WO1990002968A1 - Common path multichannel optical processor - Google Patents

Common path multichannel optical processor Download PDF

Info

Publication number
WO1990002968A1
WO1990002968A1 PCT/US1989/003734 US8903734W WO9002968A1 WO 1990002968 A1 WO1990002968 A1 WO 1990002968A1 US 8903734 W US8903734 W US 8903734W WO 9002968 A1 WO9002968 A1 WO 9002968A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
optical
along
local oscillator
Prior art date
Application number
PCT/US1989/003734
Other languages
French (fr)
Inventor
Robert W. Brandstetter
Nils J. Fonneland
Original Assignee
Grumman Aerospace Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grumman Aerospace Corporation filed Critical Grumman Aerospace Corporation
Priority to DE68922721T priority Critical patent/DE68922721T2/en
Priority to EP89910730A priority patent/EP0399005B1/en
Publication of WO1990002968A1 publication Critical patent/WO1990002968A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06EOPTICAL COMPUTING DEVICES; COMPUTING DEVICES USING OTHER RADIATIONS WITH SIMILAR PROPERTIES
    • G06E3/00Devices not provided for in group G06E1/00, e.g. for processing analogue or hybrid data
    • G06E3/001Analogue devices in which mathematical operations are carried out with the aid of optical or electro-optical elements
    • G06E3/005Analogue devices in which mathematical operations are carried out with the aid of optical or electro-optical elements using electro-optical or opto-electronic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters

Definitions

  • the present invention relates to any optical processor which is sensitive to environmental effects.
  • RF signals propagating through a medium generally experience non-linear phase characteristics, namely, non-linear phase variation with frequency. Without special processing, such a propagated signal will be detected as a degraded signal.
  • Co-pending U.S. patent application Serial No. 857,277 utilizes coherent optical processing to perform phase equalization corrections of RF signals by providing equalization paths for a multitude of discrete frequencies in a parallel operation. By virtue of the prior invention, thousands of discrete frequencies may be handled.
  • the aforementioned invention utilizes a phase-controlled array in the Fourier plane to cancel phase distortion of the propagated signal.
  • the array is comprised of individual components that have their birefringence electrically altered to correspondingly alter the phase of the particular frequency associated with the element.
  • the corrected optical signal then undergoes photoelectric transformation at a photomixer and the result is a phase-equalized correction signal which corresponds to an input signal prior to its propagation-induced phase distortion.
  • the present invention is an improvement of the apparatus in the mentioned co-pending patent application.
  • the apparatus provides a means for providing a common optical train for an optically converted RF signal and associated optical local oscillator signal. Therefore, the environmental effects on each are identical and environmental disturbances are self-cancelling. With this common path approach, sharing of common optical components becomes possible thereby affording greater packaging density required in the apparatus.
  • a further embodiment of the present invention incorporates the common path concept in a plurality of parallel optical channels.
  • Such a multi-channel array allows the use of a different wavelength laser in each channel, should this be desired. Accordingly, this embodiment may be advantageously adapted for frequency multiplexing applications.
  • FIG. 1 is a diagrammatic top plan view of an electro-optic apparatus previously conceived, which introduces an optically converted RF signal and an optical local oscillator signal along two different paths subject to different environmental effects;
  • FIG. 2 is a partial diagrammatic view of a phase-control array as employed in the apparatus of FIG. 1;
  • FIG. 3 is a diagrammatic top plan view of the present invention, for a single channel, wherein the optically converted RF and optical local oscillator signals travel through common optical components;
  • FIG. 4 is a diagrammatic view of a phase or amplitude control array as employed in the present invention.
  • FIG. 5 is a diagrammatic perspective view of a multi-channel array, as utilized in a frequency multiplexing embodiment of the invention.
  • a laser beam 10 serves as an optical carrier signal for a modulating RF signal 14 which has been previously distorted as a result of propagation.
  • the beam 10 and RF signal 14 are introduced to a conventional acousto-optical modulator 12, such as the type manufactured by the ISOMET Corporation; and a modulated acoustic field (object) 16 is formed by modulator 12.
  • a Fourier plane 22 is developed between Fourier lens 18 and inverse Fourier lens 20.
  • a phase control array 23 at the Fourier plane 22, a phase equalization capability is realized.
  • the elements of the array produce desired phase control at each frequency component of the object 16.
  • FIG. 2 wherein a multi-element electro-optic device is illustrated.
  • each element in the array is to vary the optical path length of the spatially distributed frequency components at the Fourier plane 22 so that the birefringence of each element is varied as required in order to alter the optical path length of each element in a manner that will equalize the phase of each frequency component as it passes through the Fourier plane 22.
  • the phase of an image located to the right of the inverse Fourier lens 20 is phase equalized relative to the distorted object 16.
  • the equalized image undergoes processing by combiner 26 which may be a conventional semi-silvered mirror.
  • a laser local oscillator beam 28 forms a second optical input to the combiner 26 to achieve optical heterodyning or down converting thus forming the phase-equalized image 24 which impinges upon an intensity-sensitive square law photodetector 30 for transforming the corrected phase-equalized image 24 to a corrected RF signal at photodetector output 32.
  • the RF signal at output 32 is a phase-corrected non-distorted signal resembling the original electrical signal which became distorted by propagation prior to introduction to the equalization circuitry of FIG. 1.
  • phase shift occurring at each of the elements in array 23 can be continuously varied, as in the Kerr, Pockel cell and liquid crystal devices, or discretely varied as in a Faraday cell.
  • the amount of phase shift occurring through each cell is controlled by a device which, in its basic form, may resemble a voltage divider 21 to which a reference voltage is applied.
  • Individual outputs from the voltage divider as generally indicated by reference numeral 19 (FIG. 2), drive each element of the array to a degree corresponding to the desired phase shift to be achieved by each element of the array 23.
  • the laser local oscillator beam 28, which forms the second optical input to the combiner 26 is derived from the laser beam 10.
  • the local oscillator beam may be phase-controlled in a manner similar to that disclosed in connection with the signal path through the phase-control array 23. This is done by including a second phase-control array 33 similar in construction to the multi-optical element phase-control array 23. As in the case of the first array 23, the second phase-control array 33 modifies the phase of the laser beam 10 as it impinges upon each element of the array.
