WO1990006776A1 - Macrocyclic aminophosphonic acid complexes, their preparation, formulations and use - Google Patents

Macrocyclic aminophosphonic acid complexes, their preparation, formulations and use Download PDF

Info

Publication number
WO1990006776A1
WO1990006776A1 PCT/US1989/005782 US8905782W WO9006776A1 WO 1990006776 A1 WO1990006776 A1 WO 1990006776A1 US 8905782 W US8905782 W US 8905782W WO 9006776 A1 WO9006776 A1 WO 9006776A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
radionuclide
acid
physiologically acceptable
solution
Prior art date
Application number
PCT/US1989/005782
Other languages
French (fr)
Inventor
Jaime Simon
David A. Wilson
Joseph R. Garlich
David E. Troutner
Original Assignee
The Dow Chemical Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Dow Chemical Company filed Critical The Dow Chemical Company
Priority to KR1019900701800A priority Critical patent/KR0178966B1/en
Priority to BR898907255A priority patent/BR8907255A/en
Priority to EP90901464A priority patent/EP0408701B1/en
Priority to DE68918852T priority patent/DE68918852T2/en
Priority to CY190289A priority patent/CY1902A/en
Publication of WO1990006776A1 publication Critical patent/WO1990006776A1/en
Priority to DK199001959A priority patent/DK175479B1/en
Priority to FI904084A priority patent/FI101857B1/en
Priority to NO903632A priority patent/NO180434C/en
Priority to NO964191A priority patent/NO307056B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0482Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group chelates from cyclic ligands, e.g. DOTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0489Phosphates or phosphonates, e.g. bone-seeking phosphonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/3804Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se) not used, see subgroups
    • C07F9/3808Acyclic saturated acids which can have further substituents on alkyl
    • C07F9/3817Acids containing the structure (RX)2P(=X)-alk-N...P (X = O, S, Se)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S424/00Drug, bio-affecting and body treating compositions
    • Y10S424/06Chelate

Definitions

  • the present invention concerns macrocyclic aminophosphonic acid complexes for the treatment of cancer, especially the treatment of calcific tumors and for the relief of bone pain, the method of treatment of calcific tumors, and compositions and formulations having as their active ingredient a radionuclide complexed with a macrocyclic aminophosphonic acid, and the process for preparing the macrocyclic aminophosphonic acid complexes.
  • radionuclides for treatment of cancer metastatic to the bone dates back to the early 1950's. It has been proposed to inject a radioactive particle-emitting nuclide in a suitable form for the treatment of calcific lesions. It is desirable that such nuclides be concentrated in the area of the bone lesion with minimal amounts reaching the soft tissue and normal bone. Radioactive phosphorus (P-32 and P-33) compounds have been proposed, but the nuclear and biolocalization properties limit the use of these compounds, [See for example, Kaplan, E., et al., Journal of Nuclear Medicine Hi), 1 (1960) and U.S. Patent
  • radionuclides for calcific tumor therapy is discussed in published European patent application 176,288 where the use of Sm-153, Gd-159, Ho-166, Lu-177 or Yb-175 complexed with certain ligands selected from ethylenediaminetetraacetic acid -3-
  • EDTA hydroxyethylethylenediaminetriacetic acid
  • HEEDTA hydroxyethylethylenediaminetriacetic acid
  • Strontium-89 has also been proposed for patients with metastatic bone lesions.
  • the long half-life (50.4 days) high blood levels and low lesion to normal bone ratios limit the utility.
  • the present invention overcomes many of the above noted problems.
  • the present invention concerns at least one composition having a radionuclide complexed with a macrocyclic aminophosphonic acid, such as 1,4,7, 10-tetraazacyclo- dodecane-1,4,7, 10-tetramethylenephosphonic acid or its physiologically acceptable salt, which composition causes minimal damage to normal tissue when administered in the method of the invention.
  • a radionuclide complexed with a macrocyclic aminophosphonic acid such as 1,4,7, 10-tetraazacyclo- dodecane-1,4,7, 10-tetramethylenephosphonic acid or its physiologically acceptable salt
  • the present complex is more effective at a lower ligand to metal molar ratio than has been known previously in the art.
  • this invention concerns a composition which comprises a complex having (1) a macrocyclic aminophosphonic acid, containing 1,4,7,10- tetraazacyclododecane as the macrocyclic moiety, or a physiologically acceptable salt thereof, wherein the nitrogen and phosphorous are interconnected by an alkylene or substituted alkylene radical of the formula
  • X and Y are independently hydrogen, hydroxyl, carboxyl, phosphonic, or hydrocarbon radicals having from 1-8 carbon atoms and physiologically acceptable -5-
  • n 1-3, with the proviso that when n>1, each X and Y may be the same as or different from the X and Y of any other carbon atom, and (2) at least one radionuclide of Sm-153. Gd-159, Ho-166, Lu-177, Y-90 or Yb-175, and
  • composition wherein the resulting composition is therapeutically effective.
  • X and Y are hydrogen and n is 1.
  • a certain macrocyclic aminophosphonic acid of the structure are particularly preferred.
  • substituents A, B, C and D are independently hydrogen, hydrocarbon radicals having from 1-8 carbon atoms, or a moiety of the formula
  • X, Y and n are as defined before; X' and Y 1 are independently hydrogen, methyl or ethyl radicals; n' is 2 or 3, with the proviso that at least two of said nitrogen substituents is a phosphorus- containing group.
  • the preferred macrocyclic aminophosphonic acid is 1 ,4,7, 10-tetraazacyclo- dodecane-1 ,4,7, 10-tetramethylenephosphonic acid (DOTMP).
  • DOTMP 10-tetraazacyclo- dodecane-1 ,4,7, 10-tetramethylenephosphonic acid
  • the composition can be administered as a formulation with suitable pharmaceutically acceptable carriers.
  • the present invention includes the use of the complex, composition or formulation described herein in combination with one or more other agents, drugs, treatments and/or radiation sources which assist in therapy of calcific tumors or relief of bone pain .
  • compositions containing these complexes have been found useful for therapy of calcific tumors in animals.
  • the administration of the therapeutic compositions can be palliative to the animal, for example by alleviating pain and/or inhibiting tumor growth and/or causing regression of tumors and/or destroying the tumors.
  • the properties of the radionuclide, of the macrocyclic aminophosphonic acid and of the complex formed therefrom are important considerations in determining the effectiveness of any particular composition employed for such treatment.
  • the present invention also includes formulations having at least one of the radionuclide(s) complexed with at least one of the macrocyclic aminophosphonic acids as defined above, especially those macrocyclic aminophosphonic acids of Formula (II), and a pharmaceutically acceptable carrier, excipient or vehicle therefor.
  • the methods for preparing such formulations are well known.
  • the formulations are sterile and may be in the form of a suspension, injectable solution or other suitable pharmaceutically acceptable formulations.
  • Pharmaceutically acceptable suspending media, with or without adjuvants, may be used.
  • compositions are suitable for administration to an animal wherein the composition is defined as before and has the radionuclide in dosage form present in an amount containing at least 0.02 mCi per kilogram of body weight of said animal, preferably at least 0.2 mCi per kilogram of body weight of said animal..
