WO1987004924A1 - Liposome extrusion method - Google Patents

Liposome extrusion method Download PDF

Info

Publication number
WO1987004924A1
WO1987004924A1 PCT/US1987/000286 US8700286W WO8704924A1 WO 1987004924 A1 WO1987004924 A1 WO 1987004924A1 US 8700286 W US8700286 W US 8700286W WO 8704924 A1 WO8704924 A1 WO 8704924A1
Authority
WO
WIPO (PCT)
Prior art keywords
size
liposomes
suspension
filter
liposome
Prior art date
Application number
PCT/US1987/000286
Other languages
French (fr)
Inventor
Francis J. Martin
Jacqueline K. Morano
Original Assignee
Liposome Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liposome Technology, Inc. filed Critical Liposome Technology, Inc.
Publication of WO1987004924A1 publication Critical patent/WO1987004924A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/829Liposomes, e.g. encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]

Definitions

  • the present invention relates to methods for producing liposomes in a selected size range, preferably between about 0.1 and 0.4 microns.
  • Liposomes for drug delivery has been proposed for a variety of drugs, particularly those which are administered parenterally. Liposomes have the potential for providing controlled "depot” release of the administered drug over an extended time period, and of reducing side effects of the drug, by limiting the concentration of free drug in the bloodstream. Liposomes can also alter the tissue distribution and uptake of drugs, in a therapeutically favorable way, and can increase the convenience of therapy, by allowing less frequent drug administration. Liposome drug delivery systems are reviewed in Poznansky.
  • the optimal liposome size for use in parenteral administration is between about 0.1 and 0.3, and up to 0.4, microns. Liposomes in this size range can be sterilized by passage through conventional filters having particle size discrimination of about 0.2 microns. This size range of liposomes also favors biodistribution in certain target organs, such as liver, spleen, and bone marrow (Gabizon), and gives more uniform and predictable drug-release rates and stability in the bloodstream. Liposomes whose sizes are less than about 0.4 microns also show less tendency to agglutinate on storage, and are thus generally safer and less toxic in parenteral use than larger-size liposomes.
  • liposomes which are heterodisperse, and predominantly greater than about 1 micron in size.
  • These initial heterodisperse suspensions can be reduced in size and size distribution by a number of known methods.
  • One size-processing method which is suitable for large-scale production is homogenization.
  • the initial heterodisperse liposome preparation is pumped under high pressure through a small orifice or reaction chamber.
  • the suspension is usually cycled through the reaction chamber until a desired average size of liposome particles is achieved.
  • a limitation of this method is that the liposome size distribution is typically quite broad and variable, depending on a number of process variables, such as pressure, number of homogenization cycles, and internal temperature.
  • the processed fluid has the potential to pick up metal and oil contaminants from the homogenizer pump, and may be further contaminated by residual chemical agents used to sterilize the pump seals.
  • Sonication, or ultrasonic irradiation is another method that is used for reducing liposome sizes. This technique is useful especially for preparing small unilamellar vesicles (SUVs), in the 0.025-0.08 micron size range.
  • liposomes can only be achieved at liposome sizes of about 0.05 microns, i.e., when the liposomes have been substantially completely reduced in size.
  • the very small liposomes have limited drug capacity and less favorable biodistribution properties than those in the 0.1-0.4 micron size range, as noted below.
  • the processing capacity of this method is also quite limited, since long-term sonication of relatively small volumes is required. Also, heat build-up during sonication can lead to peroxidative damage to the lipids, and sonic probes shed titanium particles which are potentially quite toxic in vivo.
  • a third general size-processing method known in the prior art is based on liposome extrusion through uniform pore-size polycarbonate membranes (Szoka 1978).
  • This procedure has advantages over the above homogenization and sonication methods in that a variety of membrane pore sizes are available for producing liposomes in different selected size ranges, and in addition, the size distribution of the liposomes can be made quite narrow, particularly by cycling the material through the selected-size filter several times. Nonetheless, the membrane extrusion method has several drawbacks in large-scale processing. For one, the pores in the membrane tend to clog, particularly when processing concentrated suspensions and/or when the liposome sizes are substantially greater than the membrane pore sizes.
  • One specific object of the invention is to provide such a method which yields sized liposomes having a selected average size of between about 0.1 to 0.4 microns, and a relatively narrow distribution of sizes.
  • Still another object of the invention is to provide such a method which can be operated in a relatively problem-free manner, without heat build-up, at high throughput volumes, and in a large-scale operation. Providing such a method which can be practiced with little risk of contamination and under sterile conditions is yet another object of the invention.
  • a suspension of liposomes containing a substantial portion of liposomes with sizes greater than about 1 micron are passed through an asymmetric ceramic filter having an inner-side pore size of about 1 micron.
  • the resulting liposomes have an average particle size of between about 0.2 and 0.4 microns, depending on the number of times the liposomes are cycled through the membrane, and a standard size distribution of about 30-45%.
  • the suspension may be alternately passed through the membrane, in an outside-to-inside directions, to maintain the membrane in an unclogged condition, allowing high throughput processing, even for a concentrated suspension of liposomes.
  • the liposome average size may be further reduced by passage through similar types of ceramic filters, but which have smaller specified inner-surface pore sizes.
  • Figure 1 is a graph showing the size distribution of multiple lamellar vesicles (MLVs) prior to size-processing according to the invention
  • Figure 2 is a sectional view of a filter apparatus of the type used in the present invention. with the inset showing an enlarged inner wall portion of a filter in the apparatus; and
  • Figure 3 is a flow diagram of a liposome processing system for preparing liposomes according to the present invention.
  • the liposomes, or lipid vesicles, of the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol. such as cholesterol.
  • lipids having selected acyl chain compositions are commercially available or may be obtained using standard lipid isolation procedures.
  • the selection of lipids for therapeutic liposomes containing an active drug is generally guided by considerations of (a) drug-entrapment efficiency, (b) drug-release rate in serum, and (c) biodistribution and targeting properties. These considerations are discussed at length, for example, in U.S. patent application for "Liposome/Arthraquinone Drug composition and Method", filed 6 December 1985.
  • vesicle-forming lipids are taken up in a suitable organic solvent or solvent system, and dried in vacuo or under an inert gas to a lipid film.
  • a lipophilic or amphiphilic drug such may be included in the lipids forming the film.
  • aqueous medium is added to the dry film, and the film is allowed to hydrate, typically over a one-two hour period with gentle shaking.
  • the lipids hydrate to form multilamellar vesicles (MLVs) whose sizes range typically between about 0.5 microns to about 10 microns or greater.
  • MLVs multilamellar vesicles
  • the aqueous medium used in hydrating the lipid film may include a water-soluble drug which then becomes encapsulated in the vesicles which form during lipid hydration.
  • Example I below described describes the preparation of an MLV suspension whose size distribution is shown in Figure 1.
  • the lower size range of about 0.8 was the lower limit of size discrimination of the particle-sizer used.
  • a suspension contained a broad range of sizes up to about 16 microns, with average sizes between about 2-4 microns.
  • the reverse evaporation phase method For producing liposomes under conditions of high encapsulation efficiency, the reverse evaporation phase method first described by Szoka 1978 is preferred.
  • the reverse-phase evaporation vesicles (REVs) formed by this method are characterized by (a) one or a few bilayers, (b) an encapsulation efficiency typically between about 20-50%, and (c) a broad spectrum of sizes between about 0.5 and up to 20 microns.
  • the unsized liposomes are passed through an asymmetric ceramic filter, to produce liposomes with a selected average size between about 0.1 and 0.4 microns, and a narrow distribution of liposome sizes.
  • a preferred ceramic filter is a CeraflowTM Microfilter available commercially from the Norton Company (Worcester, MA), and supplied as a multifilter cartridge-type filter apparatus, such as seen cross- sectionally in Figure 2.
  • the filter apparatus 8 includes a tubular casing 10 which houses a plurality of tubular filters, such as filter 12, a side-wall portion of which is shown in enlarged view in the inset in the figure.
  • the casing is provided with an inlet manifold (not shown) through which the liposome suspension can be supplied under pressure to the inner tubular region of each filter, such as inner region 14 of filter 12.
  • the material, on passage through the filters, is collected from an extratubular space 16, through a casing outlet (also not shown).
  • a useful operational feature of the filter system just described is the ability to filter in either direction, that is. in a forward, inside-to-outside direction or in a back. outside-to-inside direction in which material is pumped under pressure from the extratubular space into the filter interior regions, and collected at the casing manifold. Back direction flow may alternate with forward direction to reduce the tendency of the filters to clog.
  • the asymmetric construction of the filters is seen in the inset in Figure 2, which shows an enlarged sectional view taken through a wall portion of filter 12.
  • the filter is composed of a series of controlled-thickness ceramic layers or strata, such as layers 18, 20, and 22, arranged coaxially about the filter's inner tubular space.
  • the layers are each composed of sintered particles, with the inner wall having the smallest particles and the outer walls having progressively larger particles.
  • the particles forming the inner walls are dimensioned to provide a defined surface pore size in the sintered inner layer.
  • the CeraflowTM filters supplied by Norton have surface pore sizes of either 1.0, 0.45, or 0.2 microns, and are designed for filtering particles, in a fluid flowing through the filters in an inside-to-outside direction, whose size is equal to or greater than the rated pore size.
  • Figure 3 shows an extrusion system 24 employing a cartridge-type filter apparatus 8 of the type just described. The system includes a pump 26. and a pair of vessels 28, 30, which hold the liposome suspension being processed.
  • the pump is connected to the vessels through a valving arrangement which includes a series of valves such as valve 32, for effecting fluid flow either in a forward direction (the direction of arrows in Figure 3) from vessel 28, through the apparatus in an inside-to-outside direction, to vessel 30, or in the reverse, back direction.
  • the driving pressure is created by compressed gas which is connected to the vessels in a conventional manner.
  • the processed liposome suspension can be transferred to a sterile fill system, as indicated.
  • a suspension of heterogeneous size liposomes are placed in vessel 28, and the valves are set initially to pump the suspension through the filter apparatus in a forward direction.
  • a single passage through the 1.0 micron pore size filter apparatus reduces the average liposome size to about 0.3-0.35 microns, with a standard size deviation of about 40%. These size characteristics are suitable for purposes of subsequent filter sterilization and to desirable therapeutic properties.
  • the suspension may be recycled through the filter apparatus, and preferably by alternating the flow in forward and backward directions, to reduce the average size of the liposomes selectively. For example, as described in Example II, cycling the above MLV suspension through the 1.0 pore-size filter several times gradually reduced the liposome average size from 0.3 microns (after one filtration) to about 0.2 microns (after several passes).
  • the material can be further processed by passage through similar types of asymmetric filters having inner surface pore sizes of 0.45 or 0.2 microns.
  • Example III shows the gradual reduction in pore size in liposomes after initial sizing using a 1 micron filter, by five passes through a 0.45 micron filter.
  • the material may be processed by direct passage through a smaller pore size ceramic filter (less than about 0.5 micron), to achieve direct reduction of heterogeneous-size liposomes to average sizes of about 0.2 microns or less.
  • a smaller pore size ceramic filter less than about 0.5 micron
  • filter clogging tends to occur when unsized liposomes are pumped through ceramic filters with smaller pore sizes, it may be necessary to increase filtration pressure, use a more dilute liposome suspension, flow the material through the filter initially in a back (outside-to-inside) direction, and/or alternate the direction of flow more frequently to achieve high-volume throughput.
  • the size-processed liposome suspension may be readily sterilized by passage through a sterilizing membrane having a particle discrimination size of about 0.2 microns, such as a conventional 0.22 micron depth membrane filter.
  • the sterilizing filter may be an asymmetric ceramic filter of the type described above, but having an inner surface pore size of about 0.2.
  • a conventional membrane filter is preferred for sterilization.
  • the tortuous path pore structure of conventional sterilizing membrane filters is preferred for maximum bacteria retention.
  • liposomes are formulated to contain an entrapped drug, for use in parenteral drug administration, it is usually advantageous to further process the sized liposomes to remove free drug, i.e., drug present in the bulk aqueous phase of the suspension. This is done to reduce the effects of free drug and to maximize the benefits achievable by drug entrapment in the liposomes.
  • Free drug may be present in a substantial amount in the case of a water-soluble drug, which can be encapsulated at a maximum efficiency of about 50%, as noted above, or in the case of a lipophilic or amphiphilic drug which has originally been included in vesicle-forming lipids in molar excess of the liposome drug-carrying capacity, as a strategy for maximizing the drug/lipid ratio in the liposomes. It may also be desirable to reduce the bulk phase concentration of other solute molecules, such as carbohydrates, chelate agents, or the like, used in preparing the liposomes but not desired in parenteral administration.
  • the sized liposome suspension can be pelleted by high-speed centrifugation, leaving free drug and very small liposomes in the supernatant.
  • Another method involves concentrating the suspension by ultrafiltration, then resuspending the concentrated liposomes in a drug-free replacement medium.
  • gel filtration can be used to separate larger liposome particles from solute (free drug) molecules.
  • Ion-exchange chromatography may provide an efficient method of free drug removal, in instances where a suitable drug-binding resin can be identified.
  • One preferred method of free drug removal is by diafiltration.
  • Diafiltration has the advantage that it can be used in-line in a sterile liposome-processing system of the type shown in Figure 3.
  • Sized liposome suspensions prepared according to the invention are useful in a variety of liposome therapeutic compositions in which controlled sizes between about 0.1 and 0.3 microns are desired.
  • One important class of compositions is drug-containing liposomes, for parenteral drug administration.
  • liposomal drug-delivery systems have been developed and tested with a wide range of water-soluble and lipid-soluble drugs.
  • This size range is generally preferred to larger-size liposomes, as indicated above, because of ease of sterilization, improved biodistribution, more size uniformity, and less tendency to aggregate on storage.
  • liposome sizes below about 0.1 microns With liposome sizes below about 0.1 microns, the drug-carrying capacity of the liposomes. measured either by internal encapsulation or lipid-bilayer volume, become somewhat restrictive. Also, as liposome sizes are reduced below about 0.1 microns, the liposomes appear to behave more like free drug in terms of biodistribution and drug-clearance rates.
  • the effect of liposome size on pharmacokinetic properties of liposomes carrying the anti-tumor drug doxorubicin has been examined in connection with the drug/liposome invention described in the above mentioned U.S. patent application for "Liposome/Arthraquinone Composition and Method", filed 6 December 1985. As detailed there, liposomes with average sizes of about 0.035 microns were much more similar to free drug in biodistribution and drug clearance rates than liposomes with average sizes of about 0.115 microns.
  • the present invention offers a number of advantages over prior art liposome-sizing methods.
  • the ceramic filter can be sterilized by dry heat at temperatures which are effective to destroy endotoxins, and the system is compatible with a variety of solvents, including many organic solvent which are not tolerated by polycarbonate-type membranes.
  • the method generates very little heat, and can be performed under aseptic conditions.
  • the liposome processing method yields liposome sizes in a selected size range of between about 0.1 and 0.4 microns, and with a relatively narrow distribution of sizes.
  • the method is well suited to a high throughput liposome processing operation which is reliable and requires very little maintenance, such as filter cartridge replacement.
  • High throughput is due in part to the relatively high pressure which may be used, and in part because bidirectional operation reduces clogging problems.
  • High throughput is also due to the surface area of membrane available.
  • a tubular cartridge configuration is more efficient in terms of membrane surface area and makes the process easily scalable.
  • liposomes may be directly and efficiently reduced from heterogeneous sizes predominantly greater than 1 micron, to a narrow distribution of sizes in a selected size range between about 0.2 and 0.3 microns, using a filter with an inner-wall pore size of 1 micron, allows for direct liposome sizing without the need to pass the liposome suspension through a series of progressively smaller pore-size membranes, as has been generally found for polycarbonate membranes.
  • Example I Preparation of Heterogeneous-Size Liposomes
  • PC Phosphatidylcholine
  • CH cholesterol
  • PG phosphatidylglycerol
  • PC (0.12 moles), CH (0.09 moles), and PG (0.01 moles) were dissolved in 260 ml of chloroform, and the solvent was removed by rotary evaporation under reduced pressure, leaving a thin film of lipid in the flask.
  • hydration buffer consisting of 10.7 mM NaH 2 PO 4 ⁇ H 2 O, 48.4 mM Na 2 HPO 4 ⁇ 7H 2 O. pH 7.4, and 86.1 mM NaCl was added to the flask and swirled gently over the lipids. The lipids were allowed to swell gently for about 2 hours.
  • the size distribution of a typical suspension made as described above was measured in a Coulter Counter. Model TA2, using a 50 micron aperture tube.
  • the counter device is capable of discriminating size between about 0.8 and 20 microns, and is programmed to express each size window as a percentage of volume distribution, based on a 100% volume distribution in the 0.8-20 micron size range.
  • the size-distribution curves for the liposomes are shown in Figure 1. It is noted that only those liposomes whose sizes are more than about 0.8 microns are included in the normalized curves. That is. the size distribution curves do not show actual volume percentages below 0.8 micron sizes.
  • the liposomes have a broad distribution over the size range 0.8 to greater than 16 microns, with an average size of between about 2-4 microns.
  • Example II Liposome Size Processing An asymmetric ceramic filter apparatus having a specified inner surface pore size of 1.0 micron was obtained from the Norton Company (Worcester. MA). The filter was connected in a two-vessel system of the type shown in Figure 3, but using a pressurized nitrogen supply source to pump fluid from one vessel to the other through the filter apparatus. The liposome suspension from Example I was added to the first vessel, and the vessel was pressurized with filtered nitrogen gas to about 200-250 psi.
  • the valve arrangement connecting the two vessels was first adjusted to pump the suspension through the filter apparatus, in a forward, inside-to-outside direction, into the second vessel.
  • the valving in the system was then reversed to pump the suspension through the filter apparatus in a back direction.
  • the material was filtered an additional eight times, four times in a forward direction and four times alternately in a back direction, with sample material being removed after each step for later size-distribution determination.
  • the size distribution of the liposomes for each of the ten samples was determined using a conventional particle sizer calibrated with latex particle size standards. From the measured sizes of the sample, the machine calculates mean particle diameter and percent standard deviation with respect to the mean values. The data are shown in Table 1 below. Odd number passes were in a forward direction through the filter apparatus, and even number passes were in a back direction. TABLE 1
  • the data show a gradual reduction in average liposome size, with increasing filtration steps, from about 0.3 to 0.2 microns.
  • the extent of size reduction produced by each filtration step appears to be greater in the forward direction than in the back direction.
  • the standard deviation of sizes was not improved appreciably by repeated passages through the filter.
  • Example III Liposome Size Processing
  • the liposome suspension from Example I was added to one vessel in a two-vessel system of the type shown in Figure 3, and the valve arrangement connecting the two vessels was adjusted to pump the suspension through a 1 micron ceramic filter apparatus (Example II), in a forward, inside-to-outside direction, into the second vessel.
  • the valving in the system was then reversed to pump the suspension through the filter apparatus in a back direction.
  • the material was passed through the filter a third time in a forward direction.
  • the 1 ⁇ filter was then replace with a 0.45 ⁇ ceramic filter (Norton Company) and the material pumped through the apparatus three times in a forward direction (passes 4, 6, and 8) and two times in a back direction (passes 5 and 7).
  • the size distribution of the liposomes after each pass was determined as in Example II.
  • the data are shown in Table 2 below, along with the gauge pressure, in psi, used at each pass.
  • the data show a gradual reduction in average liposome size, with increasing filtration steps, from about 0.35 to 0.2 microns.
  • the gradual reduction in size, after replacing the 1 micron filter with a 0.45 micron filter, is not significantly greater than that achieved in Example II using a 1 micron filter only.
  • the data also show that the required filtration pressure was substantially greater in the forward than in the back direction. While preferred embodiments of the invention have been described herein, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the invention.

