WO1990000040A1 - Verfahren und vorrichtung zum elektrischen stimulieren des hörnerves - Google Patents

Verfahren und vorrichtung zum elektrischen stimulieren des hörnerves Download PDF

Info

Publication number
WO1990000040A1
WO1990000040A1 PCT/DE1989/000415 DE8900415W WO9000040A1 WO 1990000040 A1 WO1990000040 A1 WO 1990000040A1 DE 8900415 W DE8900415 W DE 8900415W WO 9000040 A1 WO9000040 A1 WO 9000040A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pulse
stimulation
analog
signals
Prior art date
Application number
PCT/DE1989/000415
Other languages
English (en)
French (fr)
Inventor
Ernst-Ludwig Von Wallenberg-Pachaly
Original Assignee
Wallenberg Pachaly E L Von
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wallenberg Pachaly E L Von filed Critical Wallenberg Pachaly E L Von
Publication of WO1990000040A1 publication Critical patent/WO1990000040A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • A61N1/36038Cochlear stimulation

Definitions

  • the invention relates to a method and a device for electrical stimulation of the auditory nerve in the inner ear according to the preamble of the independent patent claims.
  • a hearing prosthesis is known from US Pat. No. 4,593,696, with which the auditory nerve, via a multi-channel electrode in the screw of the inner ear, has a broadband analog stimulation signal and also pulse-shaped stimulation signals, i.e. Pulse signals are stimulated, both of which are determined from audio signals in a speech processor.
  • the analog stimulation signal that is transmitted to an electrode via a transmission channel, preferably in the apical area, conveys the time information of the audio signal to the auditory nerve, thus essentially utilizing the periodicity principle of audio signals.
  • certain frequencies are mapped to certain areas of the screw, i.e. that tonotopic information must also be contained in the temporal pattern of the processed audio signals, which is general.
  • the local principle In order to also supply this information to the auditory nerve, in the known method according to US Pat. No. 4,593,696 at least one pulse signal is emitted to the same or a different electrode, which is assigned to a further speech parameter.
  • Such language parameters are e.g. the pitch and the shape. These two parameters are also used in the known hearing prosthesis, so that pulse signals with the pitch or fundamental frequency and the frequency of e.g. second formants are given to the multiple electrodes.
  • DE-PS 30 16 128 discloses a method and a device for generating acoustic speech signals which are understandable even for the very hard of hearing and are intended to provide a high level of intelligibility.
  • the acoustic signals to be transmitted which are electrically converted in a microphone and divided into several frequency bands by means of filters, are used in the form of the envelopes of the output signals of the filters for modulating the alternating voltages associated with the tones, which then together with signals coming from the microphone after amplification be forwarded to the listener.
  • the signals are divided into at least three frequency bands and the modulated tones are used together with the overall signal of the microphone, the ratio of the volume of the modulated tones to that of the original tones as well as the overall volume being tolerable to the hearing impaired Dimension is set.
  • the modulated tones are at least partially switched off.
  • the hearing aid is equipped with a number of electrodes which are assigned to the hearing nerve endings.
  • the device is essentially only -3- the time information of the audio signal is used, the intelligibility being improved by the special treatment of the voiced sounds.
  • the transmission of the entire speech signal enables the hearing impaired to still use the speech information that is available to him directly. However, this possibility is often not available for people with severe hearing loss.
  • the invention is based on the object of further developing the known method and the known device in such a way that in the case of simultaneous stimulation with a broadband, preferably analog stimulation signal and pulse signals, a mutual channel disturbance does not occur and the hearing-impaired time information "and Tonotopic information is offered in order to improve hearing.
  • an electrode of the implanted multiple electrode is preferably a broadband analogue.
  • Stimulation signal supplied whose curve shape is similar to the speech signal.
  • This stimulation signal essentially provides the time information.
  • Another electrode is supplied via a further channel with at least one pulse signal with a frequency that generally corresponds to the frequency of a dominant component in the speech signal corresponds to the fundamental frequency.
  • This pulse signal is transmitted in phase with the positive amplitude of the fundamental wave. If an analog stimulation signal is used, the pulse signal is transmitted during the positive rising edge of the dominant main wave of the speech signal between the zero crossing and the maximum of the positive amplitude.
  • the electrodes are connected to the implanted receiver in such a way that a positive amplitude of the stimulation signals makes the active electrode negative and has a stimulus-releasing effect.
  • the pulse signal is emitted to an electrode which in the snail of the inner ear irritates nerve fibers of the auditory nerve which are sensitive to the tonotopic information to be emphasized by the pulse signals.
  • the cheapest solution would be to select an electrode that lies directly in the vicinity of nerve fibers that are sensitive to the frequency of the speech parameter to be emphasized. In practice, however, this has not been possible at least until now, since the stimulation electrode, starting from the screw base, can only be inserted a maximum of one turn deep.
  • the tonotopic arrangement of the nerve fibers can be used with a multichannel electrode, but it must be assumed that nerve fibers are stimulated which are sensitive to higher frequencies in normal hearing. Nevertheless, patients with a hearing prosthesis according to the invention describe the desired sound sensation for significantly lower pitches by means of pulse stimulation. By measuring on the patient, one can find out which electrode has to be selected in order to achieve the desired pitch sensation.
  • pulse signals can also be sent simultaneously with the preferably analog stimulation signal are transmitted, which are then assigned to different language parameters. If, for example, impulses for emphasizing the first and second formants are transmitted simultaneously with the analog signal, then this occurs at the fundamental frequency or another dominant frequency, for example the first formant, the speech signal.
  • the method for the placement of the pulses takes into account the frequency-dependent group delay of the speech processor and possibly also the electrode impedance.
  • the amplitude and phase response of these transmission elements which varies from patient to patient, can be simulated with digital filters.
  • the fundamental frequency can also be extracted with digital filters, for example.
  • Biphasic signals are preferably used as pulse signals. These biphasic pulses were always at the zero crossing of the main wave of the analog stimulation signal during the adaptation and had the same polarity. If one takes into account the phase shift of the analog stimulation signal through the electrode of approximately 60 ° on average, the pulses at which the phase shift is negligible were approximately in the upper third of the positive rising edge of the analog stimulation signal, as required above.
  • the electrodes were connected to the implanted receiver in such a way that a positive amplitude of the stimulation signal makes the active electrode negative, that is, it triggers a stimulus.
  • the amplitude of the pulse signals is set in such a way that when the pulse signal is switched on another channel there is a change in the timbre without a substantial increase in loudness, the amplitude of the analog stimulation signal remaining unchanged.
  • the loudness of the impulse channel alone was mostly only very low compared to the loudness of both channels together.
  • the pulses are most effective when they occur in the maximum of the analog stimulation signal or shortly before. This is also confirmed by the fact that an excessive delay of the pulses beyond the maximum of the analog stimulation signal makes it ineffective.
  • the action potentials from the analog stimulation channel occur approximately simultaneously with those from the pulse stimulation channel, so that there can be no disruptive interaction of the action potentials over time.
