WO1988010545A1 - Projector - Google Patents

Projector Download PDF

Info

Publication number
WO1988010545A1
WO1988010545A1 PCT/DE1988/000349 DE8800349W WO8810545A1 WO 1988010545 A1 WO1988010545 A1 WO 1988010545A1 DE 8800349 W DE8800349 W DE 8800349W WO 8810545 A1 WO8810545 A1 WO 8810545A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
light
image
beam splitter
cube
Prior art date
Application number
PCT/DE1988/000349
Other languages
English (en)
French (fr)
Inventor
Günter BAUR
Lutz Pickelmann
Jörg SEIBEL
Original Assignee
Fraunhofer-Gesellschaft Zur Förderung Der Angewand
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft Zur Förderung Der Angewand filed Critical Fraunhofer-Gesellschaft Zur Förderung Der Angewand
Priority to AT88904920T priority Critical patent/ATE86423T1/de
Priority to DE8888904920T priority patent/DE3878910D1/de
Publication of WO1988010545A1 publication Critical patent/WO1988010545A1/de
Priority to HK869/93A priority patent/HK86993A/xx

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the invention relates to a projection device with a light source and a device for producing a white parallel light beam, with at least one dichroic color splitter layers comprising the dichroic prism, which is provided on three sides with three different color image excerpts assigned to liquid crystal light valve arrangements, and with an objective, by means of which the color image extracts generated by the light valve arrangements can be projected together onto a screen.
  • Such a projection device for projecting color images without the use of a cathode ray tube is described in S. Morozumi et al. , SID 86 DIGEST (1986), page 375 ff.
  • the extracts the color image associated liquid crystal light valve assemblies are arranged on three end faces of a dichroic prism, 'wherein the Pro ⁇ jetechnischs complaintiv is arranged on the fourth end face.
  • the white parallel light beam coming from the light source is deflected with the aid of a mirror arrangement with two dichroic mirrors in such a way that it reaches the interior of the dichroic prism via the light valve arrangements and from there to the projection objective.
  • the invention is based on the object of creating a projection device which allows a higher luminous efficacy and / or image resolution to be achieved.
  • FIG. 1 shows a projection device according to the invention in a schematic perspective view, M -
  • FIG. 2 shows a view corresponding to FIG. 1, in which the dielectric coatings of the various optical components are shown hatched,
  • FIG. 3 shows the beam splitter cube of the device according to the invention in an enlarged illustration to illustrate the different polarization directions
  • FIG. 5 shows a schematic top view of a liquid crystal matrix display which is used as a light valve ⁇
  • FIG. 7 shows the second color splitter cube in a perspective view to illustrate the different orientations of the dichroic color splitter layers
  • 35 FIG. 8 shows a second embodiment of the beam splitter cube
  • 9 shows a third embodiment of the beam splitter cube.
  • the electro-optical projection device shown in FIG. 1 has a light source 1 that supplies white light, to which a reflector 2 and a collimator lens 3 are assigned, in order to create a white parallel light beam, which is schematically illustrated in FIG. 1 by its center line 4, to create.
  • the light beam 4 is deflected with the aid of a deflecting mirror 5.
  • the deflected light beam bundle 6 acts on a light valve unit 7.
  • the color light distribution and intensity distribution of the white light beam bundle 6 is influenced in the manner discussed in more detail below so that an objective 8 is used a projection image is created on a screen not shown in the drawing.
  • the central axis of the light leaving the light valve unit 7 is provided with the reference symbol 9 in FIG.
  • the light valve unit 7 contains a polarizing beam splitter cube 10, the upper side 11 of which serves as a light inlet for the light beam bundle 6 and whose side 12 pointing to the right in FIGS. 1, 2 and 3 serves as a light outlet.
  • the beam splitter cube 10 is a MacNeille prism, the vapor-deposited polarizing beam splitter layer 13 of which, starting from the edge 14 formed by the top 11 and the side 12, extends diagonally in the manner shown in FIGS. 1, 2 and 3 through the beam splitter cube 10 to that Edge 14 extends diagonally opposite edge 15.
  • the polarizing beam splitter cube 10 which is shown separately in FIG.
  • the unpolarized light beam 6 reaches the beam splitter cube 10 via the upper side 11, part of the light being reflected on the beam splitter layer 13 as an s-wave 16 with a direction of polarization perpendicular to the plane of incidence, while another light component as the p-wave den Beam splitter cube 10 leaves on the underside 18 opposite the top 11.
  • the directions of polarization of the light beam 6, the s-wave 16 and the p-wave 17 are each symbolized in FIG. 3 by points 19 or by arrows 20.
  • the beam splitter cube 10 is assigned a first color splitter cube 21 and a second color splitter cube 22, in which the light of the p-wave 17 and the s-wave 16 is broken down into colors and on reflective liquid crystals
  • Light valves 23, 24, 25, 26, 27 and 28, which are attached to different end faces of the color splitter cubes 21, 22, are reflected in accordance with the respective local reflectance of the liquid crystal light valves.
  • the polarization state of the light reflected by the liquid crystal light valves 23 to 28 is changed in its polarization state, as follows from the description below, in accordance with the individual pixels of the image to be projected, so that that from the first color splitter cube 21 into the Underside 29 of the beam splitter cube 10 is fed light of activated pixels on the beam part layer 13 is deflected in the direction of the lens, while the light-activated pixels coming back from the second color splitter cube 22 and fed into the side 30 of the beam splitter cube 10 pointing away from the lens 8 are transmitted from the beam splitter layer 13 to the lens 8.
  • the light of the non-activated pixels which has not been changed with respect to the polarization state by the liquid crystal light valves in each case returns to the top 11 of the beam splitter cube 10 in the same way in which it propagates to the first color splitter cube 21 or to the second color splitter cube 22 and from there back into the lighting system of the projection device.
  • the structure of the reflective liquid crystal light valves 23 to 28 results from FIGS. 4 and 5.
  • FIG. 4 shows, in cross section and exaggerated in thickness, for example, the structure of the liquid crystal light valve 26, the front glass plate 31 of which, which is coupled to the color splitter cube 22, bears a transparent front electrode 32 on its rear side.
  • a receiving space 36 for a liquid crystal is delimited with the aid of spacers 33 and a rear glass plate 34 which is coated with a mirror 35 which acts as a rear electrode.
  • the back electrode and the mirror can also be realized by separate coatings.
  • the transparent front electrode 32 and the back electrode 35 are structured in the manner shown schematically in FIG. 5 in accordance with a liquid crystal matrix display unit.
  • a plurality of row electrodes 37 with row switches 38 are provided for controlling the picture lines
  • a plurality of column electrodes 39 with column switches 40 are provided for controlling the picture columns.
  • the pixels or points of the light valve matrix marked with points 41 are active, so that the pixels and points assigned to the points 41 are electro-optically vis-à-vis the others in terms of their brightness and / or color on the projection screen uncontrolled pixels are changed.
  • the color splitter cubes 21 and 22 can consist of simple glass cubes which have only the liquid crystal light valves 23 and 26 on the sides opposite the sides 30 and 29.
  • the light reflected at the beam splitter layer 13 reaches the liquid crystal light valve 26, which at the activated light points corresponding to the degree of the respective control a rotation of the polarization direction causes and the light modulated with respect to its polarization direction reflects to the beam splitter cube 10, where the light changed in its polarization direction with respect to the s-polarization propagates in the direction of the objective 8.
  • the light of the p-wave 17 passes via the bottom 29 into a glass cube corresponding to the first color splitter cube 21, which has only the liquid crystal light valve 23 on the side opposite the bottom 29 is provided.
  • the light of the p-wave is changed in its polarization direction in relation to the p-polarization in accordance with the actuation of the matrix points, so that the light corresponding to the activated pixels does not pass through the beam splitter layer 13, but rather reflects in the direction of the objective 8 is tiert.
  • the arrangement of the image lines can be selected on the one hand so that the image lines of the two liquid crystal light valves 23, 26 overlap, so that there is an improvement in contrast or an increase in intensity.
  • a resolution of 1024 image lines can be achieved in the projected image with light valves which provide a resolution of, for example, 512 image lines, the overall image also being, for example, in its upper half with the light valves 23 to 25 of the first color splitter cube 21 and in its lower half is created with the light valves 26 to 28 of the second color splitter cube 22.
  • the color divider cubes 21, 22 each have three liquid crystal light valves 23, 24, 25 and 26, 27, 28, respectively.