  • the lens 36 focuses the phase-modified beam for reflection by mirror 35 to form the local oscillator beam 28. In fact, this beam will be comprised of phase-modified sections which correspond to the phase modifications of the object 16, as a result of phase-control array 23.
  • the inclusion of a phase-modified local oscillator beam is not mandatory. However, the utilization of both arrays 23 and 33 can be advantageously operated in parallel and/or tandem to achieve phase correction of a distorted propagated RF signal over a wide range
  • phase correction may be accomplished in three modes:
  • phase-control arrays 23 and 33 utilization of phase-control arrays 23 and 33.
  • the degree of elemental local oscillator phase control is determined by the voltage divider output 19' in the same manner previously described in connection with voltage divider output 19, which drives the phase-control array 23.
  • the apparatus illustrates a single pass device, if additional phase correction is required, multiple passes through the phase control arrays 23 and 33 may be accomplished by a recursive technique which may typically utilize mirrors (not shown) for achieving multiple passes.
  • C is equal to the speed of light; and ⁇ is the wavelength of the laser beam 10.
  • the Improvement The present invention eliminates the separate path for local oscillator beam 28, as employed in the previously conceived apparatus. It has been found that, by introducing the local oscillator along a separate optical path, different environmental effects are experienced along each of the optical paths, which results in a deteriorated RF signal at the output 32.
  • the present invention eliminates the separate path for the local oscillator beam 28, as employed in the previously conceived apparatus. It has been found that, by introducing the local oscillator along a separate optical path, different environmental effects are experienced along each of the optical paths, which results in a deteriorated RF signal at the output. Therefore, the common path approach can be used to improve any optical heterodyne processor where phase and amplitude stability are important.
  • FIG. 3 illustrates a single channel of signal communication.
  • Laser beam 10 is subjected to a beam splitter 9 for generating an upper beam serving as a local oscillator (L.O.) beam and a lower carrier signal to the input of acousto-optical modulator 12.
  • the RF signal 14 is introduced into the modulator as was the case in FIG. 1 and an optically modulated signal is generated at the output of modulator 12.
  • Fourier lens 18' performs the same function as lens 18 in FIG. 1 but handles both the local oscillator beam and the optical signal beam.
  • the Fourier lens 18' may, for example, be of a Casegrainian type. Spatially distributed frequency components of an object undergo phase or amplitude modification at array 34. However, the array includes two separate windows 36 and 38, as shown in FIG. 4; the windows respectively passing the signal beam and local oscillator beam.
  • FIG. 4 shows the construction of a phase and amplitude control array in the configuration corresponding to the first mode, namely phase or amplitude control of the signal beam but not the local oscillator beam. This would be accomplished by including an electro-optic device in window 36, of the typical type previously mentioned in connection with phase or amplitude control array 23 of FIG. l while passing the local oscillator beam through a clear window 38.
  • FIG. 5 illustrates a multi-channel apparatus for allowing the use of different wavelength lasers for each signal channel, should this be desired, such as for frequency multiplexing applications. Only three separate channels have been indicated in FIG. 5, but it is to be understood that many more may be incorporated in the illustrated apparatus. Identical components in FIG. 3 and FIG. 5 are indicated by the same reference numerals.
  • a laser beam 10 is directed to beam splitter 9 which, like a number of similar splitters, is coaxially mounted around a fixed ring 40.
  • the laser beam then undergoes modulation at 12, while the split laser beam, serving as a local oscillator beam, is passed through a central clear portion of a ring 42, which coaxially mounts a number of acousto-optical modulators 12.
  • the first channel path then continues with Fourier lens 18• which is coaxially mounted with other Fourier lenses on a disc 44.
  • phase and amplitude control array 34 which is mounted to fixed ring 46, coaxially with other similar arrays.
  • Inverse Fourier lens 20' is' coaxially mounted with other lenses on disc 48.
  • Optical processing continues with combiner 26, the latter being coaxially mounted with similar combiners on fixed ring 50.
  • the combined beam is then directed to photodetecter 30 which generates an electrical signal output for the first channel along output lead 32.
  • the other illustrated axially distributed optical components are respectively coaxially aligned so that a plurality of channels is generated in the same direction as the first channel.
  • the resultant multi-channel array allows the use of different wavelength lasers for each signal channel when desired, such as in the application of frequency multiplexing.
  • the various optical beams namely the signal and local oscillator beams from the different channels can occupy the same compact volume without interaction. This sharing of a common optical direction affords greater packaging density. As a result, the present invention produces an optical processor with superior operational results while requiring less space than would be otherwise required.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Nonlinear Science (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Adverse environmental effects may be canceled from an optical processor which adjusts the phase of spatially distributed frequency components. This is achieved by projecting the optical modulated signal and a local oscillator optical signal along the same optical path and through the same optical components (9, 18', 20', 26, 30). Multichannel operation is achieved by positioning the optical components for each stage along a common axis.

