WO1989008727A1 - Rock bits and inserts therefor - Google Patents

Rock bits and inserts therefor Download PDF

Info

Publication number
WO1989008727A1
WO1989008727A1 PCT/US1989/000434 US8900434W WO8908727A1 WO 1989008727 A1 WO1989008727 A1 WO 1989008727A1 US 8900434 W US8900434 W US 8900434W WO 8908727 A1 WO8908727 A1 WO 8908727A1
Authority
WO
WIPO (PCT)
Prior art keywords
insert
head portion
rock bit
carbide
bit
Prior art date
Application number
PCT/US1989/000434
Other languages
French (fr)
Inventor
William J. Salesky
Bruce L. Campbell
Original Assignee
Smith International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smith International, Inc. filed Critical Smith International, Inc.
Publication of WO1989008727A1 publication Critical patent/WO1989008727A1/en
Priority to NO894552A priority Critical patent/NO178273C/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • E21B10/567Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
    • E21B10/5673Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts having a non planar or non circular cutting face
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/50Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of roller type
    • E21B10/52Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of roller type with chisel- or button-type inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • E21B10/567Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
    • E21B10/573Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
    • E21B10/5735Interface between the substrate and the cutting element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to the field of rock bits and inserts therefor. More particularly, the invention relates to the field of roller cone type bits and percussion type bits which include inserts with a layer of polycrystalline diamond materialon an insert body.
  • Roller cone rock bits are widely used for oil, gas, and geothermal drilling operations.
  • roller cone rock bits include a body connected to a drill string and typically three hollow cutter cones each mounted on journals on the bit body for rotation about an axis transverse to the axis of the drill bit.
  • the drill string and bit body are rotated in the bore hole and each cone is caused to rotate on its respective journal as the cone contacts the bottom of the bore hole being drilled.
  • Roller cone rock bits are generally divided into two categories: those used with mud as the drilling fluid, and those used with air as the drilling fluid. Although similar in the basic design, these two types of roller cone rock bits also have many design and manufacturing dissimilarities due to the differences in how the bits are used as well as the kinds of drilling equipment that is used with, these two types of bits.
  • mud is used as the drilling fluid when drilling in formations that would tend to close in on the hole that has been drilled. That is, the weight of the mud is used to maintain the integrity of the borehole by balancing the geophysical forces surrounding the bore hole.
  • mud is intended to have a relatively broad meaning including conventional drilling mud, water, brine, and oils, as well as mixtures thereof.
  • air is typically used when drilling in fractured formations where the mud would have a tendency to seep into the formation, and when the borehole integrity is sufficiently stable.
  • roller cone rock bits used with mud generally include an elastomer seal to protect the bearings from the drilling mud.
  • mud bits are generally designed to last much longer and typically include precision journal bearings and a lubricant reservoir with pressure compensation means.
  • air bits are generally designed for shorter run times and include unsealed, unlubricated roller bearings. Accordingly, air bits are often used for geothermal drilling because the high temperatures encountered in this type of drilling would usually degrade the elastomer seals and lubricants used in the design of mud bits.
  • the interaction between the cutting inserts and the bottom of the hole is different for the inserts in a roller cone mud bit and the inserts in a roller cone air bit.
  • the inserts of a roller cone mud bit are typically subjected to higher dynamic forces due to the influence of the mud column on the borehole bottom.
  • the mud acts to balance the geophysical pressures surrounding the borehole, including the hole bottom, mud drilling typically has a slower rate of penetration than air drilling. Consequently, under identical weight on bit and rotational speed, inserts on mud bits will typically contact the rock formation more times to drill a given equivalent footage than in air drilling.
  • the inserts in mud bits typically extend further from the cone to achieve a more aggressive cutting action than is typically found with air bits.
  • Fixed head percussion rock bits are another type of rock boring tool. Percussion rock bits are used most often in drilling blast holes for mining and construction. Other uses for fixed head percussion bits include gas, oil, and water drilling.
  • the percussion bits include a body with one end for connecting to an air hammer. Hard metal inserts are embedded in the other end.
  • the air hammer moves the bit up and down rapidly.
  • the percussion bit hammers the inserts against the rock being drilled, shattering it by repeated blows.
  • a typical air hammer for percussion bits operates at about 2,000 blows per minute while being rotated at about 60 r.p. .
  • Compressed air pumped through the bit removes chips of fractured rock from the hole being drilled.
  • Some percussion bits are driven by hydraulic action.
  • a significant improvement in the life expectancy of roller cone and percussion rock bits involves the use of cemented metal carbide inserts put into the roller cones for crushing rock on the bottom of the bore hole.
  • cemented metal carbide such as cobalt cemented tungsten carbide, offered improved wear resistance over steel along with sufficient toughness to withstand the forces encountered during drilling.
  • PCD polycrystalline diamond
  • inserts have been fabricated which include an insert body made of cobalt bonded tungsten carbide and a layer of polycrystalline diamond directly bonded to the protruding head portion of the insert body.
  • polycrystalline diamond generally refers to the material produced by subjecting individual diamond crystals to sufficiently high pressure and high temperature that intercrystalline bonding occurs between adjacent diamond crystals.
  • PCD offers the advantage of greater wear resistance.
  • PCD is relatively brittle, some problems have been encountered due to chipping or cracking in the PCD layer.
  • U.S. Patent No. 4,694,918, assigned to the assignee of the present invention discloses roller cone rock bits and inserts therefor which inserts include a cemented metal carbide insert body, an outer layer of polycrystalline diamond, and at least one transition layer of a composite material.
  • the composite material includes polycrystalline diamond and precemented metal carbide pieces. This transition layer between the outer layer of PCD and the head portion has been found to extend the life expectancy of PCD rock bit inserts by reducing the incidence of cracking an chipping.
  • the present invention is a rock bit insert including a polycrystalline diamond surface on an insert body having a head portion made from a material with elasticity and thermal expansion properties advantageously tailored for use in three types of rock bits, as well as the three types of rock bits made with such inserts.
  • the three types of bits are a roller cone rock bit adapted to be used with mud, a roller cone rock bit adapted to be used with air, and a percussion rock bit.
  • All of the inserts of the present invention include a body having a shaft portion for insertion into the rock bit and a head portion for protruding from the rock bit.
  • a layer of polycrystalline diamond material is directly bonded to the head portion.
  • the material of the head portion has a Young's modulus of elasticity of between about 80 and about and about 89 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.9 and about 3.4 x 10 ⁇ /°C.
  • the head portion of the insert body is made from cobalt bonded tungsten carbide having a coercivity between about 85 and about 120 Oe and a hardness of between about 88.1 and about 89.4 Ra.
  • the roller cone rock bit adapted to drill with mud as the drilling fluid includes a steel body, means at one end of the body for connecting the bit to a drill string, and means at the opposite end of the body for mounting at least one roller cone on the body for rotation around an axis transverse to the axis of the bit.
  • the bit further includes at least one roller cone so mounted on the body for rolling on the bottom of a borehole being drilled.
  • a plurality of inserts for crushing rock at the bottom of such a bore hole are included in the roller cone. At least a portion of these inserts include an insert body having a shaft portion for insertion into a rock bit and a head portion protruding from the rock bit.
  • a layer of polycrystalline diamond material is directly bonded to the head portion of these inserts.
  • the head portion of these inserts for a roller cone rock bit for use with mud comprises a material having a Young' s modulus of elasticity of between about 80 and about and about 89 x
  • the head portion of the insert body is made from cobalt bonded carbide having a coercivity between about 85 and about 120 Oe and a hardness of between about 88.1 and about 89.4 Ra.
  • the material of the head portion has a Young's modulus of elasticity of between about 90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.5 and 3.0 x 10 / C.
  • the head portion of the insert body is made from cobalt bonded carbide having a coercivity between about 120 and about 160 0e and a hardness of between about 89.5 and about 91.1 Ra.
  • the roller cone rock bit for use with air as the drilling fluid includes a steel body, means at one end of the body for connecting the bit to a drill string, and means at the opposite end of the body for mounting at least one roller cone on the body for rotation around an axis transverse to the axis of the bit.
  • the bit further includes at least one roller cone so mounted on the body for rolling on the bottom of a borehole being drilled.
  • a plurality of inserts for crushing rock at the bottom of such a borehole are included in the roller cone. At least a portion of these inserts include an insert body having a shaft portion for insertion into a rock bit and a head portion for protruding from the rock bit.
  • a layer of polycrystalline diamond material is directly bonded to the head portion of these inserts.
  • the head portion of these inserts for a roller cone rock bit for use with air as the drilling fluid comprises a material having a Young's modulus of elasticity of between about 90 and about 102 x 10 p.s.i. and a coefficient
  • the head portion of the insert body is made from cobalt bonded carbide having a coercivity between about 120 and about 160 0e and a hardness of between about 89.5 and about 91.1 Ra.
  • the material of the head portion has a Young's modulus of elasticity of between about 90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.5 and 3.0 x 10 / C.
  • the head portion of the insert body is made from cobalt bonded carbide having a coercivity between about 120 and about 160 0e and a hardness of between about 89.5 and about 91.1 Ra.
  • the percussion rock bit includes a steel body, and means at one end of the body for connecting the bit to a drill string.
  • a plurality of inserts are embedded within the other end of the steel body. At least a portion of these inserts include an insert body having a shaft portion for insertion into a rock bit and a head portion for protruding from the rock bit. A layer of polycrystalline diamond material is directly bonded to the head portion of these inserts.
  • the head portion of these inserts for a percussion rock bit comprises a material having a Young 1 s modulus of elasticity of between about 90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.5 and 3.0 x 10 ⁇ / C.
  • the head portion of the insert body is made from cobalt bonded carbide having a coercivity between about 120 and about 1600e and a hardness of between about 89.5 and about 91.1 Ra.
  • the head portion of the insert body is too brittle to withstand the dynamic forces encountered during drilling.
  • the modulus of elasticity is too high, the inserts are prone to break off during drilling. Such breakage is particularly detrimental in that it not only reduces the penetration ability of the bit, but the broken pieces of the inserts can cause extensive damage to the rest of the rock bit.
  • inventive ranges of Young's modulus and coefficient of thermal expansion for the inserts differ between those used in roller cone rock bits adapted for drilling with mud and those used in roller cone rock bits adapted for drilling with air. The difference in these ranges is believed to be caused by the differences between the forces acting on a mud bit insert and those acting on an air bit insert.
  • inventive ranges of Young's modulus and coefficient of thermal expansion for inserts used in percussion bits have been found to be identical to those for roller cone rock bits used with air.
  • FIGURE 1 is a side view of a roller cone rock bit adapted to drill with mud.
  • FIGURE 2 is a partial cross-sectional view of such a rock bit.
  • FIGURE 3 is a cross-sectional view of an insert for use in the rock bit of FIGURE 1.
  • FIGURE 3a is a cross-sectional view of an alternative insert for use in the rock bit of FIGURE 1.
  • FIGURE 4 is a cross-sectional view of a gage insert for use in the rock bit of FIGURE 1.
  • FIGURE 5 is a partial cross-sectional view of roller cone rock bit adapted to drill with air.
  • FIGURE 6 is a cross-sectional view of an insert for use in the rock bit of FIGURE 5.
  • FIGURE 7 is a cross-sectional view of a gage insert for use in the rock bit of FIGURE 5.
  • FIGURE 8 is a partial cross-sectional view of a percussion rock bit.
  • FIGURE 9 is a cross-sectional view of an insert for use in the percussion rock bit of FIGURE 7.
  • the selection of the elastic and thermal expansion properties of the material of the head portion of the insert body have been found to be important in reducing cracking and chipping in the PCD layer of a PCD coated rock bit insert.
  • chipping and cracking in the PCD layer is related to some extent to a disparity between the properties of the PCD and the material directly beneath the PCD.
  • this material has been cobalt bonded tungsten carbide.
  • One property which varies between the PCD and the cobalt bonded carbide is the modulus of elasticity.
  • the Young's modulus of elasticity of diamond is typically between about 130 and about 150 x g 10 p.s.i., while the Young's modulus of elastici •tty. of cemented metal carbide, varies from about 75 x 10,6 p.s.i. for a 14 weight percent cobalt bonded tungsten carbide to about 99 x 10 for a 6 weight percent cobalt bonded tungsten carbide.
  • PCD has a coefficient of thermal expansion of between about 2.29 and about 3.14 x 10 " /°C.
  • the coefficient of thermal expansion varies between about 2.5 and about 6.0 ⁇ o- 5 /°c.
  • the modulus of elasticity is expressed as a Young's modulus with p.s.i. as the units. These values are determined by direct strain gage measurement of the slope of the stress-deflection curve. Alternatively, the Young's modulus can be measured by dynamic excitation, at ultrasonic frequency, of longitudinal oscillations in a test bar, and ascertaining the resonance frequency of its natural oscillations.
  • the elastic modulus of cemented metal carbides generally decreases with increasing cobalt content.
  • the material of the head portion is a cemented carbide, more preferably a cobalt bonded carbide.
  • cobalt bonded carbide it has been found desirable to select a specific grade which has a coercivity and hardness with particular ranges.
  • coercivity is intended to refer to the coercive force measuring the amount of reverse magnetism required to reduce the residual induction to zero after a sample is removed from a magnetic field where it was completely saturated. The units of this measurement are oersteds (O ) .
  • the coercivity value is obtained by placing a test sample in a DC magnetic field and magnetizing to saturization.
  • the field is reversed and the coercive field strength needed for demagnetization of the test sample is measured.
  • the coercivity of the cemented metal carbides in the experiments for the present invention were determined with a Forster-Koerzimat, Model 1.095.
  • the coercivity of cemented carbides is directly related to the volume fraction of metal carbide, inclusions, porosity, eta phase of the carbide, internal stress and carbon content.
  • fine grained metal carbides with a low metal binder content have the highest coercivity values.
  • large grain metal carbides with high a metal binder content have the lowest coercivity values.
  • Rockwell “A” hardness is determined by ASTM B294-76.
  • hardness of cemented carbides is related to grain size and binder content. Cemented carbides with large grain sizes have a lower hardness than fine grained materials. Also, as binder content increases, the hardness decreases.
  • Coercivity is an easily measured property which reflects a combination of several variables within the cemented metal carbide. As noted above, coercivity is related to the volume fraction of metal carbide, inclusions, porosity, eta phase, and carbon content. Consequently, the coercivity value of a cemented metal carbide reveals much about the microstructure of the cemented metal carbide.
  • Hardness is a measure of a macroscopic property of the cemented metal carbide. Although coercivity and hardness are related to some degree, hardness is also related to the modulus of elasticity and is easily measured.
  • a roller cone rock bit 15 which is adapted to be used with mud as the drilling fluid.
  • the bit 15 includes a steel body 10 and a threaded end 12 for connection to a drill string (not shown) .
  • Three roller cones 11 are rotatably mounted on journals 16 on the bit body.
  • Several inserts 13 are set in rows within recesses in each cone.
  • the cones 11 are set at an angle transverse to the axis 14 of the bit. Consequently, as the bit is rotated, the cones each rotate about their axis to bring the inserts 13 into contact with the bottom of the hole.
  • Another row of inserts 17 are set in a gage row of each cone. These inserts serve the important function of contacting the side of the hole in order to maintain the diameter, or "gage,” of the hole. By virtue of their location on the cone, these gage row inserts 17 typically are subjected to more abrasive wear. It is known in the drilling industry that, when the gage row inserts become too worn, the diameter of the hole becomes reduced as the rock bit continues to drill. This condition is highly detrimental because the next bit which is sent down the hole is required to ream out the diameter of the hole before it reaches the bottom of the hole. In addition, the life expectancy of the seal and bearing system are shortened when the gage of the hole is not maintained.
  • FIGURE 3 is a cross-section of one of the inserts 13 of the present invention.
  • the insert 3 includes an insert body 31.
  • This insert body includes a shaft portion which is inserted into the roller cone and a head portion which protrudes from the roller cone.
  • the PCD is bonded directly to the head portion of the insert.
  • the insert body is made in one piece, most preferably a unitary piece of cemented carbide.
  • insert bodies can be manufactured in more than one piece.
  • FIGURE 3a shows a cone-shaped head portion 34 which is attached to a shaft portion 32 which includes a cylindrical portion 36 protruding into a recess in the head portion.
  • the head portion when the head portion is made from a different material, it will have a higher Young's modulus of elasticity than the material of the shaft portion.
  • the term head portion refers to that portion of the insert body which is directly under the PCD layer.
  • the shape and size of the head portion can be varied by those of ordinary skill in the art depending on the type of formation to be drilled and other factors relating to the specific design of the roller cone rock bit. As shown here, the head portion of the cutting inserts 13 are shaped like a blunt cone. Other popular shapes are dome and chisel-shaped.
  • the PCD layer on the inserts is made according to the teachings of U.S. Patent No. 4,694,918, the entire disclosure of which is incorporated herein by reference.
  • the PCD layer is actually divided into layers itself.
  • the PCD layer includes at least one transition layer between the outer layer 37 and the head portion of the insert.
  • the PCD layer includes two transition layers 33 and 35 as shown here.
  • Each transition layer is comprised of polycrystalline diamond with pieces of precemented carbide dispersed therein. As taught in the above-named patent, inclusion of such transition layers has been found to increase the durability of the PCD in the outer layer.
  • polycrystalline diamond material is intended to refer herein to polycrystalline diamond as well as to composite polycrystalline diamond, i.e. polycrystalline diamond with pieces of precemented carbide dispersed therein.
  • PCD layer it is intended to include the outer layer of PCD and any transition layers of composite PCD material, if present.
  • the material of the head portion should have a Young' s modulus between about 80 and about 89 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.9 and 3.4 x
  • the material of the head portion of the insert body should have a Young's modulus between about 83 and about 86 x 10 p.s.i. and a coefficient of thermal expansion between about 3.0 and about 3.4 x 10 /°C.
  • the cobalt bonded tungsten carbide of the head portion of the insert in a roller cone rock bit for mud drilling as shown in FIGURES 1 and 2 should have a coercivity between about 85 and about 120 0e and a hardness of between about 88.1 and about 89.4 Ra. More preferably, the coercivity should be between about 95 and about 105
  • the cemented metal carbide is cobalt bonded tungsten carbide made by Rodger's Tool Works (RTW) under the designation "367.”
  • RCW Rodger's Tool Works
  • the grade designation of this carbide has been previously known as TCM grade 411.
  • the average grain size of the tungsten carbide is approximately 3 microns, and the cobalt content is about 11 percent by weight.
  • the hardness of this grade of carbide is 88.8 Ra.
  • TCM 410 or TCM 510 can be used.
  • TCM 410 or TCM 510 can be used.
  • other types of cemented metal carbides can be used.
  • a tantalum bonded tungsten carbide can be used if it possess the requisite Young's modulus and coefficient of thermal expansion.
  • materials other than cemented metal carbides can be used.
  • materials other than cemented metal carbides can be used.
  • ceramic materials, and ceramic composites can be used so long as they possess the requisite elastic and thermal properties.
  • all of the cutting inserts 13 are made according to the present invention.
  • either all or some of the inner row inserts cutting the central portion of the borehole are conventional cemented metal carbide, either with or without a PCD layer.
  • FIGURE 4 is a cross-sectional view of a gage insert 17 for the rock bit shown in FIGURES 1 and 2.
  • the gage insert 17 includes an insert body 41 with a shaft portion and a head portion.
  • the shape of the head portion is different on the gage insert 17.
  • the head portion of the presently preferred gage insert dome-shaped.
  • the PCD layer of the gage insert 17 is divided into an outer layer of PCD 45 and a transition layer 43.
  • the material of the head portion of the insert body 41 is a cobalt bonded tungsten carbide having a coercivity between about 85 and about 120 Oe and a hardness of between about 88.1 and about 89.4 Ra. More preferably, the coercivity should be between about 95 and about 105
  • the most preferred material for the head portion of the gage row is the same RTW 367 cobalt bonded tungsten carbide referred to above with the inner row inserts 13.
  • FIGURE 5 is a partial cross-sectional view of a roller cone rock bit 51 for use with air as the drilling fluid. Similar to the mud bit shown in FIGURES 1 and 2, this air bit 51 includes a bit body 53 with an end 55 adapted to be threaded onto a drill string. A roller cone 57 is mounted on each leg 59 on the bit body. Several inserts 58 are set in rows in the roller cone 57. A row of gage inserts 56 is also included. As seen, the air bit 51 does not include seals or lubricating means as does the mud bit.
  • FIGURE 6 is a cross-sectional view of the inserts 58 which are used in the air bit of FIGURE 5.
  • This insert is similar in construction to that shown in
  • the material of the head portion should have a Young's modulus of elasticity of between about
  • the material of the head portion of the insert body should have a Young's
  • the head portion is made from a cobalt bonded tungsten carbide having a coercivity between about 120 and about 160 Oe and a hardness of between about 89.5 and about 91.1 Ra. More preferably, the coercivity should be between about 140 and about 150 0 ; and the hardness should be between about 90.5 and about 91.1 Ra.
  • the cemented metal carbide for the inserts of the air bit is cobalt bonded tungsten carbide made by Rodger's Tool Works under the designation "374.”
  • the grade designation of this carbide is 406.
  • the average grain size of the tungsten carbide is approximately 3 microns, and the cobalt content is about 6 percent by weight.
  • the hardness of this grade of carbide is 90.8 Ra.
  • tungsten carbide such as 206 or 208
  • other grades of cobalt bonded tungsten carbide such as 206 or 208
  • cemented metal carbides can be used.
  • a tantalum bonded tungsten carbide can be used if it possess the requisite Young's modulus and coefficient of thermal expansion.
  • materials other than cemented metal carbides can be used.
  • ceramic materials, and ceramic composites can be used so long as they possess the requisite elastic and thermal properties.
  • FIGURE 7 is a cross-sectional view of a gage insert 56 for the air bit shown in FIGURE 5.
  • This gage insert 56 is similar to that shown in FIGURE 4 with the exception that the cemented metal carbide is the same as that shown with the insert of FIGURE 6.
  • the cutting inserts 58 and the gage inserts are all made with the specified cemented metal carbide. However, in alternative embodiments, only the gage inserts 56 are so made.
  • FIGURE 8 is a partial cross-sectional view of a percussion bit made according to the present invention.
  • the bit 81 includes a steel body 82 with one end 83 adapted to thread onto a drill string. Several inserts 85 are embedded into the other end of the steel body.
  • FIGURE 9 is a cross-sectional view of an inert 85 made according to the present invention.
  • the insert includes an insert body 91 with a shaft portion and a head portion for protruding from the body of the percussion bit.
  • a layer of PCD 93 Directly bonded to the head portion is a layer of PCD 93.
  • this layer of PCD is formed with at least one transition layer as described above.
  • the material of the head portion of the insert body should have a Young' s modulus of elasticity g of between about and about 90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of
  • the material of the head portion of the insert body should have a Young's modulus between about 92 and
  • the material of the head portion is a cobalt bonded tungsten carbide having a coercivity between about 120 and about 160 0e and a hardness of between about 89.5 and about 91.1 Ra. More preferably, the coercivity should be between about 140 and about 150 0 ; and the hardness should be between about 90.5 and about 91.1 Ra.
  • the cemented metal carbide for the inserts of the percussion rock bit is cobalt bonded tungsten carbide made by Rodger's Tool Works under the designation "374.”
  • the grade designation of this carbide is 406.
  • the average grain size of the tungsten carbide is approximately 3 microns, and the cobalt content is about 6 percent by weight.
  • the hardness of this grade of carbide is 90.8 Ra.
  • tungsten carbide such as 206 or 208
  • other grades of cobalt bonded tungsten carbide such as 206 or 208
  • cemented metal carbides can also be used.
  • a tantalum bonded tungsten carbide can be used if it possess the requisite Young's modulus and coefficient of thermal expansion.
  • materials other than cemented metal carbides can be used.
  • ceramic materials, and ceramic composites can be used so long as they possess the requisite elastic and thermal properties.
  • all of the inserts in the percussion rock bit are made with cobalt bonded carbide having the stated stated properties.