Abstract

A suspension of liposomes, preferably formulated to contain an entrapped drug, whose sizes are predominantly greater than about 1 micron is passed through an asymmetric ceramic filter whose inner-surface pore size is about 1 micron. The extrusion system (24) used employs a cartridge-type filter apparatus (8) and includes a pump (26) and a pair of vessels (28, 30) which hold the liposome suspensions to be processed. The pump is connceted to the vessels through a series of valves such as valve (32), for effecting fluid flow either in a forward direction from vessel (28), through the apparatus in an inside-to-outside direction, or in the reverse, back direction. From vessel (30), the processed liposome suspension can be transferred to a sterile fill system. The processed liposomes have a selected average size of about 0.4 microns or less, depending on the number of filter cycles, and a narrow distribution.

Description

LIPOSOME EXTRUSION METHOD
1. Field of the Invention
The present invention relates to methods for producing liposomes in a selected size range, preferably between about 0.1 and 0.4 microns.
2. References
1. Gabizon, A., et al, Cancer Res, 43:4730 (1983). 2. Poznansky, M.L., et al. Pharm Revs, 36(4) :277 (1984).
3. Szoka, F., et al, Proc Nat Acad Sci (USA), 75:4194 (1978).
4. Szoka, F., et al, Ann Rev Biophys Bioeng. 9:467 (1980).
3. Background of the Invention
The use of liposomes for drug delivery has been proposed for a variety of drugs, particularly those which are administered parenterally. Liposomes have the potential for providing controlled "depot" release of the administered drug over an extended time period, and of reducing side effects of the drug, by limiting the concentration of free drug in the bloodstream. Liposomes can also alter the tissue distribution and uptake of drugs, in a therapeutically favorable way, and can increase the convenience of therapy, by allowing less frequent drug administration. Liposome drug delivery systems are reviewed in Poznansky.
Generally, the optimal liposome size for use in parenteral administration is between about 0.1 and 0.3, and up to 0.4, microns. Liposomes in this size range can be sterilized by passage through conventional filters having particle size discrimination of about 0.2 microns. This size range of liposomes also favors biodistribution in certain target organs, such as liver, spleen, and bone marrow (Gabizon), and gives more uniform and predictable drug-release rates and stability in the bloodstream. Liposomes whose sizes are less than about 0.4 microns also show less tendency to agglutinate on storage, and are thus generally safer and less toxic in parenteral use than larger-size liposomes.
A variety of techniques have been proposed for preparing liposomes, including drug-containing liposomes (Szoka 1983). Typically, these methods yield liposomes which are heterodisperse, and predominantly greater than about 1 micron in size. These initial heterodisperse suspensions can be reduced in size and size distribution by a number of known methods. One size-processing method which is suitable for large-scale production is homogenization. Here the initial heterodisperse liposome preparation is pumped under high pressure through a small orifice or reaction chamber. The suspension is usually cycled through the reaction chamber until a desired average size of liposome particles is achieved. A limitation of this method is that the liposome size distribution is typically quite broad and variable, depending on a number of process variables, such as pressure, number of homogenization cycles, and internal temperature. Also, the processed fluid has the potential to pick up metal and oil contaminants from the homogenizer pump, and may be further contaminated by residual chemical agents used to sterilize the pump seals. Sonication, or ultrasonic irradiation, is another method that is used for reducing liposome sizes. This technique is useful especially for preparing small unilamellar vesicles (SUVs), in the 0.025-0.08 micron size range. However, a narrow size distribution of liposomes can only be achieved at liposome sizes of about 0.05 microns, i.e., when the liposomes have been substantially completely reduced in size. The very small liposomes have limited drug capacity and less favorable biodistribution properties than those in the 0.1-0.4 micron size range, as noted below. The processing capacity of this method is also quite limited, since long-term sonication of relatively small volumes is required. Also, heat build-up during sonication can lead to peroxidative damage to the lipids, and sonic probes shed titanium particles which are potentially quite toxic in vivo.
A third general size-processing method known in the prior art is based on liposome extrusion through uniform pore-size polycarbonate membranes (Szoka 1978). This procedure has advantages over the above homogenization and sonication methods in that a variety of membrane pore sizes are available for producing liposomes in different selected size ranges, and in addition, the size distribution of the liposomes can be made quite narrow, particularly by cycling the material through the selected-size filter several times. Nonetheless, the membrane extrusion method has several drawbacks in large-scale processing. For one, the pores in the membrane tend to clog, particularly when processing concentrated suspensions and/or when the liposome sizes are substantially greater than the membrane pore sizes. The clogged membranes cannot be cleared, because the filter housing configuration does not allow back flushing, and replacing the filter is likely to compromise the sterility of the extrusion operation. Secondly, the membranes themselves are planar disks which must be mounted against a flat mechanical support. This severely restricts the surface area available for extrusion, and leads to slow throughput. Although the problems of clogging and slow throughput can be overcome partially at high extrusion pressures, such requires specially adapted filter holders and membrane tearing become more of a problem. Finally, polycarbonate membranes cannot be steam-sterilized in place, with a high degree of confidence, due to their inherent fragility.
4. Background of the Invention
It is therefore a general object of the invention to provide a novel liposome size-processing method which overcomes the above-mentioned limitations and problems associated with the prior art. One specific object of the invention is to provide such a method which yields sized liposomes having a selected average size of between about 0.1 to 0.4 microns, and a relatively narrow distribution of sizes. Still another object of the invention is to provide such a method which can be operated in a relatively problem-free manner, without heat build-up, at high throughput volumes, and in a large-scale operation. Providing such a method which can be practiced with little risk of contamination and under sterile conditions is yet another object of the invention.
In practicing the method of the invention, a suspension of liposomes containing a substantial portion of liposomes with sizes greater than about 1 micron, are passed through an asymmetric ceramic filter having an inner-side pore size of about 1 micron. The resulting liposomes have an average particle size of between about 0.2 and 0.4 microns, depending on the number of times the liposomes are cycled through the membrane, and a standard size distribution of about 30-45%.
The suspension may be alternately passed through the membrane, in an outside-to-inside directions, to maintain the membrane in an unclogged condition, allowing high throughput processing, even for a concentrated suspension of liposomes.
The liposome average size may be further reduced by passage through similar types of ceramic filters, but which have smaller specified inner-surface pore sizes.
These and other objects and features of the present invention will become more fully apparent when the following detailed description of the invention is read in conjunction with the accompanying drawings.
Brief Description of the Drawings
Figure 1 is a graph showing the size distribution of multiple lamellar vesicles (MLVs) prior to size-processing according to the invention;
Figure 2 is a sectional view of a filter apparatus of the type used in the present invention. with the inset showing an enlarged inner wall portion of a filter in the apparatus; and Figure 3 is a flow diagram of a liposome processing system for preparing liposomes according to the present invention.
Detailed Description of the Invention
I. Preparation of Liposome Suspension
A. Unsized Liposomes
The liposomes, or lipid vesicles, of the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol. such as cholesterol. A variety of lipids having selected acyl chain compositions are commercially available or may be obtained using standard lipid isolation procedures. The selection of lipids for therapeutic liposomes containing an active drug is generally guided by considerations of (a) drug-entrapment efficiency, (b) drug-release rate in serum, and (c) biodistribution and targeting properties. These considerations are discussed at length, for example, in U.S. patent application for "Liposome/Arthraquinone Drug composition and Method", filed 6 December 1985.
Several methods for producing a suspension of the heterogeneous-size vesicles are available. In one preferred method, vesicle-forming lipids are taken up in a suitable organic solvent or solvent system, and dried in vacuo or under an inert gas to a lipid film. Where the vesicles are formulated to include a lipophilic or amphiphilic drug, such may be included in the lipids forming the film. To form the vesicles, aqueous medium is added to the dry film, and the film is allowed to hydrate, typically over a one-two hour period with gentle shaking. The lipids hydrate to form multilamellar vesicles (MLVs) whose sizes range typically between about 0.5 microns to about 10 microns or greater. In general, the size distribution of MLVs can be shifted toward slightly smaller sizes by hydrating the lipids under more vigorous shaking conditions. The aqueous medium used in hydrating the lipid film may include a water-soluble drug which then becomes encapsulated in the vesicles which form during lipid hydration.
Example I below described describes the preparation of an MLV suspension whose size distribution is shown in Figure 1. The lower size range of about 0.8 was the lower limit of size discrimination of the particle-sizer used. As seen, a suspension contained a broad range of sizes up to about 16 microns, with average sizes between about 2-4 microns.
For producing liposomes under conditions of high encapsulation efficiency, the reverse evaporation phase method first described by Szoka 1978 is preferred. The reverse-phase evaporation vesicles (REVs) formed by this method are characterized by (a) one or a few bilayers, (b) an encapsulation efficiency typically between about 20-50%, and (c) a broad spectrum of sizes between about 0.5 and up to 20 microns. These and other liposome-preparation methods have been reviewed extensively (Szoka 1980).
B. Sizing Liposomes
According to an important feature of the invention, the unsized liposomes are passed through an asymmetric ceramic filter, to produce liposomes with a selected average size between about 0.1 and 0.4 microns, and a narrow distribution of liposome sizes. A preferred ceramic filter is a Ceraflow™ Microfilter available commercially from the Norton Company (Worcester, MA), and supplied as a multifilter cartridge-type filter apparatus, such as seen cross- sectionally in Figure 2. The filter apparatus 8 includes a tubular casing 10 which houses a plurality of tubular filters, such as filter 12, a side-wall portion of which is shown in enlarged view in the inset in the figure. The casing is provided with an inlet manifold (not shown) through which the liposome suspension can be supplied under pressure to the inner tubular region of each filter, such as inner region 14 of filter 12. The material, on passage through the filters, is collected from an extratubular space 16, through a casing outlet (also not shown). A useful operational feature of the filter system just described is the ability to filter in either direction, that is. in a forward, inside-to-outside direction or in a back. outside-to-inside direction in which material is pumped under pressure from the extratubular space into the filter interior regions, and collected at the casing manifold. Back direction flow may alternate with forward direction to reduce the tendency of the filters to clog.
The asymmetric construction of the filters is seen in the inset in Figure 2, which shows an enlarged sectional view taken through a wall portion of filter 12. The filter is composed of a series of controlled-thickness ceramic layers or strata, such as layers 18, 20, and 22, arranged coaxially about the filter's inner tubular space. The layers are each composed of sintered particles, with the inner wall having the smallest particles and the outer walls having progressively larger particles. The particles forming the inner walls are dimensioned to provide a defined surface pore size in the sintered inner layer. For example, the Ceraflow™ filters supplied by Norton have surface pore sizes of either 1.0, 0.45, or 0.2 microns, and are designed for filtering particles, in a fluid flowing through the filters in an inside-to-outside direction, whose size is equal to or greater than the rated pore size. Figure 3 shows an extrusion system 24 employing a cartridge-type filter apparatus 8 of the type just described. The system includes a pump 26. and a pair of vessels 28, 30, which hold the liposome suspension being processed. The pump is connected to the vessels through a valving arrangement which includes a series of valves such as valve 32, for effecting fluid flow either in a forward direction (the direction of arrows in Figure 3) from vessel 28, through the apparatus in an inside-to-outside direction, to vessel 30, or in the reverse, back direction. In an alternative system, the driving pressure is created by compressed gas which is connected to the vessels in a conventional manner. From vessel 30, the processed liposome suspension can be transferred to a sterile fill system, as indicated. In a typical processing operation, a suspension of heterogeneous size liposomes are placed in vessel 28, and the valves are set initially to pump the suspension through the filter apparatus in a forward direction. As will be seen from the procedure described in Examples II and III, and according to an important finding of the present invention, a single passage through the 1.0 micron pore size filter apparatus reduces the average liposome size to about 0.3-0.35 microns, with a standard size deviation of about 40%. These size characteristics are suitable for purposes of subsequent filter sterilization and to desirable therapeutic properties. Alternatively, the suspension may be recycled through the filter apparatus, and preferably by alternating the flow in forward and backward directions, to reduce the average size of the liposomes selectively. For example, as described in Example II, cycling the above MLV suspension through the 1.0 pore-size filter several times gradually reduced the liposome average size from 0.3 microns (after one filtration) to about 0.2 microns (after several passes). Cycling the material alternately in a back direction acts to prevent particle build-up and clogging at the filter's inner surface. In the filter operation described in Example III, liposome average sizes were reduced to about 0.35 microns after a single pass through a 1 micron filter and further reduced to about 0.27 microns with three passes.
If smaller liposome sizes are desired, the material can be further processed by passage through similar types of asymmetric filters having inner surface pore sizes of 0.45 or 0.2 microns. Example III shows the gradual reduction in pore size in liposomes after initial sizing using a 1 micron filter, by five passes through a 0.45 micron filter.
Alternatively, the material may be processed by direct passage through a smaller pore size ceramic filter (less than about 0.5 micron), to achieve direct reduction of heterogeneous-size liposomes to average sizes of about 0.2 microns or less. However, since filter clogging tends to occur when unsized liposomes are pumped through ceramic filters with smaller pore sizes, it may be necessary to increase filtration pressure, use a more dilute liposome suspension, flow the material through the filter initially in a back (outside-to-inside) direction, and/or alternate the direction of flow more frequently to achieve high-volume throughput. It is noted that smaller-pore filters are generally not needed, since direct reduction in liposome size to a size range that is suitable for parenteral use (0.2-0.3 microns) can be achieved directly, and at high throughput rates, with a 1 micron pore-size filter.
C. Filter Sterilization and Free-Drug Removal
The size-processed liposome suspension may be readily sterilized by passage through a sterilizing membrane having a particle discrimination size of about 0.2 microns, such as a conventional 0.22 micron depth membrane filter. The sterilizing filter may be an asymmetric ceramic filter of the type described above, but having an inner surface pore size of about 0.2. However, since an asymmetric filter will produce some liposome sizing effect, with the attendant possibility of higher pressure requirements and/or eventual membrane clogging, a conventional membrane filter is preferred for sterilization. Also, the tortuous path pore structure of conventional sterilizing membrane filters is preferred for maximum bacteria retention. Where liposomes are formulated to contain an entrapped drug, for use in parenteral drug administration, it is usually advantageous to further process the sized liposomes to remove free drug, i.e., drug present in the bulk aqueous phase of the suspension. This is done to reduce the effects of free drug and to maximize the benefits achievable by drug entrapment in the liposomes. Free drug may be present in a substantial amount in the case of a water-soluble drug, which can be encapsulated at a maximum efficiency of about 50%, as noted above, or in the case of a lipophilic or amphiphilic drug which has originally been included in vesicle-forming lipids in molar excess of the liposome drug-carrying capacity, as a strategy for maximizing the drug/lipid ratio in the liposomes. It may also be desirable to reduce the bulk phase concentration of other solute molecules, such as carbohydrates, chelate agents, or the like, used in preparing the liposomes but not desired in parenteral administration.
Several methods are available for removing free drug from a liposome suspension. The sized liposome suspension can be pelleted by high-speed centrifugation, leaving free drug and very small liposomes in the supernatant. Another method involves concentrating the suspension by ultrafiltration, then resuspending the concentrated liposomes in a drug-free replacement medium. Alternatively, gel filtration can be used to separate larger liposome particles from solute (free drug) molecules. Ion-exchange chromatography may provide an efficient method of free drug removal, in instances where a suitable drug-binding resin can be identified. One preferred method of free drug removal is by diafiltration. using a conventional hollow fiber or stacked filter device, which preferably has a molecular weight cutoff of between about 10,000-100,000 daltons. Diafiltration has the advantage that it can be used in-line in a sterile liposome-processing system of the type shown in Figure 3.
II. Utility
Sized liposome suspensions prepared according to the invention are useful in a variety of liposome therapeutic compositions in which controlled sizes between about 0.1 and 0.3 microns are desired. One important class of compositions is drug-containing liposomes, for parenteral drug administration. As indicated above and reviewed extensively in the Poznansky reference, liposomal drug-delivery systems have been developed and tested with a wide range of water-soluble and lipid-soluble drugs. Although many of the earlier proposed liposome/drug systems were not carefully defined in terms of size, a variety of experimental evidence and practical considerations indicate advantages of the 0.1 to 0.3 micron size range. This size range is generally preferred to larger-size liposomes, as indicated above, because of ease of sterilization, improved biodistribution, more size uniformity, and less tendency to aggregate on storage.
With liposome sizes below about 0.1 microns, the drug-carrying capacity of the liposomes. measured either by internal encapsulation or lipid-bilayer volume, become somewhat restrictive. Also, as liposome sizes are reduced below about 0.1 microns, the liposomes appear to behave more like free drug in terms of biodistribution and drug-clearance rates. The effect of liposome size on pharmacokinetic properties of liposomes carrying the anti-tumor drug doxorubicin has been examined in connection with the drug/liposome invention described in the above mentioned U.S. patent application for "Liposome/Arthraquinone Composition and Method", filed 6 December 1985. As detailed there, liposomes with average sizes of about 0.035 microns were much more similar to free drug in biodistribution and drug clearance rates than liposomes with average sizes of about 0.115 microns.
The present invention offers a number of advantages over prior art liposome-sizing methods. The ceramic filter can be sterilized by dry heat at temperatures which are effective to destroy endotoxins, and the system is compatible with a variety of solvents, including many organic solvent which are not tolerated by polycarbonate-type membranes. The method generates very little heat, and can be performed under aseptic conditions.
The liposome processing method yields liposome sizes in a selected size range of between about 0.1 and 0.4 microns, and with a relatively narrow distribution of sizes. The method is well suited to a high throughput liposome processing operation which is reliable and requires very little maintenance, such as filter cartridge replacement. High throughput is due in part to the relatively high pressure which may be used, and in part because bidirectional operation reduces clogging problems. High throughput is also due to the surface area of membrane available. A tubular cartridge configuration is more efficient in terms of membrane surface area and makes the process easily scalable.
The finding that liposomes may be directly and efficiently reduced from heterogeneous sizes predominantly greater than 1 micron, to a narrow distribution of sizes in a selected size range between about 0.2 and 0.3 microns, using a filter with an inner-wall pore size of 1 micron, allows for direct liposome sizing without the need to pass the liposome suspension through a series of progressively smaller pore-size membranes, as has been generally found for polycarbonate membranes.
The following examples illustrate both use and results achievable with the method of the invention, but are in no way intended to limit the scope of the invention. Example I Preparation of Heterogeneous-Size Liposomes Phosphatidylcholine (PC) was obtained from Asahi Lipids (Japan) . cholesterol (CH) from Sigma Chemical Co. (St. Louis, MO), and phosphatidylglycerol (PG) were obtained from Avanti Lipid (Birmingham. AL). PC (0.12 moles), CH (0.09 moles), and PG (0.01 moles) were dissolved in 260 ml of chloroform, and the solvent was removed by rotary evaporation under reduced pressure, leaving a thin film of lipid in the flask. One liter of hydration buffer consisting of 10.7 mM NaH2PO4 · H2O, 48.4 mM Na2HPO4 · 7H2O. pH 7.4, and 86.1 mM NaCl was added to the flask and swirled gently over the lipids. The lipids were allowed to swell gently for about 2 hours.
The size distribution of a typical suspension made as described above was measured in a Coulter Counter. Model TA2, using a 50 micron aperture tube. The counter device is capable of discriminating size between about 0.8 and 20 microns, and is programmed to express each size window as a percentage of volume distribution, based on a 100% volume distribution in the 0.8-20 micron size range. The size-distribution curves for the liposomes are shown in Figure 1. It is noted that only those liposomes whose sizes are more than about 0.8 microns are included in the normalized curves. That is. the size distribution curves do not show actual volume percentages below 0.8 micron sizes. As seen, the liposomes have a broad distribution over the size range 0.8 to greater than 16 microns, with an average size of between about 2-4 microns. Example II Liposome Size Processing An asymmetric ceramic filter apparatus having a specified inner surface pore size of 1.0 micron was obtained from the Norton Company (Worcester. MA). The filter was connected in a two-vessel system of the type shown in Figure 3, but using a pressurized nitrogen supply source to pump fluid from one vessel to the other through the filter apparatus. The liposome suspension from Example I was added to the first vessel, and the vessel was pressurized with filtered nitrogen gas to about 200-250 psi. The valve arrangement connecting the two vessels was first adjusted to pump the suspension through the filter apparatus, in a forward, inside-to-outside direction, into the second vessel. The valving in the system was then reversed to pump the suspension through the filter apparatus in a back direction. The material was filtered an additional eight times, four times in a forward direction and four times alternately in a back direction, with sample material being removed after each step for later size-distribution determination.
The size distribution of the liposomes for each of the ten samples was determined using a conventional particle sizer calibrated with latex particle size standards. From the measured sizes of the sample, the machine calculates mean particle diameter and percent standard deviation with respect to the mean values. The data are shown in Table 1 below. Odd number passes were in a forward direction through the filter apparatus, and even number passes were in a back direction. TABLE 1
No. of Mean Diam. Std. Dev.
Passes* (nm) (%)
1 301.4 36 .5
2 300.7 38 .1
3 259.4 32 .6
4 251.8 36 .2
5 239.7 34 .2
6 241.8 33 .4
7 233.1 33 .6
8 234.6 31 .1
9 233.2 33 .4
10 223.5 35 .1
The data show a gradual reduction in average liposome size, with increasing filtration steps, from about 0.3 to 0.2 microns. The extent of size reduction produced by each filtration step appears to be greater in the forward direction than in the back direction. Interestingly, the standard deviation of sizes was not improved appreciably by repeated passages through the filter.
Example III Liposome Size Processing The liposome suspension from Example I was added to one vessel in a two-vessel system of the type shown in Figure 3, and the valve arrangement connecting the two vessels was adjusted to pump the suspension through a 1 micron ceramic filter apparatus (Example II), in a forward, inside-to-outside direction, into the second vessel. The valving in the system was then reversed to pump the suspension through the filter apparatus in a back direction. The material was passed through the filter a third time in a forward direction. The 1μ filter was then replace with a 0.45 μ ceramic filter (Norton Company) and the material pumped through the apparatus three times in a forward direction (passes 4, 6, and 8) and two times in a back direction (passes 5 and 7). The size distribution of the liposomes after each pass was determined as in Example II. The data are shown in Table 2 below, along with the gauge pressure, in psi, used at each pass.
TABLE 2
No. of Filter Pressure Mean Diam. Stan. Dev.
Passes Size (psi) (nm) (%)
1 iμ 400 344.3 42
2 lμ 75 295.8 35
3 iμ 250 269.2 35
4 0.45μ 150 234.0 33
5 0.45μ 75 242.0 32
6 0.45μ 250 215.1 31
7 0.45μ 70 210.9 31
8 0.45μ 150 210.4 29
The data show a gradual reduction in average liposome size, with increasing filtration steps, from about 0.35 to 0.2 microns. The gradual reduction in size, after replacing the 1 micron filter with a 0.45 micron filter, is not significantly greater than that achieved in Example II using a 1 micron filter only. The data also show that the required filtration pressure was substantially greater in the forward than in the back direction. While preferred embodiments of the invention have been described herein, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the invention.

