WO1988005970A1 - Dual mode laser/detector diode for optical fiber transmission lines - Google Patents

Dual mode laser/detector diode for optical fiber transmission lines Download PDF

Info

Publication number
WO1988005970A1
WO1988005970A1 PCT/US1988/000464 US8800464W WO8805970A1 WO 1988005970 A1 WO1988005970 A1 WO 1988005970A1 US 8800464 W US8800464 W US 8800464W WO 8805970 A1 WO8805970 A1 WO 8805970A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
stripe
diode
active
doped
Prior art date
Application number
PCT/US1988/000464
Other languages
French (fr)
Inventor
Robert G. Hunsperger
Jung H. Park
Original Assignee
University Of Delaware
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Delaware filed Critical University Of Delaware
Publication of WO1988005970A1 publication Critical patent/WO1988005970A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/125Composite devices with photosensitive elements and electroluminescent elements within one single body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • H01S5/0028Laser diodes used as detectors

Definitions

  • the invention relates to semiconductor diode devices for direct optical coupling to optical fibers or other waveguides in optical signal transmission.
  • the invention embraces a unitary combination of a double heterostructure diode (DH) for emission and that of a waveguide photodiode as a receiver, the combination being characterized by an interposed lightly doped waveguide element between a heavily doped active layer and a semiconductor confining element of the diode.
  • the diode can be switched from the emitter mode to a receiver mode by application of a reverse-bias electric field instead of the forward bias field used for emission.
  • the present invention recognized the severity of the problem of vibration sensitivity in coupling diodes to optical fibers and other waveguides, limiting the quality of transmission and performance of equipment. Further, mechanical instability of systems of mirrors, prisms, and gratings made installation in certain field applications, such as aircraft, awkward.
  • diode devices for coupling directly to fiber-optic transmission lines or other waveguides by an interposed low-loss waveguiding layer between the active layer and the confining layer of the diode.
  • the device is a unitary p_-n junction diode for direct coupling to optical fiber transmission lines or other waveguides in which the diode is adapted to selectively function both as an emitter and receiver.
  • the active (light emitting) p-type semiconductor layer of the diode is highly doped to increase laser emission efficiency, while sensitivity as a receiver is increased by application of a reverse bias that is large enough to activate the Franz-Keldysh effect, while efficient direct coupling is provided by means of a low-loss lightly doped waveguide layer interposed between the active layer and a confining layer to increase the effective receiving area for incident light.
  • the diode of the preferred embodiment is a unitary combination of double heterostructure (DH) laser diode and waveguiding photodiode geometries having a low-loss waveguiding element interposed between its active layer and a confining layer.
  • DH double heterostructure
  • the diode can be coupled to fibers either by direct butt-joint coupling or by using simple intermediate optics. It can be used as a discrete element or as a monolothic element of an optical integrated circuit. In discrete form, the diode of the invention can be connected in series as an element of an optical transmission line or to multiple circuits through a star coupler. As an element of an optical integrated circuit, the diode can be onolothically integrated into a waveguide of the circuit.
  • the dual mode laser/detector device of the invention can be fabricated using liquid phase epitaxy (LPE) , molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD) .
  • LPE liquid phase epitaxy
  • MBE molecular beam epitaxy
  • MOCVD metal-organic chemical vapor deposition
  • Fig. 2 illustrates the diode directly coupled to an optical waveguide of an optical integrated circuit.
  • Fig. 3 illustrates the diode in a fiber ⁇ optic circuit
  • Fig. 4 illustrates the employment of microlenses to improve coupling an optical fiber to 5 the active area of the diode.
  • Fig. 5 illustrates a stripe-geometry configuration of the diode of the invention.
  • the waveguide detector of the instant invention has a lightly doped waveguiding layer that is relatively thick compared to the junction depletion thickness of a convention p-n diode, it has reduced junction' capacitance resulting in good high frequency response.
  • the double heterostructure the most widely used structure for semiconductor lasers, with a low threshold current density and high efficiency resulting from carrier and photon confinement, provides good emission properties to the unitary combination.
  • the absorption loss coefficient must be small to lower the threshold current density and to increase efficiency, while in a waveguide photodiode, however, a large absorption coefficient, ⁇ , is essential for high quantum efficiency and sensitivity.
  • the second factor involves competition between the optimum structure for lasers and the optimum structure for photodiodes, related to the dimensions of the depletion layer.
  • layers of a DH laser are heavily doped, typically at a concentration of around 10 18 cm -3.
  • the maximum depletion layer thickness for this doping concentration is only 0.08micrometer
  • the present invention has provided trade-off in the foregoing factors and thus enabled construction of a direct-coupled, dual diode of high optical output and the capability of emitting high- intensity signals without the risk of catastrophic failure.
  • the diode needs only 350 ⁇ m length, which is
  • Waveguiding layer 12. is lightly doped n-type GaAs, with a doping concentration of 5 x 10 15 to
  • the thickness of the waveguiding layer is slightly less than the maximum depletion layer width at breakdown, i.e., less than 1.0 to
  • the doping concentration of the active layer is about 10 18cm—3 or higher with a 0 thickness of 0.5 ⁇ m or less.
  • confining layer 13 . of gallium aluminum arsenide (GaAlAs) is doped for n-type conductivity while confining layer 14 also GaAlAs is doped as p-type, while substrate 15 5
  • S ⁇ S ⁇ tm ⁇ SHEET is n-type GaAs and cap _6 . is p-type GaAs.
  • Electrode 17 and ground contact 1_8 provide means for application of the Franz-Keldysh reverse bias voltage in selection of the mode of operation of the diode as a detector or application- of forward bias voltage for operation as an emitter. When the diode is reverse biased for the detecting mode of operation, the lightly doped waveguiding layer will be mostly depleted and act as a P ⁇ n waveguide photodiode, exhibiting the Franz-Keldysh effect.
  • the absorption coefficient. ⁇ can be increased from 25 to 10 4cm-1 by
  • a high speed response of the detector can be expected because of reduced capacitance and the high electron mobility of lightly doped GaAs, as well as elimination of the time delay associated with the diffusion of carriers and the possibility of using small-area stripe geometry.
  • d, and d_ are thicknesses of the active layer and the waveguiding layer respectively
  • ⁇ , and ⁇ _ are the absorption coefficients of the active layer and waveguiding layer, respectively.
  • the coefficient c__ depends upon the hole concentration and the injected electron density, and is about 30 cm " according to the literature, if scattering losses are negligible.
  • the coefficient ⁇ _ depends upon the free electron concentration in the waveguiding layer because the lasing photon energy of the highly doped p-type active layer is substantially (30-50 meV) below the absorption edge of the lightly doped n-type layer.