Abstract

The present invention is a rock bit insert (13) including a polycrystalline diamond surface (33, 35, 37), on an insert body (31) having a head portion (34) made from a material with elasticity and thermal expansion properties advantageously tailored for use in three types of rock bits, as well as the three types of rock bits made with such inserts. The three types of bits are a roller cone rock bit (15) adapted to be used with mud as the drilling fluid, a roller cone rock bit (51) adapted to be used with air as the drilling fluid, and a percussion rock bit (81).

Description

ROCK BITS AND INSERTS THEREFOR
BACKGROUND OF THE INVENTION
The present invention relates to the field of rock bits and inserts therefor. More particularly, the invention relates to the field of roller cone type bits and percussion type bits which include inserts with a layer of polycrystalline diamond materialon an insert body.
Roller cone rock bits are widely used for oil, gas, and geothermal drilling operations. In general, roller cone rock bits include a body connected to a drill string and typically three hollow cutter cones each mounted on journals on the bit body for rotation about an axis transverse to the axis of the drill bit. In use, the drill string and bit body are rotated in the bore hole and each cone is caused to rotate on its respective journal as the cone contacts the bottom of the bore hole being drilled.
Roller cone rock bits are generally divided into two categories: those used with mud as the drilling fluid, and those used with air as the drilling fluid. Although similar in the basic design, these two types of roller cone rock bits also have many design and manufacturing dissimilarities due to the differences in how the bits are used as well as the kinds of drilling equipment that is used with, these two types of bits.
Typically, mud is used as the drilling fluid when drilling in formations that would tend to close in on the hole that has been drilled. That is, the weight of the mud is used to maintain the integrity of the borehole by balancing the geophysical forces surrounding the bore hole. As used herein, the term "mud" is intended to have a relatively broad meaning including conventional drilling mud, water, brine, and oils, as well as mixtures thereof.
On the other hand, air is typically used when drilling in fractured formations where the mud would have a tendency to seep into the formation, and when the borehole integrity is sufficiently stable.
Because typical drilling mud is relatively abrasive, roller cone rock bits used with mud generally include an elastomer seal to protect the bearings from the drilling mud. Also, mud bits are generally designed to last much longer and typically include precision journal bearings and a lubricant reservoir with pressure compensation means.
In contrast, air bits are generally designed for shorter run times and include unsealed, unlubricated roller bearings. Accordingly, air bits are often used for geothermal drilling because the high temperatures encountered in this type of drilling would usually degrade the elastomer seals and lubricants used in the design of mud bits.
In addition, because the weight of the column of drilling mud above applies a greater pressure than a column of air on the bottom of the borehole, the interaction between the cutting inserts and the bottom of the hole is different for the inserts in a roller cone mud bit and the inserts in a roller cone air bit. In particular, the inserts of a roller cone mud bit are typically subjected to higher dynamic forces due to the influence of the mud column on the borehole bottom. Also, because the mud acts to balance the geophysical pressures surrounding the borehole, including the hole bottom, mud drilling typically has a slower rate of penetration than air drilling. Consequently, under identical weight on bit and rotational speed, inserts on mud bits will typically contact the rock formation more times to drill a given equivalent footage than in air drilling. Also, the inserts in mud bits typically extend further from the cone to achieve a more aggressive cutting action than is typically found with air bits.
In contrast, because the bottom of the borehole is underpressure balanced when drilling with air, the rock tends to explode on contact with the inserts, As a consequence of the explosive nature of air drilling, the peak load on each insert is lower than that with mud drilling.
Fixed head percussion rock bits, some times known as hammer bits, are another type of rock boring tool. Percussion rock bits are used most often in drilling blast holes for mining and construction. Other uses for fixed head percussion bits include gas, oil, and water drilling. The percussion bits include a body with one end for connecting to an air hammer. Hard metal inserts are embedded in the other end.
In operation, the air hammer moves the bit up and down rapidly. The percussion bit hammers the inserts against the rock being drilled, shattering it by repeated blows. A typical air hammer for percussion bits operates at about 2,000 blows per minute while being rotated at about 60 r.p. . Compressed air pumped through the bit removes chips of fractured rock from the hole being drilled. Some percussion bits are driven by hydraulic action. A significant improvement in the life expectancy of roller cone and percussion rock bits involves the use of cemented metal carbide inserts put into the roller cones for crushing rock on the bottom of the bore hole. Naturally, cemented metal carbide, such as cobalt cemented tungsten carbide, offered improved wear resistance over steel along with sufficient toughness to withstand the forces encountered during drilling. Since the advent of cemented metal carbide inserts in rock drilling, much e ort' has been devoted to improving both the wear resistance and toughness of the inserts. Wear resistance is important to prevent the insert from simply wearing away during drilling. Toughness is important to avoid inserts breaking off due to the high impact loads experienced in drilling.
A more recent development in roller cone rock bit inserts has been the use of a layer of polycrystalline diamond (PCD) . In particular, inserts have been fabricated which include an insert body made of cobalt bonded tungsten carbide and a layer of polycrystalline diamond directly bonded to the protruding head portion of the insert body. The term polycrystalline diamond generally refers to the material produced by subjecting individual diamond crystals to sufficiently high pressure and high temperature that intercrystalline bonding occurs between adjacent diamond crystals. Naturally, PCD offers the advantage of greater wear resistance. However, because PCD is relatively brittle, some problems have been encountered due to chipping or cracking in the PCD layer.
U.S. Patent No. 4,694,918, assigned to the assignee of the present invention, discloses roller cone rock bits and inserts therefor which inserts include a cemented metal carbide insert body, an outer layer of polycrystalline diamond, and at least one transition layer of a composite material. The composite material includes polycrystalline diamond and precemented metal carbide pieces. This transition layer between the outer layer of PCD and the head portion has been found to extend the life expectancy of PCD rock bit inserts by reducing the incidence of cracking an chipping.
SUMMARY OF THE INVENTION
Briefly stated, the present invention is a rock bit insert including a polycrystalline diamond surface on an insert body having a head portion made from a material with elasticity and thermal expansion properties advantageously tailored for use in three types of rock bits, as well as the three types of rock bits made with such inserts. The three types of bits are a roller cone rock bit adapted to be used with mud, a roller cone rock bit adapted to be used with air, and a percussion rock bit.
All of the inserts of the present invention include a body having a shaft portion for insertion into the rock bit and a head portion for protruding from the rock bit. A layer of polycrystalline diamond material is directly bonded to the head portion.
In the insert for a roller cone rock bit adapted to be used with mud as the drilling fluid, the material of the head portion has a Young's modulus of elasticity of between about 80 and about and about 89 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.9 and about 3.4 x 10~ /°C. Preferably, the head portion of the insert body is made from cobalt bonded tungsten carbide having a coercivity between about 85 and about 120 Oe and a hardness of between about 88.1 and about 89.4 Ra.
The roller cone rock bit adapted to drill with mud as the drilling fluid includes a steel body, means at one end of the body for connecting the bit to a drill string, and means at the opposite end of the body for mounting at least one roller cone on the body for rotation around an axis transverse to the axis of the bit. The bit further includes at least one roller cone so mounted on the body for rolling on the bottom of a borehole being drilled. A plurality of inserts for crushing rock at the bottom of such a bore hole are included in the roller cone. At least a portion of these inserts include an insert body having a shaft portion for insertion into a rock bit and a head portion protruding from the rock bit. A layer of polycrystalline diamond material is directly bonded to the head portion of these inserts. The head portion of these inserts for a roller cone rock bit for use with mud comprises a material having a Young' s modulus of elasticity of between about 80 and about and about 89 x
10 p.s.i. and a coefficient of thermal expansion of between about 2.9 and about 3.4 x 10~ /°C. Preferably, the head portion of the insert body is made from cobalt bonded carbide having a coercivity between about 85 and about 120 Oe and a hardness of between about 88.1 and about 89.4 Ra.
In the insert for a roller cone rock bit adapted to be used with air as the drilling fluid, the material of the head portion has a Young's modulus of elasticity of between about 90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.5 and 3.0 x 10 / C. Preferably, the head portion of the insert body is made from cobalt bonded carbide having a coercivity between about 120 and about 160 0e and a hardness of between about 89.5 and about 91.1 Ra.
The roller cone rock bit for use with air as the drilling fluid includes a steel body, means at one end of the body for connecting the bit to a drill string, and means at the opposite end of the body for mounting at least one roller cone on the body for rotation around an axis transverse to the axis of the bit. The bit further includes at least one roller cone so mounted on the body for rolling on the bottom of a borehole being drilled. A plurality of inserts for crushing rock at the bottom of such a borehole are included in the roller cone. At least a portion of these inserts include an insert body having a shaft portion for insertion into a rock bit and a head portion for protruding from the rock bit. A layer of polycrystalline diamond material is directly bonded to the head portion of these inserts. The head portion of these inserts for a roller cone rock bit for use with air as the drilling fluid comprises a material having a Young's modulus of elasticity of between about 90 and about 102 x 10 p.s.i. and a coefficient of thermal
_ c. r expansion of between about 2.5 and 3.0 x 10 / C.
Preferably, the head portion of the insert body is made from cobalt bonded carbide having a coercivity between about 120 and about 160 0e and a hardness of between about 89.5 and about 91.1 Ra.
In the insert for a percussion cone rock bit, the material of the head portion has a Young's modulus of elasticity of between about 90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.5 and 3.0 x 10 / C. Preferably, the head portion of the insert body is made from cobalt bonded carbide having a coercivity between about 120 and about 160 0e and a hardness of between about 89.5 and about 91.1 Ra.
The percussion rock bit includes a steel body, and means at one end of the body for connecting the bit to a drill string. A plurality of inserts are embedded within the other end of the steel body. At least a portion of these inserts include an insert body having a shaft portion for insertion into a rock bit and a head portion for protruding from the rock bit. A layer of polycrystalline diamond material is directly bonded to the head portion of these inserts. The head portion of these inserts for a percussion rock bit comprises a material having a Young1s modulus of elasticity of between about 90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.5 and 3.0 x 10~ / C. Preferably, the head portion of the insert body is made from cobalt bonded carbide having a coercivity between about 120 and about 1600e and a hardness of between about 89.5 and about 91.1 Ra.
It has been found that; when the head portion of the inserts has been made from a material possessing the Young1s modulus and coef icient of thermal expansion within the respective ranges; the inserts have a greater life expectancy than those wherein the head portion material does not fit within these ranges. In particular, it has been found that using the material within the respective ranges has reduced the incidence of cracking and chipping in the PCD layer. In addition, it has been found that the incidence of gross insert breakage has also been reduced. It has also been discovered that the values for Young's modulus can be too high for practical use in the rock bits of the invention. In particular, it has been found that; above the stated upper limits for the Young's modulus; the head portion of the insert body is too brittle to withstand the dynamic forces encountered during drilling. In other words, if the modulus of elasticity is too high, the inserts are prone to break off during drilling. Such breakage is particularly detrimental in that it not only reduces the penetration ability of the bit, but the broken pieces of the inserts can cause extensive damage to the rest of the rock bit.
It has further been discovered that the inventive ranges of Young's modulus and coefficient of thermal expansion for the inserts differ between those used in roller cone rock bits adapted for drilling with mud and those used in roller cone rock bits adapted for drilling with air. The difference in these ranges is believed to be caused by the differences between the forces acting on a mud bit insert and those acting on an air bit insert. The inventive ranges of Young's modulus and coefficient of thermal expansion for inserts used in percussion bits have been found to be identical to those for roller cone rock bits used with air.
These and other objects, advantages, and features of the present invention will be better understood upon review of the following detailed description of the preferred embodiments read in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a side view of a roller cone rock bit adapted to drill with mud. FIGURE 2 is a partial cross-sectional view of such a rock bit.
FIGURE 3 is a cross-sectional view of an insert for use in the rock bit of FIGURE 1.
FIGURE 3a is a cross-sectional view of an alternative insert for use in the rock bit of FIGURE 1.
FIGURE 4 is a cross-sectional view of a gage insert for use in the rock bit of FIGURE 1.
FIGURE 5 is a partial cross-sectional view of roller cone rock bit adapted to drill with air.
FIGURE 6 is a cross-sectional view of an insert for use in the rock bit of FIGURE 5.
FIGURE 7 is a cross-sectional view of a gage insert for use in the rock bit of FIGURE 5.
FIGURE 8 is a partial cross-sectional view of a percussion rock bit.
FIGURE 9 is a cross-sectional view of an insert for use in the percussion rock bit of FIGURE 7.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In accordance with the present invention, the selection of the elastic and thermal expansion properties of the material of the head portion of the insert body have been found to be important in reducing cracking and chipping in the PCD layer of a PCD coated rock bit insert.
While not wishing to be bound by any particular theory, it is- currently believed that the present invention has proven successful according to the following theory. It is now believed that chipping and cracking in the PCD layer is related to some extent to a disparity between the properties of the PCD and the material directly beneath the PCD. Conventionally, this material has been cobalt bonded tungsten carbide. One property which varies between the PCD and the cobalt bonded carbide is the modulus of elasticity. In particular, the Young's modulus of elasticity of diamond is typically between about 130 and about 150 x g 10 p.s.i., while the Young's modulus of elastici •tty. of cemented metal carbide, varies from about 75 x 10,6 p.s.i. for a 14 weight percent cobalt bonded tungsten carbide to about 99 x 10 for a 6 weight percent cobalt bonded tungsten carbide.
In view of this disparity, it is now theorized that some PCD cracking and chipping is due to the fact that if the cemented carbide immediately below the PCD layer deflects under load beyond the elastic limit of the PCD layer. Consequently, enough strain is created in the PCD layer to cause cracking or chipping.
Another property for which exists a broad difference between PCD and cemented metal carbide is their coefficients of thermal expansion. Typically, PCD has a coefficient of thermal expansion of between about 2.29 and about 3.14 x 10" /°C. Depending on the grade of cemented carbide, the coefficient of thermal expansion varies between about 2.5 and about 6.0 ιo-5/°c.
It is now believed that this disparity in thermal expansion can likewise cause cracking and chipping in the PCD layer. In particular, during formation of the PCD, the insert is subjected to temperatures typically between about 1300 and about 1500 C. As the insert cools, the difference in thermal expansion between the two materials can set up strain between diamond containing layers which can in turn lead to early failure in service of the insert through cracking or chipping within the PCD layer.