Claims

IT IS CLAIMED:
1. A method of producing a suspension of liposomes which have an average size of less than about 0.4 microns, said method comprising: providing a suspension of liposomes containing a substantial portion with sizes greater than 1.0 micron in size, and passing the suspension, in an inside-to-outside direction, through an asymmetric ceramic filter whose inner-surface pore size is about 1 micron.
2. The method of claim 1, wherein the liposome suspension is passed through the filter in an inside-to-outside direction.
3. The method of claim 1, for producing a suspension of liposome having a selected average size between about 0.2 and 0.3 microns, which further includes passing the suspension repeatedly through the filter, in an inside-to-outside direction, until the desired liposome average size is achieved.
4. The method of claim 3, which further includes alternately passing the suspension through the filter in an outside-to-inside direction.
5. The method of claim l, wherein the membrane is a Ceraflow™ asymmetric ceramic filter.
6. A suspension of liposomes having a selected average size between about 0.2 and 0.4 microns and a standard size deviation within about 40%, formed by providing a suspension of liposomes whose sizes are predominantly greater than about 1 micron, and passing the suspension, one or more times in an inside-to-outside direction, through a Ceraflow™ asymmetric ceramic filter having an inner-surface pore size of about 1 micron, in an inside-to-outside direction, until the desired size between 0.2 and 0.4 microns is achieved.
PCT/US1987/000286 1986-02-13 1987-02-09 Liposome extrusion method WO1987004924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/829,710 US4737323A (en) 1986-02-13 1986-02-13 Liposome extrusion method
US829,710 1986-02-13

Publications (1)

Publication Number Publication Date
WO1987004924A1 true WO1987004924A1 (en) 1987-08-27

Family

ID=25255330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1987/000286 WO1987004924A1 (en) 1986-02-13 1987-02-09 Liposome extrusion method

Country Status (4)

Country Link
US (1) US4737323A (en)
EP (1) EP0261170A4 (en)
JP (1) JPS63502410A (en)
WO (1) WO1987004924A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285638A1 (en) * 1986-09-18 1988-10-12 Liposome Technology, Inc. High-concentration liposome processing method
EP0414663A1 (en) * 1987-04-16 1991-03-06 The Liposome Company, Inc. Liposome continuous size reduction method and apparatus
DE4107153A1 (en) * 1991-03-06 1992-09-10 Gregor Cevc Compsns. for application of active agents
DE4107152A1 (en) * 1991-03-06 1992-09-10 Gregor Cevc Compsns. for application of active agents
WO2015063710A1 (en) * 2013-10-31 2015-05-07 Richter Gedeon Nyrt. Production of sterile liposomes of any particle sizes by continuous extrusion in a closed system