  • the combination of a preferably analog stimulation signal on one channel with at least one pulse signal on another channel - which can be selected from any number of additional channels - requires a comparatively low power requirement, so that this strategy can be implemented in an integrated circuit for the hearing pro this is possible.
  • the advantage of the proposed method is that the analog stimulation channel or the impulse channels can also be used independently of one another. This makes it possible to individually adapt the capabilities of the patient's horse system to the complexity of the stimulus pattern.
  • One of these possibilities would be, for example, to use the frequency of the first formant for the channel selection of the pulse signal if this cannot be reliably identified by the periodicity principle.
  • the periodicity and location principle it is also possible, among other things, to operate all channels with pulse signals, in which case the individual components of the transmitted signal, for example the first and the second formant, each with the fundamental frequency different electrodes are supplied.
  • FIG. 1 shows a block circuit diagram of an auditory prosthesis according to the invention
  • 2 shows a schematic representation of the worm of the inner ear with a stimulation electrode with four channels;
  • 3 shows the representation of an analog stimulation signal and a pulse-shaped stimulation signal for simultaneous stimulation;
  • FIG. 4 shows an overview of the channel selection in the case of simulated stimulation with an analog and an impulse-shaped stimulation signal.
  • the block circuit diagram in FIG. 1 shows a hearing prosthesis with a speech processor 1, which has a microphone 10, a preamplifier 12, a bandpass filter, two regulated amplifiers 16 and 18 for gain adjustment and a filter network 20.
  • the bandpass filter 14 the audio signal picked up and amplified by the microphone 10 is limited to a bandwidth between approximately 150 Hz to 6 kHz, which is necessary for the voice transmission.
  • the amplifier 16 the sensitivity is set by an automatic gain control, in the syllable compressor 18 the amplitude ratio of consonants to vowels is increased.
  • the filter network 20 the processed signal is set so that all frequencies within the frequency band sound about the same volume.
  • the processed signal is then processed in parallel in several circuit paths.
  • the analog signal is first passed through a delay circuit 72, in which the basic wave of the speech signal is delayed by about one period.
  • This signal is fed to an encoder 22, for example an adaptive delta modulator, the output of which is connected to an OR Gate 52 is connected.
  • An analog broadband stimulation signal is made available via this first channel.
  • the signals for the pulse stimulation are also developed from the speech signal.
  • a fundamental wave detector 31 with a pulse generator 32 and a D flip-flop 33 is provided in a circuit path, so that the frequency for the pulse stimulation is determined via this path.
  • the second formant F2 is determined in a circuit 41.
  • the frequency of the second formant F2 is fed to a channel encoder 44 via an analog / digital converter 42.
  • the amplitude of the second formant is fed via an analog / digital converter 43 to a coding circuit 45.
  • the channel number defines the position of one of four electrodes E1 to E4 of a stimulation electrode E, as explained below in connection with FIGS. 2 to 4.
  • the outputs of the circuits 33, 44 and 45 are fed to a parallel / serial converter 47 and passed from there to the second input of the OR gate 52.
  • a time control 71 is also provided, which is designed as a sample and hold circuit. The zero crossing of the main shaft of the analog stimulation signal is detected in this circuit 71.
  • a parallel circuit path with a circuit 73 for extracting the first formant F1 provided that is connected to a series circuit comprising a pulse generator 74 and a further D flip-flop 75.
  • the output of the D flip-flop is fed to the parallel / serial converter 47.
  • the time control 71 can be reset either via the pulse generator 32 or the pulse generator 74, the selection being made via this reset process with the aid of a switch 76.
  • the timing control 76 triggers the encoder 22, as a result of which an exact time relationship between the analog stimulation signal and the pulse-shaped stimulation signal is achieved, either as a function of the fundamental frequency or, under certain circumstances, the frequency of the first formant.
  • the signal combined from the analog stimulation signal and the pulse-shaped stimulation signal is inductively coupled via a transmitter 53 to a receiver 55 in the inner ear, which in turn is connected to the stimulation electrode E.
  • This stimulation electrode E is inserted according to FIG. 2 in the worm 81 of the inner ear and has four electrodes E1, E2, E3 and E4.
  • the electrodes are conventionally bipolar or unipolar. In the unipolar configuration, an active electrode E1, E2, E3, E4 is stimulated against a remote ground electrode M, which e.g. is located under the temporal muscle.
  • the electrode E1 lies at the apical end, the electrode E4 at the basal end of the screw 81.
  • the electrodes E2 and E3 are arranged at intervals between these two electrodes.
  • the upper line of FIG. 3 shows the analog stimulation signal which fluctuates around an arithmetic mean, the distance between adjacent dominant amplitudes defining the basic frequency F0.
  • This analog stimulation signal usually becomes the electrode E1, ie transmitted over channel 1; see. 4.
  • the electrodes are connected to the implanted receiver in such a way that a positive amplitude of the stimulation signals shown in FIG. 3 makes the active electrode negative (cathodic), that is, it has a stimulus-releasing effect.
  • the pulse-shaped stimulation signal shown in the second line of FIG. 3, which is assigned to the second formant F2, is also transmitted with the basic frequency F0, depending on the actual frequency determined in the circuit 41 over one each of channels 2, 3 and 4 to one of the electrodes E2, E3 and E4, as shown in FIG. 4.
  • the pulse-shaped stimulation signal is a biphasic signal that is transmitted between the zero crossing and the maximum during the rising positive edge of the fundamental wave.
  • the electrodes are connected to the implanted receiver in such a way that a positive amplitude of the stimulation signals shown in FIG. 3 makes the active electrode negative (cathodic), that is, it triggers the stimulus.
  • this pulse-shaped stimulation signal is fed to the electrode E2 via the second channel. If the frequency is between 1200 and 1800 Hz, the stimulation takes place via the third channel and the electrode E3. If the frequency is above 1800 Hz, the electrode E4 is stimulated via the fourth channel.
  • the selection of the frequency ranges, the number and the arrangement of the electrodes are exemplary.
  • the analog stimulation signal for example, can be supplied to the electrode E2, so that, for example, the electrode E1 is then subjected to a pulse-shaped stimulation signal. The selection of the individual channels and thus the electrodes can be optimally adapted from patient to patient in this way.
  • the pulse duration is usually between 200 microseconds and 2.5 milliseconds depending on the threshold of the pulse-transmitting channel, preferably short pulse durations being used.
  • the amplitude of the pulse-shaped signals is set in such a way that when the analog channel and the pulse channels are stimulated simultaneously, switching within the pulse channels changes the perception with little or no change in loudness, but results in a change in the pitch impression.
  • the described hearing prosthesis can be used very flexibly and adapted to the different needs of the respective patient.
  • the analog broadband channel is always stimulated.
  • modifications of the described stimulation are possible.
  • a purely pulse-shaped stimulation with pulses of the basic frequency F0 and pulses of the formants F1 and F2 is possible, the superimposition of these pulses in turn "being in phase in order to achieve the desired goal.
  • the stimulation frequency for the pulse channels is usually that Basic frequency F0 or the first formant Fl.
  • the channel selection for the impulse channels can take place depending on the first formant F1, the second formant F2 or the resonance frequency of the front articulation tract.
  • two impulse channels can be stimulated alternately, the stimulation via a first channel depending on first formants in one phase and depending on the second formant or the resonance frequency in the other phase.
  • the channels which transmit the information relating to the first formant should be arranged in the middle between the analog channel and the basal channels which serve for the information relating to the second formant.