  • Particle-emitting radionuclides employed in the compositions of the invention are capable of delivering a high enough localized ionization density to alleviate pain and/or inhibit tumor growth and/or cause regression of tumors, and/or destroy the tumor and are capable of forming complexes with the macrocyclic aminophosphonic acid ligands described herein.
  • the radionuclides found to be useful in the practice of the invention are Samarium-153 (Sm-153), Holmium-166 (Ho-166), Ytterbium-175 (Yb-175), Lutetium-177 (Lu-177), Yttrium-90 (Y-90) and Gadolinium-159 (Gd-159).
  • compositions having a radionuclide-macrocyclic aminophosphonic acid complex of the present invention will frequently be referred to herein as “radionuclide compositions” or “compositions” and the macrocyclic aminophosphonic acid derivative referred to as the "ligand” or "chelant”.
  • mammals means warm blooded mammals, including humans, and is meant to encompass animals in need of treatment for calcific tumors or in need of relief of bone pain.
  • calcific tumors includes primary tumors, where the skeletal system is the first site of involvement, invasive tumors where the primary tumor invades the skeletal system or other tissue tumors which calcify, and metastatic bone cancer where the neoplasm spreads from other primary sites, e.g. prostate and breast, into the skeletal system.
  • Physiologically acceptable salts refer to the acid addition salts of those bases which will form a salt with at least one acid group of the ligand or ligands employed and which will not cause a significant 0 adverse physiological effect when administered to an animal at dosages consistent with good pharmacological practice; some examples of such practice are described herein.
  • Suitable bases include, for example, the t - alkali metal and alkaline earth metal- hydroxides, carbonates, and bicarbonates such as sodium hydroxide, potassium hydroxide, calcium hydroxide, potassium carbonate, sodium bicarbonate, magnesium carbonate and the like, ammonia, primary, secondary and tertiary 0 amines and the like.
  • Physiologically acceptable salts may be prepared by treating the macrocyclic aminophosphonic acid as defined above, especially those of Formula (II), with an appropriate base.
  • the formulations of the present invention are in the solid or liquid form containing the active radionuclide complexed with the ligand. These formulations may be in kit form such that the two components are mixed at the appropriate time prior to use. Whether premixed or as a kit, the formulations usually require a pharmaceutically acceptable carrier. Additionally, for stability and other factors, if the formulations are complexed with the radionuclide prior to shipment to the ultimate user, the formulation having the complex and a buffer present are frozen in a kit form, and which frozen formulation is later thawed prior to use.
  • compositions of the present invention may be either in suspension or solution form.
  • suitable formulations it will be recognized that, in general, the water solubility of the salt is greater than the free acid.
  • the complex or when desired the separate components is dissolved in a pharmaceutically acceptable carrier.
  • Such carriers comprise a suitable solvent, preservatives such as benzyl alcohol, if needed, and buffers.
  • suitable solvents include, for example, water, aqueous alcohols, glycols, and phosphonate or carbonate esters. Such aqueous solutions contain no more than 50 percent of the organic solvent by volume.
  • Injectable suspensions as compositions of the present invention require a liquid suspending medium, with or without adjuvants, as a carrier.
  • the suspending medium can be, for example, aqueous polyvinyl- pyrrolidone, inert oils such as vegetable oils or highly refined mineral oils, or aqueous carboxymethlycellulose.
  • Suitable physiologically acceptable adjuvants, if necessary to keep the complex in suspension may be chosen from among thickners such as carboxymethyl- cellulose, polyvinylpyrrolidone, gelatin, and the alginates.
  • surfactants are also useful as suspending agents, for example, lecithin, alkylphenol, polyethylene oxide adducts, naphthalenesulfonates, alkylbenzenesulfonates, and the polyoxyethylene sorbitan esters.
  • suspending agents for example, lecithin, alkylphenol, polyethylene oxide adducts, naphthalenesulfonates, alkylbenzenesulfonates, and the polyoxyethylene sorbitan esters.
  • Many substances which effect the hydrophibicity, density, and surface tension of the liquid suspension medium can assist in making injectable suspensions in individual cases.
  • silcone antifoams, sorbitol, and sugars are all useful suspending agents.
  • compositions or formulations of the present invention must fit certain criteria insofar as possible as discussed below.
  • Radionuclide One criteria concerns the selection of the radionuclide. While the properties of the radionuclide are important, the overall properties of the composition containing the radionuclide- macrocyclic aminophosphonic acid complex is the determining factor. The disadvantages of any one property may be overcome by the superiority of one or more of the properties of either ligand or radionuclide and their combination, as employed in the composition must be considered in toto.
  • compositions possessing the following criteria by which it is possible to deliver therapeutic radiation doses to calcific tumors with minimal doses to soft tissue For example, the radionuclide must be delivered preferentially to the bone rather than to soft tissue. Most particularly, uptake of the radionuclide in either liver or blood is undesirable. Additionally, the radionuclide should be cleared rapidly from non-osseous tissue to avoid unnecessary damage to such tissues, e.g., it should clear rapidly from the blood.
  • compositions and formulations of this invention is the therapeutic treatment of calcific tumors in animals.
  • calcific tumors includes primary tumors where the skeletal system is the first site of involvement, or other tissue tumors which calcify, or metastatic bone cancer where the neoplasm spreads from other primary sites, such as prostate and breast, into the skeletal system.
  • This invention provides a means of alleviating pain and/or reducing the size of, and/or inhibiting the growth and/or spread of, or causing regression of and/or destroying the calcific tumors by delivering a therapeutic radiation dose.
  • composition or formulation may be administered as a single dose or as multiple doses over a longer period of time. Delivery of the radionuclide to the tumor must be in sufficient amounts to provide the benefits referred to above.
  • the "effective amount” or “therapeutically effective amount” of radionuclide composition to be administered to treat calcific tumors will vary according to factors such as the age, weight and health of the patient, the calcific tumor being treated, the treatment regimen selected as well as the nature of the particular radionuclide composition to be administered. For example, less activity will be needed for radionuclides with longer half lives. The energy of the emissions will also be a factor in determining the amount of activity necessary.
  • the compositions of this invention may also be employed at doses which are useful but not therapeutic.
  • a suitable dose of the composition or formulation of this invention for use in this invention is at least about 0.02 mCi per Kg of body weight.
  • a "therapeutically effective dose" of the composition or formulation of this invention for use in this invention is at least about 0.2 mCi per Kg of body weight.
  • the effective amount used to treat calcific tumors will typically be administered, generally by administration into the bloodstream, in a single dose or multipule doses.
  • the amounts to be administered to achieve such treatment are readily determined by one skilled in the art employing standard procedures.
  • the radionuclide and ligand may be combined under any conditions which allow the two to form a complex. Generally, mixing in water at a controlled pH (the choice of pH is dependent upon the choice of ligand and radionuclide) is all that is required.
  • the complex formed is by a chemical bond and results in a relatively stable radionuclide composition, e.g. stable to the disassociation of the radionuclide from the ligand.
  • certain other aminophosphonic acid complexes result in some localization in soft tissue (e.g. liver) if excess amounts of ligand are not used.