Families Citing this family (553)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806466A (en) * 1981-10-29 1989-02-21 The Regents Of The University Of California Cell agglutination reagent comprising conjugates of antibody covalently bound to liposomes
MX9203808A (en) * 1987-03-05 1992-07-01 Liposome Co Inc HIGH DRUG CONTENT FORMULATIONS: LIPID, FROM LIPOSOMIC-ANTINEOPLASTIC AGENTS.
CA1338702C (en) * 1987-03-05 1996-11-12 Lawrence D. Mayer High drug:lipid formulations of liposomal- antineoplastic agents
US4950432A (en) * 1987-10-16 1990-08-21 Board Of Regents, The University Of Texas System Polyene microlide pre-liposomal powders
US4913902A (en) * 1987-11-10 1990-04-03 North Carolina State University Purification by affinity binding to liposomes
US5948441A (en) * 1988-03-07 1999-09-07 The Liposome Company, Inc. Method for size separation of particles
US5133965A (en) * 1988-06-08 1992-07-28 Fountain Pharmaceuticals, Inc. Dressing material having adsorbed thereon a solvent dilution microcarrier precursor solution
US5269979A (en) * 1988-06-08 1993-12-14 Fountain Pharmaceuticals, Inc. Method for making solvent dilution microcarriers
US6252060B1 (en) 1988-07-07 2001-06-26 Nexstar Pharmaceuticals, Inc. Antiviral liponucleosides: treatment of hepatitis B
US5817638A (en) * 1988-07-07 1998-10-06 Nexstar Pharmaceuticals, Inc. Antiviral liponucleosides: treatment of hepatitis B
US6599887B2 (en) 1988-07-07 2003-07-29 Chimerix, Inc. Methods of treating viral infections using antiviral liponucleotides
ZA902710B (en) * 1989-05-22 1991-12-24 Univ Georgia Res Found Enzyme luminescence assay
US5209720A (en) * 1989-12-22 1993-05-11 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids using gas filled liposomes
US5922304A (en) 1989-12-22 1999-07-13 Imarx Pharmaceutical Corp. Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents
US5542935A (en) * 1989-12-22 1996-08-06 Imarx Pharmaceutical Corp. Therapeutic delivery systems related applications
US5585112A (en) * 1989-12-22 1996-12-17 Imarx Pharmaceutical Corp. Method of preparing gas and gaseous precursor-filled microspheres
US5656211A (en) * 1989-12-22 1997-08-12 Imarx Pharmaceutical Corp. Apparatus and method for making gas-filled vesicles of optimal size
US5352435A (en) * 1989-12-22 1994-10-04 Unger Evan C Ionophore containing liposomes for ultrasound imaging
US5230882A (en) * 1989-12-22 1993-07-27 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5228446A (en) * 1989-12-22 1993-07-20 Unger Evan C Gas filled liposomes and their use as ultrasonic contrast agents
US6088613A (en) 1989-12-22 2000-07-11 Imarx Pharmaceutical Corp. Method of magnetic resonance focused surgical and therapeutic ultrasound
US5580575A (en) * 1989-12-22 1996-12-03 Imarx Pharmaceutical Corp. Therapeutic drug delivery systems
US5334381A (en) * 1989-12-22 1994-08-02 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5123414A (en) * 1989-12-22 1992-06-23 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5773024A (en) * 1989-12-22 1998-06-30 Imarx Pharmaceutical Corp. Container with multi-phase composition for use in diagnostic and therapeutic applications
US6146657A (en) * 1989-12-22 2000-11-14 Imarx Pharmaceutical Corp. Gas-filled lipid spheres for use in diagnostic and therapeutic applications
US20020150539A1 (en) * 1989-12-22 2002-10-17 Unger Evan C. Ultrasound imaging and treatment
US5705187A (en) * 1989-12-22 1998-01-06 Imarx Pharmaceutical Corp. Compositions of lipids and stabilizing materials
US5469854A (en) * 1989-12-22 1995-11-28 Imarx Pharmaceutical Corp. Methods of preparing gas-filled liposomes
US5733572A (en) * 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
US6551576B1 (en) 1989-12-22 2003-04-22 Bristol-Myers Squibb Medical Imaging, Inc. Container with multi-phase composition for use in diagnostic and therapeutic applications
US6001335A (en) * 1989-12-22 1999-12-14 Imarx Pharmaceutical Corp. Contrasting agents for ultrasonic imaging and methods for preparing the same
US5776429A (en) * 1989-12-22 1998-07-07 Imarx Pharmaceutical Corp. Method of preparing gas-filled microspheres using a lyophilized lipids
US5088499A (en) * 1989-12-22 1992-02-18 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5305757A (en) * 1989-12-22 1994-04-26 Unger Evan C Gas filled liposomes and their use as ultrasonic contrast agents
US5149319A (en) * 1990-09-11 1992-09-22 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids
US5104546A (en) * 1990-07-03 1992-04-14 Aluminum Company Of America Pyrogens separations by ceramic ultrafiltration
IE913494A1 (en) * 1990-10-05 1992-04-08 Liposome Company Liposome extrusion process
US6623671B2 (en) 1990-10-05 2003-09-23 Royden M. Coe Liposome extrusion process
US5205290A (en) 1991-04-05 1993-04-27 Unger Evan C Low density microspheres and their use as contrast agents for computed tomography
US5874062A (en) * 1991-04-05 1999-02-23 Imarx Pharmaceutical Corp. Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents
US5242595A (en) * 1991-04-25 1993-09-07 U.S. Filter/Illinois Water Treatment, Inc. Bacteria removal by ceramic microfiltration
US5325860A (en) * 1991-11-08 1994-07-05 Mayo Foundation For Medical Education And Research Ultrasonic and interventional catheter and method
EP0804944A3 (en) 1992-05-04 1998-08-26 UNGER, Evan C A method of providing a gas composition in a biological tissue or fluid in vivo
US5626751A (en) * 1992-07-15 1997-05-06 Daiichi Pharmaceutical Co., Ltd. Filter unit and high-pressure sizing apparatus
US6241967B1 (en) * 1992-10-16 2001-06-05 Andreas Sachse Process and device for the production of liquid, disperse systems
PT666914E (en) 1992-10-23 2004-04-30 Inst Genetics Llc NEW PROTEIN LIGAND OF SELECTIN P
JP3479535B2 (en) 1993-07-08 2003-12-15 ザ リポソーム カンパニー、インコーポレーテッド Methods for controlling liposome particle size
US7083572B2 (en) * 1993-11-30 2006-08-01 Bristol-Myers Squibb Medical Imaging, Inc. Therapeutic delivery systems
US5716526A (en) * 1994-01-14 1998-02-10 The Liposome Company, Inc. Method of separating materials from liposomes or lipid complexes
US5534499A (en) * 1994-05-19 1996-07-09 The University Of British Columbia Lipophilic drug derivatives for use in liposomes
US5736121A (en) * 1994-05-23 1998-04-07 Imarx Pharmaceutical Corp. Stabilized homogenous suspensions as computed tomography contrast agents
US5820873A (en) * 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US5885613A (en) * 1994-09-30 1999-03-23 The University Of British Columbia Bilayer stabilizing components and their use in forming programmable fusogenic liposomes
US6743779B1 (en) 1994-11-29 2004-06-01 Imarx Pharmaceutical Corp. Methods for delivering compounds into a cell
DE19515163C2 (en) * 1995-01-31 2002-11-28 Erich Politsch Device for extruding suspensions
US5830430A (en) * 1995-02-21 1998-11-03 Imarx Pharmaceutical Corp. Cationic lipids and the use thereof
US6184201B1 (en) 1995-04-14 2001-02-06 Nps Allelix Corp. Intestinotrophic glucagon-like peptide-2 analogs
US5834428A (en) * 1995-04-14 1998-11-10 1149336 Ontario Inc. Glucagon-like peptide-2 and its therapeutic use
US5990077A (en) 1995-04-14 1999-11-23 1149336 Ontario Inc. Glucagon-like peptide-2 and its therapeutic use
US5997898A (en) * 1995-06-06 1999-12-07 Imarx Pharmaceutical Corp. Stabilized compositions of fluorinated amphiphiles for methods of therapeutic delivery
US6139819A (en) * 1995-06-07 2000-10-31 Imarx Pharmaceutical Corp. Targeted contrast agents for diagnostic and therapeutic use
US6033645A (en) * 1996-06-19 2000-03-07 Unger; Evan C. Methods for diagnostic imaging by regulating the administration rate of a contrast agent
US6231834B1 (en) 1995-06-07 2001-05-15 Imarx Pharmaceutical Corp. Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same
US6041252A (en) * 1995-06-07 2000-03-21 Ichor Medical Systems Inc. Drug delivery system and method
US6673364B1 (en) 1995-06-07 2004-01-06 The University Of British Columbia Liposome having an exchangeable component
US6521211B1 (en) 1995-06-07 2003-02-18 Bristol-Myers Squibb Medical Imaging, Inc. Methods of imaging and treatment with targeted compositions
AU6698196A (en) 1995-08-15 1997-03-12 Universite Libre De Bruxelles Liposomes preparation method and plant
US6664227B1 (en) 1996-03-01 2003-12-16 Genetics Institute, Llc Treatment of fibrosis by antagonism of IL-13 and IL-13 receptor chains
PT906338E (en) 1996-04-12 2003-03-31 Ontario Inc 1149336 GLUCAGON TYPE 2 PEPTIDE ANALOGS
EP0935415B1 (en) 1996-05-01 2006-11-22 Imarx Pharmaceutical Corp. In vitro methods for delivering nucleic acids into a cell
US6111081A (en) * 1996-05-31 2000-08-29 Baylor College Of Medicine Lactoferrin variants and uses thereof
AU3514197A (en) * 1996-07-03 1998-01-21 Genetics Institute Inc. Protease fmh-1, an ice/ced-like protease
US6630496B1 (en) 1996-08-26 2003-10-07 Genetics Institute Llc Inhibitors of phospholipase enzymes
US6414139B1 (en) 1996-09-03 2002-07-02 Imarx Therapeutics, Inc. Silicon amphiphilic compounds and the use thereof
ATE366588T1 (en) * 1996-09-11 2007-08-15 Imarx Pharmaceutical Corp METHOD FOR DIAGNOSTIC IMAGING OF THE KIDNEY REGION USING A CONTRAST AGENT AND A VASODILATOR
US5846517A (en) * 1996-09-11 1998-12-08 Imarx Pharmaceutical Corp. Methods for diagnostic imaging using a renal contrast agent and a vasodilator
US6037125A (en) * 1996-11-05 2000-03-14 Lexicon Genetics Incorporated Disruption of the mammalian RAD51 protein and disruption of proteins that associate with mammalian RAD51 for hindering cell proliferation and/or viability of proliferating cells
US5827533A (en) * 1997-02-06 1998-10-27 Duke University Liposomes containing active agents aggregated with lipid surfactants
US6100387A (en) * 1997-02-28 2000-08-08 Genetics Institute, Inc. Chimeric polypeptides containing chemokine domains
US6852508B1 (en) * 1997-02-28 2005-02-08 Genetics Institute, Llc Chemokine with amino-terminal modifications
EP1019064A4 (en) 1997-02-28 2006-11-08 Univ California Inhibition of cell-cell binding by lipid assemblies
US6120751A (en) 1997-03-21 2000-09-19 Imarx Pharmaceutical Corp. Charged lipids and uses for the same
US6143276A (en) * 1997-03-21 2000-11-07 Imarx Pharmaceutical Corp. Methods for delivering bioactive agents to regions of elevated temperatures
US6537246B1 (en) * 1997-06-18 2003-03-25 Imarx Therapeutics, Inc. Oxygen delivery agents and uses for the same
US6090800A (en) * 1997-05-06 2000-07-18 Imarx Pharmaceutical Corp. Lipid soluble steroid prodrugs
CA2236519C (en) 1997-05-02 2011-09-13 1149336 Ontario Inc. Methods of enhancing functioning of the large intestine
US7452551B1 (en) 2000-10-30 2008-11-18 Imarx Therapeutics, Inc. Targeted compositions for diagnostic and therapeutic use
US20050019266A1 (en) * 1997-05-06 2005-01-27 Unger Evan C. Novel targeted compositions for diagnostic and therapeutic use
US6416740B1 (en) 1997-05-13 2002-07-09 Bristol-Myers Squibb Medical Imaging, Inc. Acoustically active drug delivery systems
EP2113247A3 (en) 1997-05-14 2010-05-05 The University Of British Columbia High efficiency encapsulation of nucleic acids in lipid vesicles
US6548047B1 (en) 1997-09-15 2003-04-15 Bristol-Myers Squibb Medical Imaging, Inc. Thermal preactivation of gaseous precursor filled compositions
US6734171B1 (en) 1997-10-10 2004-05-11 Inex Pharmaceuticals Corp. Methods for encapsulating nucleic acids in lipid bilayers
US6123923A (en) * 1997-12-18 2000-09-26 Imarx Pharmaceutical Corp. Optoacoustic contrast agents and methods for their use
US6320017B1 (en) * 1997-12-23 2001-11-20 Inex Pharmaceuticals Corp. Polyamide oligomers
US20010003580A1 (en) 1998-01-14 2001-06-14 Poh K. Hui Preparation of a lipid blend and a phospholipid suspension containing the lipid blend
US5981514A (en) * 1998-02-12 1999-11-09 Somberg; John C. (N-alkyl-N-hydroxymethylamino)alkoxybenzoylbenzofurans and the phosphate esters thereof
US6828344B1 (en) 1998-02-25 2004-12-07 Genetics Institute, Llc Inhibitors of phospholipase enzymes
US6916841B2 (en) * 1998-02-25 2005-07-12 Genetics Institute, Llc Inhibitors of phospholipase enzymes
US6500853B1 (en) 1998-02-28 2002-12-31 Genetics Institute, Llc Inhibitors of phospholipase enzymes
US6057128A (en) 1998-03-17 2000-05-02 Genetics Institute, Inc. MU-1, member of the cytokine receptor family
US6043390A (en) 1998-04-03 2000-03-28 The Regents Of The University Of California Pentaerythritol lipid derivatives and nucleic-acid complexes
US6426191B1 (en) 1998-04-03 2002-07-30 Hyseq, Inc. Assays involving an IL-1 receptor antagonist
US6294655B1 (en) 1998-04-03 2001-09-25 Hyseq, Inc. Anti-interleukin-1 receptor antagonist antibodies and uses thereof
US6337072B1 (en) 1998-04-03 2002-01-08 Hyseq, Inc. Interleukin-1 receptor antagonist and recombinant production thereof
US6541623B1 (en) 1998-04-03 2003-04-01 Hyseq, Inc. Interleukin—1 receptor antagonist and uses thereof
US6893838B1 (en) * 1998-04-07 2005-05-17 Genetics Institute Llc DADD, death activator death domain protein
US6447771B1 (en) * 1999-03-19 2002-09-10 Hyseq, Inc. Methods and materials relating to novel CD39-like polypeptides
US6387645B1 (en) 1998-07-16 2002-05-14 Hyseq, Inc. Methods and materials relating to novel CD39-like polypeptides
US6476211B1 (en) * 1998-07-16 2002-11-05 Hyseq, Inc. Methods and materials relating to CD39-like polypeptides
JP2002520040A (en) * 1998-07-16 2002-07-09 ハイセック,インコーポレーテッド Methods and materials for novel CD39-like polypeptides
US6777388B1 (en) * 1998-08-21 2004-08-17 Clf Medical Technology Acceleration Program, Inc. Leptin-related peptides
DK1129064T3 (en) 1998-11-12 2008-04-28 Invitrogen Corp transfection
US6682758B1 (en) 1998-12-22 2004-01-27 The United States Of America As Represented By The Department Of Health And Human Services Water-insoluble drug delivery system
US6783959B1 (en) 1999-01-29 2004-08-31 Nuvelo, Inc. Methods and compositions relating to CD39-like polypeptides and nucleic acids
US6350447B1 (en) 1999-01-29 2002-02-26 Hyseq, Inc. Methods and compositions relating to CD39-like polypeptides and nucleic acids
US6899875B1 (en) 1999-01-29 2005-05-31 Nuvelo, Inc. Methods and compositions relating to CD39-like polypeptides and nucleic acids
US6780977B1 (en) 1999-01-29 2004-08-24 Nuvelo, Inc. Methods and compositions relating to CD39-like polypeptides and nucleic acids
US6335013B1 (en) 1999-03-19 2002-01-01 Hyseq, Inc. Methods and materials relating to CD39-like polypeptides
US6723338B1 (en) * 1999-04-01 2004-04-20 Inex Pharmaceuticals Corporation Compositions and methods for treating lymphoma
US7311924B2 (en) 1999-04-01 2007-12-25 Hana Biosciences, Inc. Compositions and methods for treating cancer
ES2524141T3 (en) 1999-04-01 2014-12-04 Talon Therapeutics, Inc. Compositions to treat cancer
US7244450B2 (en) 1999-04-01 2007-07-17 Inex Pharmaceuticals Corporation Compositions and methods for treating lymphoma
US6613352B2 (en) 1999-04-13 2003-09-02 Universite De Montreal Low-rigidity liposomal formulation
ES2530857T3 (en) 1999-04-28 2015-03-06 Genetics Inst Llc Human GIL-19 / AE289 proteins and polynucleotides encoding them
ATE421976T1 (en) 1999-05-18 2009-02-15 Dyax Corp FAB FRAGMENT LIBRARIES AND METHODS FOR USE THEREOF
US6774120B1 (en) * 1999-06-01 2004-08-10 Sarah Ferber Methods of inducing regulated pancreatic hormone production in non-pancreatic islet tissues
US8778899B2 (en) * 1999-06-01 2014-07-15 Sarah Ferber Methods of inducing regulated pancreatic hormone production in non-pancreatic islet tissues
US7094423B1 (en) * 1999-07-15 2006-08-22 Inex Pharmaceuticals Corp. Methods for preparation of lipid-encapsulated therapeutic agents
US6200599B1 (en) 1999-10-07 2001-03-13 The Regents Of The University Of California Ortho ester lipids
WO2001029071A2 (en) * 1999-10-19 2001-04-26 Curagen Corporation Genes associated with obesity and methods for using the same
IL151128A0 (en) 2000-02-08 2003-04-10 Rice University Optically-active nanoparticles for use in therapeutic and diagnostic methods
WO2001074346A2 (en) * 2000-04-03 2001-10-11 Hybridon, Inc. Sensitization of cells to cytotoxic agents using oligonucleotides directed to nucleotide excision repair or transcritpion coupled repair genes
US20020142284A1 (en) * 2000-07-13 2002-10-03 Debasish Raha Methods of identifying renal protective factors
US20030082103A1 (en) * 2000-10-11 2003-05-01 Targesome, Inc. Targeted therapeutic lipid constructs having cell surface targets
US20030133972A1 (en) * 2000-10-11 2003-07-17 Targesome, Inc. Targeted multivalent macromolecules
US20030129223A1 (en) * 2000-10-11 2003-07-10 Targesome, Inc. Targeted multivalent macromolecules
WO2002034879A2 (en) * 2000-10-27 2002-05-02 Invitrogen Corporation Method for introducing antisense oligonucleotides into eucaryotic cells
AU2002250034A1 (en) * 2001-02-08 2002-08-19 Sequitur, Inc. Methods of light activated release 0f ligands from endosomes
EP1372739A4 (en) * 2001-03-08 2005-10-19 Targesome Inc Stabilized therapeutic and imaging agents
JP2004528321A (en) 2001-04-04 2004-09-16 ノルディック ワクチン テクノロジー アクティーゼルスカブ Polynucleotide binding complexes containing sterols and saponins
CA2383556A1 (en) * 2001-05-16 2002-11-16 Pharmacia & Upjohn Company High-efficiency assay for protein mannosyl transferases
US20060073530A1 (en) * 2001-08-15 2006-04-06 Olaf Schneewind Methods and compositions involving sortase B
WO2003026588A2 (en) * 2001-09-28 2003-04-03 Esperion Therapeutics, Inc. Methods and apparatus for extrusion of vesicles at high pressure
WO2003028630A2 (en) 2001-10-04 2003-04-10 Genetics Institute Llc. Methods and compositions for modulating interleukin-21 receptor activity
EP1470148B1 (en) 2002-02-01 2012-07-18 Life Technologies Corporation Double-stranded oligonucleotides
US20030166282A1 (en) * 2002-02-01 2003-09-04 David Brown High potency siRNAS for reducing the expression of target genes
US20060009409A1 (en) 2002-02-01 2006-01-12 Woolf Tod M Double-stranded oligonucleotides
WO2003070892A2 (en) * 2002-02-15 2003-08-28 The Regents Of The University Of Michigan Inhibitors of rgs proteins
CA2478063A1 (en) * 2002-03-07 2003-10-02 Ludwig Institute For Cancer Research Lymphatic and blood endothelial cell genes
US20040009944A1 (en) * 2002-05-10 2004-01-15 Inex Pharmaceuticals Corporation Methylated immunostimulatory oligonucleotides and methods of using the same
US20040013649A1 (en) * 2002-05-10 2004-01-22 Inex Pharmaceuticals Corporation Cancer vaccines and methods of using the same
US7273620B1 (en) 2002-05-20 2007-09-25 University Of British Columbia Triggered release of liposomal drugs following mixing of cationic and anionic liposomes
US20040248094A1 (en) * 2002-06-12 2004-12-09 Ford Lance P. Methods and compositions relating to labeled RNA molecules that reduce gene expression
US20040029275A1 (en) * 2002-08-10 2004-02-12 David Brown Methods and compositions for reducing target gene expression using cocktails of siRNAs or constructs expressing siRNAs
US7037519B1 (en) * 2002-09-25 2006-05-02 Donna Humphrey Nutritional supplement and methods of making
US20060147509A1 (en) * 2002-10-02 2006-07-06 Kirkby Nikolai S Composition for vaccination
EP1560597A4 (en) * 2002-10-29 2007-06-27 Pharmacia Corp Differentially expressed genes involved in cancer, the polypeptides encoded thereby, and methods of using the same
WO2004063342A2 (en) * 2003-01-09 2004-07-29 Invitrogen Corporation Cellular delivery and activation polypeptide-nucleic acid complexes
US7786290B2 (en) 2003-06-13 2010-08-31 Alnylam Pharmaceuticals, Inc. Double-stranded ribonucleic acid with increased effectiveness in an organism
EP1648519B1 (en) 2003-07-16 2014-10-08 Protiva Biotherapeutics Inc. Lipid encapsulated interfering rna
CN100431525C (en) * 2003-07-17 2008-11-12 台湾东洋药品工业股份有限公司 Production method of liposome suspended liquid and products thereof
AU2004261941B2 (en) 2003-07-25 2008-04-10 Amgen Inc. Antagonists and agonists of LDCAM and methods of use
DE602004019546D1 (en) 2003-08-26 2009-04-02 Smithkline Beecham Corp HETEROFUNCTIONAL COPOLYMERS OF GLYCEROL AND POLYETHYLENE GLYCOL, ITS CONJUGATES AND COMPOSITIONS
WO2005034979A2 (en) * 2003-10-11 2005-04-21 Inex Pharmaceuticals Corporation Methods and compositions for enhancing innate immunity and antibody dependent cellular cytotoxicity
AU2004283758A1 (en) * 2003-10-24 2005-05-06 Alza Corporation Preparation of lipid particles
PL1691811T3 (en) 2003-12-11 2014-12-31 Sunovion Pharmaceuticals Inc Combination of a sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
JP5070038B2 (en) 2004-02-24 2012-11-07 ザ ジェネラル ホスピタル コーポレーション Catalytic radiofluorination
AU2005219413A1 (en) * 2004-03-02 2005-09-15 Massachusetts Institute Of Technology Nanocell drug delivery system
US20070053845A1 (en) * 2004-03-02 2007-03-08 Shiladitya Sengupta Nanocell drug delivery system
US20080241262A1 (en) * 2004-03-29 2008-10-02 The University Of Houston System Nanoshells and Discrete Polymer-Coated Nanoshells, Methods For Making and Using Same
FR2869241B1 (en) * 2004-04-23 2006-07-21 Tech Avancees & Membranes Ind MODIFIED POROSITY SUPPORT AND MEMBRANE FOR THE TANGENTIAL FILTRATION OF A FLUID
EP1750776A2 (en) 2004-04-30 2007-02-14 Alnylam Pharmaceuticals Inc. Oligonucleotides comprising a c5-modified pyrimidine
AU2005251691A1 (en) * 2004-05-17 2005-12-22 Tekmira Pharmaceuticals Corporation Liposomal formulations comprising dihydrosphingomyelin and methods of use thereof
US20060024268A1 (en) * 2004-05-19 2006-02-02 Wyeth Modulation of immunoglobulin production and atopic disorders
JP5064213B2 (en) 2004-06-17 2012-10-31 インフィニティ・ディスカバリー・インコーポレイテッド Compounds and methods for inhibiting the interaction of a BCL protein with a binding partner
US20060008517A1 (en) * 2004-07-09 2006-01-12 Lynch Marina A Treatment of age-related memory impairment
BRPI0514138A (en) * 2004-08-05 2008-05-27 Wyeth Corp method for treating, ameliorating, or preventing a disorder, fusion protein, vector, recombinant host cell, method for producing a fusion protein, pharmaceutical composition, and methods for transplanting / grafting an organ, tissue, cell or cell group into a mammalian individual, and to treat, prevent or ameliorate transplant / graft rejection in a mammalian transplant / graft recipient
ATE514776T1 (en) 2004-10-05 2011-07-15 California Inst Of Techn APTAMER-REGULATED NUCLEIC ACIDS AND USES THEREOF
US7928205B2 (en) * 2004-10-22 2011-04-19 Amgen Inc. Methods for refolding of recombinant antibodies
EP1819277A4 (en) * 2004-11-12 2010-05-05 Ltd Kpe Nanoparticle mediated ultrasound therapy and diagnostic imaging
DE102004055542A1 (en) * 2004-11-17 2006-05-18 Basf Ag Process for the preparation of a finely divided emulsion from a crude emulsion
US20080045575A1 (en) * 2004-12-29 2008-02-21 Van Dyke Thomas E Delivery of H2 Antagonists