Description

Title of the Invention: COMMON PATH MULTICHANNEL OPTICAL
PROCESSOR
FIELD OF THE INVENTION The present invention relates to any optical processor which is sensitive to environmental effects.
BACKGROUND OF THE INVENTION RF signals propagating through a medium generally experience non-linear phase characteristics, namely, non-linear phase variation with frequency. Without special processing, such a propagated signal will be detected as a degraded signal.
Prior art devices have been satisfactorily employed for years to achieve phase and amplitude equalization. However, they are severely restricted in the number of frequencies that can be handled by the digital electronics circuitry and the speed with which the equalization is activated.
Co-pending U.S. patent application Serial No. 857,277, assigned to the present assignee, utilizes coherent optical processing to perform phase equalization corrections of RF signals by providing equalization paths for a multitude of discrete frequencies in a parallel operation. By virtue of the prior invention, thousands of discrete frequencies may be handled.
The aforementioned invention utilizes a phase-controlled array in the Fourier plane to cancel phase distortion of the propagated signal. The array is comprised of individual components that have their birefringence electrically altered to correspondingly alter the phase of the particular frequency associated with the element. The corrected optical signal then undergoes photoelectric transformation at a photomixer and the result is a phase-equalized correction signal which corresponds to an input signal prior to its propagation-induced phase distortion.
Although the apparatus of the co-pending application operates satisfactorily, at times environmental effects cause problems due to the fact that an optically converted RF signal and optical local oscillator signal are introduced to the apparatus along parallel paths. These paths are subject to different environmental effects due to vibration, temperatures, dust, etc. Accordingly, it would be advantageous to introduce the RF and local oscillator signals along a common optical path to negate the different environmental effects.
BRIEF DESCRIPTION OF THE PRESENT INVENTION The present invention is an improvement of the apparatus in the mentioned co-pending patent application. The apparatus provides a means for providing a common optical train for an optically converted RF signal and associated optical local oscillator signal. Therefore, the environmental effects on each are identical and environmental disturbances are self-cancelling. With this common path approach, sharing of common optical components becomes possible thereby affording greater packaging density required in the apparatus.
A further embodiment of the present invention incorporates the common path concept in a plurality of parallel optical channels. Such a multi-channel array allows the use of a different wavelength laser in each channel, should this be desired. Accordingly, this embodiment may be advantageously adapted for frequency multiplexing applications.
BRIEF DESCRIPTION OF THE FIGURES The above-mentioned objects and advantages of the present invention will be more clearly understood when considered in conjunction with the accompanying drawings, in which: FIG. 1 is a diagrammatic top plan view of an electro-optic apparatus previously conceived, which introduces an optically converted RF signal and an optical local oscillator signal along two different paths subject to different environmental effects;
FIG. 2 is a partial diagrammatic view of a phase-control array as employed in the apparatus of FIG. 1;
FIG. 3 is a diagrammatic top plan view of the present invention, for a single channel, wherein the optically converted RF and optical local oscillator signals travel through common optical components;
FIG. 4 is a diagrammatic view of a phase or amplitude control array as employed in the present invention;
FIG. 5 is a diagrammatic perspective view of a multi-channel array, as utilized in a frequency multiplexing embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION Prior to a detailed description of the present invention, it is instructive to consider the previously conceived optical processor of the mentioned co-pending U.S. patent application shown in FIG. 1, which is sensitive to environmental effects as previously discussed.
A laser beam 10 serves as an optical carrier signal for a modulating RF signal 14 which has been previously distorted as a result of propagation. The beam 10 and RF signal 14 are introduced to a conventional acousto-optical modulator 12, such as the type manufactured by the ISOMET Corporation; and a modulated acoustic field (object) 16 is formed by modulator 12.
A Fourier plane 22 is developed between Fourier lens 18 and inverse Fourier lens 20. By introducing a phase control array 23 at the Fourier plane 22, a phase equalization capability is realized. Specifically, there is a spatial frequency distribution of object 16 on the Fourier plane 22; and by placing a multi-optical element phase control array 23 in coplanar relationship with the spatial distribution, each frequency component of object 16, as spatially distributed, may undergo phase modification so that a phase-equalized optical signal results. Thus, as will be presently explained, the elements of the array produce desired phase control at each frequency component of the object 16. To better understand the phase control array 23, reference is made to FIG. 2 wherein a multi-element electro-optic device is illustrated. The individual elements are schematically indicated by corresponding spatially distributed frequency components F*]_-Fn. For purposes of simplicity, only a small number of frequency components is illustrated. However, it should be understood that the apparatus is intended for a large number of frequency components, typically one thousand or more. Appropriate electro-optic devices include PLZT, liquid crystal, Kerr cells, Pockel cells, Faraday cells, and the like. The purpose of each element in the array is to vary the optical path length of the spatially distributed frequency components at the Fourier plane 22 so that the birefringence of each element is varied as required in order to alter the optical path length of each element in a manner that will equalize the phase of each frequency component as it passes through the Fourier plane 22. As a result, the phase of an image located to the right of the inverse Fourier lens 20 is phase equalized relative to the distorted object 16.
The equalized image undergoes processing by combiner 26 which may be a conventional semi-silvered mirror. A laser local oscillator beam 28 forms a second optical input to the combiner 26 to achieve optical heterodyning or down converting thus forming the phase-equalized image 24 which impinges upon an intensity-sensitive square law photodetector 30 for transforming the corrected phase-equalized image 24 to a corrected RF signal at photodetector output 32. As a result, the RF signal at output 32 is a phase-corrected non-distorted signal resembling the original electrical signal which became distorted by propagation prior to introduction to the equalization circuitry of FIG. 1.
It should be pointed out that the phase shift occurring at each of the elements in array 23 can be continuously varied, as in the Kerr, Pockel cell and liquid crystal devices, or discretely varied as in a Faraday cell. The amount of phase shift occurring through each cell is controlled by a device which, in its basic form, may resemble a voltage divider 21 to which a reference voltage is applied. Individual outputs from the voltage divider, as generally indicated by reference numeral 19 (FIG. 2), drive each element of the array to a degree corresponding to the desired phase shift to be achieved by each element of the array 23.