  • a large excess of ligand is undesirable since uncomplexed ligand - 13-
  • the macrocyclic aminophosphonic acid ligands are useful when large amounts of metal are required (i.e. for metals that have a low specific activity). In this case, the macrocyclic aminophosphonic acid ligands have the ability to deposit larger amounts of activity in the bone than is possible when using non-cyclic aminophosphonic acid ligands.
  • a preferred embodiment of the present invention is a therapeutically effective composition or formulation containing complexes of at least one radionuclide of Gd-159, Ho-166, Lu-177, Sm-153, Y-90 and Yb-175 with DOTMP or a physiologically acceptable salt(s) thereof.
  • Combinations of the various above noted radionuclides can be administered for the therapeutic treatment of calcific tumors.
  • the combinations can be complexed as herein described by complexing them simultaneously, mixing two separately complexed radionuclides, or administering two different complexed radionuclides sequentially.
  • radionuclide-chelant complex is formed via ligand exchange insitu.
  • the composition or formulation may be administered as a single dose or as multiple doses over a longer period of time.
  • Aminophosphonic acids can be prepared by a number of known synthetic techniques. Of particular importance is the reaction of a compound containing at least one reactive amine hydrogen with a carbonyl compound (aldehyde or ketone) and phosphorous acid or derivative thereof.
  • the amine precursor (1,4,7,10- tetraazacyclododecane) employed in making the macrocyclic aminophosphonic acids is a commercially available material.
  • Radionuclides can be produced in several ways In a nuclear reactor, a nuclide is bombarded with neutrons to obtain a radionuclide, e.g.
  • Another process for obtaining radionuclides is by bombarding nuclides with linear accelerator or cyclotron-produced particles. Yet another way of obtaining radionuclides is to isolate them from fission product mixtures. The process for obtaining the radionuclide is not critical to the present invention.
  • the desired amount of target was first _> weighed into a quartz vial, the vial was flame sealed under vacuum and welded into an aluminum can. The can was irradiated for the desired length of time, cooled for several hours and opened remotely in a hot cell. 10 The quartz vial was removed and transferred to a glove box, crushed into a glass vial which was then sealed with a rubber septum and an aluminum crimp cap. One milliliter of 1 to 4M HC1 was then added to the vial via syringe to dissolve the Sm.203. Once dissolved,
  • the solution was diluted to the appropriate volume by addition of water.
  • the solution was removed from the original dissolution vial which contains chards of the crushed quartz vial and transferred via syringe to a-
  • the invention described herein provides a
  • 25 means of delivering a therapeutic amount of radioactivity to calcific tumors.
  • a "sub-therapeutic" amount i.e. "useful amount”
  • Therapeutic doses will be administered in sufficient amounts to alleviate pain and/or inhibit tumor growth and/or cause regression of tumors and/or kill the tumor.
  • Amounts of radionuclide needed to provide the desired therapeutic dose will be determined experimentally and optimized for each particular composition.
  • the amount of radioactivity required to deliver a therapeutic dose will vary with the individual composition employed. For example, less activity will be needed for radionuclides with longer half-lives. The energy of the emissions will also be a factor in determining the amount of activity necessary.
  • the composition to be administered may be given in a single treatment or fractionated into several portions and administered at different times. Administering the composition in fractionated doses may make it possible to minimize damage to non-target tissue. Such multiple dose administration may be more effective.
  • compositions of the present invention may be used in conjunction with other active agents and/or ingredients that enhance the therapeutic effectiveness of the compositions and/or facilitate easier administration of the compositions.
  • Quantitative biodistributions were obtained by injecting 50-100 microliters of the composition into the tail vein of unanesthetized male Sprague Dawley rats. The rats were then placed in cages lined with absorbent paper in order to collect all urine excreted prior to sacrifice. After a given period of time, the rats were sacrificed by cervical dislocation and the various tissues dissected. The samples were then rinsed with saline, blotted dry on absorbent paper and weighed. The radioactivity in the samples was measured with a Nal scintillation counter.
  • a 250 mL three-necked, round-bottomed flask was loaded with 6.96 g (0.04 moles) of 1,4,7, 10- tetraazacyclododecane. To this flask was added 14,5 g (0.177 moles) of phosphorous acid, 30 mL of deionized water and 28 mL of concentrated hydrochloric acid (0.336 moles).
  • the flask was attached to a reflux condenser and fitted with a stir bar, and a thermometer adapted with a thermowatch controller.
  • a separate solution of 26.0 g (0.32 moles) of aqueous 37 percent formaldehyde solution was added to a 100 mL addition funnel and attached to the flask.
  • the flask was brought to reflux temperature (about 105°C) with vigorous stirring.
  • the formaldehyde solution was added dropwise over a 30-40 minute interval.
  • the solution was heated and stirred for an additional three hours then cooled slowly to ambient temperature.
  • reaction solution was transferred to a 500 mL round-bottomed flask and attached to a rotary evaporation apparatus.
  • the solution was taken down to a viscous, amber semi-solid (note - temperature never exceeded 40°C).
  • This semi-solid was treated with- approximately 300 mL of HPLC grade acetone producing a light brown, sticky viscous oil.
  • This oil was dissolved in 22 mL of water and added slowly with vigorous stirring to 1L of acetone. The acetone was decanted and the light colored oil dried under vacuum to give 16.6 g (76 percent yield) of crude DOTMP.
  • To 13.1 g of this crude DOTMP was added 39.3 g of deionized water along
  • Sm-153 can be produced in a reactor such as the University of Missouri Research Reactor. Sm-153 is
  • the desired amount of target is first weighed into a quartz vial, the vial flame sealed under vacuum and welded into an aluminum can.
  • the can is irradiated for the desired length of time, cooled for several hours and opened remotely in a hot cell.
  • the quartz vial is removed and transferred to a glove box, opened into a glass vial which is then sealed.
  • An appropriate amount of a solution of hydrochloric acid is then added to the vial via syringe in order to dissolve the Srr ⁇ O .
  • the Samarium solution is diluted to the appropriate volume by addition of water.
  • the solution is removed from the original dissolution vial which contains the chards of the quartz irradiation vial, and transferred via syringe to a clean glass serum vial.
  • Holmium-166 is prepared by weighing 0.5-1.0 mg of H0 O3 into a quartz vial. The vial is sealed and placed in an aluminum can which is welded shut. The sample is irradiated (usually for about 24-72 hours) in the reactor (first row reflector, neutron flux of 8 x 10 ⁇ 3 neutron/cm 2 .sec). After irradiation, the vial is opened and the oxide is dissolved using 4N HC1. Heating may be necessary. Water is then used to dilute the sample to an appropriate volume.
  • Gadolinium-159 is prepared by sealing gadolinium oxide (1.1 mg) in a quartz vial. The vial is welded inside an aluminum can and irradiated for 30 hours in a reactor at a neutron flux of 8 x 10 ⁇ 3 -21-
  • the contents of the quartz vial is dissolved using HCl. Water is added to obtain a solution of Gd-159 in 0.1N HCl.