AR052289A1 (en) * 2005-02-14 2007-03-07 Wyeth Corp ANTIBODIES FOR INTERLEUCINE-17F AND OTHER ANTAGONISTS OF THE SIGNALING OF IL-17F AND ITS USES
CN101160528A (en) * 2005-02-14 2008-04-09 惠氏公司 Use of il-17f in diagnosis and therapy of airway inflammation
ZA200707505B (en) * 2005-02-18 2009-08-26 Surface Logix Inc Pharmacokinetically improved compounds
ZA200707506B (en) * 2005-02-18 2009-08-26 Surface Logix Inc Method of making pharmacokinetically improved compounds comprising functional residues or groups and pharmaceutical compositions comprising said compounds
EP1861072A2 (en) * 2005-03-14 2007-12-05 Massachusetts Institute Of Technology Nanocells for diagnosis and treatment of diseases and disorders
GT200600148A (en) 2005-04-14 2006-11-22 METHODS FOR THE TREATMENT AND PREVENTION OF FIBROSIS
US20060239925A1 (en) * 2005-04-21 2006-10-26 Konica Minolta Medical & Graphic, Inc. Method of manufacturing pharmaceutical preparation containing liposomes
US8669236B2 (en) * 2005-05-12 2014-03-11 The General Hospital Corporation Biotinylated compositions
GT200600228A (en) 2005-05-27 2006-12-26 INHIBITORS OF PHOSPHOLIPASE A2 CITOSOLICA
EP1948674A4 (en) 2005-11-02 2009-02-04 Protiva Biotherapeutics Inc Modified sirna molecules and uses thereof
RU2448703C2 (en) 2005-11-23 2012-04-27 Дзе Борд Оф Риджентс Оф Дзе Юниверсити Оф Техас Систем Oncogenic ras-specific cytotoxic compound and methods for using it
CA2680606C (en) 2006-03-29 2014-08-05 Wayne State University Liposomal nanoparticles and other formulations of fenretinide for use in therapy and drug delivery
JP2009533455A (en) * 2006-04-12 2009-09-17 マサチューセッツ インスティテュート オブ テクノロジー Compositions and methods for inhibiting adhesions
US9271932B2 (en) 2006-04-28 2016-03-01 Children's Hospital Medical Center Fusogenic properties of saposin C and related proteins and peptides for application to transmembrane drug delivery systems
US8703179B2 (en) * 2006-05-11 2014-04-22 Kimberly-Clark Worldwide, Inc. Mucosal formulation
US20080124319A1 (en) * 2006-05-16 2008-05-29 Charalabos Pothoulakis Methods for treating inflammation by disrupting MCH-mediated signaling
JP6199533B2 (en) 2006-07-13 2017-09-20 インスティチュート フォー アドバンスド スタディ Viral inhibitory nucleotide sequences and vaccines
CN101522623B (en) 2006-08-03 2013-06-12 塔夫茨大学信托人 Non-flushing niacin analogues, and methods of use thereof
US7923060B2 (en) * 2006-10-18 2011-04-12 Ngk Insulators, Ltd. Method of manufacturing ceramic filter
US8158595B2 (en) 2006-11-09 2012-04-17 California Institute Of Technology Modular aptamer-regulated ribozymes
CL2008000883A1 (en) * 2007-03-28 2008-10-03 Wyeth6 3 METHOD OF DETECTION OF CAPABLE COMPOUNDS TO ANTAGONIZE THE SIGNALING OF IL-17F / IL-17A; COMPOUND IDENTIFIED BY SUCH METHOD; USE OF A QUANTITY OF AN IL-17F / IL-17A SENALIZATION ANTAGONIST, PHARMACEUTICAL COMPOSITION UNDERSTANDING
WO2008137114A1 (en) * 2007-05-04 2008-11-13 University Of Hawai'i Methods and compositions for targeted delivery of gene therapeutic vectors
US20090082217A1 (en) * 2007-07-16 2009-03-26 California Institute Of Technology Selection of nucleic acid-based sensor domains within nucleic acid switch platform
US7960336B2 (en) 2007-08-03 2011-06-14 Pharmain Corporation Composition for long-acting peptide analogs
US20090047336A1 (en) * 2007-08-17 2009-02-19 Hong Kong Baptist University novel formulation of dehydrated lipid vesicles for controlled release of active pharmaceutical ingredient via inhalation
US8367815B2 (en) * 2007-08-28 2013-02-05 California Institute Of Technology Modular polynucleotides for ligand-controlled regulatory systems
US20120165387A1 (en) 2007-08-28 2012-06-28 Smolke Christina D General composition framework for ligand-controlled RNA regulatory systems
US8865667B2 (en) 2007-09-12 2014-10-21 California Institute Of Technology Higher-order cellular information processing devices
WO2009036209A2 (en) * 2007-09-14 2009-03-19 Amgen Inc. Homogeneous antibody populations
FR2921253B1 (en) * 2007-09-26 2012-11-16 Lvmh Rech COSMETIC COMPOSITION IN THE FORM OF EMULSION COMPRISING A CONTINUOUS AQUEOUS PHASE AND A DISPERSED FATTY PHASE AND PROCESS FOR PREPARING THE SAME
PT2222697E (en) 2007-11-01 2013-02-15 Perseid Therapeutics Llc Immunosuppressive polypeptides and nucleic acids
EP2220247A4 (en) 2007-11-16 2011-10-26 Nuvelo Inc Antibodies to lrp6
CA2708173C (en) 2007-12-04 2016-02-02 Alnylam Pharmaceuticals, Inc. Targeting lipids
US9029524B2 (en) * 2007-12-10 2015-05-12 California Institute Of Technology Signal activated RNA interference
EP2238251B1 (en) 2007-12-27 2015-02-11 Protiva Biotherapeutics Inc. Silencing of polo-like kinase expression using interfering rna
EP3100718B1 (en) 2008-01-02 2019-11-27 Arbutus Biopharma Corporation Improved compositions and methods for the delivery of nucleic acids
WO2009102427A2 (en) 2008-02-11 2009-08-20 Rxi Pharmaceuticals Corp. Modified rnai polynucleotides and uses thereof
JP5638961B2 (en) 2008-03-13 2014-12-10 ザ ジェネラル ホスピタル コーポレイション Inhibitors of BMP signaling pathway
JP2011516094A (en) 2008-04-15 2011-05-26 プロチバ バイオセラピューティクス インコーポレイティッド Method for silencing CSN5 gene expression using interfering RNA
DK2279254T3 (en) 2008-04-15 2017-09-18 Protiva Biotherapeutics Inc PRESENT UNKNOWN LIPID FORMS FOR NUCLEIC ACID ADMINISTRATION
ES2594102T3 (en) 2008-04-18 2016-12-15 Vaxinnate Corporation Mutants by flagelin deletion and methods for its use
US20090281054A1 (en) * 2008-05-06 2009-11-12 Venkata Reddy Compositions and methods comprising capuramycin analogues
EP3415151A1 (en) 2008-05-23 2018-12-19 The University of British Columbia Modified drugs for use in liposomal nanoparticles
US8815818B2 (en) 2008-07-18 2014-08-26 Rxi Pharmaceuticals Corporation Phagocytic cell delivery of RNAI
US8901095B2 (en) 2008-07-29 2014-12-02 The Board Of Regents Of The University Of Texas System Selective inhibition of polyglutamine protein expression
US20100143349A1 (en) * 2008-08-12 2010-06-10 Wyeth Humanized anti-rage antibody
PL2331092T3 (en) 2008-08-21 2014-08-29 Univ Johns Hopkins Methods and compositions for administration of 3-halopyruvate and related compounds for the treatment of cancer
US10138485B2 (en) 2008-09-22 2018-11-27 Rxi Pharmaceuticals Corporation Neutral nanotransporters
ES2475065T3 (en) 2008-10-09 2014-07-10 Tekmira Pharmaceuticals Corporation Enhanced amino acids and methods for nucleic acid administration
EP3133160B1 (en) 2008-10-24 2018-12-12 Sarepta Therapeutics, Inc. Exon skipping compositions for dmd
KR101967417B1 (en) 2008-11-10 2019-04-10 알닐람 파마슈티칼스 인코포레이티드 Novel lipids and compositions for the delivery of therapeutics
US9074211B2 (en) 2008-11-19 2015-07-07 Rxi Pharmaceuticals Corporation Inhibition of MAP4K4 through RNAI
WO2010078536A1 (en) 2009-01-05 2010-07-08 Rxi Pharmaceuticals Corporation Inhibition of pcsk9 through rnai
AU2010208035B2 (en) 2009-01-29 2016-06-23 Arbutus Biopharma Corporation Improved lipid formulation for the delivery of nucleic acids
US9745574B2 (en) 2009-02-04 2017-08-29 Rxi Pharmaceuticals Corporation RNA duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
US8329882B2 (en) 2009-02-18 2012-12-11 California Institute Of Technology Genetic control of mammalian cells with synthetic RNA regulatory systems
EP3424939A1 (en) 2009-03-02 2019-01-09 Alnylam Pharmaceuticals Inc. Nucleic acid chemical modifications
AU2010223967B2 (en) 2009-03-12 2015-07-30 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of Eg5 and VEGF genes
US9145555B2 (en) 2009-04-02 2015-09-29 California Institute Of Technology Integrated—ligand-responsive microRNAs
CA3045126A1 (en) 2009-05-05 2010-11-11 Arbutus Biopharma Corporation Methods of delivering oligonucleotides to immune cells
NZ596186A (en) 2009-05-05 2014-03-28 Alnylam Pharmaceuticals Inc Lipid compositions
KR101766408B1 (en) 2009-06-10 2017-08-10 알닐람 파마슈티칼스 인코포레이티드 Improved lipid formulation
JP5766188B2 (en) 2009-07-01 2015-08-19 プロチバ バイオセラピューティクス インコーポレイティッド Lipid formulations for delivering therapeutic agents to solid tumors
WO2011011447A1 (en) 2009-07-20 2011-01-27 Protiva Biotherapeutics, Inc. Compositions and methods for silencing ebola virus gene expression
WO2011017297A2 (en) 2009-08-03 2011-02-10 The University Of North Carolina At Chapel Hill Biodegradable delivery system complexes for the delivery of bioactive compounds
EP2464336A4 (en) 2009-08-14 2013-11-20 Alnylam Pharmaceuticals Inc Lipid formulated compositions and methods for inhibiting expression of a gene from the ebola virus
US9222086B2 (en) 2009-09-23 2015-12-29 Protiva Biotherapeutics, Inc. Compositions and methods for silencing genes expressed in cancer
CA2776386C (en) 2009-10-02 2018-02-27 The Trustees Of Columbia University In The City Of New York Piscine reovirus immunogenic compositions
JP2013507365A (en) 2009-10-07 2013-03-04 サンフォード−バーナム メディカル リサーチ インスティテュート Methods and compositions for clot-binding lipid compounds
WO2011056682A1 (en) 2009-10-27 2011-05-12 The University Of British Columbia Reverse head group lipids, lipid particle compositions comprising reverse headgroup lipids, and methods for the delivery of nucleic acids
BR112012011381B8 (en) 2009-11-13 2021-05-25 Avi Biopharma Inc Isolated antiviral antisense oligonucleotide and pharmaceutical composition comprising the same
AU2010326132B9 (en) 2009-12-01 2014-10-02 Translate Bio, Inc. Delivery of mRNA for the augmentation of proteins and enzymes in human genetic diseases
CA3044884A1 (en) 2009-12-07 2011-06-16 Arbutus Biopharma Corporation Compositions for nucleic acid delivery
US20110136728A1 (en) * 2009-12-09 2011-06-09 Patricia Grasso Methods of increasing bone formation using leptin-related peptides
ES2749426T3 (en) 2009-12-18 2020-03-20 Univ British Columbia Nucleic Acid Administration Methods and Compositions
US9574191B2 (en) 2010-02-03 2017-02-21 The Board Of Regents Of The University Of Texas System Selective inhibition of polyglutamine protein expression
US9068185B2 (en) 2010-03-12 2015-06-30 Sarepta Therapeutics, Inc. Antisense modulation of nuclear hormone receptors
JP6060071B2 (en) 2010-03-24 2017-01-11 アールエックスアイ ファーマシューティカルズ コーポレーション RNA interference in skin and fibrosis applications
US9095504B2 (en) 2010-03-24 2015-08-04 Rxi Pharmaceuticals Corporation RNA interference in ocular indications
US20110237686A1 (en) 2010-03-26 2011-09-29 Cerulean Pharma Inc Formulations and methods of use
US9102938B2 (en) 2010-04-01 2015-08-11 Alnylam Pharmaceuticals, Inc. 2′ and 5′ modified monomers and oligonucleotides
WO2011123943A1 (en) 2010-04-09 2011-10-13 Mount Sinai Hospital Methods for treating disorders of the gastrointestinal tract using a glp-1 agonist
US10913767B2 (en) 2010-04-22 2021-02-09 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising acyclic and abasic nucleosides and analogs
US20130260460A1 (en) 2010-04-22 2013-10-03 Isis Pharmaceuticals Inc Conformationally restricted dinucleotide monomers and oligonucleotides
WO2011133871A2 (en) 2010-04-22 2011-10-27 Alnylam Pharmaceuticals, Inc. 5'-end derivatives
FR2959140A1 (en) 2010-04-23 2011-10-28 Agro Ind Rech S Et Dev Ard FACILITATED PREPARATIONS OF VESICLES USING ALKYL POLY-PENTOSIDES AND USES THEREOF
WO2011139911A2 (en) 2010-04-29 2011-11-10 Isis Pharmaceuticals, Inc. Lipid formulated single stranded rna
US20130123338A1 (en) 2010-05-12 2013-05-16 Protiva Biotherapeutics, Inc. Novel cationic lipids and methods of use thereof
WO2011141704A1 (en) 2010-05-12 2011-11-17 Protiva Biotherapeutics, Inc Novel cyclic cationic lipids and methods of use
CA3090304A1 (en) 2010-05-13 2011-11-17 Sarepta Therapeutics, Inc. Antisense modulation of interleukins 17 and 23 signaling
DK2575764T3 (en) 2010-06-03 2017-08-07 Alnylam Pharmaceuticals Inc BIODEGRADABLE LIPIDS FOR THE ACTIVATION OF ACTIVE AGENTS
CN103096895B (en) 2010-06-24 2016-06-01 塔夫茨大学信托人 The method of nicotinic acid analogies and use thereof
WO2011163612A1 (en) 2010-06-24 2011-12-29 Trustees Of Tufts College Niacin mimetics, and methods of use thereof
WO2012016188A2 (en) 2010-07-30 2012-02-02 Alnylam Pharmaceuticals, Inc. Methods and compositions for delivery of active agents
WO2012016184A2 (en) 2010-07-30 2012-02-02 Alnylam Pharmaceuticals, Inc. Methods and compositions for delivery of active agents
CN110123830A (en) 2010-11-09 2019-08-16 阿尔尼拉姆医药品有限公司 Composition and method for inhibiting the lipid of the expression of Eg5 and VEGF gene to prepare
WO2012075040A2 (en) 2010-11-30 2012-06-07 Shire Human Genetic Therapies, Inc. mRNA FOR USE IN TREATMENT OF HUMAN GENETIC DISEASES
US10130687B2 (en) 2011-01-05 2018-11-20 Rhode Island Hospital Compositions and methods for the treatment of orthopedic disease or injury
DK3202760T3 (en) 2011-01-11 2019-11-25 Alnylam Pharmaceuticals Inc PEGYLED LIPIDS AND THEIR USE FOR PHARMACEUTICAL SUPPLY
WO2012100142A2 (en) 2011-01-20 2012-07-26 Cornell University Treatments for retinal disorders
US20120244209A1 (en) 2011-03-02 2012-09-27 Roth Jack A Tusc2 therapies
DK3336082T3 (en) 2011-06-08 2020-04-27 Translate Bio Inc SPLITLY LIPIDS
CN111671918A (en) 2011-06-08 2020-09-18 川斯勒佰尔公司 Lipid nanoparticle compositions and methods for MRNA delivery
KR20140057414A (en) 2011-06-22 2014-05-12 바이옴 바이오사이언스 피브이티. 엘티디. Conjugate-based antifungal and antibacterial prodrugs
CA2839593A1 (en) 2011-07-15 2013-01-24 Sarepta Therapeutics, Inc. Methods and compositions for manipulating translation of protein isoforms from alternative initiation start sites
CA2849476A1 (en) 2011-09-27 2013-04-04 Alnylam Pharmaceuticals, Inc. Di-aliphatic substituted pegylated lipids
EP3399038B1 (en) 2011-12-08 2022-11-16 Sarepta Therapeutics, Inc. Oligonucleotide analogues targeting human lmna
WO2013093891A1 (en) 2011-12-22 2013-06-27 Nuvo Research Gmbh Liposomal chlorite or chlorate compositions
US9035039B2 (en) 2011-12-22 2015-05-19 Protiva Biotherapeutics, Inc. Compositions and methods for silencing SMAD4
KR20140107573A (en) 2011-12-23 2014-09-04 노파르티스 아게 Compounds for inhibiting the interaction of bcl2 with binding partners
KR20140107574A (en) 2011-12-23 2014-09-04 노파르티스 아게 Compounds for inhibiting the interaction of bcl2 with binding partners
CA2859867A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
CA2859869A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
MX2014007725A (en) 2011-12-23 2015-01-12 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners.
DK2817287T3 (en) 2012-02-24 2019-01-02 Arbutus Biopharma Corp TRIALKYL CATIONIC LIPID AND METHODS FOR USING IT
US9546128B2 (en) 2012-03-29 2017-01-17 Shire Human Genetic Therapies, Inc. Ionizable cationic lipids
JP6211054B2 (en) 2012-03-29 2017-10-11 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド Lipid-induced neutral nanoparticles
PT2861579T (en) 2012-05-15 2018-04-27 Novartis Ag Benzamide derivatives for inhibiting the activity of abl1, abl2 and bcr-abl1
US9278981B2 (en) 2012-05-15 2016-03-08 Novartis Ag Compounds and compositions for inhibiting the activity of ABL1, ABL2 and BCR-ABL1
EA201492007A1 (en) 2012-05-15 2015-03-31 Новартис Аг DERIVATIVES OF BENZAMIDE FOR INHIBITION OF ABL1, ABL2 AND BCR-ABL1 ACTIVITY
JP6080947B2 (en) 2012-05-15 2017-02-15 ノバルティス アーゲー Compounds and compositions for inhibiting the activity of ABL1, ABL2 and BCR-ABL1
WO2013185067A1 (en) 2012-06-08 2013-12-12 Shire Human Genetic Therapies, Inc. Nuclease resistant polynucleotides and uses thereof
BR112014031421A2 (en) 2012-06-15 2017-06-27 Brigham & Womens Hospital Inc cancer treatment compositions and methods for producing them
JP2015524410A (en) 2012-07-18 2015-08-24 オニキス セラピューティクス, インク.Onyx Therapeutics, Inc. Liposome composition of epoxy ketone-based proteasome inhibitor
CN110464709A (en) 2012-08-10 2019-11-19 德克萨斯州大学系统董事会 For treating the neuroprotective liposome composition and method of apoplexy
AU2013308519A1 (en) 2012-08-31 2015-04-09 The General Hospital Corporation Biotin complexes for treatment and diagnosis of Alzheimer's disease
KR102186116B1 (en) 2012-11-20 2020-12-03 스펙트럼 파마슈티컬즈 인크 Improved method for the preparation of liposome encapsulated vincristine for therapeutic use
EP2929035A1 (en) 2012-12-07 2015-10-14 Shire Human Genetic Therapies, Inc. Lipidic nanoparticles for mrna delivering
EA201591178A1 (en) 2012-12-20 2015-11-30 Сарепта Терапьютикс, Инк. IMPROVED COMPOSITIONS FOR EXTRACT PASSING FOR TREATING MUSCLE DISTROPHIA
EP2958907B1 (en) 2013-02-19 2018-02-28 Novartis AG Benzothiophene derivatives and compositions thereof as selective estrogen receptor degraders
WO2014138278A1 (en) 2013-03-05 2014-09-12 The Regents Of The University Of California Lipid bilayer coated mesoporous silica nanoparticles with a high loading capacity for one or more anticancer agents
NZ775701A (en) 2013-03-14 2022-08-26 Sarepta Therapeutics Inc Exon skipping compositions for treating muscular dystrophy
TR201901310T4 (en) 2013-03-14 2019-02-21 Translate Bio Inc Methods of purification of messenger RNA.
LT2970964T (en) 2013-03-14 2019-04-25 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
US20160184458A1 (en) 2013-03-14 2016-06-30 Shire Human Genetic Therapies, Inc. Mrna therapeutic compositions and use to treat diseases and disorders
LT2970456T (en) 2013-03-14 2021-08-10 Translate Bio, Inc. Methods and compositions for delivering mrna coded antibodies
IL305374A (en) 2013-03-14 2023-10-01 Ethris Gmbh Cftr mrna compositions and related methods and uses
ES2670529T3 (en) 2013-03-15 2018-05-30 Translate Bio, Inc. Synergistic improvement of nucleic acid delivery through mixed formulations
WO2014143031A1 (en) * 2013-03-15 2014-09-18 The Penn State Research Foundation Compositions and methods including celecoxib and plumbagin relating to treatment of cancer
EP2968991A2 (en) 2013-03-15 2016-01-20 Sarepta Therapeutics, Inc. Improved compositions for treating muscular dystrophy
AU2014300650B2 (en) 2013-06-13 2019-11-21 Orgenesis Ltd. Cell populations, methods of transdifferention and methods of use thereof
AU2014278011B2 (en) 2013-06-14 2020-03-19 Akamara Therapeutics, Inc. Lipid-based platinum compounds and nanoparticles
ES2913946T3 (en) 2013-07-08 2022-06-06 The Univ Of Utah Research Foundation Peptide and its use in the treatment of inflammatory disorders
US20160008377A1 (en) * 2014-07-12 2016-01-14 Aphios Corporation Formulations and compositions of vitamin d analogs for treating and preventing cancer and other diseases
WO2015011633A1 (en) 2013-07-23 2015-01-29 Protiva Biotherapeutics, Inc. Compositions and methods for delivering messenger rna
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
WO2015022663A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
US9227969B2 (en) 2013-08-14 2016-01-05 Novartis Ag Compounds and compositions as inhibitors of MEK
WO2015022664A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
WO2016070129A1 (en) 2014-10-30 2016-05-06 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
SG11201602943PA (en) 2013-10-22 2016-05-30 Shire Human Genetic Therapies Lipid formulations for delivery of messenger rna
CA2928040A1 (en) 2013-10-22 2015-04-30 Shire Human Genetic Therapies, Inc. Cns delivery of mrna and uses thereof
WO2015061491A1 (en) 2013-10-22 2015-04-30 Shire Human Genetic Therapies, Inc. Mrna therapy for phenylketonuria
US11224642B2 (en) 2013-10-22 2022-01-18 Translate Bio, Inc. MRNA therapy for argininosuccinate synthetase deficiency
LT3066201T (en) 2013-11-07 2018-08-10 Editas Medicine, Inc. Crispr-related methods and compositions with governing grnas
WO2015085113A1 (en) 2013-12-04 2015-06-11 Rxi Pharmaceuticals Corporation Methods for treatment of wound healing utilizing chemically modified oligonucleotides
US20150166982A1 (en) 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting pi3k point mutations
WO2015092634A1 (en) 2013-12-16 2015-06-25 Novartis Ag 1,2,3,4-tetrahydroisoquinoline compounds and compositions as selective estrogen receptor antagonists and degraders
KR101713886B1 (en) 2013-12-19 2017-03-10 연세대학교 산학협력단 Therapeutic PRK2-silencing siRNA for the treatment of hepatitis C virus infection
ES2699354T3 (en) 2014-01-17 2019-02-08 Novartis Ag Derivatives of 1- (triazin-3-yl / pyridazin-3-yl) -piper (-azin) idine and compositions thereof to inhibit the activity of SHP2
JO3517B1 (en) 2014-01-17 2020-07-05 Novartis Ag N-azaspirocycloalkane substituted n-heteroaryl compounds and compositions for inhibiting the activity of shp2
ES2699351T3 (en) 2014-01-17 2019-02-08 Novartis Ag Derivatives of 1-pyridazin / triazin-3-yl-piper (-azine) / idine / pyrolidine and compositions thereof to inhibit the activity of SHP2
CN106163526B (en) 2014-01-29 2021-07-23 维奥姆治疗有限公司 Treatment of resistant acne
TR201901939T4 (en) 2014-03-12 2019-03-21 Nat Center Neurology & Psychiatry Antisense nucleic acid.
PL3122878T3 (en) 2014-03-24 2019-06-28 Translate Bio, Inc. Mrna therapy for the treatment of ocular diseases
US10426753B2 (en) 2014-04-03 2019-10-01 Invictus Oncology Pvt. Ltd. Supramolecular combinatorial therapeutics
CN106164248B (en) 2014-04-25 2019-10-15 川斯勒佰尔公司 The purification process of mRNA
US11279934B2 (en) 2014-04-28 2022-03-22 Phio Pharmaceuticals Corp. Methods for treating cancer using nucleic acids targeting MDM2 or MYCN
CA2947619A1 (en) 2014-05-01 2015-11-05 Rxi Pharmaceuticals Corporation Methods for treatment of disorders in the front of the eye utilizing nucleic acid molecules
US10022455B2 (en) 2014-05-30 2018-07-17 Translate Bio, Inc. Biodegradable lipids for delivery of nucleic acids
KR102511554B1 (en) 2014-06-24 2023-03-16 샤이어 휴먼 지네틱 테라피즈 인크. Stereochemically enriched compositions for delivery of nucleic acids
CN106572974B (en) 2014-07-15 2021-04-23 生命技术公司 Compositions and methods having lipid aggregates for efficient delivery of molecules to cells
CA2956224A1 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
KR102506169B1 (en) 2014-09-05 2023-03-08 피오 파마슈티칼스 코프. Methods for treating aging and skin disorders using nucleic acids targeting tyr or mmp1
SG11201702662UA (en) 2014-10-02 2017-04-27 Protiva Biotherapeutics Inc Compositions and methods for silencing hepatitis b virus gene expression
MA55068A (en) 2014-10-24 2022-01-05 Merck Sharp & Dohme GLUCAGON AND GLP-1 RECEPTOR CO-AGONISTS
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
JP6767976B2 (en) 2014-12-05 2020-10-14 トランスレイト バイオ, インコーポレイテッド Messenger RNA therapy for the treatment of joint diseases
JP2018504380A (en) 2014-12-18 2018-02-15 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. REVERSIR ™ compounds
MA41296A (en) 2014-12-30 2017-11-07 Orgenesis Ltd TRANSDIFFERENTIATION PROCESSES AND METHODS FOR USING THE SAME
CA2979695A1 (en) 2015-03-19 2016-09-22 Translate Bio, Inc. Mrna therapy for pompe disease
CA2986358A1 (en) 2015-05-19 2016-11-24 Akamara Therapeutics, Inc. Process for preparing lipid-conjugated platinum-based compounds