  • the diode When the diode is in the neutral state, there are no injected carriers in the waveguiding layer and ⁇ _ becomes less than 6 cm- . This means that the waveguiding layer is almost transparent to the operating wavelength. Since the dual mode diode has a low absorption coefficient, a low insertion loss is expected when the device is very effectively connected in series in a fiber-optic communication system.
  • the threshold current density, •J rh . and overall power efficiency ⁇ will be similar to the large optical cavity (LOC) laser which has separate confinement of photons and carriers.
  • Threshold current density (J . ) ranges from 2000 to 8000 A/cm for active layer thicknesses (d 2 ) from 1.0 to 5.0 ⁇ , respectively.
  • the waveguiding layer can be thicker than 5.0 ⁇ m with a doping concentration less than 5 x 10 15 cm-3 at the expense of a considerably higher threshold current density (J f . ). Also, excessively large active layer thicknesses can lead to increased carrier drift time and limit the high frequency response of the laser.
  • the efficiency of the diode of this invention is typical of that of a DH laser, ⁇ . tot - 40%. Therefore, it can be seen that the added waveguiding layer slightly increases J t h . but does not significantly affect the efficiency of the laser.
  • An advantage of the diode of the invention compared to a conventional DH laser is the high optical output power capability of the diode due to the added waveguiding layer.
  • the high optical flux density in the DH laser with a very thin active layer leads to catastrophic failure by mechanical mirror damage at relatively low peak power, which limits optical output power.
  • This limitation is avoided in the new diode by having the optical field distributed over a large waveguiding layer, permitting high optical power operation without failures from this cause.
  • a DH laser with a lightly doped waveguiding layer can be used as a high power light source with a reasonable J . and efficiency when forward biased.
  • the dual mode laser/detector diode is effectively fabricated by using liquid phase epitaxy (LPE). molecular beam epitaxy (MBE) or the metal- organic chemical deposition (MOCVD) method as in fabrication of conventional diodes.
  • LPE liquid phase epitaxy
  • MBE molecular beam epitaxy
  • MOCVD metal- organic chemical deposition
  • the dual mode diode of the present invention has a narrow stripe of 5 to 25 ⁇ width for a low threshold current (J . ) and a small junction capacitance.
  • the devices are mounted on a gold-plated copper heat sink for continuous-wave (cw) operation.
  • the dual mode diode can be used either as a discrete element or as a monolothic optical integrated circuit element.
  • the latter employment is illustrated schematically in Fig. 2 wherein numerals designate corresponding parts as in Fig. 1.
  • diode J10 the respective layers 11 to 1__6 . and contacts 17. and 18 . are as shown in Fig. 1, additionally showing directly- coupled optical waveguide element 19. of an integrated optical circuit, of which similar optical waveguide 20 forms a continuing part.
  • switch 21 is also shown to provide a forward bias by pole 22 . , or reverse bias by pole 2_3_ in accordance with the intended use of the
  • diode 1O acts as an emitter 0 (laser) so that light emerges and enters the waveguide directly as shown by double-ended arrows h ⁇ .
  • diode 10 acts as a receiver or detector so that light from other elements in the circuit, as indicated by either of double-ended arrows hv, enters and is detected to be converted to an electrical signal to be fed to electrical utilization elements.
  • switch in position 24 (ground) diode is neutral so that signal passes through substantially unaltered from element J19. to 2Q_ or conversely.
  • Fig. 3 illustrates diode I ⁇ directly coupled to optical fibers 2 _ and 26. with behavior similar to that with waveguide . 19 . and 20.
  • the dual mode device can be used either as a discrete element or as a monolothic optical integrated circuit element. In monolithic form, it can be combined with other devices on the same chip to perform its function more effectively.
  • a metal-semiconductor field effect transistor (MESFET) and a dual mode diode can be formed on the same n-GaAs layer.
  • MESFET metal-semiconductor field effect transistor
  • a dual mode diode can be formed on the same n-GaAs layer.
  • a MESFET can be used to modulate the laser when forward biased by applying a signal to the gate electrode, and when the device is reverse biased, the signal can be amplified
  • Coupling the device of this invention can be either direct butt-joint coupling or by using intermediate optics.
  • One of the simpler coupling schemes is to place the ends of the waveguide or fiber close to the active area of the diode. Diode-to-fiber coupling efficiencies near 30% are typically obtained by this direct butt coupling. However, the fiber-to-diode coupling efficiency is usually difficult because of the large area mismatch between the active area of the diode and the core area of the fiber if a multimode fiber is used.
  • Spherical or cylindrical microlenses cemented between the end of a fiber and the diode improve the fiber-to-diode coupling efficiency by focusing the light from the fiber onto the active area of the dual mode diode, as shown in Fig. 4 (a) and (b) .
  • spherical lens 2 focuses light from the fiber ;25_ on the active area of diode 10 while in Fig. 4 (b) it is focused by cylindrical lens 28. when the diode functions as a receiver.
  • using a microlens can also improve the diode-to-fiber efficiency.
  • Fig. 1 to Fig. 4 the emitter/detector (for use with an applied Franz-Keldysh bias to control is functional mode) is shown as a device having light confinement only in the vertical direction (i.e.. parallel to the direction of current flow).
  • Fig. 5 illustrates another embodiment, a device which is fabricated in a stripe configuration wherein the p-type active element and the n-type waveguiding element are in the form of a narrow, longitudinally extended stripe. Since these two elements form the active p-n junction, they are preferably coextensive.
  • This configuration results confinement of the light in the lateral direction (i.e., transverse to the direction of current flow), which further facilitates coupling to a small size optical fiber core or to other optical waveguides.
  • the stripe-geometry of the embodiment selectively functions in the emitter mode, as with the reverse Franz-Keldysh bias voltage for reception or forward bias voltage for emission.
  • the device of the embodiment shown in Fig. 5 can be fabricated by standard masked epitaxial growth procedures to provide active regions of p-type GaAs completely surrounded by light-confining regions of n-type Ga,,—x ) « AlxAs.
  • This configuration can also be fabricated with other light-emitting semiconductors, such as a Ga f v. —x. » InxAsyPi.,i—y../ composition.
  • Active layer 1_1 p-type gallium arsenide (GaAs) is shown as a stripe buried in layers 13_ of the opposite conductivity type,
  • junction forming waveguiding stripe L2_ is similarly buried with only the longitudinal ends of stripes 11 and 12 . exposed.
  • 1_6 covers the top side of stripe LI while confining layer _L3_ extends beneath stripe 12 . .
  • the narrow stripe configuration of the stripes in Fig. 5 efficiently limits the light for emission or light received to a narrow portion of the diode and facilitates direct coupling to other elements of an optical transmissions line.
  • metal contacts 1 and L8_ as in Fig. 1; oxide insulating layers 2_9. and 3_0 serve to limit the spread of current over a wide area in the short pathway.
  • optical fibers have a light transmitting core with a minimum of about
  • a further significant feature of the instant invention is its good high frequency response as an emitter while having a large cross section as a detector.
  • a large effective detector cross-section can be provided.

