Self-contained personal data collector for redeeming coupons
US5666293Jul 3, 1995Sep 9, 1997Bell Atlantic Network Services, Inc.Downloading operating system software through a broadcast channel
US5710605Jan 11, 1996Jan 20, 1998Nelson; Rickey D.Remote control unit for controlling a television and videocassette recorder with a display for allowing a user to select between various programming schedules
US5734413Nov 30, 1993Mar 31, 1998Thomson Multimedia S.A.Transaction based interactive television system
US5754864Nov 12, 1996May 19, 1998Charles E. Hill & Associates, Inc.Software piracy detection system
US5761606Feb 8, 1996Jun 2, 1998Wolzien; Thomas R.Media online services access via address embedded in video or audio program
US5767897Oct 31, 1994Jun 16, 1998Picturetel CorporationVideo conferencing system
US5774664Mar 25, 1996Jun 30, 1998Actv, Inc.Enhanced video programming system and method for incorporating and displaying retrieved integrated internet information segments
US5774666Oct 18, 1996Jun 30, 1998Silicon Graphics, Inc.System and method for displaying uniform network resource locators embedded in time-based medium
US5778181Mar 14, 1996Jul 7, 1998Actv, Inc.Enhanced video programming system and method for incorporating and displaying retrieved integrated internet information segments
US5784095Mar 21, 1996Jul 21, 1998General Instrument CorporationDigital audio system with video output program guide
US5801753Aug 11, 1995Sep 1, 1998General Instrument Corporation Of DelawareMethod and apparatus for providing an interactive guide to events available on an information network
US5818441Jun 15, 1995Oct 6, 1998Intel CorporationSystem and method for simulating two-way connectivity for one way data streams
US5818935Mar 10, 1997Oct 6, 1998Maa; Chia-YiuInternet enhanced video system
US5844552Jan 23, 1997Dec 1, 1998Zenith Electronics CorporationCommunication of character data in a web television
US5880769Apr 10, 1995Mar 9, 1999Smarttv Co.Interactive smart card system for integrating the provision of remote and local services
US5889506Oct 25, 1996Mar 30, 1999Matsushita Electric Industrial Co., Ltd.Video user's environment
US5892536Oct 3, 1996Apr 6, 1999Personal AudioSystems and methods for computer enhanced broadcast monitoring
US5905476Jan 16, 1996May 18, 1999Nxi Communications, Inc.ITU/TDD modem
US5907322Oct 16, 1996May 25, 1999Catch Tv Acquisition Corp.Television event marking system
US5929849May 2, 1996Jul 27, 1999Phoenix Technologies, Ltd.Integration of dynamic universal resource locators with television presentations
US5940073Apr 30, 1997Aug 17, 1999Starsight Telecast Inc.Method and system for displaying other information in a TV program guide
US5940074Nov 22, 1996Aug 17, 1999Webtv Networks, Inc.Remote upgrade of software over a network
US5946047Mar 12, 1997Aug 31, 1999Hybrid Networks, Inc.Network system for handling digital data over a TV channel
US5977963Jan 23, 1997Nov 2, 1999Zenith Electronics CorporationTransmission of displacement information in a web television
US6002394Apr 11, 1997Dec 14, 1999Starsight Telecast, Inc.Systems and methods for linking television viewers with advertisers and broadcasters
US6002450Oct 6, 1997Dec 14, 1999Evolve Products, Inc.Two-way remote control with advertising display
US6008836Nov 22, 1996Dec 28, 1999Webtv Networks, Inc.Method and apparatus for adjusting television display control using a browser
US6018768 *Jul 6, 1998Jan 25, 2000Actv, Inc.Enhanced video programming system and method for incorporating and displaying retrieved integrated internet information segments
US6031867Jul 2, 1993Feb 29, 2000Multi-Tech Systems, Inc.Modem with firmware upgrade feature
US6034689Jun 3, 1996Mar 7, 2000Webtv Networks, Inc.Web browser allowing navigation between hypertext objects using remote control
US6040829May 13, 1998Mar 21, 2000Croy; ClemensPersonal navigator system
US6073171Jan 23, 1997Jun 6, 2000Zenith Electronics CorporationTwo-way communication protocol for a web television
US6097383Jan 23, 1997Aug 1, 2000Zenith Electronics CorporationVideo and audio functions in a web television
US6097441Dec 31, 1997Aug 1, 2000Eremote, Inc.System for dual-display interaction with integrated television and internet content
US6104334Dec 31, 1997Aug 15, 2000Eremote, Inc.Portable internet-enabled controller and information browser for consumer devices
US6130726May 15, 1998Oct 10, 2000Evolve Products, Inc.Program guide on a remote control display
US6137839Oct 31, 1996Oct 24, 2000Texas Instruments IncorporatedVariable scaling of 16-bit fixed point fast fourier forward and inverse transforms to improve precision for implementation of discrete multitone for asymmetric digital subscriber loops
US6175831Jan 17, 1997Jan 16, 2001Six Degrees, Inc.Method and apparatus for constructing a networking database and system
US6177931Jul 21, 1998Jan 23, 2001Index Systems, Inc.Systems and methods for displaying and recording control interface with television programs, video, advertising information and program scheduling information
US6181326Nov 20, 1996Jan 30, 2001Sony CorporationInformation display control unit and the method and remote input unit and the method
US6182287Feb 4, 1999Jan 30, 2001Thomson Licensing S.A.Preferred service management system for a multimedia video decoder
US6219839 *Mar 5, 1999Apr 17, 2001Sharp Laboratories Of America, Inc.On-screen electronic resources guide