The laser local oscillator beam 28, which forms the second optical input to the combiner 26 is derived from the laser beam 10. The local oscillator beam may be phase-controlled in a manner similar to that disclosed in connection with the signal path through the phase-control array 23. This is done by including a second phase-control array 33 similar in construction to the multi-optical element phase-control array 23. As in the case of the first array 23, the second phase-control array 33 modifies the phase of the laser beam 10 as it impinges upon each element of the array. The lens 36 focuses the phase-modified beam for reflection by mirror 35 to form the local oscillator beam 28. In fact, this beam will be comprised of phase-modified sections which correspond to the phase modifications of the object 16, as a result of phase-control array 23. The inclusion of a phase-modified local oscillator beam is not mandatory. However, the utilization of both arrays 23 and 33 can be advantageously operated in parallel and/or tandem to achieve phase correction of a distorted propagated RF signal over a wide range of applications.
In accordance with the previously conceived invention, phase correction may be accomplished in three modes:
1. utilization of phase-control array 23 and a local oscillator beam 28 which does not undergo phase control through array 33; 2. phase control of the local oscillator beam
28 by utilization of array 33 and no utilization of a phase-control array 23 at the Fourier plane 22; and
3. utilization of phase-control arrays 23 and 33. The degree of elemental local oscillator phase control is determined by the voltage divider output 19' in the same manner previously described in connection with voltage divider output 19, which drives the phase-control array 23. Although the apparatus illustrates a single pass device, if additional phase correction is required, multiple passes through the phase control arrays 23 and 33 may be accomplished by a recursive technique which may typically utilize mirrors (not shown) for achieving multiple passes.
The modification of the optical path length through each array element, corresponding to phase shift through that element, may be expressed by the equation: Δφ = 2π(Δt ncC)/λ where Δt is the differential delay; nc is equal to the refractive index of the element cell;
C is equal to the speed of light; and λ is the wavelength of the laser beam 10.
Although the apparatus has been described for radio frequencies, it is equally applicable to phase equalizing frequency components of other multi-frequency signals, regardless of the medium through which they propagate and encounter distortion.
In situations where amplitude equalization of signal frequency components is also necessary, this may be achieved by modifying the frequency components of the signal at the Fourier plane; additional amplitude equalization being possible by modifying the local oscillator beam. The means for so modifying the amplitude of individual frequency components is by utilizing arrays of light filtering elements, as disclosed in our co-pending patent application entitled METHOD AND APPARATUS FOR OPTICAL RF AMPLITUDE EQUALIZATION, Serial No. 857,288.
The Improvement The present invention eliminates the separate path for local oscillator beam 28, as employed in the previously conceived apparatus. It has been found that, by introducing the local oscillator along a separate optical path, different environmental effects are experienced along each of the optical paths, which results in a deteriorated RF signal at the output 32. The present invention eliminates the separate path for the local oscillator beam 28, as employed in the previously conceived apparatus. It has been found that, by introducing the local oscillator along a separate optical path, different environmental effects are experienced along each of the optical paths, which results in a deteriorated RF signal at the output. Therefore, the common path approach can be used to improve any optical heterodyne processor where phase and amplitude stability are important.
The local oscillator beam and signal beam are directed along a common optical path, between shared components, as will be seen from FIG. 3. Identical components in FIGS. 1 and 3 have been similarly numbered. The embodiment of FIG. 3 illustrates a single channel of signal communication. Laser beam 10 is subjected to a beam splitter 9 for generating an upper beam serving as a local oscillator (L.O.) beam and a lower carrier signal to the input of acousto-optical modulator 12. The RF signal 14 is introduced into the modulator as was the case in FIG. 1 and an optically modulated signal is generated at the output of modulator 12. Fourier lens 18' performs the same function as lens 18 in FIG. 1 but handles both the local oscillator beam and the optical signal beam. The Fourier lens 18' may, for example, be of a Casegrainian type. Spatially distributed frequency components of an object undergo phase or amplitude modification at array 34. However, the array includes two separate windows 36 and 38, as shown in FIG. 4; the windows respectively passing the signal beam and local oscillator beam. Although phase correction may be accomplished in the three modes previously mentioned, FIG. 4 shows the construction of a phase and amplitude control array in the configuration corresponding to the first mode, namely phase or amplitude control of the signal beam but not the local oscillator beam. This would be accomplished by including an electro-optic device in window 36, of the typical type previously mentioned in connection with phase or amplitude control array 23 of FIG. l while passing the local oscillator beam through a clear window 38. The local oscillator beam and signal beam individually pass through inverse Fourier lens 20* and are combined at combiner 26. As will be appreciated, the more significant aspect of the present improvement is the utilization of a common optical path wherein the path lengths of both the local oscillator beam and signal beam are the same; and the use of common optical components ensures that the previously discussed effects from the environment are the same upon each beam. Therefore, any adverse environmental effects thereof are canceled. The combined beam is converted to an electrical signal at output 32 of a photodetecter 30. FIG. 5 illustrates a multi-channel apparatus for allowing the use of different wavelength lasers for each signal channel, should this be desired, such as for frequency multiplexing applications. Only three separate channels have been indicated in FIG. 5, but it is to be understood that many more may be incorporated in the illustrated apparatus. Identical components in FIG. 3 and FIG. 5 are indicated by the same reference numerals.
Considering a first channel of the multi-channel apparatus, a laser beam 10 is directed to beam splitter 9 which, like a number of similar splitters, is coaxially mounted around a fixed ring 40. The laser beam then undergoes modulation at 12, while the split laser beam, serving as a local oscillator beam, is passed through a central clear portion of a ring 42, which coaxially mounts a number of acousto-optical modulators 12. The first channel path then continues with Fourier lens 18• which is coaxially mounted with other Fourier lenses on a disc 44.
The channel then continues through phase and amplitude control array 34 which is mounted to fixed ring 46, coaxially with other similar arrays. Inverse Fourier lens 20' is' coaxially mounted with other lenses on disc 48. Optical processing continues with combiner 26, the latter being coaxially mounted with similar combiners on fixed ring 50. The combined beam is then directed to photodetecter 30 which generates an electrical signal output for the first channel along output lead 32. The other illustrated axially distributed optical components are respectively coaxially aligned so that a plurality of channels is generated in the same direction as the first channel. The resultant multi-channel array allows the use of different wavelength lasers for each signal channel when desired, such as in the application of frequency multiplexing. The various optical beams, namely the signal and local oscillator beams from the different channels can occupy the same compact volume without interaction. This sharing of a common optical direction affords greater packaging density. As a result, the present invention produces an optical processor with superior operational results while requiring less space than would be otherwise required.
It should be understood that the invention is not limited to the exact details of construction shown and described herein, for obvious modifications will occur to persons skilled in the art.