  • the first color splitter cube 21 has a first dichroic cube Color divider layer 51 and a second dichroic color divider layer 52.
  • the dichroic color divider layer 51 consists of a vapor-deposited dielectric layer which contains the blue spectral component with a wavelength of less than 490 nm for the p-wave and 510 nm for the s-wave Direction on the liquid crystal light valve 24 reflected.
  • the orientation of the plane of the dichroic color splitter layer 51 runs from the upper rear edge to the front lower edge of the first color splitter cube 21.
  • the second dichroic color splitter layer 52 is provided, which, as can be seen from FIGS. 1, 2 and 6, of the extends from the upper front edge to the rear lower edge of the first color splitter cube 21.
  • the liquid crystal light valve 24 is assigned to the blue extract, the liquid crystal light valve 25 to the red extract and the liquid crystal light valve 23 to the green extract.
  • the structure of the second color splitter cube 22 corresponds to that of the first color splitter cube 21, but the orientation of the cutting line of the dichroic color splitter layers 51, 52 in the second color splitter cube 22 in the drawing runs in the vertical direction and not in the horizontal direction as in the first color splitter cube 21 .
  • the second color divider cube 22 is thus rotated by 90 ° around the edge 15 with respect to the first color divider cube 21.
  • the dichroic color splitter layers 51, 52 are provided with hatching lines for clarification in FIGS. 2, 6 and 7, whereas the hatching lines in FIG. 1 have been omitted in order to make the liquid crystal light valves 23 to 28 easier to recognize.
  • the glass substrate of the Color divider cubes 21, 22 each form the support surfaces for the color divider layers 51, 52 and the liquid crystal light valves 23 to 28.
  • the operation of the second color splitter cube 22 corresponds to that of the first color splitter cube 21, and the person skilled in the art recognizes that the liquid crystal light valve 27 is assigned to the blue separation, the liquid crystal light valve 28 to the red separation and the liquid crystal light valve 26 to the green separation.
  • the reflection splitter curves for the p-wave or s-wave are slightly shifted after reflection for the recombination of the light.
  • Undesired spectral components which cannot be projected due to this edge shift in the transmission curve, are reflected back into the lighting system by reflective dichroic color filters in front of the light valves, since their polarization state has not been changed.
  • the angle of incidence for the dichroic color filter vapor-deposited on the corresponding outside of the cube is 0 degrees.
  • Dichroic color filters are connected upstream of the liquid crystal light valves 23, 24, 26 and 28, while no upstream filters are required for the liquid crystal light valves 25 and 27.
  • the color filter associated with the liquid crystal light valve 26 reflects light whose wavelength is less than 515 nm, while the color filter associated with the liquid crystal light valve 28 reflects light with a wavelength of less than 600 nm.
  • the liquid crystal light valve 24 of the first color splitter cube 21 is assigned a dichroic color filter which reflects light with a wavelength of more than 490 nm.
  • the filter assigned to the liquid crystal light valve 23 reflects light with a wavelength of more than 570 nm.
  • spectral components are projected whose blue light is in the range between 400 and 490 nm, whose green light is in the range between 515 and 570 nm and whose red light is in the range between 600 and 700 nm.
  • the polarizing beam splitter cube 10 acts simultaneously as a polarizer and analyzer. It also has the task of superimposing the partial images of the individual light valves 23 to 28.
  • the image created on the canvas not shown in the drawing is made up of the overlapping of six image excerpts.
  • the image extracts are designed in such a way that when pixels of the same color but different polarization directions are superimposed, an increase in intensity and practically a doubling of the gray levels possible with individual light valves can be achieved.
  • the number of lines of the overall image can be doubled using electronic measures.
  • FIGS. 8 and 9 show special embodiments for replacing the beam splitter cube 10, FIG. 8 showing a beam splitter cube 60 in the liquid bath and FIG. 9 a polarizing beam splitter plate 80 in the liquid bath.
  • a high image contrast can be achieved with a polarizing beam splitter cube 10 made of highly refractive materials with a refractive index of approximately 1.62.
  • the voltage birefringence induced by temperature gradients, which is disruptive at high luminous fluxes, can be eliminated by using polarizing plates in liquid cuvettes. Since there are no high-refractive liquids with a refractive index of about 1.6 with sufficient transparency in the wavelength range between 400 nm and 500 nm, the beam splitter shown in FIG. 8 is proposed according to one embodiment of the invention, which is the key component enables the implementation of the projection system according to the invention, in particular for high luminous fluxes.
  • the beam splitter shown in FIG. 8 consists of a polarizing beam splitter cube 60 made of highly refractive glass with an evaporated layer sequence on the diagonal surface.
  • the vapor-deposited polarizing beam splitter layer is provided with the reference character 63 in FIG.
  • the beam splitter cube 60 made of high-refractive glass is immersed in a liquid bath 65. In order to avoid differences in refractive index, the glass substrate (untreated outer sides) and the liquid are matched to one another with regard to the dispersion.
  • the narrow liquid layer of the liquid bath 65 which surrounds the beam splitter cube 60, has the effect that a uniform temperature distribution can be maintained and thus an individual voltage double refraction is reduced.
  • the liquid bath 65 is in a cuvette 66, in which several Cell windows 67 are provided. Because of the narrow light path through the thin liquid layer between the cuvette wall and the beam splitter cube 60, there are only slight absorptions in the spectral range between 400 and 500 nm.
  • the liquid reservoir of the liquid bath 65 is connected to a buffer vessel, not shown in the drawing, in order to avoid an increase in pressure when the temperature rises.
  • the windows 67 of the cuvette 66 are adjusted with respect to the refractive index (broadband anti-reflective on the outside).
  • the polarizing beam splitter layer 13 is located between two cemented plane parallel plates 81, 82 of a high-breaking glass substrate.
  • the plane-parallel plates 81, 82 like the beam splitter layer 13, are at an angle of 45 degrees to the incident light beam 6.
  • the wedge prisms 83, 84 on both sides of the plane-parallel plates 81, 82 again achieve the outer shape of a cube.
  • the described arrangement of the prisms 83, 84 and the plane parallel plates 81, 82 is located in a cube-shaped cuvette 66. Between the plane parallel plates 81, 82 and the wedge prisms 83 ' , 84 and between the prisms 83, 84 and the cell windows 67 each have narrow gap areas with the high refractive index liquid of the liquid bath 65 are filled. All components of the arrangement shown in FIG. 9 are matched to one another in terms of the refractive index and are washed around by a thin layer of liquid.
  • the expanded liquid bath in turn ensures a homogeneous temperature distribution, so that stress birefringence within the arrangement is avoided.
  • the wedge prisms 83, 84 By using the wedge prisms 83, 84, only a small light path through the highly refractive liquid is obtained, which results in only slight absorption losses in the wavelength range between 400 and 500 nm.
  • the wedge prisms 83, 84 are divided and crossed by a further liquid gap.
  • the projection device described above enables large-format display in color and is characterized by a high resolution and high efficiency with a compact structure at the same time. Both polarization directions of the projection light are used. As a result, with one and the same hardware structure, either the light intensity can be doubled while the grayscale scope can be expanded, or the number of image lines can be doubled, the different polarization directions of different successive lines also being suitable for three-dimensional representation of images.
  • the selection of the respective operating mode takes place solely by correspondingly controlling the image lines assigned to the image templates to be displayed.
  • an arrangement with LC matrix displays is shown as Image template described.
  • the picture lines are divided into four groups, which are controlled, for example, by the interlace method.
  • the image information to be displayed is entered via the image columns. If the projection device is used to increase the light intensity, two successive image lines are activated simultaneously, so that one and the same image information is represented by two pixels.
  • the increase in light intensity is achieved by superimposing the images of two identical image templates. This also extends the grayscale level of the projected image.
  • the number of lines can be increased if only every second line of a matrix is activated as an image line.
  • the superposition of two partial images of identical color is then carried out using the interlace method. As a result, the maximum number of lines of the image templates that can be controlled is doubled. Since the light of successive lines in the projected image is polarized differently, the method is also suitable for the three-dimensional display of images if the viewer wears glasses whose glasses are designed as different analyzers.