  • a non-radioactive Ytteriu (Y) solution was prepared by dissolving 15.1 mg of YCl3'6H 2 0 in 11.24 mL of water. A quantity of 1500 ⁇ L of this solution was 0 added to a vial containing 0.5 mL of Y-90 solution (prepared by neutron irradiation of 1 mg of Y2O3 followed by dissolution in 1N HCl to give a final volume of 0.5 mL) .
  • the ligand of Example A (22 mg) was dissolved in 878 ⁇ l of distilled water and 15 ⁇ l of 50 percent
  • the rats were killed by cervical dislocation and dissected.
  • the amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts were compared to the counts in 100 ⁇ L standards in order to determine the percentage of the dose in each tissue or organ.
  • the percent of the injected dose in several tissues are given in Table I. The numbers represent the average of 3 rats per data point.
  • the ligand of Example A (22 mg) was dissolved in 878 ⁇ L of distilled water and 15 ⁇ L of 50 percent NaOH. A volume of 30 ⁇ L of this solution was transferred to a vial containing 1.5 mL of Ho solution (0.6 mM Ho in 0.1N HCl spiked with 2 ⁇ L of Ho-166 tracer). The pH was adjusted to 7-8 using NaOH and the amount of Ho found as a complex was greater than 99 percent as determined by ion exchange chromatography. This yielded a solution containing 0.6 mM Ho with a ligand to metal molar ratio of approximately 1.5.
  • Sprague Dawley rats were allowed to acclimate for five days then injected with 100 ⁇ L of the Ho solution described above via a tail vein.
  • the rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation and dissected.
  • the amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts were compared to the counts in 100 ⁇ L standards in order to determine the percentage of the dose in each tissue or organ.
  • the percent of the injected dose in several tissues are given in Table II. The numbers represent the average of 3 rats per data point. -24-
  • a quantity of 14.5 mg of the ligand of Example B was placed in a vial and dissolved in 760 ⁇ L of water and 5 ⁇ L of 50 percent NaOH.
  • a volume of 1100 ⁇ L of Sm solution (0.3 mM Sm in 0.1N HCl) which was spiked with Sm-153, was placed in a separate vial and 10 ⁇ L of the ligand solution was added.
  • the pH of the solution was adjusted to 7-8 using NaOH and the solution was passed through 3 plastic columns containing 1.5 mL of cation exchange resin (SephadexTM C-25 from Pharmacia). The amount of Sm as a complex was determined to be 99 percent by cation exchange chromatography.
  • the pH of the solution was adjusted to 7-8 using NaOH and the solution was passed through 2 plastic columns containing 1.5 mL of cation exchange resin (Sephadex C-25 from Pharmacia) .
  • the amount of Ho as a -25-
  • Sprague Dawley rats were allowed to acclimate for five days then injected with 100 ⁇ L of the solutions described above via a tail vein.
  • the rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation. Tissues were taken, weighed and the amount of radioactivity determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were compared to the counts in 100 ⁇ L standards in order to determine the percentage of the dose in each tissue or organ.
  • the percent of the injected dose in several tissues are given in Table III. The numbers represent the average of 3 rats per data point.
  • the ligand of Example B (14.5 mg) was placed in a vial and dissolved in 760 ⁇ L of water and 5 ⁇ L of 50 percent NaOH.
  • a volume of 1000 ⁇ L of Gd solution (0.3 mM Gd in 0.1N HCl) which contained tracer quantities of Gd-159, was placed in a separate vial and 15 ⁇ L of the ligand solution was added.
  • the pH of the solution was adjusted to 7-8 using NaOH and the amount of Gd as a complex was determined to be >99 percent by cation exchange chromatography.
  • a Sprague Dawley rat was allowed to acclimate for five days then injected with 175 ⁇ L of the solution described above via a tail vein.
  • the rat weighed 155 g at the time of injection. After 2 hours the rat was killed by cervical dislocation and dissected.
  • the amount of radioactivity in each tissue was determined by 0 counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were compared to the counts in 175 ⁇ L standards in order to determine the percentage of the dose in each tissue or ,- organ.
  • the percent of the injected dose in several tissues are given in Table IV.
  • Example 5 Preparat ion and Biodistr ibution of Lu-DOTMP and Lu- 177-D0TMP
  • the ligand of Example B (15.8 mg) was dissolved in 963 ⁇ L of distilled water and 8 ⁇ L of 50 percent NaOH. A volume of 15 ⁇ L of this solution was transferred to a vial containing 1.5 mL of Lu solution (0.3 mM Lu in 0.1N HCl spiked with 2 ⁇ L of Lu-177 tracer). The pH was adjusted to 7-8 using NaOH and the amount of Lu found as a complex was >99 percent by ion exchange chromatography. This yielded a solution containing 0.3 mM Lu with a ligand to metal molar ratio of approximately 1.5.
  • Sprague Dawley rats were allowed to acclimate for five days then injected with 100 ⁇ L of the Lu solutions described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation and dissected. The amount of radioactivity in each tissue was determined by counting in a Nal -28-
  • Example F To the solution of Y and Y-90 prepared in Example F was added 200 ⁇ l (0,0266 moles) of DOTMP from Example B in water and the pH of the solution adjusted to 7.5 using 50 percent NaOH and 1N NaOH. The percent of the Y as a complex was determined by cation exchange chromatography to be >99 percent. This yielded a solution with a ligand to metal molar ratio of approximately 1.7. -29-
  • Sprague Dawley rats were allowed to acclimate for eight days then injected with 150 ⁇ L of the Y solutions described above via a tail vein.
  • the rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation and dissected.
  • the amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were compared to the counts in 150 ⁇ L standards in order to determine the percentage of the injected dose in each tissue or organ.
  • the percent of the injected dose in several tissues are given in Table VI. The numbers represent the average of 5 rats per data point.
  • Tissues were taken, weighed and the amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were 30 compared to the counts in 150 ⁇ L standards in order to determine the percentage of the injected dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table W. The numbers represent the average of 5 rats per data point.
  • compositions were prepared containing complexes of Sm- 153 with several commercially available phosphonic acids which do not contain the alkylene linkage between the nitrogen and the phosphorus atoms (which linkage is required in the present ligand).
  • the two hour biolocalization of Sm-153 in rats for these compositions was determined as previously described. The results are given in Table X.
  • the ligands used include methylendiphosphonic acid (MDP) and hydroxyethylidinediphosphonic acid (HEDP) which contain a P-CH2-PO 3 H2 and a P-C(CH3) (0H)-P03H2 linkage, respectively; pyrophosphate (PYP) which contains a P-O-PO 3 H 2 linkage; and imidodiphosphate (IDP) which contains a N-PO 3 H2 linkage.
  • MDP methylendiphosphonic acid
  • HEDP hydroxyethylidinediphosphonic acid
  • PYP pyrophosphate
  • IDP imidodiphosphate
  • Tc complexes of MDP, HEDP, and PYP have been used commercially as diagnostic bone agents.
  • these ligands were inadequate for selectively delivering Sm-153 to the skeletal system as exemplified by the large fraction of the radioactivity found in the liver and/or blood.
  • Table Z shows the biolocalization of Sm-153 in rats two hours after injection and the results represent the percent of injected dose in tissue.