In light of the above, it has now been theorized that the incidence of cracking and chipping can be reduced by using a material in the head portion of the rock bit insert which material has a Young' s modulus and a coefficient of thermal expansion within the stated ranges. In other words, reducing the disparity between the PCD material layer and the head portion below it is believed to be responsible for the extension in durability of the PCD material layer which extension has been observed in field testing.
In this specification and the appended claims, the modulus of elasticity is expressed as a Young's modulus with p.s.i. as the units. These values are determined by direct strain gage measurement of the slope of the stress-deflection curve. Alternatively, the Young's modulus can be measured by dynamic excitation, at ultrasonic frequency, of longitudinal oscillations in a test bar, and ascertaining the resonance frequency of its natural oscillations. The elastic modulus of cemented metal carbides generally decreases with increasing cobalt content.
Preferably, the material of the head portion is a cemented carbide, more preferably a cobalt bonded carbide. When cobalt bonded carbide is used, it has been found desirable to select a specific grade which has a coercivity and hardness with particular ranges. It is noted that the term "coercivity, " as used in the specification and appended claims, is intended to refer to the coercive force measuring the amount of reverse magnetism required to reduce the residual induction to zero after a sample is removed from a magnetic field where it was completely saturated. The units of this measurement are oersteds (O ) . The coercivity value is obtained by placing a test sample in a DC magnetic field and magnetizing to saturization. The field is reversed and the coercive field strength needed for demagnetization of the test sample is measured. In particular, the coercivity of the cemented metal carbides in the experiments for the present invention were determined with a Forster-Koerzimat, Model 1.095.
The coercivity of cemented carbides is directly related to the volume fraction of metal carbide, inclusions, porosity, eta phase of the carbide, internal stress and carbon content. In general, fine grained metal carbides with a low metal binder content have the highest coercivity values. On the other hand, large grain metal carbides with high a metal binder content have the lowest coercivity values.
It is further noted that the term "hardness," as used in the specification and appended claims, is intended to refer to Rockwell "A" hardness which is expressed with the united "Ra". Rockwell "A" hardness is determined by ASTM B294-76.
In general, hardness of cemented carbides is related to grain size and binder content. Cemented carbides with large grain sizes have a lower hardness than fine grained materials. Also, as binder content increases, the hardness decreases.
These two properties, coercivity and hardness, are valuable in specifying different grades of metal bonded carbides for the following reasons. Coercivity is an easily measured property which reflects a combination of several variables within the cemented metal carbide. As noted above, coercivity is related to the volume fraction of metal carbide, inclusions, porosity, eta phase, and carbon content. Consequently, the coercivity value of a cemented metal carbide reveals much about the microstructure of the cemented metal carbide.
Hardness, on the other hand, is a measure of a macroscopic property of the cemented metal carbide. Although coercivity and hardness are related to some degree, hardness is also related to the modulus of elasticity and is easily measured.
Referring to the FIGURES 1 and 2, a roller cone rock bit 15 is shown which is adapted to be used with mud as the drilling fluid. The bit 15 includes a steel body 10 and a threaded end 12 for connection to a drill string (not shown) . Three roller cones 11 are rotatably mounted on journals 16 on the bit body. Several inserts 13 are set in rows within recesses in each cone. As can be seen, the cones 11 are set at an angle transverse to the axis 14 of the bit. Consequently, as the bit is rotated, the cones each rotate about their axis to bring the inserts 13 into contact with the bottom of the hole.
Another row of inserts 17 are set in a gage row of each cone. These inserts serve the important function of contacting the side of the hole in order to maintain the diameter, or "gage," of the hole. By virtue of their location on the cone, these gage row inserts 17 typically are subjected to more abrasive wear. It is known in the drilling industry that, when the gage row inserts become too worn, the diameter of the hole becomes reduced as the rock bit continues to drill. This condition is highly detrimental because the next bit which is sent down the hole is required to ream out the diameter of the hole before it reaches the bottom of the hole. In addition, the life expectancy of the seal and bearing system are shortened when the gage of the hole is not maintained. For these reasons it is particularly advantageous to include the inserts of the present invention in the gage row of the roller cones. FIGURE 3 is a cross-section of one of the inserts 13 of the present invention. As can be seen, the insert 3 includes an insert body 31. This insert body includes a shaft portion which is inserted into the roller cone and a head portion which protrudes from the roller cone. The PCD is bonded directly to the head portion of the insert.
Preferably, the insert body is made in one piece, most preferably a unitary piece of cemented carbide. However, insert bodies can be manufactured in more than one piece. For example, it may be desirable to weld a cone or dome-shaped head portion onto a cylindrical shaft portion. Also, it may be desirable to attach a head portion with a non-planar interface with the shaft portion. For example, FIGURE 3a shows a cone-shaped head portion 34 which is attached to a shaft portion 32 which includes a cylindrical portion 36 protruding into a recess in the head portion. Preferably, when the head portion is made from a different material, it will have a higher Young's modulus of elasticity than the material of the shaft portion. In view of these variations, it is noted that, as used in this specification and the appended claims, the term head portion refers to that portion of the insert body which is directly under the PCD layer.
The shape and size of the head portion can be varied by those of ordinary skill in the art depending on the type of formation to be drilled and other factors relating to the specific design of the roller cone rock bit. As shown here, the head portion of the cutting inserts 13 are shaped like a blunt cone. Other popular shapes are dome and chisel-shaped.
Preferably, the PCD layer on the inserts is made according to the teachings of U.S. Patent No. 4,694,918, the entire disclosure of which is incorporated herein by reference. According to this patent, the PCD layer is actually divided into layers itself. Preferably, the PCD layer includes at least one transition layer between the outer layer 37 and the head portion of the insert. Most preferably, the PCD layer includes two transition layers 33 and 35 as shown here. Each transition layer is comprised of polycrystalline diamond with pieces of precemented carbide dispersed therein. As taught in the above-named patent, inclusion of such transition layers has been found to increase the durability of the PCD in the outer layer.
U.S. Patent No. 4,525,178 teaches the process for making this composite polycrystalline diamond.
Accordingly, the entire disclosure of this patent is incorporated herein by reference. Also, U.S. Patent
No. 4,604,106 teaches the method of incorporating the composite polycrystalline diamond into transition layers. This patent is likewise incorporated herein in its entirety by reference.
Because the use of transition PCD layers is preferred for use with the present invention, it is noted that for convenience, the term "polycrystalline diamond material" is intended to refer herein to polycrystalline diamond as well as to composite polycrystalline diamond, i.e. polycrystalline diamond with pieces of precemented carbide dispersed therein.
Also, when the term "PCD layer" is used, it is intended to include the outer layer of PCD and any transition layers of composite PCD material, if present.
According to the invention, the material of the head portion should have a Young' s modulus between about 80 and about 89 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.9 and 3.4 x
10 / C. More preferably, the material of the head portion of the insert body should have a Young's modulus between about 83 and about 86 x 10 p.s.i. and a coefficient of thermal expansion between about 3.0 and about 3.4 x 10 /°C.
In the preferred embodiment depicted, the cobalt bonded tungsten carbide of the head portion of the insert in a roller cone rock bit for mud drilling as shown in FIGURES 1 and 2 should have a coercivity between about 85 and about 120 0e and a hardness of between about 88.1 and about 89.4 Ra. More preferably, the coercivity should be between about 95 and about 105
Oe;' and the hardness should be between about 88.3 and about 89.1 Ra.
In the most preferred embodiment, the cemented metal carbide is cobalt bonded tungsten carbide made by Rodger's Tool Works (RTW) under the designation "367." The grade designation of this carbide has been previously known as TCM grade 411. The average grain size of the tungsten carbide is approximately 3 microns, and the cobalt content is about 11 percent by weight. The hardness of this grade of carbide is 88.8 Ra.
Alternatively, other grades of cobalt bonded tungsten carbide, such as TCM 410 or TCM 510 can be used. Also, other types of cemented metal carbides can be used. For example a tantalum bonded tungsten carbide can be used if it possess the requisite Young's modulus and coefficient of thermal expansion.
In still other alternative embodiments, materials other than cemented metal carbides can be used. For example ceramic materials, and ceramic composites can be used so long as they possess the requisite elastic and thermal properties.
Most preferably, all of the cutting inserts 13 are made according to the present invention. However, in alternative embodiments, either all or some of the inner row inserts cutting the central portion of the borehole are conventional cemented metal carbide, either with or without a PCD layer.
FIGURE 4 is a cross-sectional view of a gage insert 17 for the rock bit shown in FIGURES 1 and 2. As with the regular insert 13, the gage insert 17 includes an insert body 41 with a shaft portion and a head portion. As shown, however, the shape of the head portion is different on the gage insert 17. In particular, the head portion of the presently preferred gage insert dome-shaped. The PCD layer of the gage insert 17 is divided into an outer layer of PCD 45 and a transition layer 43.
In accordance with this preferred embodiment, the material of the head portion of the insert body 41 is a cobalt bonded tungsten carbide having a coercivity between about 85 and about 120 Oe and a hardness of between about 88.1 and about 89.4 Ra. More preferably, the coercivity should be between about 95 and about 105
Oe;' and the hardness should be between about 88.3 and about 89.1 Ra.
The most preferred material for the head portion of the gage row is the same RTW 367 cobalt bonded tungsten carbide referred to above with the inner row inserts 13.
FIGURE 5 is a partial cross-sectional view of a roller cone rock bit 51 for use with air as the drilling fluid. Similar to the mud bit shown in FIGURES 1 and 2, this air bit 51 includes a bit body 53 with an end 55 adapted to be threaded onto a drill string. A roller cone 57 is mounted on each leg 59 on the bit body. Several inserts 58 are set in rows in the roller cone 57. A row of gage inserts 56 is also included. As seen, the air bit 51 does not include seals or lubricating means as does the mud bit. FIGURE 6 is a cross-sectional view of the inserts 58 which are used in the air bit of FIGURE 5.
This insert is similar in construction to that shown in
FIGURE 3 with the exception that the properties of the material of the head portion are different. According to the invention, for the air bit, the material should have a Young's modulus of elasticity of between about
90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.5 and 3.0 x 10~ / C. More preferably, the material of the head portion of the insert body should have a Young's
—6 modulus between about 92 and about 99 x 10 p.s.i. and a coefficient of thermal expansion between about 2.8 and about 3.0 x 10_6/°C.
Preferably, the head portion is made from a cobalt bonded tungsten carbide having a coercivity between about 120 and about 160 Oe and a hardness of between about 89.5 and about 91.1 Ra. More preferably, the coercivity should be between about 140 and about 150 0 ; and the hardness should be between about 90.5 and about 91.1 Ra.
In the most preferred embodiment, the cemented metal carbide for the inserts of the air bit is cobalt bonded tungsten carbide made by Rodger's Tool Works under the designation "374." The grade designation of this carbide is 406. The average grain size of the tungsten carbide is approximately 3 microns, and the cobalt content is about 6 percent by weight. The hardness of this grade of carbide is 90.8 Ra.
Alternatively, other grades of cobalt bonded tungsten carbide, such as 206 or 208 can be used. Also, other types of cemented metal carbides can be used. For example a tantalum bonded tungsten carbide can be used if it possess the requisite Young's modulus and coefficient of thermal expansion. In still other alternative embodiments, materials other than cemented metal carbides can be used. For example ceramic materials, and ceramic composites can be used so long as they possess the requisite elastic and thermal properties.
FIGURE 7 is a cross-sectional view of a gage insert 56 for the air bit shown in FIGURE 5. This gage insert 56 is similar to that shown in FIGURE 4 with the exception that the cemented metal carbide is the same as that shown with the insert of FIGURE 6.
As with the mud bit, it is preferred that the cutting inserts 58 and the gage inserts are all made with the specified cemented metal carbide. However, in alternative embodiments, only the gage inserts 56 are so made.
FIGURE 8 is a partial cross-sectional view of a percussion bit made according to the present invention. The bit 81 includes a steel body 82 with one end 83 adapted to thread onto a drill string. Several inserts 85 are embedded into the other end of the steel body.
FIGURE 9 is a cross-sectional view of an inert 85 made according to the present invention. The insert includes an insert body 91 with a shaft portion and a head portion for protruding from the body of the percussion bit. Directly bonded to the head portion is a layer of PCD 93. Preferably, this layer of PCD is formed with at least one transition layer as described above.
According to the invention, for the percussion bit, the material of the head portion of the insert body should have a Young' s modulus of elasticity g of between about and about 90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of
_ _ between about 2.5 and 3.0 x 10 / C. More preferably, the material of the head portion of the insert body should have a Young's modulus between about 92 and
—6 about 99 x 10 p.s.i. and a coefficient of thermal expansion between about 2.8 and about 3.0 x 10 / C.
In accordance with the preferred embodiment of the present invention the material of the head portion is a cobalt bonded tungsten carbide having a coercivity between about 120 and about 160 0e and a hardness of between about 89.5 and about 91.1 Ra. More preferably, the coercivity should be between about 140 and about 150 0 ; and the hardness should be between about 90.5 and about 91.1 Ra.
In the most preferred embodiment, the cemented metal carbide for the inserts of the percussion rock bit is cobalt bonded tungsten carbide made by Rodger's Tool Works under the designation "374." The grade designation of this carbide is 406. The average grain size of the tungsten carbide is approximately 3 microns, and the cobalt content is about 6 percent by weight. The hardness of this grade of carbide is 90.8 Ra.
Alternatively, other grades of cobalt bonded tungsten carbide, such as 206 or 208 can be used. Also, other types of cemented metal carbides can also be used. For example a tantalum bonded tungsten carbide can be used if it possess the requisite Young's modulus and coefficient of thermal expansion.
In still other alternative embodiments, materials other than cemented metal carbides can be used. For example ceramic materials, and ceramic composites can be used so long as they possess the requisite elastic and thermal properties. Preferably, all of the inserts in the percussion rock bit are made with cobalt bonded carbide having the stated stated properties.
There has thus been described rock bit inserts and three types of rock bits according to the present invention. Although much of the description has involved the use of cobalt bonded tungsten carbide as the material of the head portion, other cemented metal carbides, as well as other types of materials are within the scope of the present invention. Also, although much of the description has involved the use of single piece insert bodies, multiple piece insert bodies can also be used without departing from the scope of the present invention. Clearly, the scope of the present invention is not limited to this description of the preferred embodiments. All modifications which are within the ordinary skill in the art to make are considered to lie within the scope of the invention as defined by the appended claims.