Description

Pro ektionsVorrichtung
Die Erfindung betrifft eine Projektionsvorrichtung mit einer Lichtquelle und einer Einrichtung zur Erzeugung eines weißen Parallellichtstrahlbündels, mit wenigstens einem zwei dichroitische Farbteilerschichten aufweisen¬ den dichroitischen Prisma, das auf drei seiner Seiten mit drei verschiedenen Farbbildauszügen zugeordneten Flüssigkristall-Lichtventilanordnungen versehen ist, und mit einem Objektiv, durch das die von den Lichtven¬ tilanordnungen erzeugten Farbbildauszüge gemeinsam auf eine Leinwand projizierbar sind.
Eine derartige Projektionsvorrichtung zum Projizieren von Farbbildern ohne den Einsatz einer Kathodenstrahl¬ röhre ist in S. Morozumi et al . , SID 86 DIGEST (1986), Seite 375 ff beschrieben. Die den Farbbildauszügen zugeordneten Flüssigkristall-Lichtventilanordnungen sind auf drei Stirnseiten eines dichroitischen Prismas angeordnet,' wobei an der vierten Stirnseite das Pro¬ jektionsobjektiv angeordnet ist. Das von der Licht¬ quelle kommende weiße Parallellichtstrahlbündel wird mit Hilfe einer Spiegelanordnung mit zwei dichroiti¬ schen Spiegeln so umgelenkt, daß es über die Lichtven- tilanordnungen in das Innere des dichroitischen Prismas und von dort zum Projektionsobjektiv gelangt.
Ausgehend von diesem Stand der Technik liegt der Er¬ findung die Aufgabe zugrunde, eine Projektionsvorrich- tung zu schaffen, die eine höhere Lichtausbeute und/oder Bildau lösung zu erreichen gestattet.
Diese .Aufgabe wird erfindungsgemäß dadurch gelöst, daß zwei dichroitische Farbteilerwürfel mit reflektiv arbeitenden Lichtventilanordnungen vorgesehen sind, die jeweils mit einem der unterschiedlichen Polarisations¬ richtungen zugeordneten Ausgänge eines polarisierenden Strahlteilers gekoppelt sind, durch den einerseits das weiße Lichtstrahlbündel auf die beiden Farbteilerwürfel aufteilbar und durch den andererseits das von den Farbteilerwürfeln zurückkehrende Licht der aktivierten Bildpunkte in das Objektiv leitbar ist. 5
Zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Nachfolgend wird die Erfindung anhand der Zeichnung 10 näher erläutert. Es zeigen:
Fig. 1 eine Projektionsvorrichtung gemäß der Erfin¬ dung in einer schematischen perspektivischen Ansicht, M -, Fig. 2 eine Figur 1 entsprechende Ansicht, in der die dielektrischen Beschichtungen der ver¬ schiedenen optischen Bauelemente schraffiert dargestellt sind,
Fig. 3 den Strahlteilerwürfel der erfindungsgemäßen 20 Vorrichtung in einer vergrößerten Darstellung zur Veranschaulichung der verschiedenen Polarisationsrichtungen,
Fig. 4 einen Querschnitt durch eines der Flüssig¬ kristall-Lichtventile der Projektionsvor- 25 richtung,
Fig. 5 eine schematische Draufsicht auf ein Flüssig¬ kristall-Matrixdisplay, das als Lichtventil zum Einsatz kommt τ
Fig. 6 den ersten Farbteilerwürfel der Projektions- 30 Vorrichtung in einer perspektivischen Ansicht,
Fig. 7 den zweiten Farbteilerwürfel in einer per¬ spektivischen Ansicht zur Veranschaulichung der unterschiedlichen Orientierungen der dichroitischen Farbteilerschichten, 35 Fig. 8 eine zweite Ausführungsform des Strahlteiler¬ würfel und Fig. 9 eine dritte Ausführungsform des Strahlteiler¬ würfels.
Die in Figur 1 dargestellte elektrooptische Projek- tionsvorrichtung verfügt über eine weißes Licht lie¬ fernde Lichtquelle 1 , der ein Reflektor 2 und eine Kollimatorlinse 3 zugeordnet sind, um ein weißes Pa¬ rallellichtstrahlbündel, das in Figur 1 durch seine Mittellinie 4 schematisch veranschaulicht ist, zu erzeugen. Das Lichtstrahlbündel 4 wird mit Hilfe eines Umlenkspiegels 5 umgelenkt. Das umgelenkte Lichtstrahl¬ bündel 6 beaufschlagt eine Lichtventileinheit 7. In der Lichtventileinheit 7 wird entsprechend den zu proje¬ zierenden Bildern das weiße Lichtstrahlbündel 6 in der weiter unten näher erörterten Weise in seiner Farbver¬ teilung und Intensitätsverteilung so beeinflußt, daß mit Hilfe eines Objektives 8 auf einer in der Zeichnung nicht dargestellten Leinwand ein Projektionsbild er¬ stellt wird. Die Mittelachse des die Lichtventileinheit 7 verlassenden Lichtes ist in Figur 2 mit dem Bezugs¬ zeichen 9 versehen.
Die Lichtventileinheit 7 enthält einen polarisierenden Strahlteilerwürfel 10, dessen Oberseite 11 als Licht- einlaß für das Lichtstrahlbündel 6 und dessen in den Figuren 1, 2 und 3 nach rechts weisende Seite 12 als Lichtauslaß dient. Der Strahlteilerwürfel 10 ist ein MacNeille-Prisma, dessen aufgedampfte polarisierende Strahlteilerschicht 13 sich ausgehend von der durch die Oberseite 11 und die Seite 12 gebildeten Kante 14 diagonal in der in den Figuren 1 , 2 und 3 dargestellten Weise durch den Strahlteilerwürfel 10 bis zu der der Kante 14 diagonal gegenüberliegenden Kante 15 er¬ streckt. Der polarisierende Strahlteilerwürfel 10, der in Figur 3 gesondert dargestellt ist, besteht aus einem hoch¬ brechenden Glas und teilt das einfallende unpolarisier- te Lichtstrahlbündel 6 in zwei Lichtbündel entgegenge- setzter Polarisationsrichtung auf, was in Figur 3 schematisch dargestellt ist. Das unpolarisierte Licht¬ strahlbündel 6 gelangt über die Oberseite 11 in den Strahlteilerwürfel 10, wobei an der Strahlteilerschicht 13 ein Teil des Lichtes als s-Welle 16 mit einer Po- larisationsrichtung rechtwinklig zur Einfallsebene reflektiert wird, während ein anderer Lichtanteil als p-Welle den Strahlteilerwürfel 10 an der der Oberseite 11 gegenüberliegenden Unterseite 18 verläßt. Die Po¬ larisationsrichtungen des Lichtstrahlbündels 6, der s-Welle 16 und der p-Welle 17 sind in Figur 3 jeweils durch Punkte 19 oder durch Pfeile 20 symbolisiert.
Wie man in den Figuren 1 und 2 erkennt, sind dem Strahlteilerwürfel 10 ein erster Farbteilerwürfel 21 und ein zweiter Farbteilerwürfel 22 zugeordnet, in denen das Licht der p-Welle 17 und der s-Welle 16 in Farben zerlegt wird und an reflektiven Flüssigkri¬ stall-Lichtventilen 23, 24, 25, 26, 27 und 28, die an unterschiedlichen Stirnflächen der Farbteilerwürfel 21 , 22 angebracht sind, entsprechend dem jeweiligen lokalen Reflexionsgrad der Flüssigkristall-Lichtventile reflek¬ tiert wird. Das von den Flüssigkristall-Lichtventilen 23 bis 28 reflektierte Licht ist in seinem Polarisa¬ tionszustand, wie sich aus der nachfolgenden Beschrei- bung ergibt, entsprechend den einzelnen Bildpunkten des zu projizierenden Bildes in seinem Polarisationszustand verändert, so daß das vom ersten Farbteilerwürfel 21 in die Unterseite 29 des Strahlteilerwürfels 10 einge¬ speiste Licht aktivierter Bildpunkte an der Strahltei- lerschicht 13 in Richtung auf das Objektiv umgelenkt wird, während das vom zweiten Farbteilerwürfel 22 zurückkommende und in die vom Objektiv 8 wegweisende Seite 30 des Strahlteilerwürfels 10 eingespeiste Licht aktivierter Bildpunkte von der Strahlteilerschicht 13 zum Objektiv 8 durchgelassen wird. Das durch die Flüs¬ sigkristall-Lichtventile bezüglich des Polarisations¬ zustandes nicht veränderte Licht der nicht aktivierten Bildpunkte gelangt jeweils auf dem gleichen Weg, auf dem es sich zum ersten Farbteilerwürfel 21 bzw. zum zweiten Farbteilerwürfel 22 fortpflanzt, zurück zur Oberseite 11 des Strahlteilerwürfels 10 und von dort zurück in das Beleuchtungssystem der Projektionsvor¬ richtung.
Der Aufbau der reflektiven Flüssigkristall-Lichtventile 23 bis 28 ergibt sich aus den Figuren 4 und 5.
Figur 4 zeigt im Querschnitt und bezüglich der Dicke übertrieben stark dargestellt beispielsweise den Aufbau des Flüssigkristall-Lichtventils 26, dessen vordere Glasplatte 31, die mit dem Farbteilerwürfel 22 gekop¬ pelt ist, auf ihrer Rückseite eine transparente Front¬ elektrode 32 trägt. Mit Hilfe von Abstandshaltern 33 und einer hinteren Glasplatte 34, die mit einem als Rückelektrode wirksamen Spiegel 35 beschichtet ist, ist ein Aufnahmeraum 36 für ein Flüssigkristall abgegrenzt. Selbstverständlich können die Rückelektrode und der Spiegel auch durch gesonderte Beschichtungen realisiert sein.