Abstract

Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zum elektrischen Stimulieren des Hörnerves mit einem breitbandigen, vorzugsweise analogen Stimulationssignal, dessen Kurvenform dem Sprachsignal ähnlich ist, und zumindest einem Impulssignal, die beide aus Audiosignalen verarbeitet werden. Um das Hörvermögen zu verbessern, wird gemäß der Erfindung vorgeschlagen, die Impulssignale gleichphasig mit der positiven Amplitude des dominanten Anteils des Sprachsignals zu übertragen, und zwar mit einer Frequenz, die der Frequenz des dominanten Anteils des Sprachsignals entspricht. Bei Verwendung eines analogen Sprachsignales ist der dominante Anteil in der Regel die Grundwelle. Die Elektrode ist so verschaltet, daß die genannte positive Amplitude die aktive Elektrode negativ (kathodisch) macht, also reizauslösend wirkt.

Description

Verfahren und Vorrichtung zum elejrtrisehen Stimulieren des Höraerveε
Die Erfindung bezieht sich auf ein Verfahren und eine Vor¬ richtung zum elektrischen Stimulieren des Hörnerves im In¬ nenohr gemäß dem Oberbegriff der unabhängigen Patentansprü¬ che.
Aus der US-PS 4 593 696 ist eine Hörprothese bekannt, mit der der Hörnerv über eine Mehrkanalelektrode in der Schnecke des Innenohreε mit einem breitbandigen analogen Stimulationssignal und ferner mit impulsförmigen Stimula¬ tionssignalen, d.h. Impulssignalen stimuliert wird, die beide aus Audiosignalen in einem Sprachprozessor ermittelt werden. Das analoge Stimulations.signal, . das über einen ÜbertragungskanaL an eine Elektrode vorzugsweise im apikalen Bereich abgegeben wird, vermit¬ telt dem Hörnerv die Zeitinformation des Audiosignales, nutzt somit im wesentlichen das Periodizitatsprinzip von Audiosignalen aus. Man hatte jedoch festgestellt, daß bestimmte Frequenzen auf bestimmte Bereiche der Schnecke abgebildet werden, d.h., daß in dem zeitlichen Muster der verarbeiteten Audioεignale auch tonotope Informationen enthalten sein müssen, was allgemein . -als -Ortεprinzip bezeichnet wird. Um auch diese Information dem Hörnerv zu liefern, wird bei dem bekannten Verfahren gemäß der US-PS 4 593 696 zumindest ein Impulεsignal an dieselbe oder eine andere Elektrode abgegeben, das einem weiteren Sprachpara¬ meter zugeordnet wird. Solche Sprachparameter sind z.B. die Tonhöhe und die For anten. Diese beiden Parameter werden auch bei der bekannten Hörprothese ausgenützt, so daß Impulssignale mit der Tonhöhen- bzw. Grundfrequenz und der Frequenz des z.B. zweiten Formanten an die Mehrfachelektro¬ de abgegeben werden.
Es hat sich nun herausgestellt, daß mit einer solchen zu¬ sätzlichen Impulsstimulation das Hörvermögen, wenn über¬ haupt, dann nur geringfügig verbessert wird. In vielen Fällen trat sogar eine Verschlechterung auf. Offensicht- lich kann mit diesem Verfahren der Grundgedanke, zusätz¬ lich zu der Zeitinformation noch eine tonotope Information zu liefern, nicht in die Praxis umgesetzt werden. Vielmehr kommt es bei einer solchen simultanen Stimulation von mehreren Kanälen zu einer gegenseitigen Störung, die grundsätzlich in zwei Arten aufgeteilt werden kann: Durch die relativ große Leitfähigkeit der Flüssigkeit in der Schnecke kommt es bei der simultanen Mehrkanalstimulation zu einer Überlagerung der von den einzelnen Elektroden aus¬ gehenden stimulierenden Ströme. Auf neuronaler Ebene über¬ lagern sich die Erregungsmuster, die von einzelnen Elektro¬ den ausgehen, und dies auch bei nichtsimultaner Stimula¬ tion.
Aus der DE-PS 30 16 128 sind ein Verfahren und eine Voi— richtung zur Erzeugung von akustischen Sprachsignalen be¬ kannt, die auch für äußerst Schwerhörige verständlich sind und eine hohe Sprachverständli hkeit liefern sollen. Hiei— bei werden die in einem Mikrofon elektrisch umgewandelten und mittels Filter in mehrere Frequenzbänder zerteilten zu übertragenden akustischen Signale in Form der Hüllkurven der Ausgangssignale der Filter zur Modulierung von den Tönen zugeordneten Wechselspannungen verwendet, die dann zusammen mit vom Mikrofon kommenden Signalen nach Verstär¬ kung dem Hörer zugeleitet werden. Die Signale werden zumin¬ dest in drei Frequenzbänder zerteilt und die modulierten Töne werden zusammen mit dem Gesamtsignal des Mikrofons benutzt, wobei das Verhältnis de r Lautstärke der modulier— ten Töne zu derjenigen der Originaltöne ebenso wie.die Ge¬ samtlautstärke auf ein dem Schwerhörigen erträgliches Maß eingestellt wird. Für stimmhafte Laute werden dabei die modulierten Töne wenigstens teilweise ganz abgeschaltet. Es ist hierbei auch möglich, ein Hörgerät zu implantieren, dem die aufbereiteten Signale drahtlos zugeführt werden. Das Hörgerät ist mit einer Anzahl von Elektroden ausge¬ rüstet, die den Hörnervenden zugeordnet werden. Bei diesem Verfahren und der Vorrichtung w rd im wesentlichen nur -3- die Zeitinformation des Audiosignals ausgenutzt, wobei die Verständlichkeit durch die spezielle Behandlung der stimm¬ haften Laute verbessert wird. Bei diesem bekannten Gerät wird durch die Übertragung des gesamten Sprachsignals der Schwerhörige in die Lage versetzt, die Sprachinformation, die ihm auf direktem Wege zur Verfügung steht, noch auszu¬ nutzen. Diese Möglichkeit ist jedoch bei stark Schwerhöri¬ gen oftmals nicht gegeben.
Der Erfindung liegt die Aufgabe zugrunde, das bekannte Ver¬ fahren und die bekannte Vorrichtung so weiterzuentwickeln, daß bei einer simultanen Stimulation mit einem breitbandi¬ gen, vorzugsweise analogen Stimulationsεignal und Impuls¬ signalen eine gegenseitige Kanalstδrung nicht auftritt und dem Hörgeschädigten Zeitinf-ormationen "und tonotope In¬ formationen angeboten werden, um das Hörvermögen zu verbes¬ sern.
Diese Aufgabe ist gemäß der Erfindung durch die in den un¬ abhängigen Patentansprüchen- ngegebenen Merkmale gelöst.
Demgemäß wird wie bisher einer Elektrode der implantierten Mehrfachelektrode ein vorzugsweiεe analogeε breitbandigen. Stimulationssignal zugeführt, desεen Kurvenform dem Sprach- εignal ähnlich iεt. Dieses Stimulationsεignal liefert im wesentlichen die Zeitinformation. Einer anderen Elektrode wird über einen weiteren Kanal zumindest ein Impulsεignal mit einer Frequenz zugeführt, die der Frequenz eines dominanten Anteiles in dem Sprachsignal, im allgemeinen der Grundfrequenz entspricht. Dieses Impulssignal wird gleichphasig mit der positiven Amplitude der Grundwelle übertragen. Wird ein analoges Stimulationssignal verwendet, so wird das Impulssignal während der positiven ansteigen¬ den Flanke der dominaten Hauptwelle des Sprachsignales zwi¬ schen dem Nulldurchgang und dem Maximum der positiven Amplitude übertragen. Die Elektroden sind mit dem implan¬ tierten Empfänger so verschaltet, daß eine positive Amplitude der Stimulationεsignale die aktive Elektrode negativ macht, alsc reizauεlösend wirkt. Dies gilt sowohl für die analogen wie die ImpulsSignale. Das Impulssignal wird an eine Elektrode abgegeben, die in der Schnecke des Innenohreε Nervenfasern des Hörnerveε reizt, die für die durch die ImpulsSignale hervorzuhebende tonotope Informa¬ tion empfindlich sind. Im Prinzip wäre es die günεtigste Lösung, eine Elektrode auszuwählen, die direkt in der Nachbarschaft solcher Nervenfasern liegt, die für die herauszuhebende Frequenz des hervorzuhebenden Sprachparame¬ ters empfindlich sind. Dies ist in der Praxis zumindest bislang jedoch nicht möglich, da die Stimulationselektrode beginnend von der Schneckenbaεis nur maximal gut eine Windung tief eingeführt werden kann. Man kann jedoch mit einer Mehrkanalelektrode die tonotope Anordnung der Nerven¬ fasern ausnutzen, muß jedoch davon ausgehen, daß man Nervenfasern reizt, die beim Normalhörenden für höhere Frequenzen empfindlich sind. Dennoch beschreiben Patienten mit einer Hörprothese gemäß der Erfindung durch die Impulεstimulation die gewünschte Tonempfindung für wesent¬ lich tiefere Tonhöhen. Durch Messungen am Patienten kann man herausfinden, welche Elektrode ausgewählt werden muß, um die gewünschte Tonhöhenempfindung zu erzielen.