EP3302435B1 (en) 2015-05-26 2023-03-08 Plumb Pharmaceuticals, Inc. Liposome loading
WO2016196664A1 (en) 2015-06-01 2016-12-08 Cedars-Sinai Medical Center Methods and use of compounds that bind to rela of nf-kb
WO2016197132A1 (en) 2015-06-04 2016-12-08 Protiva Biotherapeutics Inc. Treating hepatitis b virus infection using crispr
WO2016203405A1 (en) 2015-06-19 2016-12-22 Novartis Ag Compounds and compositions for inhibiting the activity of shp2
ES2805232T3 (en) 2015-06-19 2021-02-11 Novartis Ag Compounds and compositions to inhibit SHP2 activity
EP3310779B1 (en) 2015-06-19 2019-05-08 Novartis AG Compounds and compositions for inhibiting the activity of shp2
US10808247B2 (en) 2015-07-06 2020-10-20 Phio Pharmaceuticals Corp. Methods for treating neurological disorders using a synergistic small molecule and nucleic acids therapeutic approach
CA2991598A1 (en) 2015-07-06 2017-01-12 Rxi Pharmaceuticals Corporation Nucleic acid molecules targeting superoxide dismutase 1 (sod1)
TWI678213B (en) 2015-07-22 2019-12-01 美商史倍壯製藥公司 A ready-to-use formulation for vincristine sulfate liposome injection
EP3329003A2 (en) 2015-07-29 2018-06-06 Arbutus Biopharma Corporation Compositions and methods for silencing hepatitis b virus gene expression
WO2017031232A1 (en) 2015-08-17 2017-02-23 Modernatx, Inc. Methods for preparing particles and related compositions
AU2016312530A1 (en) 2015-08-24 2018-03-01 Halo-Bio Rnai Therapeutics, Inc. Polynucleotide nanoparticles for the modulation of gene expression and uses thereof
JP2018529715A (en) 2015-09-30 2018-10-11 サレプタ セラピューティクス, インコーポレイテッド Methods for treating muscular dystrophy
EP3359191A4 (en) 2015-10-05 2019-05-29 Merck Sharp & Dohme Corp. Antibody peptide conjugates that have agonist activity at both the glucagon and glucagon-like peptide 1 receptors
WO2017064657A1 (en) 2015-10-16 2017-04-20 Invictus Oncology Pvt. Ltd. Fluorescent anticancer platinum drugs
JP2018531037A (en) 2015-10-19 2018-10-25 アールエックスアイ ファーマシューティカルズ コーポレーション Reduced size self-delivering nucleic acid compounds targeting long non-coding RNAs
CN108513575A (en) 2015-10-23 2018-09-07 哈佛大学的校长及成员们 Nucleobase editing machine and application thereof
EP3370712A4 (en) 2015-11-06 2019-10-09 The Johns Hopkins University Methods of treating liver fibrosis by administering 3-bromopyruvate
US10736880B2 (en) 2015-12-18 2020-08-11 The Board Of Regents Of The University Of Texas Systems Therapeutics for preterm labor management
EP4218739A3 (en) 2016-01-08 2023-08-09 The Regents of The University of California Mesoporous silica nanoparticles with lipid bilayer coating for cargo delivery
CN109072223B (en) 2016-04-08 2022-10-21 川斯勒佰尔公司 Multimeric coding nucleic acids and uses thereof
US10188749B2 (en) 2016-04-14 2019-01-29 Fred Hutchinson Cancer Research Center Compositions and methods to program therapeutic cells using targeted nucleic acid nanocarriers
BR112018071221A2 (en) 2016-04-14 2019-02-05 Hutchinson Fred Cancer Res compositions and methods for programming therapeutic cells using targeted nucleic acid nanocarriers
EP3449000A1 (en) 2016-04-29 2019-03-06 Sarepta Therapeutics, Inc. Oligonucleotide analogues targeting human lmna
US10577362B2 (en) 2016-05-04 2020-03-03 Genoscience Pharma Substituted 2, 4-diamino-quinoline derivatives for use in the treatment of proliferative diseases
CN109069425B (en) 2016-05-26 2021-07-30 贝克顿·迪金森公司 Method and apparatus for preparing liposomes by centrifugation
US10835583B2 (en) 2016-06-13 2020-11-17 Translate Bio, Inc. Messenger RNA therapy for the treatment of ornithine transcarbamylase deficiency
BR112018075663A2 (en) 2016-06-14 2019-04-09 Novartis Ag compounds and compositions for inhibiting shp2 activity
KR20190024977A (en) 2016-06-30 2019-03-08 사렙타 쎄러퓨틱스 인코퍼레이티드 Exon skipping oligomer for myopathies
US11191849B2 (en) 2016-06-30 2021-12-07 Arbutus Biopharma Corporation Compositions and methods for delivering messenger RNA
WO2018027078A1 (en) 2016-08-03 2018-02-08 President And Fellows Of Harard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
MA46542A (en) 2016-10-12 2021-03-31 Univ Texas METHODS AND COMPOSITIONS FOR TUSC2 IMMUNOTHERAPY
KR102622411B1 (en) 2016-10-14 2024-01-10 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 AAV delivery of nucleobase editor
JP7291076B2 (en) 2016-10-25 2023-06-14 インヒビカーセ セラピューティクス,インコーポレーテッド Compositions and methods for inhibiting kinases
MA46761A (en) 2016-11-10 2019-09-18 Translate Bio Inc SUBCUTANEOUS ADMINISTRATION OF MESSENGER RNA
WO2018089790A1 (en) 2016-11-10 2018-05-17 Translate Bio, Inc. Improved ice-based lipid nanoparticle formulation for delivery of mrna
JP7078620B2 (en) 2016-11-16 2022-05-31 イミュノミック セラピューティックス, インコーポレイテッド Nucleic acid for the treatment of allergies
IL297528A (en) 2016-12-19 2022-12-01 Sarepta Therapeutics Inc Exon skipping oligomer conjugates for muscular dystrophy
BR112019012651A2 (en) 2016-12-19 2020-01-28 Sarepta Therapeutics Inc exon jump oligomer conjugates for muscular dystrophy
WO2018118599A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
EP3565535A4 (en) 2017-01-05 2020-12-30 Fred Hutchinson Cancer Research Center Systems and methods to improve vaccine efficacy
DK3565891T3 (en) 2017-01-09 2023-07-24 Whitehead Inst Biomedical Res METHODS OF ALTERING GENE EXPRESSION BY DISRUPTING TRANSCRIPTION FACTOR MULTIMERS THAT STRUCTURE REGULATORY LOOPS
US11253605B2 (en) 2017-02-27 2022-02-22 Translate Bio, Inc. Codon-optimized CFTR MRNA
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
EP3592777A1 (en) 2017-03-10 2020-01-15 President and Fellows of Harvard College Cytosine to guanine base editor
WO2018176009A1 (en) 2017-03-23 2018-09-27 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable dna binding proteins
US11913075B2 (en) 2017-04-01 2024-02-27 The Broad Institute, Inc. Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer
US11767520B2 (en) 2017-04-20 2023-09-26 Atyr Pharma, Inc. Compositions and methods for treating lung inflammation
AU2018254776B2 (en) 2017-04-22 2022-06-30 Immunomic Therapeutics, Inc. Improved LAMP constructs
US20200087365A1 (en) 2017-05-02 2020-03-19 Immunomic Therapeutics, Inc Improved lamp constructs comprising cancer antigens
WO2018204918A1 (en) 2017-05-05 2018-11-08 Ardelyx, Inc. Treatment of hepatic disorders
EP3635106A4 (en) 2017-05-08 2021-01-06 Orgenesis Ltd. Transdifferentiated cell populations and methods of use thereof
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
WO2018213476A1 (en) 2017-05-16 2018-11-22 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding cftr
EP3638215A4 (en) 2017-06-15 2021-03-24 Modernatx, Inc. Rna formulations
EP3641834B1 (en) 2017-06-19 2023-10-04 Translate Bio, Inc. Messenger rna therapy for the treatment of friedreich's ataxia
CN111801345A (en) 2017-07-28 2020-10-20 哈佛大学的校长及成员们 Methods and compositions using an evolved base editor for Phage Assisted Continuous Evolution (PACE)
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
CA3073211A1 (en) 2017-08-31 2019-03-07 Modernatx, Inc. Methods of making lipid nanoparticles
WO2019057649A1 (en) 2017-09-19 2019-03-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of acute myeloid leukemia
EA201991450A1 (en) 2017-09-22 2019-12-30 Сарепта Терапьютикс, Инк. OLIGOMER CONJUGATES FOR EXONISM SKIP IN MUSCULAR DYSTROPHY
EP3687577A1 (en) 2017-09-28 2020-08-05 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
EP3687519A1 (en) 2017-09-28 2020-08-05 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
JP2020536060A (en) 2017-09-28 2020-12-10 サレプタ セラピューティクス, インコーポレイテッド Combination therapy to treat muscular dystrophy
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. Uses of adenosine base editors
US11680296B2 (en) 2017-10-16 2023-06-20 Massachusetts Institute Of Technology Mycobacterium tuberculosis host-pathogen interaction
CN111511484A (en) 2017-11-04 2020-08-07 索纳纳米技术公司 Metal nanoparticles and method for preparing the same
WO2019126593A1 (en) 2017-12-20 2019-06-27 Translate Bio, Inc. Improved composition and methods for treatment of ornithine transcarbamylase deficiency
US20190254973A1 (en) 2018-02-22 2019-08-22 Verily Life Sciences Llc Combining orthogonal chemistries for preparation of multiplexed nanoparticles
KR102370952B1 (en) 2018-03-23 2022-03-07 벡션 파마슈티컬스 인크. Saposin C pharmaceutical composition and cancer treatment method
US20210386829A1 (en) 2018-05-04 2021-12-16 The Broad Institute, Inc. Compositions and methods for modulating cgrp signaling to regulate innate lymphoid cell inflammatory responses
AU2019271132A1 (en) 2018-05-15 2020-11-12 Translate Bio, Inc. Subcutaneous delivery of messenger RNA
JP2021523185A (en) 2018-05-15 2021-09-02 イミュノミック セラピューティックス, インコーポレイテッドImmunomic Therapeutics, Inc. Improved LAMP constructs containing allergens
US10758629B2 (en) 2018-05-29 2020-09-01 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US20200016274A1 (en) 2018-05-30 2020-01-16 Translate Bio, Inc. Messenger rna vaccines and uses thereof
US20210371932A1 (en) 2018-06-01 2021-12-02 Massachusetts Institute Of Technology Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients
EP3806868A4 (en) 2018-06-13 2022-06-22 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
US10736847B2 (en) 2018-07-03 2020-08-11 Becton, Dickinson And Company Inverting device for liposome preparation by centrifugation
EP3826608A1 (en) 2018-07-23 2021-06-02 Translate Bio, Inc. Dry power formulations for messenger rna
TW202020153A (en) 2018-07-27 2020-06-01 美商薩羅塔治療公司 Exon skipping oligomers for muscular dystrophy
US11174500B2 (en) 2018-08-24 2021-11-16 Translate Bio, Inc. Methods for purification of messenger RNA
EP3620164A1 (en) 2018-09-05 2020-03-11 Genoscience Pharma SAS Substituted 2,4 diamino-quinoline as new medicament for fibrosis, autophagy and cathepsins b (ctsb), l (ctsl) and d (ctsd) related diseases
EP3849617A1 (en) 2018-09-14 2021-07-21 Translate Bio, Inc. Composition and methods for treatment of methylmalonic acidemia
EP3852813A4 (en) 2018-09-18 2022-06-22 VNV Newco Inc. Arc-based capsids and uses thereof
US20230048010A1 (en) 2018-09-28 2023-02-16 President And Fellows Of Harvard College Cellular reprogramming to reverse aging and promote organ and tissue regeneration
WO2020081730A2 (en) 2018-10-16 2020-04-23 Massachusetts Institute Of Technology Methods and compositions for modulating microenvironment
WO2020086701A1 (en) 2018-10-24 2020-04-30 Codiak Biosciences, Inc. Methods to improve potency of electroporation
US20230071228A1 (en) 2018-11-09 2023-03-09 Translate Bio, Inc. 2,5-dioxopiperazine lipids with intercalated ester, thioester, disulfide and anhydride moieities
US20220016265A1 (en) 2018-11-09 2022-01-20 Translate Bio, Inc. Messenger rna therapy for treatment of ocular diseases
WO2020102172A2 (en) 2018-11-12 2020-05-22 Translate Bio, Inc. Methods for inducing immune tolerance
BR112021011018A2 (en) 2018-12-13 2021-08-31 Sarepta Therapeutics, Inc. EXON SKIPPING OLIGOMER CONJUGATES FOR MUSCULAR DYSTROPHY
GB201821269D0 (en) 2018-12-28 2019-02-13 Nippon Shinyaku Co Ltd Myostatin signal inhibitor
US11739156B2 (en) 2019-01-06 2023-08-29 The Broad Institute, Inc. Massachusetts Institute of Technology Methods and compositions for overcoming immunosuppression
US11559561B2 (en) 2019-01-07 2023-01-24 Translate Bio, Inc. Composition and methods for treatment of primary ciliary dyskinesia
EP3920889A4 (en) 2019-02-08 2022-12-07 Board of Regents, The University of Texas System Telomerase-containing exosomes for treatment of diseases associated with aging and age-related organ dysfunction
US20220168261A1 (en) 2019-02-14 2022-06-02 Akamara Therapeutics, Inc. Compounds and methods for managing cancer through immune system
US20230053540A1 (en) 2019-02-19 2023-02-23 Massachusetts Institute Of Technology Treatment of liver injury
WO2020186101A1 (en) 2019-03-12 2020-09-17 The Broad Institute, Inc. Detection means, compositions and methods for modulating synovial sarcoma cells
WO2020186235A1 (en) 2019-03-14 2020-09-17 The Broad Institute, Inc. Compositions and methods for modulating cgrp signaling to regulate intestinal innate lymphoid cells
US20220152148A1 (en) 2019-03-18 2022-05-19 The Broad Institute, Inc. Modulation of type 2 immunity by targeting clec-2 signaling
EP3942023A1 (en) 2019-03-18 2022-01-26 The Broad Institute, Inc. Compositions and methods for modulating metabolic regulators of t cell pathogenicity
AU2020240109A1 (en) 2019-03-19 2021-09-30 President And Fellows Of Harvard College Methods and compositions for editing nucleotide sequences
WO2020198268A1 (en) 2019-03-28 2020-10-01 Sarepta Therapeutics, Inc. Methods for treating muscular dystrophy with casimersen
US20220204994A1 (en) 2019-04-05 2022-06-30 Precision Biosciences, Inc. Methods of preparing populations of genetically-modified immune cells
JP2022528725A (en) 2019-04-18 2022-06-15 サレプタ セラピューティクス, インコーポレイテッド Composition for treating muscular dystrophy
KR20220005555A (en) 2019-05-07 2022-01-13 프리시젼 바이오사이언시스 인코포레이티드 Optimization of engineered meganucleases for recognition sequences
WO2020232271A1 (en) 2019-05-14 2020-11-19 The Broad Institute, Inc. Compositions and methods for targeting multinucleated cells
JP2022533796A (en) 2019-05-22 2022-07-25 マサチューセッツ インスティテュート オブ テクノロジー Circular RNA compositions and methods
WO2020243371A1 (en) 2019-05-28 2020-12-03 Massachusetts Institute Of Technology Methods and compositions for modulating immune responses
WO2020257489A1 (en) 2019-06-19 2020-12-24 Sarepta Therapeutics, Inc. Methods for treating muscular dystrophy
AU2020295807A1 (en) 2019-06-20 2022-02-17 Janssen Sciences Ireland Unlimited Company Lipid nanoparticle or liposome delivery of hepatitis B virus (HBV) vaccines
EP3997225A1 (en) 2019-07-10 2022-05-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of epilepsy
WO2021016608A1 (en) 2019-07-25 2021-01-28 Precision Biosciences, Inc. Compositions and methods for sequential stacking of nucleic acid sequences into a genomic locus
EP4031561A1 (en) 2019-09-20 2022-07-27 The Broad Institute, Inc. Compositions and methods for delivering cargo to a target cell
EP4031662A1 (en) 2019-09-20 2022-07-27 Translate Bio, Inc. Mrna encoding engineered cftr
US11793787B2 (en) 2019-10-07 2023-10-24 The Broad Institute, Inc. Methods and compositions for enhancing anti-tumor immunity by targeting steroidogenesis
WO2021072172A1 (en) 2019-10-09 2021-04-15 Translate Bio, Inc. Compositions, methods and uses of messenger rna
US20240108703A1 (en) 2019-10-18 2024-04-04 Immunomic Therapeutics, Inc. Improved LAMP Constructs Comprising Cancer Antigens
JP2022553042A (en) 2019-10-21 2022-12-21 トランスレイト バイオ, インコーポレイテッド Compositions, methods and uses of messenger RNA
CN115135765A (en) 2019-11-08 2022-09-30 菲奥医药公司 Chemically modified oligonucleotides targeting bromodomain-containing protein 4(BRD4) for immunotherapy
US20230016983A1 (en) 2019-11-19 2023-01-19 lNSERM (INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICALE) Antisense oligonucleotides and thier use for the treatment of cancer
WO2021116823A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product
US11826462B2 (en) 2019-12-09 2023-11-28 Nicoventures Trading Limited Oral product with sustained flavor release
WO2021116826A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product comprising a cannabinoid
WO2021116824A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product comprising a cannabinoid
US11872231B2 (en) 2019-12-09 2024-01-16 Nicoventures Trading Limited Moist oral product comprising an active ingredient
US11793230B2 (en) 2019-12-09 2023-10-24 Nicoventures Trading Limited Oral products with improved binding of active ingredients
WO2021116825A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product
EP4072301A1 (en) 2019-12-09 2022-10-19 Nicoventures Trading Limited Nanoemulsion for oral use
EP4076393A2 (en) 2019-12-20 2022-10-26 Translate Bio, Inc. Rectal delivery of messenger rna
EP3842060A1 (en) 2019-12-23 2021-06-30 Merck Sharp & Dohme Corp. Stapled lactam co-agonists of the glucagon and glp-1 receptors
EP3842449A1 (en) 2019-12-23 2021-06-30 Merck Sharp & Dohme Corp. Stapled olefin co-agonists of the glucagon and glp-1 receptors
EP3842061A1 (en) 2019-12-23 2021-06-30 Merck Sharp & Dohme Corp. Stapled triazole co-agonists of the glucagon and glp-1 receptors
WO2021132591A1 (en) 2019-12-26 2021-07-01 日本新薬株式会社 Antisense nucleic acid that induces skipping of exon 50
WO2021138537A1 (en) 2019-12-31 2021-07-08 Phio Pharmaceuticals Corp. Chemically modified oligonucleotides with improved systemic delivery
WO2021142132A1 (en) 2020-01-07 2021-07-15 The Trustees Of Princeton University Compositions and methods for treatment of disease by manipulation of serine metabolism
WO2021142245A1 (en) 2020-01-10 2021-07-15 Translate Bio, Inc. Compounds, pharmaceutical compositions and methods for modulating expression of muc5b in lung cells and tissues
CN115427021A (en) 2020-02-25 2022-12-02 翻译生物公司 Improved method for preparing MRNA-loaded lipid nanoparticles
CA3173049A1 (en) 2020-02-28 2021-09-02 Nippon Shinyaku Co., Ltd. Antisense nucleic acid inducing skipping of exon 51
EP4138791A1 (en) 2020-04-20 2023-03-01 Board of Regents, The University of Texas System Biologically active dry powder compositions and method of their manufacture and use
US20230181619A1 (en) 2020-05-07 2023-06-15 Translate Bio, Inc. Improved compositions for cftr mrna therapy
IL297962A (en) 2020-05-07 2023-01-01 Translate Bio Inc Optimized nucleotide sequences encoding sars-cov-2 antigens
US20230190954A1 (en) 2020-05-07 2023-06-22 Translate Bio, Inc. Composition and methods for treatment of primary ciliary dyskinesia
AU2021267940A1 (en) 2020-05-08 2022-12-08 President And Fellows Of Harvard College Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
WO2021231259A1 (en) 2020-05-11 2021-11-18 Precision Biosciences, Inc. Self-limiting viral vectors encoding nucleases
US20230193230A1 (en) 2020-05-12 2023-06-22 Precision Biosciences, Inc. Treatment of retinitis pigmentosa using improved engineered meganucleases
CN116322788A (en) 2020-05-19 2023-06-23 奥纳治疗公司 Cyclic RNA compositions and methods
WO2022006527A1 (en) 2020-07-02 2022-01-06 Maritime Therapeutics, Inc. Compositions and methods for reverse gene therapy
WO2022040435A1 (en) 2020-08-19 2022-02-24 The Board Of Regents Of The University Of Texas System Nanodrugs for targeted drug delivery and use thereof
US20230365995A1 (en) 2020-10-07 2023-11-16 Precision Biosciences, Inc. Lipid nanoparticle compositions
AU2021373892A1 (en) 2020-11-09 2023-07-06 Translate Bio, Inc. Improved compositions for delivery of codon-optimized mrna
US20220287966A1 (en) 2020-11-25 2022-09-15 Translate Bio, Inc. Stable Liquid Lipid Nanoparticle Formulations
TW202245809A (en) 2020-12-18 2022-12-01 美商詹森藥物公司 Combination therapy for treating hepatitis b virus infection
EP4277929A1 (en) 2021-01-14 2023-11-22 Translate Bio, Inc. Methods and compositions for delivering mrna coded antibodies
EP4312536A1 (en) 2021-04-01 2024-02-07 Vestaron Corporation Liposome formulations for pesticide delivery and methods for producing and using the same
CA3173245A1 (en) 2021-04-22 2022-10-22 James Jefferson Smith Engineered meganucleases that target human mitochondrial genomes
WO2022226303A1 (en) 2021-04-22 2022-10-27 Precision Biosciences, Inc. Engineered meganucleases that target human mitochondrial genomes
WO2022269097A1 (en) 2021-06-25 2022-12-29 Alpine Antiviral Gmbh Sirna combinations targeting sars-cov-2 and/or host factor transcripts
CA3225985A1 (en) 2021-07-01 2023-01-05 Indapta Therapeutics, Inc. Engineered natural killer (nk) cells and related methods
WO2023010135A1 (en) 2021-07-30 2023-02-02 Tune Therapeutics, Inc. Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2)
CA3227103A1 (en) 2021-07-30 2023-02-02 Matthew P. GEMBERLING Compositions and methods for modulating expression of frataxin (fxn)
WO2023015264A1 (en) 2021-08-04 2023-02-09 Phio Pharmaceuticals Corp. Immunotherapy of cancer utilizing natural killer cells treated with chemically modified oligonucleotides
WO2023015265A2 (en) 2021-08-04 2023-02-09 Phio Pharmaceuticals Corp. Chemically modified oligonucleotides
WO2023086893A1 (en) 2021-11-10 2023-05-19 Translate Bio, Inc. Composition and methods for treatment of primary ciliary dyskinesia
WO2023133539A1 (en) * 2022-01-06 2023-07-13 Case Western Reserve University Systems and methods of generating lipid, protein, and/or protein shelled bubbles
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023144792A1 (en) 2022-01-31 2023-08-03 Genevant Sciences Gmbh Poly(alkyloxazoline)-lipid conjugates and lipid particles containing same
WO2023144798A1 (en) 2022-01-31 2023-08-03 Genevant Sciences Gmbh Ionizable cationic lipids for lipid nanoparticles
WO2023150647A1 (en) 2022-02-02 2023-08-10 Sana Biotechnology, Inc. Methods of repeat dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023178182A1 (en) 2022-03-16 2023-09-21 10X Genomics, Inc. Compositions and methods for detection and treatment of coronavirus infection
WO2023178230A1 (en) 2022-03-17 2023-09-21 Sarepta Therapeutics, Inc. Phosphorodiamidate morpholino oligomer conjugates
WO2023196851A1 (en) 2022-04-06 2023-10-12 President And Fellows Of Harvard College Reversing aging of the central nervous system
WO2023201201A1 (en) 2022-04-10 2023-10-19 Immunomic Therapeutics, Inc. Bicistronic lamp constructs comprising immune response enhancing genes and methods of use thereof
WO2023225160A1 (en) 2022-05-18 2023-11-23 The Children's Hospital Of Philadelphia Compositions and methods for inducible alternative splicing regulation of gene expression
WO2023233290A1 (en) 2022-05-31 2023-12-07 Janssen Sciences Ireland Unlimited Company Rnai agents targeting pd-l1
WO2023250511A2 (en) 2022-06-24 2023-12-28 Tune Therapeutics, Inc. Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression
WO2024007020A1 (en) 2022-06-30 2024-01-04 Indapta Therapeutics, Inc. Combination of engineered natural killer (nk) cells and antibody therapy and related methods
WO2024015881A2 (en) 2022-07-12 2024-01-18 Tune Therapeutics, Inc. Compositions, systems, and methods for targeted transcriptional activation
WO2024017990A1 (en) 2022-07-21 2024-01-25 Institut National de la Santé et de la Recherche Médicale Methods and compositions for treating chronic pain disorders
US20240067968A1 (en) 2022-08-19 2024-02-29 Tune Therapeutics, Inc. Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression
WO2024064642A2 (en) 2022-09-19 2024-03-28 Tune Therapeutics, Inc. Compositions, systems, and methods for modulating t cell function
WO2024073570A1 (en) 2022-09-28 2024-04-04 Altos Labs, Inc. Expression of regeneration factors in aged/senescent cells