Die transparente Frontelektrode 32 und die Rückelek¬ trode 35 sind in der in Figur 5 schematisch darge¬ stellten Weise entsprechend einer Flüssigkristall-Ma- trixanzeigeeinheit strukturiert. Wie man in Figur 5 erkennt, sind zur Ansteuerung der Bildzeilen eine •Vielzahl von Zeilenelektroden 37 mit Zeilenschaltern 38 sowie zur Ansteuerung der Bildspalten eine Vielzahl von Spaltenelektroden 39 mit Spaltenschaltern 40 vorge- sehen. Bei der in Figur 5 dargestellten Stellung der Zeilenschalter 38 und Spaltenschalter 40 sind die mit Punkten 41 gekennzeichneten Bildpunkte oder Stellen der Lichtventilmatrix aktiv, so daß die den Punkten 41 zugeordneten Bildpunkte auf dem Projektionsschirm in ihrer Helligkeit und/oder Farbe elektrooptisch gegen¬ über den übrigen nicht angesteuerten Bildpunkten ver¬ ändert sind.
Wenn auf eine farbige Bildprojektion verzichtet werden kann, können die Farbteilerwürfel 21 und 22 aus ein¬ fachen Glaswürfeln bestehen, die auf den den Seiten 30 und 29 gegenüberliegenden Seiten lediglich die Flüssig¬ kristall-Lichtventile 23 und 26 aufweisen. Bei einer solchen in der Zeichnung nicht dargestellten verein- fachten Ausführungsform gelangt das an der Strahltei¬ lerschicht 13 reflektierte Licht zu dem Flüssigkri¬ stall-Lichtventil 26, das an den aktivierten Licht¬ punkten entsprechend dem Grad der jeweiligen Ansteue¬ rung eine Drehung der Polarisationsrichtung bewirkt und das bezüglich seiner Polarisationsrichtung modulierte Licht zum Strahlteilerwürfel 10 reflektiert, wo das gegenüber der s-Polarisation in seiner Polarisations- ichtung geänderte Licht sich in Richtung auf das Objektiv 8 fortpflanzt.
Entsprechend gelangt bei der in der Zeichnung nicht dargestellten vereinfachten Ausführungsform das Licht der p-Welle 17 über die Unterseite 29 in einen dem ersten Farbteilerwürfel 21 entsprechenden Glaswürfel, der lediglich mit dem Flüssigkristall-Lichtventil 23 auf der der Unterseite 29 gegenüberliegenden Seite versehen ist. Das Licht der p-Welle wird entsprechend der Ansteuerung der Matrixpunkte in seiner Polarisa¬ tionsrichtung gegenüber der p-Polarisation verändert, so daß das den aktivierten Bildpunkten entsprechende Licht an der Strahlteilerschicht 13 nicht durchge¬ lassen, sondern in Richtung auf das Objektiv 8 reflek¬ tiert wird. Bei einer solchen Anordnung mit zwei Flüssigkristall-Lichtventilen 23, 26 kann die Anordnung der Bildzeilen einerseits so gewählt werden, daß sich die Bildzeilen der beiden Flüssigkristall-Lichtventile 23, 26 überlappen, so daß sich eine Kontrastverbes¬ serung oder Intensitätserhöhung ergibt. Andererseits ist es möglich, die Bildzeilen gegeneinander zu ver¬ schieben, so daß die Bildzeile der einen Matrix in die Leerzeile der anderen Matrix zu liegen kommt, wobei sich die Zeilenzahl des projizierten Gesamtbildes gegenüber der angesteuerten Zeilenzahl in den beiden Flüssigkristall-Lichtventilen 23, 26 verdoppelt. Auf diese Weise kann mit Lichtventilen, die eine Auflösung von z.B. 512 Bildzeilen liefern, im projizierten Bild eine Auflösung von 1024 Bildzeilen erreicht werden, wobei das Gesamtbild auch z.B. in seiner oberen Hälfte mit den Lichtventilen 23 bis 25 des ersten Farbteiler¬ würfels 21 und in seiner unteren Hälfte mit den Licht- ventilen 26 bis 28 des zweiten Farbteilerwürfels 22 erstellt wird.
Mit der in den Figuren 1 und 2 dargestellten Projek¬ tionsvorrichtung ist es möglich, sechs Bildauszüge zu überlagern, um auf diese Weise farbige Projektionsbil¬ der zu erhalten. Aus diesem Grunde verfügen die Farb¬ teilerwürfel 21, 22 jeweils über drei Flüssigkristall- Lichtventile 23, 24, 25 bzw. 26, 27, 28.
Wie man in den Figuren 1, 2 und 6 erkennt, verfügt der erste Farbteilerwürfel 21 über eine erste dichroitische Farbteilerschicht 51 sowie eine zweite dichroitische Farbteilerschicht 52. Die dichroitische Farbteiler¬ schicht 51 besteht aus einer aufgedampften dielektri¬ schen Schicht, die den blauen Spektralanteil mit einer Wellenlänge von weniger als 490 nm für die p-Welle und 510 nm für die s-Welle in Richtung auf das Flüssigkri¬ stall-Lichtventil 24 reflektiert. Die Orientierung der Ebene der dichroitischen Farbteilerschicht 51 verläuft von der oberen Hinterkante zur vorderen Unterkante des ersten Farbteilerwürfels 21.
Für den roten Spektralanteil mit einer Wellenlänge von mehr als 570 nm für die p-Welle und 600 nm für die s-Welle ist die zweite dichroitische Farbteilerschicht 52 vorgesehen, die sich, wie sich aus den Figuren 1, 2 und 6 ergibt, von der oberen Vorderkante zur hinteren Unterkante des ersten Farbteilerwürfels 21 erstreckt. Somit ist das Flüssigkristall-Lichtventil 24 dem Blau¬ auszug, das Flüssigkristall-Lichtventil 25 dem Rotaus- rüg und das Flüssigkristall-Lichtventil 23 dem Grünaus¬ zug zugeordnet.
Der Aufbau des zweiten Farbteilerwürfels 22 entspricht demjenigen des ersten Farbteilerwürfels 21, wobei jedoch die Orientierung der Schnittlinie der dichro¬ itischen Farbteilerschichten 51, 52 beim zweiten Farb¬ teilerwürfel 22 in der Zeichnung in Vertikalrichtung und nicht in Horizontalrichtung wie beim ersten Farb¬ teilerwürfel 21 verläuft. Der zweite Farbteilerwürfel 22 ist somit gegenüber dem ersten Farbteilerwürfel 21 um 90° um die Kante 15 verdreht. Die dichroitischen Farbteilerschichten 51, 52 sind zur Verdeutlichung in den Figuren 2, 6 und 7 mit Schraffurlinien versehen, wohingegen die Schraffurlinien in Figur 1 weggelassen wurden, um die Flüssigkristall-Lichtventile 23 bis 28 leichter erkennbar zu machen. Das Glassubstrat der Farbteilerwürfel 21 , 22 bildet dabei jeweils die Auf¬ lageflächen für die Farbteilerschichten 51, 52 sowie die Flüssigkristall-Lichtventile 23 bis 28.
Die Funktionsweise des zweiten Farbteilerwürfels 22 entspricht derjenigen des ersten Farbteilerwürfels 21, und der Fachmann erkennt, daß das Flüssigkristall- Lichtventil 27 dem Blauauszug, das Flüssigkristall- Lichtventil 28 dem Rotauszug und das Flüssigkristall- Lichtventil 26 dem Grünauszug zugeordnet ist.
Da mit den Flüssigkristall-Lichtventilen 23 bis 28 der Polarisationszustand des auftreffenden Lichtes verän¬ dert wird, ergeben sich nach der Reflexion für die Rekombination des Lichtes etwas verschobene Trans¬ missionskurven der Farbteilerspiegel für die p-Welle bzw. s-Welle.
Unerwünschte Spektralanteile, die aufgrund dieser Kantenverschiebung der Transmissionskurve nicht zur Projektion gelangen, werden durch reflektive dichro¬ itische Farbfilter vor den Lichtventilen in das Be¬ leuchtungssystem zurückreflektiert, da ihr Polarisa¬ tionszustand nicht verändert wurde. Der Einfallswinkel für die auf die entsprechenden Würfelaußenseiten aufge¬ dampften dichroitischen Farbfilter beträgt 0 Grad.
Den Flüssigkristall-Lichtventilen 23, 24, 26 und 28 sind dichroitische Farbfilter vorgeschaltet, während für die Flüssigkristall-Lichtventile 25 und 27 keine vorgeschalteten Filter benötigt werden.
Das dem Flüssigkristall-Lichtventil 26 zugeordnete Farbfilter reflektiert Licht, dessen Wellenlänge klei- ner als 515 nm ist, während das dem Flüssigkristall- Lichtventil 28 zugeordnete Farbfilter Licht mit einer Wellenlänge von weniger als 600 nm reflektiert. Dem Flüssigkristall-Lichtventil 24 des ersten Farbtei¬ lerwürfels 21 ist ein dichroitisches Farbfilter zuge¬ ordnet, das Licht mit einer Wellenlänge von mehr als 490 nm reflektiert. Das dem Flüssigkristall-Lichtventil 23 zugeordnete Filter reflektiert Licht mit einer Wellenlänge von mehr als 570 nm.