Abstract

Emitter-receiver semiconductor diode device (10) for direct optical coupling to optical signal transmission apparatus. It is a unitary combination of a double heterostructure diode and a waveguide photodiode with elements (21, 22, 23, 24) to selectively switch between an emission mode and a receiving mode. Confining semiconductors at least partially restrict light to junction-forming active and waveguiding semiconductors (11, 12) of the diode.

Description

DUAL MODE LASER/DETECTOR DIODE FOR OPTICAL FIBER TRANSMISSION LINES
Field of the Invention
The invention relates to semiconductor diode devices for direct optical coupling to optical fibers or other waveguides in optical signal transmission. In particular, the invention embraces a unitary combination of a double heterostructure diode (DH) for emission and that of a waveguide photodiode as a receiver, the combination being characterized by an interposed lightly doped waveguide element between a heavily doped active layer and a semiconductor confining element of the diode. The diode can be switched from the emitter mode to a receiver mode by application of a reverse-bias electric field instead of the forward bias field used for emission.
Background Practical transmission of signals by optical beams through thin transparent fibers rather than by electrical currents through electrically conductive wires or radio waves became a reality after the development in the early 1960 's of the laser which provides a stable source of coherent light. The emergency of the concept of "integrated optics", wherein wires and radio links were replaced by optical fibers rather than through-the-air optical paths progressed further by development of miniaturized optical integrated circuits to replace conventional circuits. This major advance was enhanced by the creation of gallium aluminum arsenide (GaAlAs) diodes and photolithographic
§UB3TTΓU Έ SHEET microfabrication technology capable of production ultraminiature devices with submicron line widths.
Advantages of the current state of optical fiber transmission lines over electrical counterparts include its stability, its wide bandwidth, its freedom from noise and external interference and its greater utility afforded by the small size of practical equipment. The last advantage is obtained by using miniature semiconductor lasers for introducing optical signals into an optical fiber and coupling photobodies to the fiber for detection. Earlier systems, however, required bulky, vibration- sensitive combinations of mirrors, prisms, and gratings to direct an optical beam carrying a signal from the emitter (laser) to the appropriate photodiode detector. Although such apparatus was at least comparable to or better in the reliability than existing electrical means of signal transmission, this and other difficulties have retarded acceptance of fiber-optic signal transmission.
One of the difficulties of earlier systems was the necessity for separate emitter and detector diodes to introduce the signal at one end of a fiber and to detect of the signal at the other end of the fiber. This difficulty was significantly mitigated by Hunsperger in a system (U.S. Patent 3,952,265, issued April 20, 1976, to R. G. Hunsperger) which provides a unitary dual mode diode which can function as an emitter or detector. Basically, this dual mode diode is a p_-n junction diode that functions as a laser when forward biased and as a photodiode when reverse biased, or with no voltage applied, the diode is in a neutral state with a relatively low insertion loss which does not interfere with the functioning of other devices on the transmission line. The present invention recognized the severity of the problem of vibration sensitivity in coupling diodes to optical fibers and other waveguides, limiting the quality of transmission and performance of equipment. Further, mechanical instability of systems of mirrors, prisms, and gratings made installation in certain field applications, such as aircraft, awkward.
Accordingly, it is an object of the invention to provide diode devices for introducing optical signals into a fiber-optic line or other waveguide and receiving optical signals from fiber¬ optic lines or other waveguides, the device being substantially free of adjuncts with high sensitivity to mechanical disturbances and vibration.
It is another object of the invention to provide a £-n junction diode for directing coupling to a fiber-optic transmission line.
It is still another object of the invention to provide a unitary device capable of functioning as an emitter for introducing an optical signal into a fiber-optic transmission line and receiving an optical signal from a fiber-optic transmission line or other waveguide to which it can be coupled directly.
These and other objects will be apparent from- the specification with accompanying drawings and claims.
Summary of the Invention The objects of the invention are accomplished by diode devices for coupling directly to fiber-optic transmission lines or other waveguides by an interposed low-loss waveguiding layer between the active layer and the confining layer of the diode.
SUBSTITUT In a preferred embodiment of the invention, the device is a unitary p_-n junction diode for direct coupling to optical fiber transmission lines or other waveguides in which the diode is adapted to selectively function both as an emitter and receiver. In this embodiment, the active (light emitting) p-type semiconductor layer of the diode is highly doped to increase laser emission efficiency, while sensitivity as a receiver is increased by application of a reverse bias that is large enough to activate the Franz-Keldysh effect, while efficient direct coupling is provided by means of a low-loss lightly doped waveguide layer interposed between the active layer and a confining layer to increase the effective receiving area for incident light.
The diode of the preferred embodiment is a unitary combination of double heterostructure (DH) laser diode and waveguiding photodiode geometries having a low-loss waveguiding element interposed between its active layer and a confining layer.
The diode can be coupled to fibers either by direct butt-joint coupling or by using simple intermediate optics. It can be used as a discrete element or as a monolothic element of an optical integrated circuit. In discrete form, the diode of the invention can be connected in series as an element of an optical transmission line or to multiple circuits through a star coupler. As an element of an optical integrated circuit, the diode can be onolothically integrated into a waveguide of the circuit.