Claims

CLAIMSWe claim:
1. In an optical processor having means for modulating a laser beam with a distorted input signal to form an optical signal which is communicated to means for equalizing the phase components of the distorted signal, an improved signal processor for phase equalization comprising: means (9) for splitting a laser beam (10) into dual beams including a local oscillator (L.O.) beam and a beam to be optically modulated by a distorted input signal; optical Fourier means for (18') spatially distributing the modulated beam and passing the L.O. beam along the same path as the distorted beam; • phase control means (34) for optically equalizing the phase of the frequency components of the distributed beam at the same distance along the optical path as the L.O. beam; and means for combining (26) the L.O. and the equalized signal and generating an optical signal corresponding to the phase-equalized input signal; the communication of the dual beams along the same path canceling environmental effects that would otherwise adversely affect the phase equalization of the signal.
2. The structure set forth in claim 1 wherein the optical Fourier means comprises a Fourier lens (18*) for transforming the signal to a spatially distributed image of the optical signal at a Fourier plane (22) ; and means for inversely transforming the equalized signal to a non-distributed optical signal.
3. The structure set forth in claim 1 or claim 2 wherein the beam is modulated by an acousto-optic modulator (12) .
4. The structure set forth in claim 1 wherein a multi-channel optical processor is formed with the capability of communicating beams of respectively different frequency, each channel comprising: means (9) mounted on a common mount (40) , for splitting a laser beam (10) into dual beams including a local oscillator (L.O.) beam and a beam to be optically modulated by a distorted input signal; optical Fourier means (44) mounted on a common mount for spatially distributing (22) the modulated beam and passing the L.O. beam along the same path as the distributed beam; and phase-control means (34) mounted on a common mount (46) for optically equalizing the phase of the spatially distributed frequency components at the same distance along the optical path as the L.O. beam; the multi-channel processor permitting multiple frequency operation with different lasers in a compact volume.
5. In a method for optically processing an input signal having the steps of modulating a laser beam with the input signal to form a resultant optical signal which is communicated to means for equalizing phase components of the signal, an improved method for phase equalizing the input signals comprising the steps: splitting (9) a laser beam into dual beams including a local oscillator (L.O.) beam and a beam to be optically modulated (12) by the input signal; spatially distributing (22) the modulated beam and communicating the L.O. beam along the same path therewith; optically equalizing (34) the phase of the distributed beam frequency components along the optical path of the L.O. beam; and combining (26) the L.O. and the equalized signal for generating a signal corresponding to the phase-equalized input signal; whereby communication of the dual beams along the same path cancels environmental effects that would otherwise adversely affect phase equalization of the signal.
6. The method set forth in claim 5, wherein the step of spatially distributing the optical signal occurs at a Fourier plane (22) , as a function of frequency, thereby enabling phase equalization of the signal frequency components.
PCT/US1989/003734 1988-09-09 1989-08-30 Common path multichannel optical processor WO1990002968A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE68922721T DE68922721T2 (en) 1988-09-09 1989-08-30 OPTICAL MULTI-CHANNEL PROCESSOR WITH EQUAL WAY.
EP89910730A EP0399005B1 (en) 1988-09-09 1989-08-30 Common path multichannel optical processor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US246,557 1988-09-09
US07/246,557 US4976520A (en) 1988-09-09 1988-09-09 Common path multichannel optical processor