Aufgrund der oben erörterten Farbteiler und Farbfilter¬ schichten gelangen Spektralanteile zur Projektion, deren blaues Licht im Bereich zwischen 400 und 490 nm, deren grünes Licht im Bereich zwischen 515 und 570 nm und deren rotes Licht im Bereich zwischen 600 und 700 nm liegt.
Wie sich aus dem Vorstehenden ergibt, wirkt der polari¬ sierende Strahlteilerwürfel 10 gleichzeitig als Polari¬ sator und Analysator. Er hat außerdem die Aufgabe, die Teilbilder der einzelnen Lichtventile 23 bis 28 zu überlagern. Das auf der in der Zeichnung nicht darge- stellten Leinwand entstehende Bild setzt sich aus der Überlappung von sechs Bildauszügen zusammen. Die Bild¬ auszüge sind so konzipiert, daß bei der Überlagerung von Bildpunkten gleicher Farbe, aber unterschiedlicher Polarisationsrichtung eine Intensitätssteigerung und praktisch eine Verdopplung der mit einzelnen Lichtven¬ tilen möglichen Graustufen erzielt werden kann. In einer Anordnung, bei der die Bildzeilen des einen Lichtventils in eine Leerzeile des anderen Lichtventils fallen, kann die Zeilenzahl des Gesamtbildes mit elek- tronischen Maßnahmen verdoppelt werden.
Die Figuren 8 und 9 zeigen spezielle Ausführungsformen zum Ersatz des Strahlteilerwürfels 10, wobei Figur 8 einen Strahlteilerwürfel 60 im Flüssigkeitsbad und Figur 9 eine polarisierende Strahlteilerplatte 80 im Flüssigkeitsbad zeigt. Ein hoher Bildkontrast kann mit einem polarisierenden Strahlteilerwürfel 10 aus hochbrechenden Materialien mit einem Brechungsindex von etwa 1,62 erzielt werden. Die bei hohen Lichtströmen störende, durch Temperatur- gradienten induzierte Spannungsdoppelbrechung kann durch die Verwendung von polarisierenden Platten in Flüssigkeitsküvetten eliminiert werden. Da keine hoch¬ brechenden Flüssigkeiten mit einem Brechungsindex von etwa 1,6 mit ausreichender Transparenz im Wellenlängen- bereich zwischen 400 nm und 500 nm zur Verfügung ste¬ hen, wird gemäß einer Ausgestaltung der Erfindung der in Figur 8 dargestellte Strahlteiler vorgeschlagen, welcher als Schlüsselbauelement die Realisierung des erfindungsgemäßen Projektionssystems, insbesondere für hohe Lichtströme ermöglicht.
Der in Figur 8 dargestellte Strahlteiler besteht aus einem polarisierenden Strahlteilerwürfel 60 aus hoch¬ brechendem Glas mit einer aufgedampften Schichtenfolge auf der Diagonalfläche. Die aufgedampfte polarisierende Strahlteilerschicht ist in Figur 8 mit dem Bezugszei¬ chen 63 versehen. Der aus hochbrechendem Glas bestehen¬ de Strahlteilerwürfel 60 ist in ein Flüssigkeitsbad 65 getaucht. Um Brechungsindexunterschiede zu vermeiden, sind das Glassubstrat (unbehandelte Außenseiten) und die Flüssigkeit bezüglich der Dispersion aufeinander abgestimmt.
Die schmale Flüssigkeitsschicht des Flüssigkeitsbades 65, die den Strahlteilerwürfel 60 umgibt, bewirkt, daß eine gleichmäßige Temperaturverteilung eingehalten werden kann und somit eine individuelle Spannungsdop¬ pelbrechung vermindert wird. Das Flüssigkeitsbad 65 befindet sich in einer Küvette 66, in der mehrere Küvettenfenster 67 vorgesehen sind. Aufgrund des ge¬ ringen Lichtweges durch die dünne Flüssigkeitsschicht zwischen der Küvettenwand und dem Strahlteilerwürfel 60 ergeben sich nur geringe Absorptionen im Spektralbe- reich zwischen 400 und 500 nm.
Das Flüssigkeitsreservoir des Flüssigkeitsbades 65 ist mit einem in der Zeichnung nicht dargestellten Puffer¬ gefäß verbunden, um bei einer Temperaturerhöhung eine Druckerhöhung zu vermeiden. Die Fenster 67 der Küvette 66 sind bezüglich des Brechungsindexes angepaßt (Außen¬ seite breitbandentspiegelt) .
Bei dem in Figur 9 dargestellten Ersatz für den Strahl- teilerwürfel 10 wurde das Volumen eines kompakten Glas¬ körpers, in dem durch Temperaturdifferenzen eine indu¬ zierte Spannungsdoppelbrechung auftreten kann, ver¬ kleinert, indem das Glassubstrat aufgespalten wird. Die polarisierende Strahlteilerschicht 13 befindet sich bei der in Figur 9 dargestellten Abwandlung zwischen zwei verkitteten Planparallelplatten 81, 82 eines hochbre¬ chenden Glassubstrates. Die Planparallelplatten 81, 82 stehen wie die Strahlteilerschicht 13 in einem Winkel von 45 Grad zum einfallenden Lichtstrahlbündel 6. Durch zwei Keilprismen 83, 84 auf beiden Seiten der Planpa¬ rallelplatten 81, 82 wird wieder die äußere Form eines Würfels erreicht.
Die beschriebene Anordnung aus den Prismen 83, 84 und den Planparallelplatten 81, 82 befindet sich in einer würfelförmigen Küvette 66. Zwischen den Planparallel¬ platten 81 , 82 und den Keilprismen 83', 84 sowie zwi¬ schen den Prismen 83, 84 und den Küvettenfenstern 67 befinden sich jeweils schmale Spaltbereiche, die mit der hochbrechenden Flüssigkeit des Flüssigkeitsbades 65 aufgefüllt sind. Alle Komponenten der in Figur 9 dar¬ gestellten Anordnung sind bezüglich des Brechungsindex aufeinander abgestimmt und werden von einer dünnen Flüssigkeitsschicht umspült.
Durch das erweiterte Flüssigkeitsbad ist wiederum eine homogene Temperaturverteilung gewährleistet, so daß eine Spannungsdoppelbrechung innerhalb der Anordnung vermieden ist. Durch die Verwendung der Keilprismen 83, 84 erhält man nur einen geringen Lichtweg durch die hochbrechende Flüssigkeit, was nur geringe Absorptions¬ verluste im Wellenlängenbereich zwischen 400 und 500 nm zur Folge hat. Um die Volumina der kompakten Glaskörper zu vermindern, sind die Keilprismen 83, 84 aufgeteilt und von einem weiteren Flüssigkeitsspalt durchzogen.
Die oben beschriebene Projektionsvorrichtung ermöglicht die Großbilddarstellung in Farbe und zeichnet sich durch eine hohe Auflösung und hohen Wirkungsgrad bei gleichzeitig kompaktem Aufbau aus. Es werden beide Polarisationsrichtungen des Projektionslichtes ausge¬ nutzt. Dadurch kann mit ein und demselben Hardware-Auf¬ bau entweder die Lichtintensität bei gleichzeitiger Erweiterung des Graustufenumfangs verdoppelt werden oder es ist eine Verdopplung der Bildzeilenzahl mög¬ lich, wobei die unterschiedliche Polarisationsrichtung unterschiedlicher aufeinanderfolgender Zeilen auch zur dreidimensionalen Darstellung von Bildern geeignet ist. Die Wahl der jeweiligen Betriebsart erfolgt allein durch entsprechende Ansteuerung der den abzubildenden Bildvorlagen zugeordneten Bildzeilen. Im Zusammenhang mit dem in der Zeichnung dargestellten Ausführungsbei¬ spiel ist eine Anordnung mit LC-Matrixdisplays als Bildvorlage beschrieben. Die Bildzeilen sind in vier Gruppen aufgeteilt, die z.B. im Interlace-Verfahren angesteuert sind. Die darzustellende Bildinformation wird über die Bildspalten eingegeben. Wird die Pro- jektionsvorrichtung zur Erhöhung der Lichtintensität ausgenutzt, so werden jeweils zwei aufeinanderfolgende Bildzeilen gleichzeitig angesteuert, so daß ein und dieselbe Bildinformation durch zwei Pixel dargestellt wird. Die Erhöhung der Lichtintensität wird durch die Überlagerung der Bilder zweier identischer Bildvorlagen erreicht. Damit erweitert sich gleichzeitig auch der Graustufenu fang des projizierten Bildes. Eine Erhöhung der Zeilenzahl kann erreicht werden, wenn nur jede zweite Zeile einer Matrix als Bildzeile angesteuert wird. Die Überlagerung zweier Teilbilder identischer Farbe erfolgt dann im Interlace-Verfahren. Dadurch wird eine Verdopplung der maximal ansteuerbaren Zeilenzahl der Bildvorlagen erreicht. Da das Licht aufeinander¬ folgender Zeilen im projizierten Bild unterschiedlich polarisiert ist, eignet sich das Verfahren auch zur dreidimensionalen Darstellung von Bildern, wenn der Betrachter eine Brille trägt, deren Gläser als unter¬ schiedliche Analysatoren ausgebildet sind.