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241046A (en) * 1978-11-30 1980-12-23 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4372949A (en) * 1979-03-05 1983-02-08 Toyama Chemical Co., Ltd. Treatment of cancer with carcinostatic and immunostimulating agent containing lysophospholipid and phospholipid
US4394372A (en) * 1980-12-22 1983-07-19 The Procter & Gamble Company Process for making lipid membrane structures
US4429008A (en) * 1981-12-10 1984-01-31 The Regents Of The University Of California Thiol reactive liposomes
US4460577A (en) * 1977-09-30 1984-07-17 Farmitalia Carlo Erba S.P.A. Pharmaceutical compositions consisting or consisting essentially of liposomes, and processes for making same
FR2549736A1 (en) * 1983-07-29 1985-02-01 Ceraver Filter membrane
US4508703A (en) * 1982-02-17 1985-04-02 Parfums Christian Dior Production of pulverulent mixtures of lipidic and hydrophobic constituents
US4529561A (en) * 1978-03-24 1985-07-16 The Regents Of The University Of California Method for producing liposomes in selected size range

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2502508B1 (en) * 1981-03-30 1985-10-25 Geceral Grpt Etu Ceramiques Al FILTRATION STRUCTURE, METHOD FOR PRODUCING SUCH STRUCTURES AND ULTRRAFILTRATION DEVICE COMPRISING SAME
DE3519620A1 (en) * 1984-06-04 1986-01-02 Norton Co., Worcester, Mass. DEVICE AND METHOD FOR CONTROLLING THE DIFFUSION OF FLUID COMPONENTS
CA1264668A (en) * 1984-06-20 1990-01-23 Pieter R. Cullis Extrusion techniques for producing liposomes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460577A (en) * 1977-09-30 1984-07-17 Farmitalia Carlo Erba S.P.A. Pharmaceutical compositions consisting or consisting essentially of liposomes, and processes for making same
US4529561A (en) * 1978-03-24 1985-07-16 The Regents Of The University Of California Method for producing liposomes in selected size range
US4241046A (en) * 1978-11-30 1980-12-23 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4372949A (en) * 1979-03-05 1983-02-08 Toyama Chemical Co., Ltd. Treatment of cancer with carcinostatic and immunostimulating agent containing lysophospholipid and phospholipid
US4394372A (en) * 1980-12-22 1983-07-19 The Procter & Gamble Company Process for making lipid membrane structures
US4429008A (en) * 1981-12-10 1984-01-31 The Regents Of The University Of California Thiol reactive liposomes
US4429008B1 (en) * 1981-12-10 1995-05-16 Univ California Thiol reactive liposomes
US4508703A (en) * 1982-02-17 1985-04-02 Parfums Christian Dior Production of pulverulent mixtures of lipidic and hydrophobic constituents
FR2549736A1 (en) * 1983-07-29 1985-02-01 Ceraver Filter membrane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0261170A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285638A1 (en) * 1986-09-18 1988-10-12 Liposome Technology, Inc. High-concentration liposome processing method
EP0285638A4 (en) * 1986-09-18 1989-06-14 Liposome Technology Inc High-concentration liposome processing method.
EP0414663A1 (en) * 1987-04-16 1991-03-06 The Liposome Company, Inc. Liposome continuous size reduction method and apparatus
EP0414663A4 (en) * 1987-04-16 1991-07-17 The Liposome Company, Inc. Liposome continuous size reduction method and apparatus
DE4107153A1 (en) * 1991-03-06 1992-09-10 Gregor Cevc Compsns. for application of active agents
DE4107152A1 (en) * 1991-03-06 1992-09-10 Gregor Cevc Compsns. for application of active agents
WO2015063710A1 (en) * 2013-10-31 2015-05-07 Richter Gedeon Nyrt. Production of sterile liposomes of any particle sizes by continuous extrusion in a closed system