Publications (1)

Publication Number Publication Date
WO1990002968A1 true WO1990002968A1 (en) 1990-03-22

Family

ID=22931194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1989/003734 WO1990002968A1 (en) 1988-09-09 1989-08-30 Common path multichannel optical processor

Country Status (6)

Country Link
US (1) US4976520A (en)
EP (1) EP0399005B1 (en)
JP (1) JPH03501080A (en)
CA (1) CA1299246C (en)
DE (1) DE68922721T2 (en)
WO (1) WO1990002968A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105380A (en) * 1989-12-06 1992-04-14 Hughes Aircraft Company Electro-optic channelized modulator and receiver
GB9005647D0 (en) * 1990-03-13 1990-05-09 Secr Defence Optical multiplexer
US5129041A (en) * 1990-06-08 1992-07-07 Grumman Aerospace Corporation Optical neural network processing element with multiple holographic element interconnects
US5365460A (en) * 1990-08-27 1994-11-15 Rockwell International Corp. Neural network signal processor
US5294930A (en) * 1992-05-01 1994-03-15 Li Ming Chiang Optical RF stereo
US5155606A (en) * 1991-12-06 1992-10-13 Lockheed Missiles & Space Company, Inc. Glint suppression technique
US5187487A (en) * 1992-03-05 1993-02-16 General Electric Company Compact wide tunable bandwidth phased array antenna controller
US5450223A (en) * 1993-09-07 1995-09-12 Martin Marietta Corp. Optical demultiplexer for optical/RF signals
US6229649B1 (en) * 1994-10-04 2001-05-08 The United States Of America As Represented By The Secretary Of The Air Force Pseudo deconvolution method of recovering a distorted optical image
FR2772938B1 (en) * 1997-12-23 2000-03-17 Thomson Csf ELECTRIC SIGNAL GENERATOR
US5923460A (en) * 1998-05-19 1999-07-13 Harris Corporation Mechanism for extending instantaneous RF frequency coverage for an acousto-optic coherent channel receiver (AOCCR) via bandwidth dilation
DE69823839T2 (en) * 1998-11-25 2005-08-11 Cisco Systems International B.V. Optical device for processing digital optical signals
US6707603B2 (en) * 2001-06-28 2004-03-16 Raytheon Company Apparatus and method to distort an optical beam to avoid ionization at an intermediate focus
US8111450B1 (en) * 2008-08-27 2012-02-07 Optoplex Corporation Rhomb beam splitter in optical communication
CN102313597B (en) * 2011-08-12 2013-04-17 谭成忠 Fourier transform spectrometer free of movable mechanical part
JP2013246325A (en) * 2012-05-25 2013-12-09 Sumitomo Osaka Cement Co Ltd Optical modulator
US10754223B2 (en) 2016-11-03 2020-08-25 Harris Corporation Multi-channel laser system including an acoustic-optic modulator (AOM) with atom trap and related methods
US10509245B2 (en) 2016-11-03 2019-12-17 Harris Corporation Multi-channel laser system including an acousto-optic modulator (AOM) with beam stabilizer and related methods
US9915851B1 (en) * 2016-11-03 2018-03-13 Harris Corporation Multi-channel phase-capable acousto-optic modulator (AOM) and related methods
US10495943B2 (en) * 2016-11-03 2019-12-03 Harris Corporation Multi-channel phase-capable acousto-optic modulator (AOM) including beam stabilizer and related methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647154A (en) * 1983-07-29 1987-03-03 Quantum Diagnostics Ltd. Optical image processor
US4699466A (en) * 1985-03-27 1987-10-13 Grumman Aerospace Corporation Optical RF filtering system
US4771398A (en) * 1986-04-30 1988-09-13 Grumman Aerospace Corporation Method and apparatus for optical RF phase equalization
US4771397A (en) * 1986-04-30 1988-09-13 Grumman Aerospace Corporation Method and apparatus for optical RF amplitude equalization
JPH05276088A (en) * 1992-03-26 1993-10-22 Clarion Co Ltd Radio data collection system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3586416A (en) * 1968-07-18 1971-06-22 Philips Corp Light modulator by gated interferometry
DE1915680B2 (en) * 1969-03-27 1973-03-08 Ernst Leitz Gmbh, 6330 Wetzlar PHOTOMETERS FOR OBSERVATION INSTRUMENTS, IN PARTICULAR MICROSCOPES
DE2430011C3 (en) * 1974-06-22 1978-05-03 Bayer Ag, 5090 Leverkusen Two-beam photometer with interference filter
JPS5276088A (en) * 1975-12-22 1977-06-25 Toshiba Corp System for inspecting defects of pattern having directivity
DE2637844C2 (en) * 1976-08-23 1986-06-26 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Method and arrangement for the separate evaluation of image content according to two coordinate directions of movement
JPS6011325B2 (en) * 1977-01-21 1985-03-25 キヤノン株式会社 scanning device
US4225938A (en) * 1978-12-05 1980-09-30 The United States Of America As Represented By The Director Of The National Security Agency Time-integrating acousto-optical processors
US4236821A (en) * 1979-08-10 1980-12-02 Mchenry Systems, Inc. Method and apparatus for testing optical retrodirective prisms
FR2465241A1 (en) * 1979-09-10 1981-03-20 Thomson Csf ILLUMINATOR DEVICE FOR PROVIDING AN ADJUSTABLE INTENSITY DISTRIBUTION ILLUMINATION BEAM AND PATTERN TRANSFER SYSTEM COMPRISING SUCH A DEVICE
US4471445A (en) * 1981-03-30 1984-09-11 Grumman Aerospace Corporation Fourier transform signal processor
US4522466A (en) * 1983-05-26 1985-06-11 Grumman Aerospace Corporation Recursive optical filter system
US4579421A (en) * 1983-10-05 1986-04-01 The United States Of America As Represented By The Director Of The National Security Agency Optical adaptive filter
US4755745A (en) * 1986-03-04 1988-07-05 The United States Of America As Represented By The Director, National Security Agency Incoherent light optical processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647154A (en) * 1983-07-29 1987-03-03 Quantum Diagnostics Ltd. Optical image processor
US4699466A (en) * 1985-03-27 1987-10-13 Grumman Aerospace Corporation Optical RF filtering system
US4771398A (en) * 1986-04-30 1988-09-13 Grumman Aerospace Corporation Method and apparatus for optical RF phase equalization
US4771397A (en) * 1986-04-30 1988-09-13 Grumman Aerospace Corporation Method and apparatus for optical RF amplitude equalization
JPH05276088A (en) * 1992-03-26 1993-10-22 Clarion Co Ltd Radio data collection system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0399005A4 *