  • Sm-153-MDP, Sm-153-HEDP, Sm-153-PYP and Sm-153-IDP represent the average of the results of five, five, three and three rats, respectively.
  • a 0.1M solution of N-2-hydroxyethylpiperazine- N'-2-ethanesulfonic acid (HEPES) (SigmaTM Chemical Co., St. Louis, MO) at a pH of 7.43 was prepared.
  • a 0.0066M solution of DOTMP was prepared by dissolving 68.2 mg (1.084 x 10-4 ⁇ mole) of DOTMP in 16.4285 mL of 1N NaOH.
  • DOTMP solution Into each of seven 10 mL serum vials was placed 0.600 mL (3.96 mole) of DOTMP solution and 3.00 mL of 0.1M HEPES buffer solution.
  • kits were formulated to receive 6 mL of either SmCl3 (3 x 10 _i * mole) or H0CI3 (6 x 10 ⁇ 4 mole) in 0.1N HCl.
  • a kit from Example 8 was treated with 6.0 mL of SmCl 3 (3 x 10 "4 M spiked with Sm-153) in 0.1N HCl.
  • the pH of the resulting solution was 7.5 and the percent of the Sm as a complex was determined using cation exchange chromatography to be >99 percent.
  • Sprague Dawley rats were allowed to acclimate for five days then injected with 100 ⁇ L of the Sm solutions described above via a tail vein.
  • the rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation. Tissues were taken, weighed and the amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were compared to the counts in 100 ⁇ L standards in order to determine the percentage of the injected dose in each tissue or organ.
  • the percent of the injected dose in several tissues are given in Table VII. The numbers represent the average of 3 rats per data point. TABLE VII
  • a 0.009M solution of DOTMP at pH 6.66 was prepared by adding 141.5 mg (2.25 x 10-4 mole) of DOTMP to 9 mL of 1N NaOH and diluting- to 25 mL final volume.
  • a 0.4M solution of sodium bicarbonate ( aHC03) was prepared by dissolving 8.4 g of NaHCU in 250 mL of water.
  • Kits were prepared by adding 3.0 mL of NaHCU solution and 0.300 mL of DOTMP solution to each of seven 10 mL serum vials and treating them as described in Example 7 to give the final kit containing a white dry solid. These kits were formulated to receive 6.0 mL of S111CI3 (3 x 10 _J M) in 0.1N HCl which would give a ligand to metal ratio of 1.5:1.
  • a kit from Example 10 was treated with 6.0 mL of SmCl 3 (3 x 10 " M spiked with Sm-153) in 0.1N HCl. -36-
  • the pH of the resulting solution was 6.55 and was adjusted to 7-27 by the addition of 60 ⁇ L of 1N NaOH.
  • the percent of the Sm as a complex was determined using cation exchange chromatography to be >99 percent.
  • Sprague Dawley rats were allowed to acclimate for five days then injected with 100 ⁇ L of the Sm solutions described above via a tail vein.
  • the rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation. Tissues were taken, weighed and the amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were compared to the counts in 100 ⁇ L standards in order to determine the percentage of the injected dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table VIII. The numbers represent the average of 3 rats per data point.
  • a 0.009M solution of DOTMP was prepared as j . described in Example 10 except more NaOH was added such that the final solution was pH 10.66.
  • Kits were prepared by adding 0.300 mL of DOTMP solution and 0.700 mL of 1.0N NaOH solution to each of five 10 mL serum vials and treating them as described in Example 7 to 10 give the final kit containing a white dry solid. These kits were formulated to receive 6.0 mL of SmCl (3 x 10" ⁇ M) in 0.1N HCl which would give a ligand to metal ratio of 1.5:1.
  • a kit from Example 12 was treated with 5.4 mL 20 of SmCl (3 x 10 " M spiked with Sm-153) in 0.1N HCl and 0.6 mL of SmCl 3 (3 x 10 " spiked with Sm-153) in 0.1N HCl.
  • the pH of the resulting solution was between 10 and 11.
  • the pH was adjusted to 7-79 by the addition of 0.200 mL of 1.05M phosphate buffer (pH 7.49).
  • the counts in each tissue were compared to the counts in 100 ⁇ L standards in order to determine the percentage of the injected dose in each tissue or organ.
  • the percent of the injected dose in several tissues are given in Table IX. The numbers represent the average of 5 rats per data point.
  • a 0.009M solution of DOTMP at pH 6.66 was prepared as described in Example 10 except more NaOH was added such that the final solution was at pH 10.19.
  • Kits were prepared by adding 1,800 mL of DOTMP solution and 2.100 mL of 1N NaOH solution to each of twelve 20 mL serum vials, These vials were then treated as described in Example 7 to give the final kits containing a white, dry solid. These kits were formulated to receive 18.0 mL of H0CI3 (6 x 10 ⁇ 4 M) which would give a ligand to metal ratio of 1.5:1. -39-
  • a kit from Example 14 was treated with 13.0 mL of H0CI3 (6 x 10" 4 M spiked with Ho-166) in 0.1N HCl. The solution was then treated with 0.6 mL of 1.05M phosphate buffer (pH 7.49) which brought the pH down to 7.53. The percent of the Sm as a complex was determined using cation exchange chromatography to be >99 percent. 0
  • Sprague Dawley rats were allowed to acclimate for five days then injected with 100 ⁇ L of the Sm solutions described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. 5 After 2 hours the rats were killed by cervical dislocation. Tissues were taken, weighed and the amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were 0 compared to the counts in 100 ⁇ L standards in order to determine the percentage of the injected dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table X. The numbers C . represent the average of 5 rats per data point.

Abstract

Particle emitting radionuclides, e.g. Samarium-153 have been complexed with certain macrocyclic aminophosphonic acids wherein the nitrogen and phosphorus are interconnected by an alkylene group or substituted alkylene group. A composition is now disclosed which comprises a complex having (1) a macrocyclic aminophosphonic acid, containing 1,4,7,10-tetraazacyclododecane as the macrocyclic moiety, or a physiologically acceptable salt thereof, wherein the nitrogen and phosphorus are interconnected by an alkylene or substituted alkylene radical of formula (I), wherein: X and Y are independently hydrogen, hydroxyl, carboxyl, phosphonic, or hydrocarbon radicals having from 1-8 carbon atoms and physiologically acceptable salts of the acid radicals; and n is 1-3, with the proviso that when n>1, each X and Y may be the same as or different from the X and Y of any other carbon atom, and (2) at least one radionuclide of Sm-153, Gd-159, Ho-166, Lu-177, Y-90 or Yb-175.

Description

MACROCYCLIC AMIN0PH0SPH0NIC ACID COMPLEXES, THEIR PREPARATION, FORMULATIONS AND USE
The present invention concerns macrocyclic aminophosphonic acid complexes for the treatment of cancer, especially the treatment of calcific tumors and for the relief of bone pain, the method of treatment of calcific tumors, and compositions and formulations having as their active ingredient a radionuclide complexed with a macrocyclic aminophosphonic acid, and the process for preparing the macrocyclic aminophosphonic acid complexes.