The dual mode laser/detector device of the invention can be fabricated using liquid phase epitaxy (LPE) , molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD) . Description of the Drawing Understanding of the invention can be facilitated by reference to the drawings, not to scale, in which:
•-i Fi.g. 1 schemati.cally i.llustrates a layered structure embodiment of the dual mode laser-detector diode of the invention;
Fig. 2 illustrates the diode directly coupled to an optical waveguide of an optical integrated circuit.
Fig. 3 illustrates the diode in a fiber¬ optic circuit;
Fig. 4 illustrates the employment of microlenses to improve coupling an optical fiber to 5 the active area of the diode.
Fig. 5 illustrates a stripe-geometry configuration of the diode of the invention.
Description of the Invention United States Patent 3,952,265, issued April
20, 1976, to Robert Hunsperger, mentioned earlier herein, is incorporated by reference as background teaching and for methods applicable to the instant invention.
In the instant invention, attention is directed to solving problems relating to direct coupling of laser and photoreceptor diodes to waveguides and fibers by taking advantage of the geometry of both waveguide photodiodes and double heterostructure (DH) laser diodes. In waveguide photodiodes, because all incident light signals are absorbed directed in the plane of the depletion layer, not only is the quantum efficiency high, but also the diffusion time delay of carriers is
SUBSTITUTE SHΞET eliminated. Because the waveguide detector of the instant invention has a lightly doped waveguiding layer that is relatively thick compared to the junction depletion thickness of a convention p-n diode, it has reduced junction' capacitance resulting in good high frequency response. The double heterostructure, the most widely used structure for semiconductor lasers, with a low threshold current density and high efficiency resulting from carrier and photon confinement, provides good emission properties to the unitary combination.
In the present invention, three factors having internally competitive behavior which affect the use of DH laser diodes as waveguide photodetectors have been identified and resolved:
First, in a DH laser, the absorption loss coefficient must be small to lower the threshold current density and to increase efficiency, while in a waveguide photodiode, however, a large absorption coefficient, α, is essential for high quantum efficiency and sensitivity.
The second factor involves competition between the optimum structure for lasers and the optimum structure for photodiodes, related to the dimensions of the depletion layer. To get a population inversion in the active region with low series resistance, layers of a DH laser are heavily doped, typically at a concentration of around 10 18 cm -3. The maximum depletion layer thickness for this doping concentration is only 0.08micrometer
(μm) . This depletion layer thickness is about one fiftieth that of a convention photodiode. However, such an extremely thin layer increases junction capacitance to 50 times that of a conventional
SUBSTITUTE SHEET photodiode so that high frequency response is severely limited by the high R-C time constant. Further, it is very difficult to couple all of the incident light into an extremely thin depletion layer. If the incident light is not confined in the depletion region, not only would the quantum efficiency be reduced, but also time delay associated with carrier diffusion would further reduce response speed. The third factor in internal competitive effects arises from device length. For high efficiency, the DH laser must not be too long. On the other hand, a waveguide photodiode requires a large product of the absorption coefficient and the device length for high quantum efficiency. Should there be a means to increase the absorption coefficient dramatically, the device length would no longer be a problem.
The present invention has provided trade-off in the foregoing factors and thus enabled construction of a direct-coupled, dual diode of high optical output and the capability of emitting high- intensity signals without the risk of catastrophic failure.
As a trade-off and a solution to the first and third of the foregoing factors, the Franz-Keldysh effect is used to change the absorption coefficient electrically, as described in the Hunsperger patent, noted above. (For a detailed background, see "Integrated Optics: Theory and Technology," Hunsperger, R.G., Springer-Verlag, Berlin, Heidelber, New York, 1982, especially page 260 et seq.) For n type GaAs an experimental value of α = 100 cm"
(i.e.. almost total absorption) results from an 4 applied field of 4 x 10 V/cm, which corresponds to
4.0 V reverse bias across a depletion width of
1.0 μm. Therefore, to absorb 97% of the incident light, the diode needs only 350 μm length, which is
5 the typical length of a laser diode. Thus, it can be seen that the diode can be electrically switched from a low absorption state for laser operation to high absorption state for detection, by means of a reasonably small bias voltage. ° The second of the foregoing factors is the problem of getting a sufficiently thick depletion layer without diminishing laser efficiency. This problem is solved by the present invention by both waveguide photodiode and DH laser diode geometries 5 including a lightly doped, low loss waveguiding layer, upon which incident light enters, between the active layer and one of the confining layers. Reference to Fig. 1 will facilitate understanding the basic structure of the invention. ° Shown in the drawing, not to scale, is a cross- sectional view of diode .10. with heavily doped active layer 11. of p.-type gallium arsenide (GaAs).
Waveguiding layer 12. is lightly doped n-type GaAs, with a doping concentration of 5 x 10 15 to
1 c 5 3 x 10 cm The thickness of the waveguiding layer is slightly less than the maximum depletion layer width at breakdown, i.e., less than 1.0 to
5.0 μm. The doping concentration of the active layer is about 10 18cm—3 or higher with a 0 thickness of 0.5 μm or less.
Continuing in reference to Fig. 1, confining layer 13. of gallium aluminum arsenide (GaAlAs) is doped for n-type conductivity while confining layer 14 also GaAlAs is doped as p-type, while substrate 15 5