US6240555Mar 29, 1996May 29, 2001Microsoft CorporationInteractive entertainment system for presenting supplemental interactive content together with continuous video programs
US6272680Apr 18, 2000Aug 7, 2001Zenith Electronics CorporationVideo display initiated by internet module of web TV
US6278499Jul 6, 1999Aug 21, 2001Evolve Products, Inc.Two-way remote control with advertising display
US6282713Dec 21, 1998Aug 28, 2001Sony CorporationMethod and apparatus for providing on-demand electronic advertising
US6313887Mar 11, 1998Nov 6, 2001Sony CorporationTelevision remote commander with data reception capability
US6349410Aug 4, 1999Feb 19, 2002Intel CorporationIntegrating broadcast television pause and web browsing
US6374245Mar 12, 1998Apr 16, 2002Samsung Electronics Co., Ltd.Server system communicating with personal digital assistant and communication method thereof
US6397387Jun 2, 1997May 28, 2002Sony CorporationClient and server system
US6401059May 25, 1999Jun 4, 2002International Business Machines CorporationMethod and system for using a personal digital assistant as a remote control
US6437836Sep 21, 1998Aug 20, 2002Navispace, Inc.Extended functionally remote control system and method therefore
US6732369Apr 11, 1997May 4, 2004Starsight Telecast, Inc.Systems and methods for contextually linking television program information
US6785906Apr 18, 2000Aug 31, 2004Zenith Electronics CorporationPolling internet module of web TV
US6792616May 1, 1998Sep 14, 2004Scientific-Atlanta, Inc.System and method for providing a plurality of programming services in a television system
US6802076Nov 6, 2000Oct 5, 2004Sony CorporationControl device, control method, electric apparatus, control method of an electric apparatus, electric apparatus system, control method of an electric apparatus system, and transmission medium
US6978471Feb 16, 2000Dec 20, 2005Thomson Licensing S.A.System for acquiring and processing broadcast programs and program guide data
US7028330Apr 18, 2000Apr 11, 2006Zenith Electronics CorporationTransferring information between an internet module and TV controller of a web TV
US7340763Sep 26, 2000Mar 4, 2008Harris Scott CInternet browsing from a television
US7372915Sep 28, 1999May 13, 2008Sony CorporationTransmitting method and transmitting device, receiving method and receiving device, and transfer method and transfer system
US7823181Jul 20, 2009Oct 26, 2010Gaughan Kevin JWeb television having a two-way communication bus interconnecting a television controller and an internet module
US7827583Oct 28, 2008Nov 2, 2010Gaughan Kevin JWeb television having a two-way communication bus interconnecting a television controller and an internet module
US20010003099Jun 1, 1998Jun 7, 2001Henry Von KohornEvaluation of responses of participatory broadcast audience with prediction of winning contestants; monitoring, checking and controlling of wagering, and automatic crediting and couponing
US20020059637Jul 3, 2001May 16, 2002Rakib Selim ShlomoHome gateway for video and data distribution from various types of headend facilities and including digital video recording functions
US20050111823Nov 30, 2004May 26, 2005Opentv, Corp.Networking smart toys
US20070067805Nov 15, 2006Mar 22, 2007Gemstart Development CorporationAccess to internet data through a television system
US20090091657Oct 28, 2008Apr 9, 2009Zenith Electronics Corporationweb television that performs a pip control function
US20090100485Oct 28, 2008Apr 16, 2009Zenith Electronics CorporationWeb television that swaps television video and internet video in a pip area
US20100146551 *Feb 12, 2010Jun 10, 2010Tivo Inc.Data Storage Management and Scheduling System
EP0710017A2Oct 13, 1995May 1, 1996Plessey Semiconductors LimitedTelevision receiver with an interface for the displaying and communication of data
WO1996037996A1May 22, 1996Nov 28, 1996British Sky Broadcasting LtdImprovements in receivers for television signals
WO1998047286A1Sep 23, 1997Oct 22, 1998James Edwin HaileyA system for processing and decoding mpeg compatible data and internet information
WO1998057497A1Jun 5, 1998Dec 17, 1998Gestel Henricus Antonius WilheMethod of controlling reception in data broadcast receiver
WO1999013644A1Aug 19, 1998Mar 18, 1999S Joseph CampanellaSystem for selectively downloading information at user terminals from the internet using a satellite broadcast system
Non-Patent Citations
Reference
1Comdex-Mitsubishi Previews 40-inch DiamondWeb TV Nov. 19, 1996, Newsbytes.
2Comdex—Mitsubishi Previews 40-inch DiamondWeb TV Nov. 19, 1996, Newsbytes.
3Internet Web page fro Sony "Now Everyone can experience the Internet" 1996.
4Mitsubishi joins Internet RV market Screen Digest, Dec. 1, 1996.
5Mitsubishi Takes Motorola MPC801 for Diamondweb TV Computergram International, Aug. 29, 1996.
6 *Shimakawa et al., Method of Controlling Reception in Data Broadcast Receiver, International Publication Date: Dec. 17, 1998, PCT WO 98/57497.
Classifications
U.S. Classification725/54, 725/50, 725/51
International ClassificationG06F3/00, G06F13/00, H04N5/445, H04N7/16, H04N7/015
Cooperative ClassificationH04N21/4586, H04N21/8126, H04N21/47, H04N7/163, H04N21/435, H04N21/8586
European ClassificationH04N7/16E2, H04N21/858U, H04N21/458U, H04N21/435, H04N21/81D
Legal Events
DateCodeEventDescription
Nov 1, 2011CCCertificate of correction