The development of bone metastasis is a common and often catastrophic event for a cancer patient. The pain, pathological fractures, frequent neurological deficits and forced immobility caused by these metastatic lesions significantly decrease the quality of life for the cancer patient. The number of patients that contract metastatic disease is large since nearly 50 percent of all patients who contract breast, lung or prostate carcinoma will eventually develop bone metastasis. Bone metastasis are also seen in patients with carcinoma of the kidney, thyroid, bladder, cervix and other tumors, but collectively, these represent less than 20 percent of patients who develop bone metastasis. Metastatic bone cancer is rarely life threatening and occasionally patients live for years following the discovery of the bone lesions. Initially, treatment goals center on relieving pain, thus reducing requirements for narcotic medication and increasing ambulation. Clearly, it is hoped that some of the cancers can be cured.
The use of radionuclides for treatment of cancer metastatic to the bone dates back to the early 1950's. It has been proposed to inject a radioactive particle-emitting nuclide in a suitable form for the treatment of calcific lesions. It is desirable that such nuclides be concentrated in the area of the bone lesion with minimal amounts reaching the soft tissue and normal bone. Radioactive phosphorus (P-32 and P-33) compounds have been proposed, but the nuclear and biolocalization properties limit the use of these compounds, [See for example, Kaplan, E., et al., Journal of Nuclear Medicine Hi), 1 (1960) and U.S. Patent
3,965,254.]
Another attempt to treat bone cancer has been made using phosphorus compounds containing a boron residue. The compounds were injected' into the body (intravenously) and accumulated in the skeletal system. The treatment area was then irradiated with neutrons in order to activate the boron and give a therapeutic radiation dose. (See U.S. Patent 4,399,817).
The use of radionuclides for calcific tumor therapy is discussed in published European patent application 176,288 where the use of Sm-153, Gd-159, Ho-166, Lu-177 or Yb-175 complexed with certain ligands selected from ethylenediaminetetraacetic acid -3-
(EDTA) or hydroxyethylethylenediaminetriacetic acid (HEEDTA) is disclosed.
In the above mentioned procedures, it is not possible to give therapeutic doses to the tumor without substantial damage to normal tissues. In many cases, especially for metastatic bone lesions, the tumor has spread throughout the skeletal system and amputation or external beam irradiation is not practical. (See Seminars in Nuclear Medicine, Vol. IX, No. 2, April, 1979).
The use of Re-186 complexed with a diphosphonate has also been proposed. [Mathieu, L. et al., Int. J. Applied Rad. & Isotopes ^0, 725-727 (1979);
Weinenger, J., Ketring, A. R. , et al., Journal of Nuclear Medicine 24.(5), 125 (1983)3-* However, the preparation and purification needed for this complex limits its utility and wide application.
Strontium-89 has also been proposed for patients with metastatic bone lesions. However, the long half-life (50.4 days), high blood levels and low lesion to normal bone ratios limit the utility. [See Firusian, N., Mellin, P., Schmidt, C. G., The Journal of Urology 116, 764 (1976); Schmidt, C. G., Firusian, N., Int. J. Clin. Pharmacol. £3_, 199-205, (1974).]
A palliative treatment of bone metastasis has been reported which employed 1-131 labeled α-amino-(3- iodo-4-hydroxybenzylidene)diphosphonate [Eisenhut, M. , Journal of Nuclear Medicine 25(12), 1356-1361 (1984)]. The use of radioactive iodine as a therapeutic radionuclide is less than desirable due to the well known tendency of iodine to localize in the thyroid. -4-
Eisenhut lists iodide as one of the possible metabolites of this compound.
Surprisingly, the present invention overcomes many of the above noted problems. The present invention concerns at least one composition having a radionuclide complexed with a macrocyclic aminophosphonic acid, such as 1,4,7, 10-tetraazacyclo- dodecane-1,4,7, 10-tetramethylenephosphonic acid or its physiologically acceptable salt, which composition causes minimal damage to normal tissue when administered in the method of the invention. Surprisingly, the present complex is more effective at a lower ligand to metal molar ratio than has been known previously in the art.
Particularly, this invention concerns a composition which comprises a complex having (1) a macrocyclic aminophosphonic acid, containing 1,4,7,10- tetraazacyclododecane as the macrocyclic moiety, or a physiologically acceptable salt thereof, wherein the nitrogen and phosphorous are interconnected by an alkylene or substituted alkylene radical of the formula
Figure imgf000006_0001
wherein: X and Y are independently hydrogen, hydroxyl, carboxyl, phosphonic, or hydrocarbon radicals having from 1-8 carbon atoms and physiologically acceptable -5-
salts of the acid radicals; and n is 1-3, with the proviso that when n>1, each X and Y may be the same as or different from the X and Y of any other carbon atom, and (2) at least one radionuclide of Sm-153. Gd-159, Ho-166, Lu-177, Y-90 or Yb-175, and
wherein the resulting composition is therapeutically effective. Particularly preferred are macrocyclic moieties of Formula (I) where X and Y are hydrogen and n is 1. Especially preferred are a certain macrocyclic aminophosphonic acid of the structure
Figure imgf000007_0001
wherein: substituents A, B, C and D are independently hydrogen, hydrocarbon radicals having from 1-8 carbon atoms, or a moiety of the formula
Figure imgf000007_0002
and physiologically acceptable salts of the acid radicals, wherein: X, Y and n are as defined before; X' and Y1 are independently hydrogen, methyl or ethyl radicals; n' is 2 or 3, with the proviso that at least two of said nitrogen substituents is a phosphorus- containing group. The preferred macrocyclic aminophosphonic acid is 1 ,4,7, 10-tetraazacyclo- dodecane-1 ,4,7, 10-tetramethylenephosphonic acid (DOTMP). The composition can be administered as a formulation with suitable pharmaceutically acceptable carriers. The present invention includes the use of the complex, composition or formulation described herein in combination with one or more other agents, drugs, treatments and/or radiation sources which assist in therapy of calcific tumors or relief of bone pain .
Certain compositions containing these complexes have been found useful for therapy of calcific tumors in animals. The administration of the therapeutic compositions can be palliative to the animal, for example by alleviating pain and/or inhibiting tumor growth and/or causing regression of tumors and/or destroying the tumors. As will be more fully discussed later, the properties of the radionuclide, of the macrocyclic aminophosphonic acid and of the complex formed therefrom are important considerations in determining the effectiveness of any particular composition employed for such treatment.
In addition, the present invention also includes formulations having at least one of the radionuclide(s) complexed with at least one of the macrocyclic aminophosphonic acids as defined above, especially those macrocyclic aminophosphonic acids of Formula (II), and a pharmaceutically acceptable carrier, excipient or vehicle therefor. The methods for preparing such formulations are well known. The formulations are sterile and may be in the form of a suspension, injectable solution or other suitable pharmaceutically acceptable formulations. Pharmaceutically acceptable suspending media, with or without adjuvants, may be used. The sterile compositions are suitable for administration to an animal wherein the composition is defined as before and has the radionuclide in dosage form present in an amount containing at least 0.02 mCi per kilogram of body weight of said animal, preferably at least 0.2 mCi per kilogram of body weight of said animal..