SϋδSϊtm πϊΕ SHEET is n-type GaAs and cap _6. is p-type GaAs. Electrode 17 and ground contact 1_8 provide means for application of the Franz-Keldysh reverse bias voltage in selection of the mode of operation of the diode as a detector or application- of forward bias voltage for operation as an emitter. When the diode is reverse biased for the detecting mode of operation, the lightly doped waveguiding layer will be mostly depleted and act as a P±n waveguide photodiode, exhibiting the Franz-Keldysh effect.
For a waveguiding layer having a doping
16 —3 concentration of n = 2 10 cm and a thickness of 1.5 μm, the maximum depletion layer width is
1.8 μm for a breakdown reverse bias field of 5
4.8 x 10 V/cm, which corresponds to about 86.4 volts bias across the p-n junction. Due to the
Franz-Keldysh effect, the absorption coefficient. α, can be increased from 25 to 10 4cm-1 by
5 applying a reverse bias field of 1.35 x 10 Vcm, which corresponds to 20.2 volts reverse bias across a resulting depletion width of 1.5 μm. Therefore.
99% of the incident photons will be absorbed within
9 μm. In addition to a high quantum efficiency, a high speed response of the detector can be expected because of reduced capacitance and the high electron mobility of lightly doped GaAs, as well as elimination of the time delay associated with the diffusion of carriers and the possibility of using small-area stripe geometry.
When the diode is forward biased for the lasing mode of operation, injected electrons and holes are confined in the active layer, and generated photons are confined in the waveguiding layer and the active layer. If the radiation is disturbed uniformly in both layers, the effective absorption, α, is given by
α = αi α2 d-j_ + d2 di + d2
where d, and d_ are thicknesses of the active layer and the waveguiding layer respectively, and α, and α_ are the absorption coefficients of the active layer and waveguiding layer, respectively. The coefficient c__ depends upon the hole concentration and the injected electron density, and is about 30 cm" according to the literature, if scattering losses are negligible. The coefficient α_ depends upon the free electron concentration in the waveguiding layer because the lasing photon energy of the highly doped p-type active layer is substantially (30-50 meV) below the absorption edge of the lightly doped n-type layer.
Therefore, a reasonable estimate of c__ is 6 cm -1. The calculated effective absorpti.on coefficient is from 8 cm- for d_ = 5m to 14
Figure imgf000012_0001
When the diode is in the neutral state, there are no injected carriers in the waveguiding layer and α_ becomes less than 6 cm- . This means that the waveguiding layer is almost transparent to the operating wavelength. Since the dual mode diode has a low absorption coefficient, a low insertion loss is expected when the device is very effectively connected in series in a fiber-optic communication system. The threshold current density, •Jrh. and overall power efficiency η , will be similar to the large optical cavity (LOC) laser which has separate confinement of photons and carriers. Threshold current density (J . ) ranges from 2000 to 8000 A/cm for active layer thicknesses (d2) from 1.0 to 5.0 μ , respectively. Those values are slightly higher than a typical J . of a DH laser as a result of the added waveguiding layer. The waveguiding layer can be thicker than 5.0 μm with a doping concentration less than 5 x 10 15 cm-3 at the expense of a considerably higher threshold current density (Jf. ). Also, excessively large active layer thicknesses can lead to increased carrier drift time and limit the high frequency response of the laser. The efficiency of the diode of this invention is typical of that of a DH laser, τ.tot - 40%. Therefore, it can be seen that the added waveguiding layer slightly increases J t h . but does not significantly affect the efficiency of the laser.
An advantage of the diode of the invention compared to a conventional DH laser is the high optical output power capability of the diode due to the added waveguiding layer. The high optical flux density in the DH laser with a very thin active layer leads to catastrophic failure by mechanical mirror damage at relatively low peak power, which limits optical output power. This limitation is avoided in the new diode by having the optical field distributed over a large waveguiding layer, permitting high optical power operation without failures from this cause. As was seen in the foregoing, a DH laser with a lightly doped waveguiding layer can be used as a high power light source with a reasonable J . and efficiency when forward biased. When this diode is reverse biased with an appropriate electric field, high quantum efficiency and high response speed of the detector result in part from the narrow channel waveguide geometry. It is important to observe that waveguiding depends upon a difference in the index of refraction between the waveguiding layer and the adjacent layers, the active layer and the confining layers. The dual mode laser/detector diode is effectively fabricated by using liquid phase epitaxy (LPE). molecular beam epitaxy (MBE) or the metal- organic chemical deposition (MOCVD) method as in fabrication of conventional diodes. The dual mode diode of the present invention has a narrow stripe of 5 to 25 μ width for a low threshold current (J . ) and a small junction capacitance. The devices are mounted on a gold-plated copper heat sink for continuous-wave (cw) operation.
As noted hereinbefore, the dual mode diode can be used either as a discrete element or as a monolothic optical integrated circuit element. The latter employment is illustrated schematically in Fig. 2 wherein numerals designate corresponding parts as in Fig. 1. Referring to Fig. 2, diode J10. the respective layers 11 to 1__6. and contacts 17. and 18. are as shown in Fig. 1, additionally showing directly- coupled optical waveguide element 19. of an integrated optical circuit, of which similar optical waveguide 20 forms a continuing part. Also shown is switch 21. to provide a forward bias by pole 22., or reverse bias by pole 2_3_ in accordance with the intended use of the
SUBSTITUTE SHEET diode as an emitter or receiver, respectively. With no bias, provided by pole 2_4 as stated hereinbefore, the diode is neutral so that optical signals pass through from optical waveguide element .19. to the
<-_ . . . corresponding element 2_0 of the optical integrated circuit.