Claims

PATENTANSPRÜCHE
1. Projektionsvorrichtung mit einer Lichtquelle und einer Einrichtung zur Erzeugung eines weißen Parallellichtstrahlbündels, mit wenigstens einem . zwei dichroitische Farbteilerschichten aufweisen¬ den dichroitischen Prisma, das auf drei seiner Seiten mit drei verschiedenen Farbbildauszügen zugeordneten Flüssigkristall-Lichtventilanord- nungen versehen ist, und mit einem Objektiv, durch das die von den Lichtventilanordnungen erzeugten Farbbildauszüge gemeinsam auf eine Leinwand pro- jizierbar sind, dadurch gekennzeich¬ net , daß zwei dichroitische Farbteilerwürfel (21, 22) mit reflektiv arbeitenden Lichtventilan¬ ordnungen (23 bis 28) vorgesehen sind, die jeweils mit einem der unterschiedlichen Polarisationsrich¬ tungen zugeordneten Ausgängen eines polarisieren¬ den Strahlteilers (10, 60, 80) gekoppelt sind, durch den einerseits das weiße Lichtstrahlbündel (6) auf die beiden Farbteilerwürfel (21, 22) aufteilbar und durch den andererseits das von den Farbteilerwürfeln (21, 22) zurückkehrende Licht der aktivierten Bildpunkte (41) in das Objektiv (8) leitbar ist.
2 . Vorri chtung nach Anspruch 1 , d a d u r c h g e ¬ k e n n z e i c h n e t , daß der Strahlteiler ein MacNeille-Prisma ( 1 0 ) ist .
3. Vorrichtung nach Anspruch 1, dadurch ge ¬ kennzei chnet , daß die Lichtventilanordnun¬ gen (23 bis 28) auf der von dem Farbteilerwürfel (21, 22) wegweisenden Seite eine reflektierende Schicht (35) aufweisen.
4 . Vorrichtung nach Anspruch 1 , d a d u r c h g e ¬ k e n n z e i c h n e t , daß zwischen den Lichtventil¬ anordnungen (23 bis 28 ) und den Farbteilerwürfeln (21 , 22 ) Farbfilter vorgesehen sind .
5. Vorrichtung nach Anspruch 1, dadurch ge¬ kennzeichnet , daß die beiden Farbteilerwür¬ fel (21 , 22) gegeneinander um 90 Grad gekippt sind und mit um 90 Grad zueinander orientierten Seiten des Strahlteilers (10, 60, 80) gekoppelt sind.
6. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet , daß der Strahlteiler (60) in einer mit einer hochbrechenden Flüssigkeit (65) gefüllten Küvette (66) untergebracht ist.
7. Vorrichtung nach Anspruch 1, dadurch ge¬ kennzeichnet , daß als Strahlteiler eine Strahlteilerplatte (81, 82) vorgesehen ist, die sich entlang einer Diagonale in einer Küvette (66) erstreckt, die mit einer hochbrechenden Flüssig¬ keit (65) gefüllt ist und in der zu beiden Seiten der Strahlteilerplatte (81, 82) hochbrechende Keilprismen (83, 84) vorgesehen sind.
8. Vorrichtung nach Anspruch 1, dadurch ge¬ kennzeichnet , daß die Projektionen der Bildzeilen aller sechs Lichtventilanordnungen (23 bis 28) einander überdecken.
9. Vorrichtung nach Anspruch 1, dadurch ge¬ kennzeichnet , daß die Projektionen der angesteuerten Bildzeilen (37) der dem ersten Farbteilerwürfel (21) zugeordneten Lichtventile (23 bis 25) zwischen den Projektionen der Bild¬ zeilen (37) der dem zweiten Farbteilerwürfel (22) zugeordneten Bildzeilen liegen.
10. Vorrichtung nach Anspruch 9, dadurch ge ¬ kennzei chnet , daß die dem ersten Farbtei¬ lerwürfel (21) zugeordneten Lichtventile (23 bis 25) das erste Teilbild und die dem zweiten Farb¬ teilerwürfel (22) zugeordneten Lichtventile (26 bis 28) das zweite Teilbild eines dreidimensiona¬ len Bildes mit. Zeilen unterschiedlicher Polarisa¬ tionsrichtung darstellen.
11. Vorrichtung nach Anspruch 1, dadurch ge- kennzeichnet , daß die Projektionen der angesteuerten Bildzeilen (37) der dem ersten Farbteilerwürfel (21) zugeordneten Lichtventile (23 bis 25) auf den Projektionen der Bildzeilen (37) der dem zweiten Farbteilerwürfel (22) zuge- ordneten Bildzeilen liegen.
PCT/DE1988/000349 1987-06-19 1988-06-11 Projector WO1988010545A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT88904920T ATE86423T1 (de) 1987-06-19 1988-06-11 Projektionsvorrichtung.
DE8888904920T DE3878910D1 (de) 1987-06-19 1988-06-11 Projektionsvorrichtung.
HK869/93A HK86993A (en) 1987-06-19 1993-08-26 Projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873720375 DE3720375A1 (de) 1987-06-19 1987-06-19 Projektionsvorrichtung
DEP3720375.4 1987-06-19

Publications (1)

Publication Number Publication Date
WO1988010545A1 true WO1988010545A1 (en) 1988-12-29

Family

ID=6329964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1988/000349 WO1988010545A1 (en) 1987-06-19 1988-06-11 Projector

Country Status (7)

Country Link
US (1) US5028121A (de)
EP (1) EP0363407B1 (de)
JP (1) JPH02503120A (de)
AT (1) ATE86423T1 (de)
DE (2) DE3720375A1 (de)
HK (1) HK86993A (de)
WO (1) WO1988010545A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372905A2 (de) * 1988-12-05 1990-06-13 Sharp Kabushiki Kaisha Projektions-Flüssigkristall-Anzeigevorrichtung
FR2643158A1 (fr) * 1989-02-14 1990-08-17 Malifaud Pierre Dispositif pour la projection d'images en couleurs et/ou l'enregistrement d'images a partir d'objets colores, notamment dans les domaines de la video, du cinema, de la photographie, et procede de fabrication du dispositif
EP0428971A2 (de) * 1989-11-15 1991-05-29 Honeywell Inc. Dreidimensionale Vollfarben-Projektionsanzeige
EP0485435A1 (de) * 1989-08-11 1992-05-20 Raf Electronics Corp Planmodule für reflektierendes bild.
FR2669440A1 (fr) * 1990-11-21 1992-05-22 Sextant Avionique Dispositif de visualisation en couleur par projection mettant en óoeuvre des valves optiques.
FR2691549A1 (fr) * 1992-05-22 1993-11-26 Thomson Csf Séparateur chromatique de lumière et projecteur d'image utilisant un tel séparateur.
EP0592279A1 (de) * 1992-09-28 1994-04-13 Sextant Avionique Farbprojektionsverfahren und -vorrichtung von durch Modulation optischer Lichtventile entstandenen Bildern
WO1996004582A1 (en) * 1994-08-04 1996-02-15 Rank Brimar Limited Display system
EP0724177A3 (de) * 1995-01-30 1997-12-29 International Business Machines Corporation Hochleistungs Projektionsanzeigevorrichtung mit zwei Lichtventilen
WO1998007279A1 (en) * 1996-08-12 1998-02-19 National Research Council Of Canada High efficiency projection displays having thin film polarizing beam-splitters
FR2766281A1 (fr) * 1996-06-11 1999-01-22 Us Energy Separateur de faisceau equilibre en polarisation
US5982541A (en) * 1996-08-12 1999-11-09 Nationsl Research Council Of Canada High efficiency projection displays having thin film polarizing beam-splitters