Particle-emitting radionuclides employed in the compositions of the invention are capable of delivering a high enough localized ionization density to alleviate pain and/or inhibit tumor growth and/or cause regression of tumors, and/or destroy the tumor and are capable of forming complexes with the macrocyclic aminophosphonic acid ligands described herein. The radionuclides found to be useful in the practice of the invention are Samarium-153 (Sm-153), Holmium-166 (Ho-166), Ytterbium-175 (Yb-175), Lutetium-177 (Lu-177), Yttrium-90 (Y-90) and Gadolinium-159 (Gd-159).
For the purpose of convenience, the compositions having a radionuclide-macrocyclic aminophosphonic acid complex of the present invention will frequently be referred to herein as "radionuclide compositions" or "compositions" and the macrocyclic aminophosphonic acid derivative referred to as the "ligand" or "chelant".
As used herein, the term "animals" means warm blooded mammals, including humans, and is meant to encompass animals in need of treatment for calcific tumors or in need of relief of bone pain.
The term "calcific tumors" includes primary tumors, where the skeletal system is the first site of involvement, invasive tumors where the primary tumor invades the skeletal system or other tissue tumors which calcify, and metastatic bone cancer where the neoplasm spreads from other primary sites, e.g. prostate and breast, into the skeletal system.
For the purpose of the present invention, the complexes described herein and physiologically acceptable salts thereof are considered equivalent in the therapeutically effective compositions.
Physiologically acceptable salts refer to the acid addition salts of those bases which will form a salt with at least one acid group of the ligand or ligands employed and which will not cause a significant 0 adverse physiological effect when administered to an animal at dosages consistent with good pharmacological practice; some examples of such practice are described herein. Suitable bases include, for example, the t- alkali metal and alkaline earth metal- hydroxides, carbonates, and bicarbonates such as sodium hydroxide, potassium hydroxide, calcium hydroxide, potassium carbonate, sodium bicarbonate, magnesium carbonate and the like, ammonia, primary, secondary and tertiary 0 amines and the like. Physiologically acceptable salts may be prepared by treating the macrocyclic aminophosphonic acid as defined above, especially those of Formula (II), with an appropriate base.
5 The formulations of the present invention are in the solid or liquid form containing the active radionuclide complexed with the ligand. These formulations may be in kit form such that the two components are mixed at the appropriate time prior to use. Whether premixed or as a kit, the formulations usually require a pharmaceutically acceptable carrier. Additionally, for stability and other factors, if the formulations are complexed with the radionuclide prior to shipment to the ultimate user, the formulation having the complex and a buffer present are frozen in a kit form, and which frozen formulation is later thawed prior to use.
Injectable compositions of the present invention may be either in suspension or solution form. In the preparation of suitable formulations it will be recognized that, in general, the water solubility of the salt is greater than the free acid. In solution form the complex (or when desired the separate components) is dissolved in a pharmaceutically acceptable carrier.
Such carriers comprise a suitable solvent, preservatives such as benzyl alcohol, if needed, and buffers. Useful solvents include, for example, water, aqueous alcohols, glycols, and phosphonate or carbonate esters. Such aqueous solutions contain no more than 50 percent of the organic solvent by volume.
Injectable suspensions as compositions of the present invention require a liquid suspending medium, with or without adjuvants, as a carrier. The suspending medium can be, for example, aqueous polyvinyl- pyrrolidone, inert oils such as vegetable oils or highly refined mineral oils, or aqueous carboxymethlycellulose. Suitable physiologically acceptable adjuvants, if necessary to keep the complex in suspension, may be chosen from among thickners such as carboxymethyl- cellulose, polyvinylpyrrolidone, gelatin, and the alginates. Many surfactants are also useful as suspending agents, for example, lecithin, alkylphenol, polyethylene oxide adducts, naphthalenesulfonates, alkylbenzenesulfonates, and the polyoxyethylene sorbitan esters. Many substances which effect the hydrophibicity, density, and surface tension of the liquid suspension medium can assist in making injectable suspensions in individual cases. For example, silcone antifoams, sorbitol, and sugars are all useful suspending agents.
Complexes employed in the compositions or formulations of the present invention must fit certain criteria insofar as possible as discussed below.
One criteria concerns the selection of the radionuclide. While the properties of the radionuclide are important, the overall properties of the composition containing the radionuclide- macrocyclic aminophosphonic acid complex is the determining factor. The disadvantages of any one property may be overcome by the superiority of one or more of the properties of either ligand or radionuclide and their combination, as employed in the composition must be considered in toto.
There is a need for compositions possessing the following criteria by which it is possible to deliver therapeutic radiation doses to calcific tumors with minimal doses to soft tissue. For example, the radionuclide must be delivered preferentially to the bone rather than to soft tissue. Most particularly, uptake of the radionuclide in either liver or blood is undesirable. Additionally, the radionuclide should be cleared rapidly from non-osseous tissue to avoid unnecessary damage to such tissues, e.g., it should clear rapidly from the blood.
The proposed use for the compositions and formulations of this invention is the therapeutic treatment of calcific tumors in animals. As used herein, the term "calcific tumors" includes primary tumors where the skeletal system is the first site of involvement, or other tissue tumors which calcify, or metastatic bone cancer where the neoplasm spreads from other primary sites, such as prostate and breast, into the skeletal system. This invention provides a means of alleviating pain and/or reducing the size of, and/or inhibiting the growth and/or spread of, or causing regression of and/or destroying the calcific tumors by delivering a therapeutic radiation dose.
The composition or formulation may be administered as a single dose or as multiple doses over a longer period of time. Delivery of the radionuclide to the tumor must be in sufficient amounts to provide the benefits referred to above.
The "effective amount" or "therapeutically effective amount" of radionuclide composition to be administered to treat calcific tumors will vary according to factors such as the age, weight and health of the patient, the calcific tumor being treated, the treatment regimen selected as well as the nature of the particular radionuclide composition to be administered. For example, less activity will be needed for radionuclides with longer half lives. The energy of the emissions will also be a factor in determining the amount of activity necessary. The compositions of this invention may also be employed at doses which are useful but not therapeutic.
A suitable dose of the composition or formulation of this invention for use in this invention is at least about 0.02 mCi per Kg of body weight. A "therapeutically effective dose" of the composition or formulation of this invention for use in this invention is at least about 0.2 mCi per Kg of body weight.
The effective amount used to treat calcific tumors will typically be administered, generally by administration into the bloodstream, in a single dose or multipule doses. The amounts to be administered to achieve such treatment are readily determined by one skilled in the art employing standard procedures.
The radionuclide and ligand may be combined under any conditions which allow the two to form a complex. Generally, mixing in water at a controlled pH (the choice of pH is dependent upon the choice of ligand and radionuclide) is all that is required. The complex formed is by a chemical bond and results in a relatively stable radionuclide composition, e.g. stable to the disassociation of the radionuclide from the ligand.