In operation, referring to Fig. 2, with an appropriate forward bias voltage applied through switch 2_1 in position 2_2, diode 1O acts as an emitter 0 (laser) so that light emerges and enters the waveguide directly as shown by double-ended arrows hυ. With reverse bias switch 21. in position 2. diode 10. acts as a receiver or detector so that light from other elements in the circuit, as indicated by either of double-ended arrows hv, enters and is detected to be converted to an electrical signal to be fed to electrical utilization elements. With switch in position 24. (ground) diode is neutral so that signal passes through substantially unaltered from element J19. to 2Q_ or conversely.
Fig. 3 illustrates diode I ± directly coupled to optical fibers 2 _ and 26. with behavior similar to that with waveguide .19. and 20.
As described, the dual mode device can be used either as a discrete element or as a monolothic optical integrated circuit element. In monolithic form, it can be combined with other devices on the same chip to perform its function more effectively.
For example, a metal-semiconductor field effect transistor (MESFET) and a dual mode diode can be formed on the same n-GaAs layer. Thus, a MESFET can be used to modulate the laser when forward biased by applying a signal to the gate electrode, and when the device is reverse biased, the signal can be amplified
SU by the MESFET. This combination of a laser/detector diode with a laser-drive/amplifier FET is usable at high frequencies. In discrete form, as described by Hunsperger in U.S. Patent 3,952,265. dual mode devices can be either connected in series by a waveguide or a fiber, or connected to each other through a star coupler.
Coupling the device of this invention, as mentioned in the foregoing, can be either direct butt-joint coupling or by using intermediate optics. One of the simpler coupling schemes is to place the ends of the waveguide or fiber close to the active area of the diode. Diode-to-fiber coupling efficiencies near 30% are typically obtained by this direct butt coupling. However, the fiber-to-diode coupling efficiency is usually difficult because of the large area mismatch between the active area of the diode and the core area of the fiber if a multimode fiber is used. Spherical or cylindrical microlenses cemented between the end of a fiber and the diode improve the fiber-to-diode coupling efficiency by focusing the light from the fiber onto the active area of the dual mode diode, as shown in Fig. 4 (a) and (b) . In Fig. 4 (a) spherical lens 2 focuses light from the fiber ;25_ on the active area of diode 10 while in Fig. 4 (b) it is focused by cylindrical lens 28. when the diode functions as a receiver. Similarly, when the diode is in the emitter mode, since the output angle of the laser is greater than the fiber acceptance angle, using a microlens can also improve the diode-to-fiber efficiency.
SUBSTIT In Fig. 1 to Fig. 4, the emitter/detector (for use with an applied Franz-Keldysh bias to control is functional mode) is shown as a device having light confinement only in the vertical direction (i.e.. parallel to the direction of current flow). Fig. 5 illustrates another embodiment, a device which is fabricated in a stripe configuration wherein the p-type active element and the n-type waveguiding element are in the form of a narrow, longitudinally extended stripe. Since these two elements form the active p-n junction, they are preferably coextensive. This configuration results confinement of the light in the lateral direction (i.e., transverse to the direction of current flow), which further facilitates coupling to a small size optical fiber core or to other optical waveguides. The stripe-geometry of the embodiment selectively functions in the emitter mode, as with the reverse Franz-Keldysh bias voltage for reception or forward bias voltage for emission.
The device of the embodiment shown in Fig. 5 can be fabricated by standard masked epitaxial growth procedures to provide active regions of p-type GaAs completely surrounded by light-confining regions of n-type Ga,,—x )« AlxAs. This configuration can also be fabricated with other light-emitting semiconductors, such as a Ga fv. —x.« InxAsyPi.,i—y../ composition.
In the embodiment of Fig. 5, the various elements are illustrated (partly in section) corresponding to the other figures, like numerals indicating like parts, although some are of a different configuration. Active layer 1_1 p-type gallium arsenide (GaAs) is shown as a stripe buried in layers 13_ of the opposite conductivity type,
GaAlAs. Junction forming waveguiding stripe L2_ is similarly buried with only the longitudinal ends of stripes 11 and 12. exposed. Semiconductor cap layer
1_6 covers the top side of stripe LI while confining layer _L3_ extends beneath stripe 12.. The narrow stripe configuration of the stripes in Fig. 5 efficiently limits the light for emission or light received to a narrow portion of the diode and facilitates direct coupling to other elements of an optical transmissions line. Also shown in Fig. 5 are metal contacts 1 and L8_ as in Fig. 1; oxide insulating layers 2_9. and 3_0 serve to limit the spread of current over a wide area in the short pathway.
The significance of the high efficiency coupling of the invention can be appreciated by comparison of the physical dimensions of elements of the diode of the instant invention with those of convention diodes employed in fiber-optic microelectronics.. In general, optical fibers have a light transmitting core with a minimum of about
10 μm diameter, while conventional diodes have an active layer thickness of only the order of 0.1 μm thickness. In the emission mode, this is of no great concern, for as the light emerges from the lasing diode and spreads out, it can be generally incident on and enter the fiber, which has the greater cross section. In the detecting mode, however, much light emerging from the larger cross section of the fiber end would not enter the thin active layer. With the diode of the instant invention, as a result of the waveguiding layer, the waveguiding layer upon reverse
Franz-Keldysh biasing becomes part of the active receiving area comparable in cross section to that of
SUBSTITUTE SHEET the fiber. Accordingly, the better cross-sectional match provides low-loss adaptability to direct coupling.
A further significant feature of the instant invention is its good high frequency response as an emitter while having a large cross section as a detector. As an emitter it can function with a very thin active layer, for high efficiency, because of the light-confining layers. However, as a result of the adjacent lightly doped waveguiding layer which comes into play in the detector mode, a large effective detector cross-section can be provided.
SUBSTITUTE SHEET