Selbstverständlich können auch mehrere Impulεεignale εimultan mit dem vorzugεweiεe analogen Stimulationssignal übertragen werden, die dann unterschiedlichen Sprachparametern zugeordnet sind. Werden z.B. Impulse zur Heraushebung des erεten und deε zweiten Formanten εimultan mit dem analogen Signal übertragen, so geschieht dieε jeweilε mit der Grundfrequenz oder einer anderen dominanten Frequenz, z.B. der deε ersten Formanten, deε Sprachεignalε. Selbεtverεtändlich werden bei dem Verfahren zu der Plazie¬ rung der Impulεe die von der Frequenz abhängige Gruppen¬ laufzeit des Sprachprozesεors und unter Umständen auch der Elektrodenimpedanz berückεichtigt. Der von Patient zu Patient unterεchiedliche Amplituden- und Phaεengang dieser Übertragungselemente kann mit digitalen Filtern simuliert werden. Die Grundfrequenz kann z.B. ebenfalls mit digitalen Filtern extrahiert werden.
In Versuchen mit einer Vierfachelektrode konnte gezeigt werden, daß das Hörsystem in der Lage ist, die durch das analoge Breitbandsignal übertragene zeitliche Information und die durch die Impulskanäle übertragene tonotope Infor¬ mation sinnvoll zu kombinieren. Die Patienten berichteten, daß die Höreindrücke durch die zusätzliche tonotope Infor¬ mation klarer und natürlicher waren. Die gegenseitige Stö¬ rung der einzelnen Informationskanäle kann stark reduziert werden, da die Pulεrate der Impulεεignale der Periodizität eines dominaten Anteiles, vorzugsweise der Grundwelle deε analogen Stimulationεεignals entsprach. Eε trat in allen untersuchten Fällen eine Verbesserung der Erkennung deε zweiten Formanten und damit auch eine Verbeεserung des Gesamtergebnisses der Vokalidentifikation ein. Die Wahrneh¬ mung der durch das analoge Stiraulationsεignal übertragenen Merkmale der Sprache war überhaupt nicht beeinträchtigt und wurde durch die gezielte Impulsstimulation merklich verbes- εert. Eε ist davon auszugehen, daß noch bessere Ergebnisse erreicht werden, wenn eine Mehrfachelektrode mit mehr als vier Elektroden benutzt wird. Derartige Kehrfachelek¬ troden mit bis zu 22 Kanälen sind bereits bekannt.
Als Impulsεignale werden bevorzugt biphasiεche Signale verwendet. Diese biphasischen Impulse lagen bei der Anpassung stets im Nulldurchgang der Hauptwelle des analogen Stimulationssignaleε und hatten die gleiche Polarität. Berücksichtigt man die Phasenverschiebung deε analogen Stimulationssignales durch die Elektrode von im Mittel ca. 60°, so lagen die Impulse, bei denen die Phasenverεchiebung vernachläεεigbar ist, ungefähr in dem oberen Drittel der positiven ansteigenden Flanke des analogen Stimulationsεignals, wie oben gefordert. 35ie Elektroden waren mit dem implantierten Empfänger so verschaltet, daß eine positive Amplitude des Stimulations¬ signals die aktive Elektrode negativ macht, also reizauslö- send wirkt. Die Amplitude der Impulssignale wird so eingestellt, daß sich beim Dazuschalten des Impulssignales auf einem anderen Kanal eine Änderung der Klangfarbe ohne eine wesentliche Zunahme der Lautheit ergibt, wobei die Amplitude des analogen Stimulationsεignalε unverändert blieb. Die Lautheit deε Impulεkanals allein war meistens nur sehr gering im Vergleich zur Lautheit beider Kanäle zu¬ sammen. Die Impulse sind dann am wirkungsvoliεten, wenn sie im Maximum des analogen Stimulationssignals bzw. kurz davor auftreten. Dies wird auch dadurch bestätigt, daß eine zu große Verzögerung der Impulse über das Maximum des analogen Stimulationεεignals.hinauε dieεe unwirksam macht.
Bei einer Plazierung der Impulssignale in das Maximum des analogen Stimulationssignals bzw. kurz davor treten die Aktionspotentiale vom analogen Stimulationskanal ungefähr gleichzeitig mit jenen vom Impuls-Stimulationεkanal auf, so daß eε nicht zu einer störenden zeitlichen Interaktion der Aktionspotentiale kommen kann. Die Kombination eines vorzugsweise analogen Stimulations¬ signales auf einem Kanal mit zumindest einem Impulsεignal auf einem - auε einer beliebigen Anzahl zuεätzlicher Kanäle wählbaren - anderen Kanal erfordert einen vergleichbar geringen Leistungsbedarf, so daß eine Implementierung die¬ ser Strategie in eine integrierte Schaltung für die Hörpro¬ these möglich ist. Durch geeignete Wahl der Parameter Puls¬ dauer, Pulsamplitude, Pulsrate und Phasenlage der Pulse werden bei diesem Verfahren erstmals die Einflüsεe der Stromauεbreitung in der Schnecke bei simultaner Mehrkanal- εti ulation berückεichtigt. Der Vorteil des vorgeschlage¬ nen Verfahrens liegt noch darin, daß der analoge Stimula¬ tionskanal oder die Impulskanäle auch unabhängig voneinan¬ der allein verwendet werden können. Damit ist es möglich, εich den Fähigkeiten deε Horsystems des Patienten in der Komplexität des Reizmusters individuell anzupassen. Eine dieser Möglichkeiten wäre z.B., die Frequenz des ersten Formanten für die Kanalwahl des Impulssignales heranzuzie¬ hen, wenn dieser über das Periodizitatsprinzip nicht zuver¬ lässig erkannt werden kann. Durch die gezielte Ausnutzung des Periodizitats- und Ortsprinzipes ist es unter anderem auch möglich, sämtliche Kanäle mit Impulsεignalen zu be¬ treiben, wobei dann die einzelnen Komponenten des übertra¬ genen Signales, z.B. unter anderem der erste und der zweite Formant jeweils mit der Grundfrequenz an unterschiedliche Elektroden geliefert werden.
Die Erfindung ist in einem Ausführungεbeiεpiel anhand der Zeichnung näher erläutert. Eε zeigen:
Fig. 1 ein Blockεchaltdiagramm einer Hörprotheεe gemäß der Erfindung;
Fig. 2 eine schematiεche Darεtellung der Schnecke des In¬ nenohres mit einer Stimulationselektrode mit vier Kanälen; Fig. 3 die Darstellung eines analogen Stimulationssignals und eines impulsförmigen Stimulationssignaleε zur simultanen Stimulation;
Fig. 4 eine Übersicht über die Kanalwähl bei der simulta¬ nen Stimulation mit einem analogen und einem impuls¬ förmigen Stimulationssignal.
Das Blockschaltdiagramm in Fig. 1 zeigt eine Hörprothese mit einem Sprachprozessor 1, der ein Mikrofon 10, einen Vorverstärker 12, ein Bandpaßfilter, zwei geregelte Ver¬ stärker 16 und 18 zur Verstärkungseinstellung und ein Filternetzwerk 20 aufweist. In dem Bandpaßfilter 14 wird das von dem Mikrofon 10 aufgenommene und verstärkte Audiosignal auf eine Bandbreite zwischen etwa 150 Hz bis 6 kHz begrenzt, die für die Sprachübertragung notwendig ist. In dem Verstärker 16 wird die Empfindlichkeit durch eine automatische Verstärkungsregelung eingestellt, in dem Silbenkompresεor 18 wird daε A plitudenverhältniε von Konsonanten zu Vokalen angehoben. In dem Filternetzwerk 20 wird das bearbeitete Signal so eingestellt, daß alle Frequenzen innerhalb des Frequenzbandes etwa gleich laut klingen.
Anschließend wird daε verarbeitete Signal in mehreren Schaltungswegen parallel weiterverarbeitet.
In einem ersten Weg wird das analoge Signal zunächst über eine Verzögerungsεchaltung 72 geführt, in der die Grundwel¬ le des Sprachsignaleε um etwa eine Periode verzögert wird Dieseε Signal wird einem Enkoder 22 zugeführt, z.B. einem adaptiven Delta-Modulator, dessen Ausgang mit einem ODER- Gatter 52 verbunden ist. Über diesen ersten Kanal wird ein analoges breitbandiges Stimulationssignal zur Verfügung gestellt. Die Signale für die Impulεεtimulation werden ebenfallε aus dem Sprachsignal entwickelt.