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04507010A (ja) 1989-08-11 1992-12-03 アールエイエフ エレクトロニクス コーポレーション 光符号化装置
JP2893599B2 (ja) * 1989-10-05 1999-05-24 セイコーエプソン株式会社 偏光光源及び投写型表示装置
EP0434041B1 (de) * 1989-12-20 1996-09-11 Canon Kabushiki Kaisha Polarisierendes Beleuchtungsgerät
US5267029A (en) * 1989-12-28 1993-11-30 Katsumi Kurematsu Image projector
EP0435288B1 (de) * 1989-12-28 1996-09-18 Canon Kabushiki Kaisha Bildprojektor
JPH03288124A (ja) * 1990-04-04 1991-12-18 Victor Co Of Japan Ltd カラー画像表示装置の光学系
JP3126368B2 (ja) * 1990-06-22 2001-01-22 株式会社日立製作所 画像縮小拡大投影装置
US5115305A (en) * 1990-07-05 1992-05-19 Baur Thomas G Electrically addressable liquid crystal projection system with high efficiency and light output
FR2665773B1 (fr) * 1990-08-10 1993-08-20 Thomson Csf Dispositif de projection d'images utilisant deux composantes orthogonales de polarisation de la lumiere.
FR2669127B1 (fr) * 1990-11-09 1993-01-22 Thomson Csf Projecteur d'images a deux faisceaux polarises par ecran matriciel.
US5140466A (en) * 1990-12-20 1992-08-18 Hughes Aircraft Company Optical multiplexer
JP2575558Y2 (ja) * 1990-12-26 1998-07-02 エルジー電子株式会社 液晶投写形ディスプレイの光学系構造
JP2810241B2 (ja) * 1990-12-27 1998-10-15 キヤノン株式会社 ホログラムを用いた投射型表示装置
TW228633B (de) * 1991-01-17 1994-08-21 Semiconductor Energy Res Co Ltd
JP2887004B2 (ja) * 1991-04-26 1999-04-26 キヤノン株式会社 投射光学系及びそれを有する光学機器
US5371617A (en) * 1991-10-15 1994-12-06 Canon Kabushiki Kaisha Liquid crystal projector with one modulator including a member for preventing light from another modulator from entering the one
JPH05257110A (ja) * 1992-03-13 1993-10-08 Sharp Corp 投射型液晶表示装置
US5903388A (en) 1992-06-11 1999-05-11 Sedlmayr Steven R High efficiency electromagnetic beam projector and systems and method for implementation thereof
US5347433A (en) * 1992-06-11 1994-09-13 Sedlmayr Steven R Collimated beam of light and systems and methods for implementation thereof
US6005651A (en) * 1992-08-04 1999-12-21 Matsushita Electric Industrial Co., Ltd. Display panel and projection display system with use of display panel
US5621551A (en) * 1993-04-30 1997-04-15 Hughes-Jvc Technology Corporation Immersed dichroic system for single projection lens liquid crystal video projector
US5624174A (en) * 1993-08-25 1997-04-29 Kopin Corporation Display panel mount for projection display system
JPH08160374A (ja) * 1994-12-01 1996-06-21 Mitsubishi Electric Corp プロジェクタ装置
JP3631296B2 (ja) * 1995-04-04 2005-03-23 三菱電機株式会社 画像生成装置
JPH09159988A (ja) * 1995-12-12 1997-06-20 Nikon Corp 投射型表示装置
US5605390A (en) * 1996-01-25 1997-02-25 Sarif, Inc. Optical projector
US5715023A (en) * 1996-04-30 1998-02-03 Kaiser Electro-Optics, Inc. Plane parallel optical collimating device employing a cholesteric liquid crystal
US5971546A (en) * 1996-06-15 1999-10-26 Lg Electronics Inc. Image display device
US6507326B2 (en) * 1996-07-10 2003-01-14 Nikon Corporation Color-projection apparatus operable to project a high-contrast image with minimal change in the state or phase of polarization of light flux
JP3653907B2 (ja) * 1996-12-24 2005-06-02 ソニー株式会社 プロジェクタ
US6010221A (en) 1997-05-22 2000-01-04 Nikon Corporation Projection type display apparatus
IL122534A0 (en) * 1997-12-09 1998-06-15 Unic View Ltd Projector
JPH11271744A (ja) * 1998-03-24 1999-10-08 Minolta Co Ltd カラー液晶表示装置
JP3622500B2 (ja) * 1998-05-20 2005-02-23 株式会社富士通ゼネラル 液晶プロジェクタ装置
DE19841863B4 (de) * 1998-09-14 2005-06-09 Heidelberger Druckmaschinen Ag Vorrichtung zur Teilung eines Lichtstrahles
US6075651A (en) * 1999-01-28 2000-06-13 Kaiser Electro-Optics, Inc. Compact collimating apparatus
JP3817970B2 (ja) * 1999-05-31 2006-09-06 ウシオ電機株式会社 偏光ビームスプリッタおよびそれを用いた液晶表示素子の配向膜光配向用偏光光照射装置
DE19944151C1 (de) * 1999-09-15 2001-05-17 Globalpatent Consulting Gmbh Projektionssystem für hochauflösende Bilder
US20020176054A1 (en) * 1999-12-30 2002-11-28 Mihalakis George M. Reflective liquid-crystal-on-silicon projection engine architecture
US6375330B1 (en) 1999-12-30 2002-04-23 Gain Micro-Optics, Inc. Reflective liquid-crystal-on-silicon projection engine architecture
US6535334B2 (en) * 2001-04-05 2003-03-18 Koninklijke Philips Electronics N.V. Polarization conversion system for projection displays resistant to damage from heat and light
US6672722B2 (en) * 2001-06-19 2004-01-06 Intel Corporation Projection engine
US6773114B2 (en) * 2001-12-07 2004-08-10 Nokia Corporation Portable multimode display device
US7196849B2 (en) * 2003-05-22 2007-03-27 Optical Research Associates Apparatus and methods for illuminating optical systems
WO2004106982A2 (en) * 2003-05-22 2004-12-09 Optical Research Associates Optical combiner designs and head mounted displays
WO2004106983A2 (en) * 2003-05-22 2004-12-09 Optical Research Associates Illumination in optical systems
DE102004006148A1 (de) * 2004-02-04 2005-09-08 Bausenwein, Bernhard, Dr. Vorrichtung und Verfahren zur reziproken Polarisation mit komplementär wirkenden kartesischen Polarisationsschichten (Kreuzpolarisator)
US7320521B2 (en) * 2004-07-12 2008-01-22 Next Wave Optics, Inc. Optical engine architectures
EP1792225A4 (de) 2004-09-01 2010-07-28 Optical Res Associates Kompakte kopfmontierte anzeigevorrichtungen mit geneigtem/dezentriertem linsenelement
US7450310B2 (en) * 2005-05-03 2008-11-11 Optical Research Associates Head mounted display devices
US7241014B2 (en) * 2004-12-02 2007-07-10 Bose Corporation Microdisplay projection
US7530693B2 (en) * 2005-05-31 2009-05-12 Next Wave Optics Inc. Single MEMS imager optical engine
US20070236809A1 (en) 2006-04-05 2007-10-11 Barret Lippey Forming spectral filters
US7995092B2 (en) * 2006-04-05 2011-08-09 Barret Lippey Two-dimensional and three-dimensional projecting
DE102011117565A1 (de) 2011-06-28 2013-01-03 blnsight3D GmbH Sechsfarbige Stereo Bildanzeige mit wellenlängensortierter mehrstufiger Farbaddition
DE102011117568A1 (de) 2011-07-08 2013-01-10 blnsight3D GmbH 3-paariges Additionsverfahren für polarisationskodierte 3-farbige 6-Kanal-Stereo-Bildanzeigen
EP2963493B1 (de) * 2013-02-27 2018-08-15 Sony Corporation Bildprojektionsvorrichtung
TWI724174B (zh) * 2016-07-29 2021-04-11 日商索尼股份有限公司 合成光學系統單元及投影機
WO2023225367A1 (en) * 2022-05-19 2023-11-23 Fleek Inc. System and method for guiding eyebrow shaping with projected light