Claims

We claim:
1. An emitter-receiver diode device for direct optical coupling to optical signal transmission lines, said device having means for selections between an emitter mode and a receiver mode, said device being a unitary combination of a double heterostructure diode for emission with a waveguide photodiode for reception, said device having electrical contact means to couple it to an external electric circuit.
2. The device of claim 1 which is a layered structure having a junction formed between one surface of a heavily doped p-type semiconductor active layer and one surface of a lightly doped n-type semiconductor waveguiding layer, both layers being substantially planar and having a semiconductor confining layer in contact with the surface of each opposite the junction- forming surface of each of said layers.
3. The device of claim 1 which is of a stripe configuration having a junction formed by a heavily-doped, p-type semiconductor active planar stripe, and one surface of a lightly- doped, n.-type semiconductor waveguiding planar stripe, each of said layers having surfaces opposite the junction surface and having a confining semiconductor layer contacting the edges of each stripe and the surface opposite the junction-forming surface of the waveguiding stripe.
ET
4. The device of claim 1 which is of a stripe configuration having a narrow, longitudinally extended, highly-doped p-type semiconductor active stripe, said stripe having opposed surfaces, lateral edges and longitudinal ends, one of said opposed surfaces forming a junction with a surface of a coextensive n-type semiconductor waveguiding stripe of a configuration similar to the active stripe, the active stripe having on the surface opposite the junction-forming surface a contacting semiconductor cap layer, said active stripe having on the two lateral edges a contacting semiconductor confining layer, said confining layer contacting lateral edges and at the surface opposite the junction-forming surface of the waveguiding stripe, whereby in operation light is substantially restricted to the junction-forming stripes except at its longitudinal ends.
<_
5. The device of claim 3 wherein the active layer is highly-doped p-type gallium arsenide and the waveguiding layer is lightly-doped n-type gallium arsenide.
6. The device of claim 4 wherein the active stripe is highly-doped p-type gallium arsenide and the waveguiding stripe is lightly-doped n-type gallium arsenide.
7. The device of claim 1 having means for direct optical coupling to optical signal transmitting means.
SUBSTITUTESHEET
8. The device of claim 7 wherein the means for direct optical coupling comprises a microlens.
9. The device of claim 8 wherein the microlens is a cylindrical lens.
10. The device of claim 8 wherein the microlens is a spherical lens.
11. The device of claim 4 wherein the semiconductor cap layer has an oxide layer on each lateral surface between it and electrical contact means to partially limit electric currents in the device to a narrow pathway substantially coextensive with the active stripe.
12. A semiconductor diode device for direct coupling to fiber optical transmission lines, said device being a unitary combination of a double heterostructure diode and a waveguide photodiode of a multiplicity of functional semiconductor layers comprising:
a highly doped active layer of a selected conductivity type, the layer having first and second surfaces; a confining layer of the selected conductivity type with one surface in contact with the first surface of the active layer; a waveguide layer of the conductivity type opposite the selected type, the waveguide layer having first and second surfaces, the first surface in contact with the second surface of the active layer; a confining
SUBSTITUTE SHEET layer having a conductivity type opposite the selected type and having a surface in contact with the second surface of the waveguide layer; and cap and substrate layers and means to couple the cell to optical and electrical circuits.
PCT/US1988/000464 1987-02-02 1988-02-02 Dual mode laser/detector diode for optical fiber transmission lines WO1988005970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/009,863 US4773074A (en) 1987-02-02 1987-02-02 Dual mode laser/detector diode for optical fiber transmission lines
US009,863 1987-02-02

Publications (1)

Publication Number Publication Date
WO1988005970A1 true WO1988005970A1 (en) 1988-08-11

Family

ID=21740156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1988/000464 WO1988005970A1 (en) 1987-02-02 1988-02-02 Dual mode laser/detector diode for optical fiber transmission lines

Country Status (4)

Country Link
US (1) US4773074A (en)
EP (1) EP0346389A4 (en)
JP (1) JPH02502053A (en)
WO (1) WO1988005970A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0765013A1 (en) * 1995-09-20 1997-03-26 Siemens Aktiengesellschaft Optoelectronic transceiver
EP1237019A2 (en) * 2001-02-28 2002-09-04 Fujitsu Limited Optical wiring substrate, method of manufacturing optical wiring substrate and multilayer optical wiring