In einem Schaltungsweg ist ein Grundwellendetektor 31 mit einem Pulsgenerator 32 und einem D-Flipflop 33 vorgesehen, so daß über diesen Weg die Frequenz für die Impulsstimula¬ tion bestimmt wird. In einer Schaltung 41 wird der zweite Formant F2 bestimmt. Die Frequenz des zweiten Formanten F2 wird über einen Analog/Digitalwandler 42 einem Kanalkodie- rer 44 zugeführt. Die Amplitude des zweiten Formanten wird über einen Analog/Digitalwandler 43 einer KodierSchaltung 45 zugeführt. Die Kanalnummer definiert die Lage jeweils einer von vier Elektroden El bis E4 einer Stimulationselek¬ trode E, wie weiter unten in Verbindung mit den Fig. 2 bis 4 erläutert.
Die Ausgänge der Schaltungen 33, 44 und 45 werden einem Parallel/Seriell-Wandler 47 zugeführt und von diesem an den zweiten Eingang des ODER-Gatters 52 geleitet.
In einer Schaltung 50 zur Paritätεkontrolle wird daε zusam¬ mengesetzte Signal nochmals überprüft.
Die bisherigen Schaltungselemente entsprechen in ihrer Funktion denjenigen gemäß der oben genannten US-PS 4 593 696.
Zusätzlich zu den beschriebenen Schaltungεelementen iεt noch eine Zeitεteuerung 71 vorgeεehen, die als Abtast- und Halteschaltung ausgeführt ist. In dieser Schaltung 71 wird der Nulldurchgang der Hauptwelle des analogen Stimulations¬ signals detektiert.
Des weiteren ist noch ein paralleler Schaltungsweg mit einer Schaltung 73 zur Extraktion des ersten Formanten Fl vorgeεehen, die mit einer Serienεchaltung auε einem Pulεge- nerator 74 und einem weiteren D-Flipflop 75 verbunden iεt. Der Ausgang deε D-Flipflops ist dem Parallel/Seriell-Wand¬ ler 47 zugeführt. Die Zeitsteuerung 71 kann entweder über den Pulsgenerator 32 oder dem Pulsgenerator 74 zurückge¬ setzt werden, wobei die Auswahl über diesen Rücksetzvor¬ gang mit Hilfe eines Schalters 76 erfolgt. Die Zeitsteue¬ rung 76 triggert den Enkoder 22, wodurch eine exakte Zeit¬ beziehung zwischen dem analogen Stimulationssignal und dem impulsförmigen Stimulationssignal erreicht wird, und zwar entweder in Abhängigkeit der Grundfrequenz oder unter Umständen der Frequenz des ersten Formanten.
Das aus dem analogen Sti ulationssignal und dem impulsför¬ migen Stimulationssignal kombinierte Signal wird über einen Sender 53 induktiv auf einen Empfänger 55 im Innen¬ ohr eingekoppelt, der seinerseits mit der Stimulationselek¬ trode E verbunden ist.
Diese Stimulationselektrode E iεt gemäß Fig. 2 in der Schnecke 81 des Innenohres eingesetzt und weist vier Elek¬ troden El, E2, E3 und E4 auf. Die Elektroden sind in her¬ kömmlicher Weise bipolar oder unipolar ausgebildet. Bei der unipolaren Konfiguration wird eine aktive Elektrode El, E2, E3, E4 gegen eine entfernte Masseelektrode M stimuliert, die z.B. unter dem Temporaliεmuskel liegt. Die Elektrode El liegt am apikalen Ende, die Elektrode E4 am basalen Ende der Schnecke 81. Die Elektroden E2 und E3 sind in Abständen zwischen diesen beiden Elektroden angeordnet.
In Fig. 3 ist in der oberen Zeile das analoge Stimulations¬ signal dargestellt, das um einen arithmetischen Mittelwert schwankt, wobei der Abstand benachbarter dominanter Ampli¬ tuden die Grundfrequenz F0 definiert. Dieses analoge Stimu¬ lationsεignal wird üblicherweiεe zur Elektrode El, d.h. über den Kanal 1 übertragen; vgl. Fig. 4. Die Elektroden sind mit dem implantierten Empfänger so verschaltet, daß eine positive Amplitude der in Fig. 3 dargestellten Stimulationsεignale die aktive Elektrode negativ (katho¬ disch) macht, also reizauεlösend wirkt.
Das in der zweiten Zeile von Fig. 3 dargestellte impulsför- mige Stimulationsεignal, das dem zweiten Formanten F2 zuge¬ ordnet wird, wird ebenfalls mit der Grundfrequenz F0 über¬ tragen, und zwar abhängig von der tatsächlichen in der Schaltung 41 ermittelten Frequenz über je einen der Kanäle 2, 3 und 4 zu einer der Elektroden E2, E3 bzw. E4, wie in Fig. 4 dargestellt. Das impulsförmige Stimulationssignal ist in diesem Falle ein biphasischeε Signal, daε jeweils während der ansteigenden positiven Flanke der Grundwelle zwischen deren Nulldurchgang und dem Maximum übertragen wird. Die Elektroden sind mit dem implantierten Empfänger so verschaltet, daß eine poεitive Amplitude der in Fig. 3 dargeεtellten Stimulationεεignale die aktive Elektrode negativ (kathodiεch) macht, alεo reizauslösend wirkt. Hat z.B. der zweite Formant eine Frequenz kleiner oder gleich 1200 Hz, so wird dieεes impulsförmige Stimulationssignal über den zweiten Kanal der Elektrode E2 zugeführt. Liegt die Frequenz zwischen 1200 und 1800 Hz, so erfolgt die Stimulation über den dritten Kanal und die Elektrode E3. Liegt die Frequenz oberhalb von 1800 Hz, so wird über den vierten Kanal die Elektrode E4 stimuliert. Die Auswahl der Frequenzbereiche, die Anzahl und die Anordnung der Elektro¬ den sind beispielhaft. Ebenso kann in einigen Fällen das analoge Stimulationεεignal z.B. der Elektrode E2 zugeführt werden, so daß dann z.B. die Elektrode El mit einem impulεförmigen Stimulationεsignal beaufεchlagt wird. Die Auswahl der einzelnen Kanäle und damit der Elektroden kann von Patient zu Patient auf diese Weise optimal angepaßt werden. Die Impulεdauer liegt üblicherweise zwischen 200 Mikrose- kunden und 2,5 Millisekunden in Abhängigkeit von der Schwelle des impulsübertragenden Kanals, wobei bevorzugt möglichεt kurze Impulsdauern verwendet werden. Die Amplitu¬ de der impulsförmigen Signale wird so eingeεtellt, daß bei der simultanen Stimulation des analogen Kanals und der Impulεkanäle die Umschaltung innerhalb der Impulskanäle die Wahrnehmung mit keiner oder einer nur geringen Ände¬ rung in der Lautheit verändert, jedoch eine Änderung des Tonhöheneindrucks ergibt.
Es ist im übrigen durchaus möglich, andere Sprachparameter durch entsprechende impulsförmige Stimulation hervorzuhe¬ ben, so daß auch mehrere impulsförmige Stimulationssignale zu entsprechend unterschiedlichen Elektroden übertragen werden. Für ein entscheidend verbessertes Hδrvermögen ist jedoch zunächst die Erkennung des zweiten Formanten F2 not¬ wendig.
Die beεchriebene Hörprothese kann sehr flexibel eingesetzt und an unterschiedliche Bedürfnisse des jeweiligen Patien¬ ten angepaßt werden. Der analoge breitbandige Kanal wird dabei immer stimuliert. Modifikationen der beεchriebenen Stimulation sind jedoch möglich. So ist z.B. eine rein im- pulεförmige Stimulation mit Impulsen der Grundfrequenz F0 und Impulsen der Formanten Fl und F2 möglich, wobei die Überlagerung dieser Impulεe wiederum "gleichphasig ist, um das angestrebte Ziel zu erreichen. Die Stimulationsfre¬ quenz für die Impulskanäle ist üblicherweise die Grundfre¬ quenz F0 oder des ersten Formanten Fl. Die Kanalwahl für die Impulskanäle kann in Abhängigkeit des ersten Formanten Fl, des zweiten Formanten F2 oder der Resonanzfrequenz des vorderen Artikulationstraktes erfolgen. Außerdem können zwei Impulskanäle wechselweise stimuliert werden, wobei die Stimulation über einen ersten Kanal in Abhängigkeit deε erεten Formanten in einer Phase und in Abhängigkeit des zweiten Formanten oder der Resonanzfrequenz in der anderen Phase erfolgt. Die Kanäle, die die Information hinsichtlich des ersten Formanten übertragen, sollten dabei in der Mitte zwischen dem analogen Kanal und den basal gelegenen Kanä¬ len angeordnet sein, die für die Information hinsichtlich des zweiten Formanten dienen.