Claims

I CLAIM :
1. An insert for a roller cone rock bit adapted to drill with mud comprising: an insert body having a shaft portion for insertion into a roller cone and a head portion for protruding from the roller cone; and a layer of polycrystalline diamond material directly bonded to the head portion; wherein the head portion comprises a material having a Young's modulus of elasticity between about 80 and about 89 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.9 and 3.4 x 10" / C.
2. The insert of Claim 1 wherein the material of the head portion has a Young's modulus of elasticity g between about 83 and about 86 x 10 p.s.i.
3. The insert of Claim 1 wherein the material of the head portion has a coefficient of thermal expansion between about 3.0 and about 3.4 x 10~ /°C
4. The insert of Claim 1 wherein the head portion comprises cemented carbide.
5. The insert of Claim 4 wherein said cemented metal carbide is cobalt bonded tungsten carbide having a coercivity J between about 85 and about 120 Oe and a hardness of between about 88.1 and about 89.4 Ra.
6. The insert of Claim 5 wherein the cobalt bonded carbide has a coercivity between about 95 and about 105 0 . 7. The insert of Claim 5 wherein the cobalt bonded carbide has a harness of between about 88.3 and about 89.1 Ra.
8. The insert of Claim 1 wherein the insert body is an integral piece of cemented carbide.
9. The insert of Claim 1 wherein the insert body is made in at least two pieces.
10. The insert of Claim 9 wherein the head portion is made from a material having a higher Young's modulus than that of the shaft portion of the insert body.
11. A roller cone rock bit adapted to drill with mud comprising: a steel body; means at one end of the body for connecting the bit to a drill string; means at the opposite end of the body for mounting at least one roller cone on the body for rotation around an axis transverse to the axis of the bit; at least one roller cone so mounted on the body for rolling on the bottom of a bore hole being drilled; a plurality of inserts in said cone for crushing rock at the bottom of such a bore hole, at least a portion of said inserts comprising: an insert body having a shaft portion for insertion into a rock bit and a head portion for protruding from the rock bit; and a layer of polycrystalline diamond material directly bonded to the head portion; wherein the head portion comprises a material having a Young's modulus of elasticity between g about 80 and about 89 x 10 p.s.i. and a coefficient of thermal expansion of between about
2.9 and 3.4 x lθ'6/°C
12. The rock bit of Claim 11 wherein the material of the head portion has a Young's modulus of elasticity between about 83 and about 86 x 10 p.s.i.
13. The rock bit of Claim 11 wherein the material of the head portion has a coefficient of thermal expansion between about 3.0 and about 3.4 x 10" / C.
14. The rock bit of Claim 11 wherein the head portion comprises cemented carbide.
15. The rock bit of Claim 14 wherein said cemented metal carbide is cobalt bonded tungsten carbide having a coercivity between about 85 and about
120 0e and a hardness of between about 88.1 and about
89.4 Ra.
16. The rock bit of Claim 15 wherein the cobalt bonded carbide has a coercivity between about 95 and about 105 0e.
17. The rock bit of Claim 15 wherein the cobalt bonded carbide has a harness of between about 88.3 and about 89.1 Ra.
18. The rock bit of Claim 11 wherein the insert body is an integral piece of cemented carbide. 19. The rock bit of Claim 11 wherein the head portion is made from a material having a higher Young' s modulus than that of the shaft portion of the insert body.
20. The rock bit of Claim 11 wherein at least some of said inserts are embedded within a gage row on said roller cone.
21. An insert for a roller cone rock bit adapted to drill with air comprising: an insert body having a shaft portion for insertion into a roller cone and a head portion for protruding from the roller cone; and a layer of polycrystalline diamond material directly bonded to the head portion; wherein the head portion comprises a material having a Young's modulus of elasticity between about 90 g and about 102 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.5 and about 3.0 x 10" /°C.
22. The insert of Claim 21 wherein the material of the head portion has a Young1s modulus of elasticity between about 92 and about 99 x 10 p.s.i.
23. The insert of Claim 21 wherein the material of the head portion has a coefficient of thermal expansion between about 2.8 and about 3.0 x 10~ / C
24. The insert of Claim 21 wherein the head portion comprises cemented carbide.
25. The insert of Claim 24 wherein said cemented metal carbide is cobalt bonded tungsten carbide having a coercivity between about 120 and about 160 0 and a hardness of between about 89 . 5 and about e
91 . 1 Ra .
26. The insert of Claim 25 wherein the cobalt bonded carbide has a coercivity between about 140 and about 150 0e.
27. The insert of Claim 25 wherein the cobalt bonded carbide has a hardness of between about 90.5 and about 91.1 Ra.
28. The insert of Claim 21 wherein the insert body is an integral piece of cemented carbide.
29. The insert of Claim 21 wherein the insert body is made in at least two pieces.
30. The insert of Claim 29 wherein the head portion is made from a material having a higher Young's modulus than that of the shaft portion of the insert body.
31. A roller cone rock bit adapted to drill with air comprising: a steel body; means at one end of the body for connecting the bit to a drill string; means at the opposite end of the body for mounting at least one roller cone on the body for rotation around an axis transverse to the axis of the bit; at least one roller cone so mounted on the body for rolling on the bottom of a bore hole being drilled; a plurality of inserts in said cone for crushing rock at the bottom of such a bore hole, at least a portion of said inserts comprising: an insert body having a shaft portion for insertion into a rock bit and a head portion for protruding from the rock bit; and a layer of polycrystalline diamond material directly bonded to the head portion; wherein the head portion comprises a material having a Young's modulus of elasticity between g about 90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.5 and 3.0 x 10-6/°C
32. The rock bit of Claim 31 wherein the material of the head portion has a Young's modulus of elasticity between about 92 and about 99 x 10 p.s.i.
33. The rock bit of Claim 31 wherein the material of the head portion has a coefficient of thermal expansion between about 2.8 and about 3.0 x lθ" / C.
34. The rock bit of Claim 31 wherein the head portion comprises cemented carbide.
35. The rock bit of Claim 34 wherein said cemented metal carbide is cobalt bonded tungsten carbide having a coercivity between about 120 and about 160 and a hardness of between about 89.5 and about 91.1 Ra.
36. The rock bit of Claim 35 wherein the cobalt bonded carbide has a coercivity between about 140 and about 150 O . 37. The rock bit of Claim 35 wherein the cobalt bonded carbide has a hardness of between about 90.5 and about 91.1 Ra.
38. The rock bit of Claim 31 wherein the insert body is an integral piece of cemented carbide.
39. The rock bit of Claim 31 wherein the head portion is made from a material having a higher Young's modulus than that of the shaft portion of the insert body.
40. The rock bit of Claim 31 wherein at least some of said inserts are embedded within a gage row on said roller cone.
41. An insert for a percussion rock bit comprising: an insert body having a shaft portion for insertion into the percussion rock bit and a head portion for protruding from the roller cone; and a layer of polycrystalline diamond material directly bonded to the head portion; wherein the head portion comprises a material having a Young's modulus of elasticity between about 90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of between about 2.5 and about 3.0 x 10~ /°C.
42. The insert of Claim 41 wherein the material of the head portion has a Young's modulus of elasticity between about 92 and about 99 x 10 p.s.i.
43. The insert of Claim 41 wherein the material of the head portion has a coefficient of thermal expansion between about 2.8 and about 3.0 x 10" /°C 44. The insert of Claim 41 wherein the head portion comprises cemented carbide.
45. The insert of Claim 44 wherein said cemented metal carbide is cobalt bonded tungsten carbide having a coercivity between about 120 and about
160 Oe and a hardness of between about 89.5 and about
91.1 Ra.
46. The insert of Claim 45 wherein the cobalt bonded carbide has a coercivity between about 140 and about 150 Oe.
47. The insert of Claim 45 wherein the cobalt bonded carbide has a hardness of between about 90.5 and about 91.1 Ra.
48. The insert of Claim 41 wherein the insert body is an integral piece of cemented carbide.
49. The insert of Claim 41 wherein the insert body is made in at least two pieces.
50. The insert of Claim 49 wherein the head portion is made from a material having a higher Young's modulus than that of the shaft portion of the insert body.
51. A percussion rock bit comprising: a steel body; means at one end of the steel body for connecting the bit to a drill string; a plurality of inserts embedded within the other end of the steel body, at least a portion of the inserts comprising an insert body having a shaft portion for insertion into the steel body and a head portion for protruding from the steel body; and a layer of polycrystalline diamond material directly bonded to the head portion; wherein the head portion comprises a material having a Young's modulus of elasticity between g about 90 and about 102 x 10 p.s.i. and a coefficient of thermal expansion of between about
2.5 and 3.0 x lθ"6/°C
52. The rock bit of Claim 51 wherein the material of the head portion has a Young's modulus of elasticity between about 92 and about 99 x 10 p.s.i.
53. The rock bit of Claim 51 wherein the material of the head portion has a coefficient of thermal expansion between about 2.8 and about 3.0 x 10~ /°C.
54. The rock bit of Claim 51 wherein the head portion comprises cemented carbide.
55. The rock bit of Claim 54 wherein said cemented metal carbide is cobalt bonded tungsten carbide having a coercivity between about 120 and about 160 and a hardness of between about 89.5 and about 91.1 Ra.
56. The rock bit of Claim 55 wherein the cobalt bonded carbide has a coercivity between about 140 and about 1500e.
57. The rock bit of Claim 55 wherein the cobalt bonded carbide has a hardness of between about 90.5 and about 91.1 Ra. 58. The rock bit of Claim 51 wherein the insert body is an integral piece of cemented carbide.
59. The rock bit of Claim 51 wherein the head portion is made from a material having a higher Young's modulus than that of the shaft portion of the insert body.
60. The rock bit of Claim 51 wherein at least some of said inserts are embedded within a gage row on said roller cone.
PCT/US1989/000434 1988-03-16 1989-02-03 Rock bits and inserts therefor WO1989008727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO894552A NO178273C (en) 1988-03-16 1989-11-15 Carbide insert for drill bits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/169,232 US4811801A (en) 1988-03-16 1988-03-16 Rock bits and inserts therefor
US169,232 1988-03-16

Publications (1)

Publication Number Publication Date
WO1989008727A1 true WO1989008727A1 (en) 1989-09-21

Family

ID=22614748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1989/000434 WO1989008727A1 (en) 1988-03-16 1989-02-03 Rock bits and inserts therefor

Country Status (8)

Country Link
US (1) US4811801A (en)
EP (1) EP0357723A4 (en)
JP (1) JPH02503454A (en)
CA (1) CA1304736C (en)
IE (1) IE62492B1 (en)
NO (1) NO178273C (en)
WO (1) WO1989008727A1 (en)
ZA (1) ZA891184B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452840C1 (en) * 2011-02-16 2012-06-10 Николай Митрофанович Панин Drilling bit rolling cutter
US10900293B2 (en) 2016-04-20 2021-01-26 Mitsubishi Materials Corporation Drilling tip, drilling tool, and method of manufacturing drilling tip