Also Published As

Publication number Publication date
EP0261170A4 (en) 1988-05-03
EP0261170A1 (en) 1988-03-30
US4737323A (en) 1988-04-12
JPS63502410A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
US4737323A (en) Liposome extrusion method
US4927637A (en) Liposome extrusion method
US4994213A (en) Method of preparing lipid structures
US5000887A (en) Preparation of uniform-size liposomes
JP2574999B2 (en) Dehydrated liposome pharmaceutical preparation
EP0320507B1 (en) Scaled-up production of liposome-encapsulated hemoglobin
Kulkarni et al. Factors affecting microencapsulation of drugs in liposomes
US6623671B2 (en) Liposome extrusion process
CA2045122A1 (en) Osmotically dependent vesicles
CA2146963A1 (en) Process and device for producing liquid, dispersed systems
AU2002337770B2 (en) Methods and apparatus for extrusion of vesicles at high pressure
US6217899B1 (en) Liposomes preparation method and plant
AU2002337770A1 (en) Methods and apparatus for extrusion of vesicles at high pressure
EP0665743B1 (en) Interdigitation-fusion liposomes and gels
EP0552299B1 (en) Liposome extrusion process
WO1989011335A1 (en) Preparation of uniform-size liposomes and other lipid structures
WO1995026185A1 (en) Liposome with increased retention volume
EP0331505A1 (en) A method for purification of liposome composition
JPH07316041A (en) Liposome with improved entrapping capacity
Rhodes et al. Proniosomes
JP2006298837A (en) Preparation containing liposome including polyhydric alcohol

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987901860

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987901860

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1987901860

Country of ref document: EP