Also Published As

Publication number Publication date
CA1299246C (en) 1992-04-21
DE68922721T2 (en) 1995-09-21
EP0399005A1 (en) 1990-11-28
EP0399005B1 (en) 1995-05-17
JPH03501080A (en) 1991-03-07
EP0399005A4 (en) 1992-07-08
DE68922721D1 (en) 1995-06-22
US4976520A (en) 1990-12-11

Similar Documents

Publication Publication Date Title
US4976520A (en) Common path multichannel optical processor
US5692077A (en) Optical time shifter and routing system
US5623360A (en) Time delay beam formation
US4867522A (en) Wavelength sensitive optical devices
US6122086A (en) Compensation of dispersion
US5513022A (en) Method and apparatus for direct transmission of an optical image
US4579417A (en) Apparatus for optical fiber communications using standing wave acousto-optical modulator
US5002395A (en) Interferometric acousto-optic spectrum analyzer
CA1276696C (en) Method and apparatus for optical rf phase equalization
US4146783A (en) Multiplexed optical communication system
US6570684B1 (en) Optical routing/switching systems
EP0266402B1 (en) Method and apparatus for optical rf amplitude equalization
US10979149B2 (en) Device and system for coherently recombining multi-wavelength optical beams
US5303031A (en) All optical phase sensitive detector and image demultiplexer
JPH0422252B2 (en)
Gao Wavelength-domain RF photonic signal processing
Drive Power mW Bragg Diffraction Efficiency (%)
Zheng Photonic RF signal processors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989910730

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989910730

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989910730

Country of ref document: EP