Claims

Patentansprüche
1. Verfahren zum elektrischen Stimulieren des Hδrnerves im Innenohr mit einem vorzugsweise analogen Stimulations¬ signal, dessen Kurvenform dem Sprachsignal ähnlich ist, und zumindest einem impulsförmigen Stimulationssignal (Impulssignal), die beide aus Audiosignalen verarbeitet werden und Ober mehrere Übertragungskanäle an in der Schnecke des Inneπohres gelegene Elektroden weitergelei¬ tet werden, wobei das analoge Stimulationssignal vor¬ zugsweise zu einer apikalen Elektrode übertragen wird und die Impulssignale zu einer wählbaren Elektrode mit einer Frequenz übertragen werden, die de r Frequenz eines dominanten Anteiles des Sprachsignals entspricht, dadurch gekennzeichnet, daß die Impulssignale gleich¬ phasig mit der positiven Amplitude des dominanten An¬ teils des analogen Stimulationssignals übertragen wei— den, wobei eine positive Amplitude dieses Signals die aktive Elektrode negativ (kathodisch) macht, also reiz¬ auslösend wirkt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei Verwendung von analogen Stimulationssignalen die Impulssignale im Bereich der positiven ansteigenden Flanke der dominanten Hauptwelle des Analogsignalε zwischen dem Nulldurchgang und dem Maximum der positiven Amplitude übertragen werden, wobei eine positive Amplitude dieses Signals die aktive Elektrode negativ (kathodisch) macht, also reizauslösend wirkt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, daß die Impulssignale mit einer der Grundschwingung oder dem ersten Formanten des Sprachsignals entsprechen¬ den Frequenz übertragen werden.
4. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß die Impulssignale zu solchen Elektroden geleitet werden, die in der Schnecke des Innenohres Nervenfasern deε Hörnerves reizen, die für die durch die Impulssignale herauszuhebende tonotope Information empfindlich sind.
5. Verfahren nach einem der vorhergehenden Anεprüche, - da¬ durch gekennzeichnet, daß alε Impulεsignale biphasische Impulse mit einer zunächεt positiven und dann negativen Amplitude verwendet werden, wobei eine positive Amplitu¬ de die aktive Elektrode negativ (kathodisch) macht, also reizauslösend wirkt.
6. Verfahren nach einem der. vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß das analoge Stimulationssig¬ nal hinsichtlich angenehmer Lautheit eingestellt wird, und daß anschließend beim Dazuschalten eines Impulssig¬ nales auf vorzugsweise einem anderen Kanal die Impuls¬ amplitude so gewählt und eingestellt wird, daß sich eine Änderung der Klangfarbe ohne wesentliche Zunahme der Lautheit ergibt. "7* Vorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, mit einem Sprachprozes¬ sor, der aus einem Audioεignal ein vorzugsweise analoges Signal erzeugt, mit einer -Schaltung zum Erzeugen von zumindest einem impulsförmigen Stimulationssignal (Im- pulεεignal) aus dem Audiosignal zum Hervorheben eines oder mehrerer Sprachparameter, insbesondere des zweiten Formanten, einer Schaltung zur Übermittlung eines analo¬ gen Stimulationεεignalε entεprechend deε Audioεignaleε und gleichzeitig des zumindest einen Impulssignales an eine Stimulationselektrode in der Schnecke deε Innen- ohreε, die mehrere an unterschiedlichen Orten der Schnecke gelegene Elektroden aufweist, wobei die Über¬ tragung an die Elektroden über mehrere wählbare Kanäle erfolgt, dadurch gekennzeichnet, daß eine Schaltung (31, 32, 71 bis 74) zur Ermittlung der Frequenz, des Nulldurchgangε und des ersten positiven Maximum eines dominanten Anteils, insbeεondere der Grundwelle des Audiosignales vorgesehen ist, und daß diese Schaltung eine Zeitsteuerung (71) zur Abgabe der Impulsεignale jeweils während der positiven ansteigenden Flanke des dominanten Anteiles umfaßt.
8. Vorrichtung nach Anspruch 7 , dadurch gekennzeichnet, daß abhängig von der Frequenz des durch die Impulssigna¬ le hervorzuhebenden Sprachparameters, insbeεondere des zweiten Formanten, mit Hilfe einer Kanalkodierung (44) ein Kanal für die Übertragung der Impulssignale anwähl¬ bar ist, der mit einer Elektrode (E2 bis E4) verbunden ist, die Nervenfasern deε Hörnerves reizt, die für die durch die Impulεεignale hervorzuhebende tonotope Infor¬ mation empfindlich εind.
PCT/DE1989/000415 1988-06-29 1989-06-22 Verfahren und vorrichtung zum elektrischen stimulieren des hörnerves WO1990000040A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3821970A DE3821970C1 (de) 1988-06-29 1988-06-29
DEP3821970.0 1988-06-29