Families Citing this family (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2646875A1 (en) * 1989-05-11 1990-11-16 Matieres Nucleaires Cie Genera Rotary-percussive boring bit with ultra-hard biting elements
US5161627A (en) * 1990-01-11 1992-11-10 Burkett Kenneth H Attack tool insert with polycrystalline diamond layer
US5154245A (en) * 1990-04-19 1992-10-13 Sandvik Ab Diamond rock tools for percussive and rotary crushing rock drilling
SE9002137D0 (en) * 1990-06-15 1990-06-15 Diamant Boart Stratabit Sa IMPROVED TOOLS FOR CUTTING ROCK DRILLING
SE9002135D0 (en) * 1990-06-15 1990-06-15 Sandvik Ab IMPROVED TOOLS FOR PERCUSSIVE AND ROTARY CRUSCHING ROCK DRILLING PROVIDED WITH A DIAMOND LAYER
SE9002136D0 (en) * 1990-06-15 1990-06-15 Sandvik Ab CEMENT CARBIDE BODY FOR ROCK DRILLING, MINERAL CUTTING AND HIGHWAY ENGINEERING
US5279374A (en) * 1990-08-17 1994-01-18 Sievers G Kelly Downhole drill bit cone with uninterrupted refractory coating
SE9003251D0 (en) * 1990-10-11 1990-10-11 Diamant Boart Stratabit Sa IMPROVED TOOLS FOR ROCK DRILLING, METAL CUTTING AND WEAR PART APPLICATIONS
US5236740A (en) * 1991-04-26 1993-08-17 National Center For Manufacturing Sciences Methods for coating adherent diamond films on cemented tungsten carbide substrates
US5353885A (en) * 1991-05-01 1994-10-11 Smith International, Inc. Rock bit
US5238074A (en) * 1992-01-06 1993-08-24 Baker Hughes Incorporated Mosaic diamond drag bit cutter having a nonuniform wear pattern
US5417475A (en) * 1992-08-19 1995-05-23 Sandvik Ab Tool comprised of a holder body and a hard insert and method of using same
US5429199A (en) * 1992-08-26 1995-07-04 Kennametal Inc. Cutting bit and cutting insert
GB2273306B (en) * 1992-12-10 1996-12-18 Camco Drilling Group Ltd Improvements in or relating to cutting elements for rotary drill bits
GB2274474B (en) * 1993-01-21 1996-07-31 Camco Drilling Group Ltd Improvements in or relating to cutter assemblies for rotary drill bits
US5351771A (en) * 1993-06-14 1994-10-04 Baker Hughes Incorporated Earth-boring bit having an improved hard-faced tooth structure
US5379854A (en) * 1993-08-17 1995-01-10 Dennis Tool Company Cutting element for drill bits
US5394952A (en) * 1993-08-24 1995-03-07 Smith International, Inc. Core cutting rock bit
GB2307933B (en) * 1993-09-20 1997-11-12 Smith International Insert stud cutters
US5370195A (en) * 1993-09-20 1994-12-06 Smith International, Inc. Drill bit inserts enhanced with polycrystalline diamond
US5379853A (en) * 1993-09-20 1995-01-10 Smith International, Inc. Diamond drag bit cutting elements
ZA948306B (en) * 1993-11-03 1995-06-22 Sandvik Ab Diamond/boron nitride coated excavating tool cutting insert
US5837071A (en) * 1993-11-03 1998-11-17 Sandvik Ab Diamond coated cutting tool insert and method of making same
US5415243A (en) * 1994-01-24 1995-05-16 Smith International, Inc. Rock bit borhole back reaming method
US5421424A (en) * 1994-06-09 1995-06-06 Smith International, Inc. Bowed out chisel insert for rock bits
ZA954736B (en) * 1994-06-16 1996-01-26 De Beers Ind Diamond Tool component
GB2296267B (en) * 1994-12-21 1998-06-10 Smith International Hammer rock bit gage protection
GB9505783D0 (en) * 1995-03-22 1995-05-10 Camco Drilling Group Ltd Improvements in or relating to rotary drill bits
US5535839A (en) * 1995-06-07 1996-07-16 Brady; William J. Roof drill bit with radial domed PCD inserts
US5566779A (en) * 1995-07-03 1996-10-22 Dennis Tool Company Insert for a drill bit incorporating a PDC layer having extended side portions
US5924501A (en) * 1996-02-15 1999-07-20 Baker Hughes Incorporated Predominantly diamond cutting structures for earth boring
US5833021A (en) * 1996-03-12 1998-11-10 Smith International, Inc. Surface enhanced polycrystalline diamond composite cutters
US6390210B1 (en) 1996-04-10 2002-05-21 Smith International, Inc. Rolling cone bit with gage and off-gage cutter elements positioned to separate sidewall and bottom hole cutting duty
US6571891B1 (en) 1996-04-17 2003-06-03 Baker Hughes Incorporated Web cutter
US5758733A (en) * 1996-04-17 1998-06-02 Baker Hughes Incorporated Earth-boring bit with super-hard cutting elements
US6068071A (en) * 1996-05-23 2000-05-30 U.S. Synthetic Corporation Cutter with polycrystalline diamond layer and conic section profile
US5967245A (en) * 1996-06-21 1999-10-19 Smith International, Inc. Rolling cone bit having gage and nestled gage cutter elements having enhancements in materials and geometry to optimize borehole corner cutting duty
US5813485A (en) * 1996-06-21 1998-09-29 Smith International, Inc. Cutter element adapted to withstand tensile stress
US5752573A (en) * 1996-08-12 1998-05-19 Baker Hughes Incorporated Earth-boring bit having shear-cutting elements
US5871060A (en) * 1997-02-20 1999-02-16 Jensen; Kenneth M. Attachment geometry for non-planar drill inserts
US5868213A (en) * 1997-04-04 1999-02-09 Smith International, Inc. Steel tooth cutter element with gage facing knee
US6029759A (en) * 1997-04-04 2000-02-29 Smith International, Inc. Hardfacing on steel tooth cutter element
US5839526A (en) * 1997-04-04 1998-11-24 Smith International, Inc. Rolling cone steel tooth bit with enhancements in cutter shape and placement
US6918455B2 (en) * 1997-06-30 2005-07-19 Smith International Drill bit with large inserts
US5979579A (en) * 1997-07-11 1999-11-09 U.S. Synthetic Corporation Polycrystalline diamond cutter with enhanced durability
US6244364B1 (en) 1998-01-27 2001-06-12 Smith International, Inc. Earth-boring bit having cobalt/tungsten carbide inserts
US6315065B1 (en) 1999-04-16 2001-11-13 Smith International, Inc. Drill bit inserts with interruption in gradient of properties
US6199645B1 (en) 1998-02-13 2001-03-13 Smith International, Inc. Engineered enhanced inserts for rock drilling bits
GB9809690D0 (en) * 1998-05-08 1998-07-01 Camco Int Uk Ltd Improvements in elements faced with superhard material
US6412580B1 (en) 1998-06-25 2002-07-02 Baker Hughes Incorporated Superabrasive cutter with arcuate table-to-substrate interfaces
US6105694A (en) * 1998-06-29 2000-08-22 Baker Hughes Incorporated Diamond enhanced insert for rolling cutter bit
US6220375B1 (en) * 1999-01-13 2001-04-24 Baker Hughes Incorporated Polycrystalline diamond cutters having modified residual stresses
US6499547B2 (en) * 1999-01-13 2002-12-31 Baker Hughes Incorporated Multiple grade carbide for diamond capped insert
US7086488B2 (en) * 2002-11-04 2006-08-08 Smith International, Inc. Cutting element having enhanced cutting geometry
US7540340B2 (en) * 2002-11-04 2009-06-02 Smith International, Inc. Cutting element having enhanced cutting geometry
US7040424B2 (en) * 2003-03-04 2006-05-09 Smith International, Inc. Drill bit and cutter having insert clusters and method of manufacture
US20050257963A1 (en) * 2004-05-20 2005-11-24 Joseph Tucker Self-Aligning Insert for Drill Bits
US7243745B2 (en) * 2004-07-28 2007-07-17 Baker Hughes Incorporated Cutting elements and rotary drill bits including same
GB2427633B (en) * 2005-05-17 2007-08-15 Smith International Drill bit and method of designing a drill bit
US7757789B2 (en) * 2005-06-21 2010-07-20 Smith International, Inc. Drill bit and insert having bladed interface between substrate and coating
US9103172B1 (en) 2005-08-24 2015-08-11 Us Synthetic Corporation Polycrystalline diamond compact including a pre-sintered polycrystalline diamond table including a nonmetallic catalyst that limits infiltration of a metallic-catalyst infiltrant therein and applications therefor
US8734552B1 (en) 2005-08-24 2014-05-27 Us Synthetic Corporation Methods of fabricating polycrystalline diamond and polycrystalline diamond compacts with a carbonate material
US7635035B1 (en) 2005-08-24 2009-12-22 Us Synthetic Corporation Polycrystalline diamond compact (PDC) cutting element having multiple catalytic elements
FI123572B (en) * 2005-10-07 2013-07-15 Sandvik Mining & Constr Oy Method and rock drilling device for drilling holes in rock
US7841428B2 (en) 2006-02-10 2010-11-30 Us Synthetic Corporation Polycrystalline diamond apparatuses and methods of manufacture
US8316969B1 (en) 2006-06-16 2012-11-27 Us Synthetic Corporation Superabrasive materials and methods of manufacture
US20090152015A1 (en) * 2006-06-16 2009-06-18 Us Synthetic Corporation Superabrasive materials and compacts, methods of fabricating same, and applications using same
US7516804B2 (en) 2006-07-31 2009-04-14 Us Synthetic Corporation Polycrystalline diamond element comprising ultra-dispersed diamond grain structures and applications utilizing same
US8123302B2 (en) 2006-08-11 2012-02-28 Schlumberger Technology Corporation Impact tool
US7661765B2 (en) 2006-08-11 2010-02-16 Hall David R Braze thickness control
US8201892B2 (en) 2006-08-11 2012-06-19 Hall David R Holder assembly
US7871133B2 (en) 2006-08-11 2011-01-18 Schlumberger Technology Corporation Locking fixture
US8485609B2 (en) * 2006-08-11 2013-07-16 Schlumberger Technology Corporation Impact tool
US8007051B2 (en) 2006-08-11 2011-08-30 Schlumberger Technology Corporation Shank assembly
US7669674B2 (en) 2006-08-11 2010-03-02 Hall David R Degradation assembly
US7997661B2 (en) 2006-08-11 2011-08-16 Schlumberger Technology Corporation Tapered bore in a pick
US9145742B2 (en) 2006-08-11 2015-09-29 Schlumberger Technology Corporation Pointed working ends on a drill bit
US9051795B2 (en) 2006-08-11 2015-06-09 Schlumberger Technology Corporation Downhole drill bit
US8292372B2 (en) * 2007-12-21 2012-10-23 Hall David R Retention for holder shank
US8414085B2 (en) * 2006-08-11 2013-04-09 Schlumberger Technology Corporation Shank assembly with a tensioned element
US8449040B2 (en) * 2006-08-11 2013-05-28 David R. Hall Shank for an attack tool
US20090058174A1 (en) * 2006-08-11 2009-03-05 Hall David R Attack Tool
US7743855B2 (en) * 2006-09-05 2010-06-29 Smith International, Inc. Drill bit with cutter element having multifaceted, slanted top cutting surface
US8236074B1 (en) 2006-10-10 2012-08-07 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US8202335B2 (en) 2006-10-10 2012-06-19 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US8080071B1 (en) 2008-03-03 2011-12-20 Us Synthetic Corporation Polycrystalline diamond compact, methods of fabricating same, and applications therefor
US9017438B1 (en) 2006-10-10 2015-04-28 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material and applications therefor
US7527110B2 (en) * 2006-10-13 2009-05-05 Hall David R Percussive drill bit
US8960337B2 (en) 2006-10-26 2015-02-24 Schlumberger Technology Corporation High impact resistant tool with an apex width between a first and second transitions
US8821604B2 (en) 2006-11-20 2014-09-02 Us Synthetic Corporation Polycrystalline diamond compact and method of making same
US8080074B2 (en) * 2006-11-20 2011-12-20 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
US8034136B2 (en) 2006-11-20 2011-10-11 Us Synthetic Corporation Methods of fabricating superabrasive articles
US7753143B1 (en) 2006-12-13 2010-07-13 Us Synthetic Corporation Superabrasive element, structures utilizing same, and method of fabricating same
US7998573B2 (en) 2006-12-21 2011-08-16 Us Synthetic Corporation Superabrasive compact including diamond-silicon carbide composite, methods of fabrication thereof, and applications therefor
US7686106B2 (en) * 2007-01-03 2010-03-30 Smith International, Inc. Rock bit and inserts with wear relief grooves
US7631709B2 (en) 2007-01-03 2009-12-15 Smith International, Inc. Drill bit and cutter element having chisel crest with protruding pilot portion
US8205692B2 (en) * 2007-01-03 2012-06-26 Smith International, Inc. Rock bit and inserts with a chisel crest having a broadened region
US7798258B2 (en) * 2007-01-03 2010-09-21 Smith International, Inc. Drill bit with cutter element having crossing chisel crests
US20080164070A1 (en) * 2007-01-08 2008-07-10 Smith International, Inc. Reinforcing overlay for matrix bit bodies
US7926883B2 (en) * 2007-05-15 2011-04-19 Schlumberger Technology Corporation Spring loaded pick
US7951213B1 (en) 2007-08-08 2011-05-31 Us Synthetic Corporation Superabrasive compact, drill bit using same, and methods of fabricating same
US7806206B1 (en) 2008-02-15 2010-10-05 Us Synthetic Corporation Superabrasive materials, methods of fabricating same, and applications using same
US8911521B1 (en) 2008-03-03 2014-12-16 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US8999025B1 (en) 2008-03-03 2015-04-07 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US7959234B2 (en) * 2008-03-15 2011-06-14 Kennametal Inc. Rotatable cutting tool with superhard cutting member
US8986408B1 (en) 2008-04-29 2015-03-24 Us Synthetic Corporation Methods of fabricating polycrystalline diamond products using a selected amount of graphite particles
US7842111B1 (en) 2008-04-29 2010-11-30 Us Synthetic Corporation Polycrystalline diamond compacts, methods of fabricating same, and applications using same
US7845438B1 (en) 2008-05-15 2010-12-07 Us Synthetic Corporation Polycrystalline diamond compacts, methods of fabricating same, and applications using same
US9315881B2 (en) 2008-10-03 2016-04-19 Us Synthetic Corporation Polycrystalline diamond, polycrystalline diamond compacts, methods of making same, and applications
US7866418B2 (en) 2008-10-03 2011-01-11 Us Synthetic Corporation Rotary drill bit including polycrystalline diamond cutting elements
US8297382B2 (en) 2008-10-03 2012-10-30 Us Synthetic Corporation Polycrystalline diamond compacts, method of fabricating same, and various applications
GB0819257D0 (en) * 2008-10-21 2008-11-26 Element Six Holding Gmbh Insert for an attack tool
US8663349B2 (en) 2008-10-30 2014-03-04 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
CA2685668A1 (en) 2008-11-24 2010-05-24 Smith International, Inc. A cutting element and a method of manufacturing a cutting element
US8071173B1 (en) 2009-01-30 2011-12-06 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond compact including a pre-sintered polycrystalline diamond table having a thermally-stable region
US7971663B1 (en) 2009-02-09 2011-07-05 Us Synthetic Corporation Polycrystalline diamond compact including thermally-stable polycrystalline diamond body held in barrier receptacle and applications therefor
US8069937B2 (en) 2009-02-26 2011-12-06 Us Synthetic Corporation Polycrystalline diamond compact including a cemented tungsten carbide substrate that is substantially free of tungsten carbide grains exhibiting abnormal grain growth and applications therefor
US9770807B1 (en) 2009-03-05 2017-09-26 Us Synthetic Corporation Non-cylindrical polycrystalline diamond compacts, methods of making same and applications therefor
US8216677B2 (en) 2009-03-30 2012-07-10 Us Synthetic Corporation Polycrystalline diamond compacts, methods of making same, and applications therefor
US8162082B1 (en) 2009-04-16 2012-04-24 Us Synthetic Corporation Superabrasive compact including multiple superabrasive cutting portions, methods of making same, and applications therefor
US8322796B2 (en) 2009-04-16 2012-12-04 Schlumberger Technology Corporation Seal with contact element for pick shield