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3711617A1 (en) * 1987-04-07 1988-10-27 Siemens Ag MONOLITHICALLY INTEGRATED WAVE GUIDE-PHOTODIODE-FET COMBINATION
US4948960A (en) * 1988-09-20 1990-08-14 The University Of Delaware Dual mode light emitting diode/detector diode for optical fiber transmission lines
US4989051A (en) * 1990-02-13 1991-01-29 The Univ. Of Delaware Bi-directional, feed through emitter-detector for optical fiber transmission lines
US5097299A (en) * 1990-04-05 1992-03-17 University Of Delaware Multi-bandgap single dual function light emitting/detecting diode
US4989214A (en) * 1990-05-11 1991-01-29 Northern Telecom Limited Laser diode, method for making device and method for monitoring performance of laser diode
GB2254213B (en) * 1990-12-20 1994-12-14 Northern Telecom Ltd Full-duplex optical transmission system
SE468267B (en) * 1991-04-10 1992-11-30 Ericsson Telefon Ab L M TERMINAL FOR A FREQUENCY PART, OPTICAL COMMUNICATION SYSTEM
US5140152A (en) * 1991-05-31 1992-08-18 The University Of Colorado Foundation, Inc. Full duplex optoelectronic device with integral emitter/detector pair
US5149962A (en) * 1991-06-03 1992-09-22 Simmonds Precision Products, Inc. Proximity detector using faraday effect and bidirectional transmission
US5408092A (en) * 1993-12-09 1995-04-18 Simmonds Precision Products, Inc. Multiple optic sensor system
IL121138A (en) * 1997-06-23 2001-11-25 Chiaro Networks Ltd Integrated optical beam deflector apparatus
US6195485B1 (en) 1998-10-26 2001-02-27 The Regents Of The University Of California Direct-coupled multimode WDM optical data links with monolithically-integrated multiple-channel VCSEL and photodetector
US6687278B1 (en) * 1999-09-02 2004-02-03 Agility Communications, Inc. Method of generating an optical signal with a tunable laser source with integrated optical amplifier
US6580739B1 (en) 1999-09-02 2003-06-17 Agility Communications, Inc. Integrated opto-electronic wavelength converter assembly
US6624000B1 (en) 1999-09-02 2003-09-23 Agility Communications, Inc. Method for making a monolithic wavelength converter assembly
US7386207B2 (en) * 2001-12-27 2008-06-10 Kotura, Inc. In-line light sensor
US9590140B2 (en) * 2014-07-03 2017-03-07 Sergey Suchalkin Bi-directional dual-color light emitting device and systems for use thereof
US10367502B2 (en) 2017-04-25 2019-07-30 Avago Technologies International Sales Pte. Limited Isolation device with half duplex channel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952265A (en) * 1974-10-29 1976-04-20 Hughes Aircraft Company Monolithic dual mode emitter-detector terminal for optical waveguide transmission lines
FR2437083A1 (en) * 1978-09-20 1980-04-18 Hitachi Ltd SEMICONDUCTOR LASER DEVICE
US4202000A (en) * 1977-06-27 1980-05-06 Thomson-Csf Diode capable of alternately functioning as an emitter and detector of light of the same wavelength
US4440470A (en) * 1980-09-12 1984-04-03 U.S. Philips Corporation Optical transmission system coupling a semiconductor laser diode to a multimode optical fiber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2273371B1 (en) * 1974-05-28 1978-03-31 Thomson Csf
FR2275078A1 (en) * 1974-06-14 1976-01-09 Thomson Csf Two-directional optical telecommunication device - comprising, sepd. by fibre optics, diodes which alternately emit and receive light
US4327962A (en) * 1980-02-13 1982-05-04 Redman Charles M Laser/amplifier/detector diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952265A (en) * 1974-10-29 1976-04-20 Hughes Aircraft Company Monolithic dual mode emitter-detector terminal for optical waveguide transmission lines
US4202000A (en) * 1977-06-27 1980-05-06 Thomson-Csf Diode capable of alternately functioning as an emitter and detector of light of the same wavelength
FR2437083A1 (en) * 1978-09-20 1980-04-18 Hitachi Ltd SEMICONDUCTOR LASER DEVICE
GB2031644A (en) * 1978-09-20 1980-04-23 Hitachi Ltd Semiconductor laser device
US4440470A (en) * 1980-09-12 1984-04-03 U.S. Philips Corporation Optical transmission system coupling a semiconductor laser diode to a multimode optical fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0346389A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0765013A1 (en) * 1995-09-20 1997-03-26 Siemens Aktiengesellschaft Optoelectronic transceiver
US5875274A (en) * 1995-09-20 1999-02-23 Siemens Aktiengesellschaft Optoelectronic transmission-reception device
EP1237019A2 (en) * 2001-02-28 2002-09-04 Fujitsu Limited Optical wiring substrate, method of manufacturing optical wiring substrate and multilayer optical wiring
EP1237019B1 (en) * 2001-02-28 2009-04-08 Fujitsu Limited Optical coupling between optical wiring substrates

Also Published As

Publication number Publication date
EP0346389A1 (en) 1989-12-20
EP0346389A4 (en) 1991-01-09
JPH02502053A (en) 1990-07-05
US4773074A (en) 1988-09-20

Similar Documents

Publication Publication Date Title
US4948960A (en) Dual mode light emitting diode/detector diode for optical fiber transmission lines
US4773074A (en) Dual mode laser/detector diode for optical fiber transmission lines
US5305412A (en) Semiconductor diode optical switching arrays utilizing low-loss, passive waveguides
US5262656A (en) Optical semiconductor transceiver with chemically resistant layers
US4493113A (en) Bidirectional fiber optic transmission systems and photodiodes for use in such systems
US4389567A (en) Semiconductor switching device for guiding and amplifying radiation
US7199441B2 (en) Optical module device driven by a single power supply
US4577209A (en) Photodiodes having a hole extending therethrough
US20050100272A1 (en) Integrated demultiplexer/photoreceiver for optical networks and method of controlling transparency of optical signal transmission layer
JPH1183619A (en) Light receiving element and light receiving element module
US6020620A (en) Semiconductor light-receiving device with inclined multilayer structure
US4925264A (en) Optical switching element comprising two parallel optical guides and switching matrix constituted by such elements
US5299057A (en) Monolithically integrated optical amplifier and photodetector tap
Kasahara et al. Monolithically integrated high-speed light source using 1.3-µm wavelength DFB-DC-PBH laser
JP2710070B2 (en) Semiconductor light receiving element and optical semiconductor device using this semiconductor light receiving element
JP3111982B2 (en) Waveguide type semiconductor optical device
JPS6211796B2 (en)
JP2965139B2 (en) Waveguide type semiconductor photo detector
JP2970575B2 (en) Waveguide type semiconductor photo detector
JP2924834B2 (en) Optical semiconductor device and method of manufacturing the same
KR100243659B1 (en) Multi-functional optical device and method for forming the same
KR19990014890A (en) Method and apparatus for manufacturing DFB laser diode with coupled optical waveguide
JPH11112013A (en) Semiconductor photodetector
KR100238422B1 (en) Single chip optical device with complex functions
JPS6320398B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1988902657

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988902657

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1988902657

Country of ref document: EP