Publications (1)

Publication Number Publication Date
WO1990000040A1 true WO1990000040A1 (de) 1990-01-11

Family

ID=6357541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1989/000415 WO1990000040A1 (de) 1988-06-29 1989-06-22 Verfahren und vorrichtung zum elektrischen stimulieren des hörnerves

Country Status (5)

Country Link
US (1) US5215085A (de)
EP (1) EP0379541A1 (de)
AU (1) AU621128B2 (de)
DE (1) DE3821970C1 (de)
WO (1) WO1990000040A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016105A1 (en) * 1989-05-10 1991-10-31 Therapeutic Technologies, Inc. Power muscle stimulator
US5095904A (en) * 1989-09-08 1992-03-17 Cochlear Pty. Ltd. Multi-peak speech procession
US5531787A (en) * 1993-01-25 1996-07-02 Lesinski; S. George Implantable auditory system with micromachined microsensor and microactuator
US5772575A (en) * 1995-09-22 1998-06-30 S. George Lesinski Implantable hearing aid
US5881158A (en) * 1996-05-24 1999-03-09 United States Surgical Corporation Microphones for an implantable hearing aid
US5951601A (en) * 1996-03-25 1999-09-14 Lesinski; S. George Attaching an implantable hearing aid microactuator
US5977689A (en) * 1996-07-19 1999-11-02 Neukermans; Armand P. Biocompatible, implantable hearing aid microactuator
US6068589A (en) * 1996-02-15 2000-05-30 Neukermans; Armand P. Biocompatible fully implantable hearing aid transducers
US6950706B2 (en) 2002-04-26 2005-09-27 Medtronic, Inc. Wave shaping for an implantable medical device
US8147544B2 (en) 2001-10-30 2012-04-03 Otokinetics Inc. Therapeutic appliance for cochlea

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3600239B2 (ja) * 1993-07-01 2004-12-15 ザ ユニバーシティ オブ メルボルン 蝸牛移植具
US5584870A (en) * 1995-03-09 1996-12-17 Cochlear Ltd. Implant ESD protection network
US6353671B1 (en) * 1998-02-05 2002-03-05 Bioinstco Corp. Signal processing circuit and method for increasing speech intelligibility
US6078838A (en) 1998-02-13 2000-06-20 University Of Iowa Research Foundation Pseudospontaneous neural stimulation system and method
US6907130B1 (en) * 1998-02-13 2005-06-14 University Of Iowa Research Foundation Speech processing system and method using pseudospontaneous stimulation
US6631295B2 (en) 1998-02-13 2003-10-07 University Of Iowa Research Foundation System and method for diagnosing and/or reducing tinnitus
WO1999049815A1 (en) * 1998-04-01 1999-10-07 Doyle James H Sr Multichannel implantable inner ear stimulator
JP2002518912A (ja) 1998-06-08 2002-06-25 コックレア リミティド 聴覚装置
US7917224B2 (en) * 1999-07-21 2011-03-29 Med-El Elektromedizinische Geraete Gmbh Simultaneous stimulation for low power consumption
US8165686B2 (en) * 1999-08-26 2012-04-24 Med-El Elektromedizinische Geraete Gmbh Simultaneous intracochlear stimulation
ATE376443T1 (de) * 1999-08-26 2007-11-15 Med El Elektromed Geraete Gmbh Transkutane elektrische nervenstimulation auf der basis von kanalspezifischen abtastsequenzen
AUPQ366799A0 (en) * 1999-10-26 1999-11-18 University Of Melbourne, The Emphasis of short-duration transient speech features
AUPQ952700A0 (en) * 2000-08-21 2000-09-14 University Of Melbourne, The Sound-processing strategy for cochlear implants
US20070088335A1 (en) * 2001-10-24 2007-04-19 Med-El Elektromedizinische Geraete Gmbh Implantable neuro-stimulation electrode with fluid reservoir
US7044942B2 (en) 2001-10-24 2006-05-16 Med-El Elektromedizinische Geraete Gmbh Implantable fluid delivery apparatuses and implantable electrode
US20050149132A1 (en) 2003-12-24 2005-07-07 Imad Libbus Automatic baroreflex modulation based on cardiac activity
US8577473B2 (en) * 2004-03-08 2013-11-05 Med-El Elektromedizinische Geraete Gmbh Cochlear implant stimulation with low frequency channel privilege
US7096063B2 (en) * 2004-03-19 2006-08-22 Medtronic, Inc. Method and apparatus for delivering multi-directional defibrillation waveforms
US7779153B2 (en) * 2005-10-27 2010-08-17 Cochlear Limited Automated collection of operational data from distributed medical devices
JP2007128335A (ja) * 2005-11-04 2007-05-24 Nec Corp レプリケーション調停装置と方法並びにプログラム
AR059786A1 (es) * 2006-03-09 2008-04-30 Med El Elektromed Geraete Gmbh Configuracion de electrodo de implante coclear para eluir farmacos
US9795794B2 (en) * 2007-08-10 2017-10-24 Med-El Elektromedizinische Geraete Gmbh Pulse width adaptation for inductive links
EP2207592B1 (de) * 2007-11-09 2016-10-05 Med-El Elektromedizinische Geräte GmbH Strategie zur stimulation eines pulsierenden cochlear-implantats
GB2460410B (en) * 2008-05-27 2012-06-06 Stephen James Norris Auditory prosthesis
WO2010045432A2 (en) * 2008-10-15 2010-04-22 Med-El Elektromedizinische Geraete Gmbh Inner ear drug delivery device and method
CA2745453C (en) 2008-11-10 2015-06-16 Med-El Elektromedizinische Geraete Gmbh Hydrogel-filled drug delivery reservoirs
EP2398551B1 (de) * 2009-01-28 2015-08-05 MED-EL Elektromedizinische Geräte GmbH Kanalspezifische amplitudensteuerung mit seitlicher suppression
EP2396076B1 (de) * 2009-02-06 2016-04-20 MED-EL Elektromedizinische Geräte GmbH Phasen-getriggerter envelope sampler
US8019429B2 (en) * 2009-03-24 2011-09-13 Med-El Elektromedizinische Geraete Gmbh Carrier and envelope triggered cochlear stimulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593696A (en) * 1985-01-17 1986-06-10 Hochmair Ingeborg Auditory stimulation using CW and pulsed signals
GB2171605A (en) * 1983-01-20 1986-09-03 Nat Res Dev Apparatus for electrical stimulation of nerves