US8701799B2 (en) 2009-04-29 2014-04-22 Schlumberger Technology Corporation Drill bit cutter pocket restitution
AT508231B1 (en) 2009-05-14 2011-05-15 Sandvik Mining & Constr Oy CUTTING DEVICE FOR A MINING MACHINE
AT508232B1 (en) 2009-05-14 2011-05-15 Sandvik Mining & Constr Oy CUTTING TOOL FOR A MINING MACHINE
US8147790B1 (en) 2009-06-09 2012-04-03 Us Synthetic Corporation Methods of fabricating polycrystalline diamond by carbon pumping and polycrystalline diamond products
US8596387B1 (en) 2009-10-06 2013-12-03 Us Synthetic Corporation Polycrystalline diamond compact including a non-uniformly leached polycrystalline diamond table and applications therefor
US8561727B1 (en) 2009-10-28 2013-10-22 Us Synthetic Corporation Superabrasive cutting elements and systems and methods for manufacturing the same
US8995742B1 (en) 2009-11-10 2015-03-31 Us Synthetic Corporation Systems and methods for evaluation of a superabrasive material
US8353371B2 (en) * 2009-11-25 2013-01-15 Us Synthetic Corporation Polycrystalline diamond compact including a substrate having a raised interfacial surface bonded to a leached polycrystalline diamond table, and applications therefor
US8439137B1 (en) 2010-01-15 2013-05-14 Us Synthetic Corporation Superabrasive compact including at least one braze layer thereon, in-process drill bit assembly including same, and method of manufacture
US8820442B2 (en) 2010-03-02 2014-09-02 Us Synthetic Corporation Polycrystalline diamond compact including a substrate having a raised interfacial surface bonded to a polycrystalline diamond table, and applications therefor
US9260923B1 (en) 2010-05-11 2016-02-16 Us Synthetic Corporation Superabrasive compact and rotary drill bit including a heat-absorbing material for increasing thermal stability of the superabrasive compact
US8978734B2 (en) 2010-05-20 2015-03-17 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US8945249B1 (en) 2010-06-18 2015-02-03 Us Synthetic Corporation Methods for characterizing a polycrystalline diamond element by magnetic measurements
US8978789B1 (en) 2010-07-28 2015-03-17 Us Synthetic Corporation Polycrystalline diamond compact including an at least bi-layer polycrystalline diamond table, methods of manufacturing same, and applications therefor
US10385689B1 (en) 2010-08-27 2019-08-20 The Sollami Company Bit holder
US10598013B2 (en) 2010-08-27 2020-03-24 The Sollami Company Bit holder with shortened nose portion
US11261731B1 (en) 2014-04-23 2022-03-01 The Sollami Company Bit holder and unitary bit/holder for use in shortened depth base blocks
US9879531B2 (en) 2014-02-26 2018-01-30 The Sollami Company Bit holder shank and differential interference between the shank distal portion and the bit holder block bore
US10072501B2 (en) 2010-08-27 2018-09-11 The Sollami Company Bit holder
US8702824B1 (en) 2010-09-03 2014-04-22 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table fabricated with one or more sp2-carbon-containing additives to enhance cutting lip formation, and related methods and applications
US8888879B1 (en) 2010-10-20 2014-11-18 Us Synthetic Corporation Detection of one or more interstitial constituents in a polycrystalline diamond element by neutron radiographic imaging
US10309158B2 (en) 2010-12-07 2019-06-04 Us Synthetic Corporation Method of partially infiltrating an at least partially leached polycrystalline diamond table and resultant polycrystalline diamond compacts
US8875591B1 (en) 2011-01-27 2014-11-04 Us Synthetic Corporation Methods for measuring at least one rheological property of diamond particles
US9027675B1 (en) 2011-02-15 2015-05-12 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein and applications therefor
US8607899B2 (en) 2011-02-18 2013-12-17 National Oilwell Varco, L.P. Rock bit and cutter teeth geometries
US8727045B1 (en) 2011-02-23 2014-05-20 Us Synthetic Corporation Polycrystalline diamond compacts, methods of making same, and applications therefor
AU2012201292A1 (en) 2011-03-21 2012-10-11 Kennametal Inc. Cutting tool
US8727044B2 (en) 2011-03-24 2014-05-20 Us Synthetic Corporation Polycrystalline diamond compact including a carbonate-catalyzed polycrystalline diamond body and applications therefor
US8727046B2 (en) 2011-04-15 2014-05-20 Us Synthetic Corporation Polycrystalline diamond compacts including at least one transition layer and methods for stress management in polycrsystalline diamond compacts
US8545103B1 (en) 2011-04-19 2013-10-01 Us Synthetic Corporation Tilting pad bearing assemblies and apparatuses, and motor assemblies using the same
US8646981B2 (en) 2011-04-19 2014-02-11 Us Synthetic Corporation Bearing elements, bearing assemblies, and related methods
US8651743B2 (en) 2011-04-19 2014-02-18 Us Synthetic Corporation Tilting superhard bearing elements in bearing assemblies, apparatuses, and motor assemblies using the same
US9187962B2 (en) 2011-04-26 2015-11-17 Smith International, Inc. Methods of attaching rolling cutters in fixed cutter bits using sleeve, compression spring, and/or pin(s)/ball(s)
US9739097B2 (en) 2011-04-26 2017-08-22 Smith International, Inc. Polycrystalline diamond compact cutters with conic shaped end
US8950519B2 (en) 2011-05-26 2015-02-10 Us Synthetic Corporation Polycrystalline diamond compacts with partitioned substrate, polycrystalline diamond table, or both
US8863864B1 (en) 2011-05-26 2014-10-21 Us Synthetic Corporation Liquid-metal-embrittlement resistant superabrasive compact, and related drill bits and methods
US9062505B2 (en) 2011-06-22 2015-06-23 Us Synthetic Corporation Method for laser cutting polycrystalline diamond structures
US9297411B2 (en) 2011-05-26 2016-03-29 Us Synthetic Corporation Bearing assemblies, apparatuses, and motor assemblies using the same
US8833635B1 (en) 2011-07-28 2014-09-16 Us Synthetic Corporation Method for identifying PCD elements for EDM processing
US8760668B1 (en) 2011-08-03 2014-06-24 Us Synthetic Corporation Methods for determining wear volume of a tested polycrystalline diamond element
US9144886B1 (en) 2011-08-15 2015-09-29 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US9272392B2 (en) 2011-10-18 2016-03-01 Us Synthetic Corporation Polycrystalline diamond compacts and related products
US9487847B2 (en) 2011-10-18 2016-11-08 Us Synthetic Corporation Polycrystalline diamond compacts, related products, and methods of manufacture
US9540885B2 (en) 2011-10-18 2017-01-10 Us Synthetic Corporation Polycrystalline diamond compacts, related products, and methods of manufacture
GB201118739D0 (en) * 2011-10-31 2011-12-14 Element Six Abrasives Sa Tip for a pick tool, method of making same and pick tool comprising same
US9279291B2 (en) * 2011-12-30 2016-03-08 Smith International, Inc. Diamond enhanced drilling insert with high impact resistance
US20130300183A1 (en) 2012-05-14 2013-11-14 Kennametal Inc. Multi-Faced Cutting Tool
US20130307317A1 (en) 2012-05-17 2013-11-21 Kennametal Inc. Cutting Bit With Split Wear Ring
US9033424B2 (en) 2012-06-12 2015-05-19 Kennametal Inc. Wear resistant cutting tool
US9316059B1 (en) 2012-08-21 2016-04-19 Us Synthetic Corporation Polycrystalline diamond compact and applications therefor
US10323515B1 (en) 2012-10-19 2019-06-18 The Sollami Company Tool with steel sleeve member
US10105870B1 (en) 2012-10-19 2018-10-23 The Sollami Company Combination polycrystalline diamond bit and bit holder
US9909416B1 (en) 2013-09-18 2018-03-06 The Sollami Company Diamond tipped unitary holder/bit
US10260342B1 (en) 2012-10-19 2019-04-16 The Sollami Company Combination polycrystalline diamond bit and bit holder
US10107097B1 (en) 2012-10-19 2018-10-23 The Sollami Company Combination polycrystalline diamond bit and bit holder
US9988903B2 (en) 2012-10-19 2018-06-05 The Sollami Company Combination polycrystalline diamond bit and bit holder
US10180065B1 (en) 2015-10-05 2019-01-15 The Sollami Company Material removing tool for road milling mining and trenching operations
US9512681B1 (en) 2012-11-19 2016-12-06 Us Synthetic Corporation Polycrystalline diamond compact comprising cemented carbide substrate with cementing constituent concentration gradient
US9844854B1 (en) 2012-11-21 2017-12-19 Us Synthetic Corporation Protective leaching cups, systems, and methods of use
US9140071B2 (en) 2012-11-26 2015-09-22 National Oilwell DHT, L.P. Apparatus and method for retaining inserts of a rolling cone drill bit
US20140182947A1 (en) 2012-12-28 2014-07-03 Smith International, Inc. Cutting insert for percussion drill bit
US9227302B1 (en) 2013-01-28 2016-01-05 Us Synthetic Corporation Overmolded protective leaching mask assemblies and methods of use
US9732563B1 (en) 2013-02-25 2017-08-15 Us Synthetic Corporation Polycrystalline diamond compacts including a cemented carbide substrate and applications therefor
US10280687B1 (en) 2013-03-12 2019-05-07 Us Synthetic Corporation Polycrystalline diamond compacts including infiltrated polycrystalline diamond table and methods of making same
US9297212B1 (en) 2013-03-12 2016-03-29 Us Synthetic Corporation Polycrystalline diamond compact including a substrate having a convexly-curved interfacial surface bonded to a polycrystalline diamond table, and related methods and applications
US9550276B1 (en) 2013-06-18 2017-01-24 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US10767478B2 (en) 2013-09-18 2020-09-08 The Sollami Company Diamond tipped unitary holder/bit
US10947844B1 (en) 2013-09-18 2021-03-16 The Sollami Company Diamond Tipped Unitary Holder/Bit
US10415386B1 (en) 2013-09-18 2019-09-17 The Sollami Company Insertion-removal tool for holder/bit
US9976418B2 (en) * 2014-04-02 2018-05-22 The Sollami Company Bit/holder with enlarged ballistic tip insert
US10995613B1 (en) 2013-09-18 2021-05-04 The Sollami Company Diamond tipped unitary holder/bit
US10577931B2 (en) 2016-03-05 2020-03-03 The Sollami Company Bit holder (pick) with shortened shank and angular differential between the shank and base block bore
US10968739B1 (en) 2013-09-18 2021-04-06 The Sollami Company Diamond tipped unitary holder/bit
US10876402B2 (en) * 2014-04-02 2020-12-29 The Sollami Company Bit tip insert
US10794181B2 (en) 2014-04-02 2020-10-06 The Sollami Company Bit/holder with enlarged ballistic tip insert
US10633971B2 (en) 2016-03-07 2020-04-28 The Sollami Company Bit holder with enlarged tire portion and narrowed bit holder block
US11168563B1 (en) 2013-10-16 2021-11-09 The Sollami Company Bit holder with differential interference
US10022840B1 (en) 2013-10-16 2018-07-17 Us Synthetic Corporation Polycrystalline diamond compact including crack-resistant polycrystalline diamond table
US9765572B2 (en) 2013-11-21 2017-09-19 Us Synthetic Corporation Polycrystalline diamond compact, and related methods and applications
US9610555B2 (en) 2013-11-21 2017-04-04 Us Synthetic Corporation Methods of fabricating polycrystalline diamond and polycrystalline diamond compacts
US9945186B2 (en) 2014-06-13 2018-04-17 Us Synthetic Corporation Polycrystalline diamond compact, and related methods and applications
US9718168B2 (en) 2013-11-21 2017-08-01 Us Synthetic Corporation Methods of fabricating polycrystalline diamond compacts and related canister assemblies
US10047568B2 (en) 2013-11-21 2018-08-14 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
US10101263B1 (en) 2013-12-06 2018-10-16 Us Synthetic Corporation Methods for evaluating superabrasive elements
US9789587B1 (en) 2013-12-16 2017-10-17 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9403260B1 (en) 2014-01-28 2016-08-02 Us Synthetic Corporation Polycrystalline diamond compacts including a polycrystalline diamond table having a modified region exhibiting porosity and methods of making same
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
US11339656B1 (en) 2014-02-26 2022-05-24 The Sollami Company Rear of base block
US11339654B2 (en) 2014-04-02 2022-05-24 The Sollami Company Insert with heat transfer bore
US11891895B1 (en) 2014-04-23 2024-02-06 The Sollami Company Bit holder with annular rings
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US10060192B1 (en) 2014-08-14 2018-08-28 Us Synthetic Corporation Methods of making polycrystalline diamond compacts and polycrystalline diamond compacts made using the same
US10610999B1 (en) 2014-10-10 2020-04-07 Us Synthetic Corporation Leached polycrystalline diamond elements
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials
US10549402B1 (en) 2014-10-10 2020-02-04 Us Synthetic Corporation Methods of cleaning and/or neutralizing an at least partially leached polycrystalline diamond body and resulting polycrystalline diamond compacts
US10030451B1 (en) 2014-11-12 2018-07-24 Us Synthetic Corporation Polycrystalline diamond compacts including a cemented carbide substrate and applications therefor
US10107043B1 (en) 2015-02-11 2018-10-23 Us Synthetic Corporation Superabrasive elements, drill bits, and bearing apparatuses
US10350734B1 (en) 2015-04-21 2019-07-16 Us Synthetic Corporation Methods of forming a liquid metal embrittlement resistant superabrasive compact, and superabrasive compacts and apparatuses using the same
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10260162B1 (en) 2015-07-01 2019-04-16 Us Synthetic Corporation Methods of leaching a superabrasive body and apparatuses and systems for the same
US10087685B1 (en) 2015-07-02 2018-10-02 Us Synthetic Corporation Shear-resistant joint between a superabrasive body and a substrate
US10502056B2 (en) 2015-09-30 2019-12-10 The Sollami Company Reverse taper shanks and complementary base block bores for bit assemblies
AU2017207287A1 (en) 2016-01-13 2018-07-12 Schlumberger Technology B.V. Angled chisel insert
US10399206B1 (en) 2016-01-15 2019-09-03 Us Synthetic Corporation Polycrystalline diamond compacts, methods of fabricating the same, and methods of using the same
US10612376B1 (en) 2016-03-15 2020-04-07 The Sollami Company Bore wear compensating retainer and washer
US10107098B2 (en) 2016-03-15 2018-10-23 The Sollami Company Bore wear compensating bit holder and bit holder block
USD835163S1 (en) 2016-03-30 2018-12-04 Us Synthetic Corporation Superabrasive compact
US10612375B2 (en) 2016-04-01 2020-04-07 The Sollami Company Bit retainer
US10876401B1 (en) 2016-07-26 2020-12-29 The Sollami Company Rotational style tool bit assembly
US10450808B1 (en) 2016-08-26 2019-10-22 Us Synthetic Corporation Multi-part superabrasive compacts, rotary drill bits including multi-part superabrasive compacts, and related methods
USD818507S1 (en) * 2017-02-28 2018-05-22 Kennametal Inc Replaceable tip for a rotatable cutting tool
US10968738B1 (en) 2017-03-24 2021-04-06 The Sollami Company Remanufactured conical bit
US11187080B2 (en) 2018-04-24 2021-11-30 The Sollami Company Conical bit with diamond insert
US11279012B1 (en) 2017-09-15 2022-03-22 The Sollami Company Retainer insertion and extraction tool
US10900291B2 (en) 2017-09-18 2021-01-26 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same
CA3170276A1 (en) 2018-01-23 2019-08-01 Us Synthetic Corporation Corrosion resistant bearing elements, bearing assemblies, bearing apparatuses, and motor assemblies using the same
US11103939B2 (en) 2018-07-18 2021-08-31 The Sollami Company Rotatable bit cartridge