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704934A (en) * 1971-08-16 1972-12-05 Union Carbide Corp Laser polarizing beam splitter
US4151554A (en) * 1977-12-07 1979-04-24 Tucker Arthur R Liquid coupled color-television image projector
EP0083090A2 (de) * 1981-12-28 1983-07-06 Hughes Aircraft Company Hocheffizientes optisches System für dreifarbige Bildprojektion durch Lichtventile aus flüssigem Kristall mit farbselektiver Verpolarisation
EP0083440A2 (de) * 1981-12-28 1983-07-13 Hughes Aircraft Company System für zweifarbige Bildprojektion durch Lichtventile aus flüssigem Kristall mit Vorpolarisation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544237A (en) * 1981-12-28 1985-10-01 Hughes Aircraft Company High efficiency optical tank for two-color liquid crystal light valve image projection with color selective prepolarization
US4425028A (en) * 1981-12-28 1984-01-10 Hughes Aircraft Company High efficiency optical tank for three color liquid crystal light valve image projection with color selective prepolarization and single projection lens
JPS60144721A (ja) * 1984-01-06 1985-07-31 Canon Inc 画像形成装置
JPS6199118A (ja) * 1984-10-22 1986-05-17 Seiko Epson Corp 投射型表示装置
US4687301A (en) * 1985-07-12 1987-08-18 Hughes Aircraft Company Full-color projector system with a tricolor-separating prism
JPS63236494A (ja) * 1987-03-25 1988-10-03 Kawasaki Heavy Ind Ltd 画像投影テレビ
EP0287034B1 (de) * 1987-04-14 1995-01-18 Seiko Epson Corporation Projektions-Farbflüssigkristall-Anzeigevorrichtung
US4842374A (en) * 1987-07-27 1989-06-27 Hughes Aircraft Company Unitary prepolarizing prism assembly for a four color liquid crystal light valve image projector
US4943154A (en) * 1988-02-25 1990-07-24 Matsushita Electric Industrial Co., Ltd. Projection display apparatus
JPH06199118A (ja) * 1993-01-06 1994-07-19 Tomoji Ueno タイヤ空気圧異常検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704934A (en) * 1971-08-16 1972-12-05 Union Carbide Corp Laser polarizing beam splitter
US4151554A (en) * 1977-12-07 1979-04-24 Tucker Arthur R Liquid coupled color-television image projector
EP0083090A2 (de) * 1981-12-28 1983-07-06 Hughes Aircraft Company Hocheffizientes optisches System für dreifarbige Bildprojektion durch Lichtventile aus flüssigem Kristall mit farbselektiver Verpolarisation
EP0083440A2 (de) * 1981-12-28 1983-07-13 Hughes Aircraft Company System für zweifarbige Bildprojektion durch Lichtventile aus flüssigem Kristall mit Vorpolarisation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SID 86 Digest, vol. XVIII, May 1986, Shinji Morozumi et al.: "LCD full-colour video projector", Seiten 375-378 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372905A2 (de) * 1988-12-05 1990-06-13 Sharp Kabushiki Kaisha Projektions-Flüssigkristall-Anzeigevorrichtung
EP0372905A3 (de) * 1988-12-05 1991-09-11 Sharp Kabushiki Kaisha Projektions-Flüssigkristall-Anzeigevorrichtung
FR2643158A1 (fr) * 1989-02-14 1990-08-17 Malifaud Pierre Dispositif pour la projection d'images en couleurs et/ou l'enregistrement d'images a partir d'objets colores, notamment dans les domaines de la video, du cinema, de la photographie, et procede de fabrication du dispositif
EP0485435A1 (de) * 1989-08-11 1992-05-20 Raf Electronics Corp Planmodule für reflektierendes bild.
EP0485435A4 (en) * 1989-08-11 1992-06-24 Raf Electronics Corp. Reflective image plane module
EP0428971A2 (de) * 1989-11-15 1991-05-29 Honeywell Inc. Dreidimensionale Vollfarben-Projektionsanzeige
EP0428971A3 (en) * 1989-11-15 1991-12-27 Honeywell Inc. Full colour three-dimensional projection display
FR2669440A1 (fr) * 1990-11-21 1992-05-22 Sextant Avionique Dispositif de visualisation en couleur par projection mettant en óoeuvre des valves optiques.
EP0487407A1 (de) * 1990-11-21 1992-05-27 Sextant Avionique S.A. Farbprojektionsvorrichtung unter Verwendung optischer Lichtmodulatoren
EP0572292A1 (de) * 1992-05-22 1993-12-01 Thomson-Csf Farbstrahlteiler und Abbildungsprojektor der diesen benutzt
FR2691549A1 (fr) * 1992-05-22 1993-11-26 Thomson Csf Séparateur chromatique de lumière et projecteur d'image utilisant un tel séparateur.
US5546200A (en) * 1992-05-22 1996-08-13 Thomson-Csf Chromatic light separator and picture projector using a chromatic light separator
EP0592279A1 (de) * 1992-09-28 1994-04-13 Sextant Avionique Farbprojektionsverfahren und -vorrichtung von durch Modulation optischer Lichtventile entstandenen Bildern
WO1996004582A1 (en) * 1994-08-04 1996-02-15 Rank Brimar Limited Display system
US6276801B1 (en) 1994-08-04 2001-08-21 Digital Projection Limited Display system
US6631993B2 (en) 1994-08-04 2003-10-14 Texas Instruments Incorporated Display system
EP0724177A3 (de) * 1995-01-30 1997-12-29 International Business Machines Corporation Hochleistungs Projektionsanzeigevorrichtung mit zwei Lichtventilen
FR2766281A1 (fr) * 1996-06-11 1999-01-22 Us Energy Separateur de faisceau equilibre en polarisation
WO1998007279A1 (en) * 1996-08-12 1998-02-19 National Research Council Of Canada High efficiency projection displays having thin film polarizing beam-splitters
US5982541A (en) * 1996-08-12 1999-11-09 Nationsl Research Council Of Canada High efficiency projection displays having thin film polarizing beam-splitters

Also Published As

Publication number Publication date
HK86993A (en) 1993-09-03
DE3878910D1 (de) 1993-04-08
DE3720375A1 (de) 1988-12-29
EP0363407A1 (de) 1990-04-18
DE3720375C2 (de) 1989-05-11
JPH02503120A (ja) 1990-09-27
US5028121A (en) 1991-07-02
ATE86423T1 (de) 1993-03-15
EP0363407B1 (de) 1993-03-03

Similar Documents

Publication Publication Date Title
EP0363407B1 (de) Projektionsvorrichtung
DE69723929T2 (de) Polarisationsstrahlteiler, verfahren zu seiner herstellung und projektionsanzeige
DE69725582T2 (de) Zeilensprung-farbbildprojektor
DE4431749B4 (de) Flüssigkristallanzeigeanordnung
DE4444557B4 (de) Anzeigetafel, Projektionsanzeigevorrichtung mit einer solchen Anzeigetafel sowie Bildsucher mit einer solchen Anzeigetafel
EP0662274B1 (de) Projektionssystem zum projizieren eines farbvideobilds und zugehörige transformationsoptik
DE60101310T2 (de) Reflektierendes lcd projektionssystem mit kartesischem weitwinkel-polarisationsstrahlteiler und farbteilenden und -vereinigenden prismen
DE69632290T2 (de) Elektrooptische vorrichtung
DE69535346T2 (de) Anzeigevorrichtung
DE60226028T2 (de) Projektionssystem mit geringem astigmatismus
DE69905717T2 (de) Verfahren und vorrichtung zur modulation eines lichtstrahls für eine zweidimensionale bilddarstellung
DE69906512T2 (de) Projektions-anzeigevorrichtung
DE69922906T2 (de) Beleuchtungseinrichtung und Projektions-Anzeigegerät
EP0713126A1 (de) Farbige Anzeige mit in Serie angeordneten elektrisch steuerbaren Flüssigkristallfiltern
DE19815649A1 (de) Reflexionsprojektor
DE19503929A1 (de) Farbbilderzeugungssysteme
EP2294483A1 (de) Projektionssystem
DE10008337B4 (de) Flüssigkristallstruktur mit verbessertem Dunkelzustand sowie dieselbe verwendender Projektor
DE60217068T2 (de) Korrekturoptik für flachanzeigen
DE69738383T2 (de) Optisches Beleuchtungssystem für eine Projektionsvorrichtung
DE60033053T2 (de) Projektionsschirm
DE69631860T2 (de) Optische Polarisationsvorrichtung und Flüssigkristall-Projektionssystem damit
DE3829598A1 (de) Projektionsgeraet
DE19525602A1 (de) LCD und damit ausgerüsteter Projektor
DE10192272B4 (de) Vorsatz für Videoprojektoren zur 3-D-Projektion von Stereobildern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1988904920

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988904920

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988904920

Country of ref document: EP