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766331A (en) * 1971-11-24 1973-10-16 Zcm Ltd Hearing aid for producing sensations in the brain
US4063048A (en) * 1977-03-16 1977-12-13 Kissiah Jr Adam M Implantable electronic hearing aid
CA1100189A (en) * 1977-11-03 1981-04-28 Ian C. Forster Inner ear stimulating prosthesis
DE3016128C2 (de) * 1979-03-08 1982-08-12 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Erzeugung von akustischen Sprachsignalen, die für äußerst Schwerhörige verständlich sind (optimale Sprachverständlichkeit liefern) und Gerät zur Durchführung dieses Verfahrens
US4284856A (en) * 1979-09-24 1981-08-18 Hochmair Ingeborg Multi-frequency system and method for enhancing auditory stimulation and the like
DE3003315C2 (de) * 1980-01-30 1982-09-16 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Erzeugung von elektrokutanen Reizmustern als Träger akustischer Information und Gerät zur Durchführung dieses Verfahren
DE3008677C2 (de) * 1980-03-06 1983-08-25 Siemens AG, 1000 Berlin und 8000 München Hörprothese zur elektrischen Stimulation des Hörnervs
US4403118A (en) * 1980-04-25 1983-09-06 Siemens Aktiengesellschaft Method for generating acoustical speech signals which can be understood by persons extremely hard of hearing and a device for the implementation of said method
US4400590A (en) * 1980-12-22 1983-08-23 The Regents Of The University Of California Apparatus for multichannel cochlear implant hearing aid system
US4592359A (en) * 1985-04-02 1986-06-03 The Board Of Trustees Of The Leland Stanford Junior University Multi-channel implantable neural stimulator
US5069210A (en) * 1989-04-17 1991-12-03 Jeutter Dean C Cochlear implant employing frequency-division multiplexing and frequency modulation
US5095904A (en) * 1989-09-08 1992-03-17 Cochlear Pty. Ltd. Multi-peak speech procession

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2171605A (en) * 1983-01-20 1986-09-03 Nat Res Dev Apparatus for electrical stimulation of nerves
US4593696A (en) * 1985-01-17 1986-06-10 Hochmair Ingeborg Auditory stimulation using CW and pulsed signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Journal of the Acoustical Society of America, Band 47, Nr. 6, Teil II, Juni 1970, T. KONISHI et al.: "Effects of Electrical Current Applied to Cochlear Partition on Discharges in Individual Auditory-Nerve Fibers. I. Prolonged Direct-Current Polarization", seiten 1519-1526 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016105A1 (en) * 1989-05-10 1991-10-31 Therapeutic Technologies, Inc. Power muscle stimulator
US5095904A (en) * 1989-09-08 1992-03-17 Cochlear Pty. Ltd. Multi-peak speech procession
US5531787A (en) * 1993-01-25 1996-07-02 Lesinski; S. George Implantable auditory system with micromachined microsensor and microactuator
US5984859A (en) * 1993-01-25 1999-11-16 Lesinski; S. George Implantable auditory system components and system
US5772575A (en) * 1995-09-22 1998-06-30 S. George Lesinski Implantable hearing aid
US6068589A (en) * 1996-02-15 2000-05-30 Neukermans; Armand P. Biocompatible fully implantable hearing aid transducers
US5951601A (en) * 1996-03-25 1999-09-14 Lesinski; S. George Attaching an implantable hearing aid microactuator
US5881158A (en) * 1996-05-24 1999-03-09 United States Surgical Corporation Microphones for an implantable hearing aid
US5977689A (en) * 1996-07-19 1999-11-02 Neukermans; Armand P. Biocompatible, implantable hearing aid microactuator
US6153966A (en) * 1996-07-19 2000-11-28 Neukermans; Armand P. Biocompatible, implantable hearing aid microactuator
US8147544B2 (en) 2001-10-30 2012-04-03 Otokinetics Inc. Therapeutic appliance for cochlea
US8876689B2 (en) 2001-10-30 2014-11-04 Otokinetics Inc. Hearing aid microactuator
US6950706B2 (en) 2002-04-26 2005-09-27 Medtronic, Inc. Wave shaping for an implantable medical device

Also Published As

Publication number Publication date
US5215085A (en) 1993-06-01
AU3775689A (en) 1990-01-23
EP0379541A1 (de) 1990-08-01
DE3821970C1 (de) 1989-12-14
AU621128B2 (en) 1992-03-05

Similar Documents

Publication Publication Date Title
DE3821970C1 (de)
EP0527742B1 (de) Tinnitus-maskiergerät
DE3003315C2 (de) Verfahren zur Erzeugung von elektrokutanen Reizmustern als Träger akustischer Information und Gerät zur Durchführung dieses Verfahren
AT502787B1 (de) Spitzenwert-abgeleitete zeitsteuer-stimulationsstrategie für ein mehrkanal-cochlear-implantat
AT500645B1 (de) Hörprothese, bilaterales hörprothesengerät und arbeitsverfahren hierfür
DE60123889T2 (de) Elektronische Mehrkanalschaltungsanordnung für Gewebestimulator
DE60036875T2 (de) Transkutane elektrische nervenstimulation auf der basis von kanalspezifischen abtastsequenzen
DE3008677C2 (de) Hörprothese zur elektrischen Stimulation des Hörnervs
DE102015104614A1 (de) Vorrichtung und Verfahren zur elektrischen Stimulation mit Hilfe eines Cochlea-Implantats
DE60128124T2 (de) Energieeffiziente elektrische stimulation
DE3034394C2 (de)
CH643727A5 (de) Anordnung zum erzeugen einer signalfolge fuer die anpassung eines hoergeraetes.
EP2066397B1 (de) Mehrkanalelektrode für cochlea-implantate mit einer mehrzahl von über die länge der elektrode verteilten kontakten
WO1998044840A1 (de) Elektromyographie-biofeedbackgerät für entspannungstraining
EP3010253A1 (de) Einrichtung zur bestimmung von tinnitustönen und zur generierung derartiger töne
DE102016221478B4 (de) Vorrichtung zur transkraniellen Hirnstimulation
WO1982000760A1 (en) Method,multiple channel electrode,receiver with a plurality of channels and multifrequency system for electric stimulation
DE102020126712B4 (de) Hörprothese mit einer Vielzahl von in einer Reihe angeordneten Ultraschallelementen
DE4234964A1 (de) Tinnitus-Behandlungsgerät
DE102017106361A1 (de) Ohrimplantat und Stimulationselektrode für ein Ohrimplantat
Nobbe Pitch perception and signal processing in electric hearing
DE1915696B2 (de) Verfahren zur verstaendlichen uebertragung von hoerbaren schallsignalen insbesondere der menschlichen stimme den hoch gradig schwerhoerigen
Zerbi et al. Speech processors for auditory prostheses
DE1906886A1 (de) Geraet zur Behandlung von Schwerhoerigen
DE19632706A1 (de) Verfahren zur dynamischen Feldfocussierung bei der Stimulation von reizbarem Körpergewebe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989907071

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989907071

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989907071

Country of ref document: EP