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108692A (en) * 1975-01-13 1978-08-22 Smith International, Inc. Rock bit roller cutter and method therefor
US4109737A (en) * 1976-06-24 1978-08-29 General Electric Company Rotary drill bit
US4231438A (en) * 1978-10-10 1980-11-04 Smith International, Inc. Straight hole insert drill bit
US4339009A (en) * 1979-03-27 1982-07-13 Busby Donald W Button assembly for rotary rock cutters
US4368788A (en) * 1980-09-10 1983-01-18 Reed Rock Bit Company Metal cutting tools utilizing gradient composites
US4372404A (en) * 1980-09-10 1983-02-08 Reed Rock Bit Company Cutting teeth for rolling cutter drill bit
US4398952A (en) * 1980-09-10 1983-08-16 Reed Rock Bit Company Methods of manufacturing gradient composite metallic structures
US4411672A (en) * 1980-08-14 1983-10-25 Hiroshi Ishizuka Method for producing composite of diamond and cemented tungsten carbide
US4525178A (en) * 1984-04-16 1985-06-25 Megadiamond Industries, Inc. Composite polycrystalline diamond
US4694918A (en) * 1985-04-29 1987-09-22 Smith International, Inc. Rock bit with diamond tip inserts
US4699227A (en) * 1984-12-14 1987-10-13 Nl Petroleum Products Limited Method of forming cutting structures for rotary drill bits
US4705124A (en) * 1986-08-22 1987-11-10 Minnesota Mining And Manufacturing Company Cutting element with wear resistant crown
US4722405A (en) * 1986-10-01 1988-02-02 Dresser Industries, Inc. Wear compensating rock bit insert
US4756373A (en) * 1986-12-23 1988-07-12 Trw Inc. Rock drilling bit and a method of producing the same
US4764255A (en) * 1987-03-13 1988-08-16 Sandvik Ab Cemented carbide tool

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108692A (en) * 1975-01-13 1978-08-22 Smith International, Inc. Rock bit roller cutter and method therefor
US4109737A (en) * 1976-06-24 1978-08-29 General Electric Company Rotary drill bit
US4231438A (en) * 1978-10-10 1980-11-04 Smith International, Inc. Straight hole insert drill bit
US4339009A (en) * 1979-03-27 1982-07-13 Busby Donald W Button assembly for rotary rock cutters
US4411672A (en) * 1980-08-14 1983-10-25 Hiroshi Ishizuka Method for producing composite of diamond and cemented tungsten carbide
US4368788A (en) * 1980-09-10 1983-01-18 Reed Rock Bit Company Metal cutting tools utilizing gradient composites
US4372404A (en) * 1980-09-10 1983-02-08 Reed Rock Bit Company Cutting teeth for rolling cutter drill bit
US4398952A (en) * 1980-09-10 1983-08-16 Reed Rock Bit Company Methods of manufacturing gradient composite metallic structures
US4525178A (en) * 1984-04-16 1985-06-25 Megadiamond Industries, Inc. Composite polycrystalline diamond
US4604106A (en) * 1984-04-16 1986-08-05 Smith International Inc. Composite polycrystalline diamond compact
US4525178B1 (en) * 1984-04-16 1990-03-27 Megadiamond Ind Inc
US4699227A (en) * 1984-12-14 1987-10-13 Nl Petroleum Products Limited Method of forming cutting structures for rotary drill bits
US4694918A (en) * 1985-04-29 1987-09-22 Smith International, Inc. Rock bit with diamond tip inserts
US4705124A (en) * 1986-08-22 1987-11-10 Minnesota Mining And Manufacturing Company Cutting element with wear resistant crown
US4722405A (en) * 1986-10-01 1988-02-02 Dresser Industries, Inc. Wear compensating rock bit insert
US4756373A (en) * 1986-12-23 1988-07-12 Trw Inc. Rock drilling bit and a method of producing the same
US4764255A (en) * 1987-03-13 1988-08-16 Sandvik Ab Cemented carbide tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0357723A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452840C1 (en) * 2011-02-16 2012-06-10 Николай Митрофанович Панин Drilling bit rolling cutter
US10900293B2 (en) 2016-04-20 2021-01-26 Mitsubishi Materials Corporation Drilling tip, drilling tool, and method of manufacturing drilling tip

Also Published As

Publication number Publication date
EP0357723A4 (en) 1990-09-05
JPH02503454A (en) 1990-10-18
NO178273C (en) 1996-02-21
NO894552D0 (en) 1989-11-15
CA1304736C (en) 1992-07-07
NO894552L (en) 1990-01-15
NO178273B (en) 1995-11-13
IE890394L (en) 1989-09-16
EP0357723A1 (en) 1990-03-14
ZA891184B (en) 1989-11-29
US4811801A (en) 1989-03-14
IE62492B1 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
US4811801A (en) Rock bits and inserts therefor
JP2889824B2 (en) Drill bit insert reinforced with polycrystalline diamond
US4694918A (en) Rock bit with diamond tip inserts
US6651757B2 (en) Toughness optimized insert for rock and hammer bits
US4553615A (en) Rotary drilling bits
US9366089B2 (en) Cutting element attached to downhole fixed bladed bit at a positive rake angle
US7669674B2 (en) Degradation assembly
US5944129A (en) Surface finish for non-planar inserts
US6443248B2 (en) Drill bit inserts with interruption in gradient of properties
US5833020A (en) Rolling cone bit with enhancements in cutter element placement and materials to optimize borehole corner cutting duty
US5979579A (en) Polycrystalline diamond cutter with enhanced durability
US8567532B2 (en) Cutting element attached to downhole fixed bladed bit at a positive rake angle
US8616305B2 (en) Fixed bladed bit that shifts weight between an indenter and cutting elements
US8714285B2 (en) Method for drilling with a fixed bladed bit
CA1256096A (en) Rock bit with wear resistant inserts
US20230015853A1 (en) Sensor elements for a cutting tool and methods of making and using same
US20100059289A1 (en) Cutting Element with Low Metal Concentration
US9303461B2 (en) Cutting elements having curved or annular configurations for earth-boring tools, earth-boring tools including such cutting elements, and related methods
CN1060417C (en) Composite material containing diamond
CA2348049C (en) Toughness optimized insert for rock and hammer bits
GB2615649A (en) Cutting elements for a cutting tool and methods of making and using same
GB2615648A (en) Cutting elements for a cutting tool and methods of making and using same
GB2580334A (en) Cutting elements and methods of making and using same
GB2372276A (en) Toughness optimised PCD insert for roller and hammer bits

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP NO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989902469

Country of ref document: EP

COP Corrected version of pamphlet

Free format text: PAGES 1/2-2/2,DRAWINGS,ADDED

WWP Wipo information: published in national office

Ref document number: 1989902469

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989902469

Country of ref document: EP