The macrocyclic aminophosphonic acid complexes when administered at a ligand to metal molar ratio of at least about 1:1, preferably from 1:1 to 3:1, more preferably from 1:1 to 1.5:1, give biodistributions that are consistent with excellent skeletal agents. By contrast, certain other aminophosphonic acid complexes result in some localization in soft tissue (e.g. liver) if excess amounts of ligand are not used. A large excess of ligand is undesirable since uncomplexed ligand - 13-
may be toxic to the patient or may result in cardiac arrest or hypocalcemic convulsions. In addition, the macrocyclic aminophosphonic acid ligands are useful when large amounts of metal are required (i.e. for metals that have a low specific activity). In this case, the macrocyclic aminophosphonic acid ligands have the ability to deposit larger amounts of activity in the bone than is possible when using non-cyclic aminophosphonic acid ligands.
A preferred embodiment of the present invention is a therapeutically effective composition or formulation containing complexes of at least one radionuclide of Gd-159, Ho-166, Lu-177, Sm-153, Y-90 and Yb-175 with DOTMP or a physiologically acceptable salt(s) thereof.
Combinations of the various above noted radionuclides can be administered for the therapeutic treatment of calcific tumors. The combinations can be complexed as herein described by complexing them simultaneously, mixing two separately complexed radionuclides, or administering two different complexed radionuclides sequentially. It may be possible to achieve the same beneficial results of high delivery of the radionuclide to the area of the tumor, but with little soft tissue damage, by administering the ligand and the radionuclide in a manner which allows formation of the radionuclide- chelant complex in situ such as by simultaneous or near simultaneous administration of the radionuclide and an appropriate amount of ligand or by the administration of ligand and a radionuclide complexed with a weaker ligand, i.e., one which undergoes ligand exchange with the ligands of this invention, such that the desired -14-
radionuclide-chelant complex is formed via ligand exchange insitu. The composition or formulation may be administered as a single dose or as multiple doses over a longer period of time.
Aminophosphonic acids can be prepared by a number of known synthetic techniques. Of particular importance is the reaction of a compound containing at least one reactive amine hydrogen with a carbonyl compound (aldehyde or ketone) and phosphorous acid or derivative thereof. The amine precursor (1,4,7,10- tetraazacyclododecane) employed in making the macrocyclic aminophosphonic acids is a commercially available material.
Methods for carboxyalkylating to give amine derivatives containing a carboxyalkyl group are well known (U.S. 3,726,912) as are the methods which give alkyl phosphonic and hydroxyalkyl (U.S. 3,398,198) substituents on the amine nitrogens.
Radionuclides can be produced in several ways In a nuclear reactor, a nuclide is bombarded with neutrons to obtain a radionuclide, e.g.
Sm-152 + neutron ^ Sm-153 + gamma.
Another process for obtaining radionuclides is by bombarding nuclides with linear accelerator or cyclotron-produced particles. Yet another way of obtaining radionuclides is to isolate them from fission product mixtures. The process for obtaining the radionuclide is not critical to the present invention.
For example, to irradiate Sπ_2θ3 for production r- of Sm-153, the desired amount of target was first _> weighed into a quartz vial, the vial was flame sealed under vacuum and welded into an aluminum can. The can was irradiated for the desired length of time, cooled for several hours and opened remotely in a hot cell. 10 The quartz vial was removed and transferred to a glove box, crushed into a glass vial which was then sealed with a rubber septum and an aluminum crimp cap. One milliliter of 1 to 4M HC1 was then added to the vial via syringe to dissolve the Sm.203. Once dissolved,
15 the solution was diluted to the appropriate volume by addition of water. The solution was removed from the original dissolution vial which contains chards of the crushed quartz vial and transferred via syringe to a-
20 clean glass serum vial. This solution was then used for complex preparation. Similar procedures can be used to prepare Lu-177, Yb-175, Gd-159, Y-90 and Ho- 166.
The invention described herein provides a
25 means of delivering a therapeutic amount of radioactivity to calcific tumors. However, it may also be desirable to administer a "sub-therapeutic" amount (i.e. "useful amount") to determine the fate of 30 the radionuclide using a scintillation camera prior to administering a therapeutic dose. Therapeutic doses will be administered in sufficient amounts to alleviate pain and/or inhibit tumor growth and/or cause regression of tumors and/or kill the tumor.
35 Amounts of radionuclide needed to provide the desired therapeutic dose will be determined experimentally and optimized for each particular composition. The amount of radioactivity required to deliver a therapeutic dose will vary with the individual composition employed. For example, less activity will be needed for radionuclides with longer half-lives. The energy of the emissions will also be a factor in determining the amount of activity necessary. The composition to be administered may be given in a single treatment or fractionated into several portions and administered at different times. Administering the composition in fractionated doses may make it possible to minimize damage to non-target tissue. Such multiple dose administration may be more effective.
The compositions of the present invention may be used in conjunction with other active agents and/or ingredients that enhance the therapeutic effectiveness of the compositions and/or facilitate easier administration of the compositions.
Studies to determine the qualitative biodistribution of the various radionuclides were conducted by injecting the compositions into rats and obtaining the gamma ray images of the entire animal at various times up to two hours after injection.
Quantitative biodistributions were obtained by injecting 50-100 microliters of the composition into the tail vein of unanesthetized male Sprague Dawley rats. The rats were then placed in cages lined with absorbent paper in order to collect all urine excreted prior to sacrifice. After a given period of time, the rats were sacrificed by cervical dislocation and the various tissues dissected. The samples were then rinsed with saline, blotted dry on absorbent paper and weighed. The radioactivity in the samples was measured with a Nal scintillation counter.
The following examples are included to aid in the understanding of the invention but are not to be construed as limiting the invention.
Preparation of Starting Materials
Example A: Preparation of DOTMP
10
In a 100-mL three necked round-bottomed flask equipped with a thermometer, reflux condenser, and heating mantle was added 3.48 g (20.2 mmole) of 1 ,4,7, 10-tetraazacyclododecane and 14 ml of water. This
15 solution was treated with 17.2 mL of concentrated HC1 and 7.2 g of H3PO3 (87.8 mmole) and heated to 105°C. The refluxing suspension was stirrred vigorously and treated dropwise with 13 g (160.2 mmole) of formaldehyde
20 (37 wt percent in water) over a one hour period. At the end of this time the reaction was heated at reflux an additional 2 hours after which the heat was removed and the reaction solution allowed to cool and set at room temperature for 62.5 hours. The reaction solution was
25 then concentrated in vacuo at 40°C to a viscous reddish brown semisolid. A 30 mL portion of water was added to the semisolid which started to dissolve but then began to solidify. The whole suspension was then poured into 400 mL of acetone with vigorously stirring. The
30 resulting off-white precipitate was vacuum filtered and dried overnight to give 10.69 g (97 percent yield) of crude DOTMP. A 2.0 g (3.65 mmole) sample of the crude DOTMP was dissolved in 2 mL of water by the addition of
-.c 700 μL of concentrated ammonium hydroxide (10.0 mmole) in 100 μL portions to give a solution at pH of 2-3. -18-
This solution was then added all at once to 4.5 mL of 3N HC1 (13.5 mmole), mixed well, and allowed to set. Within one hour small squarish crystals had begun to form on the sides of the glass below the surface of the liquid. The crystal growth was allowed to continue undisturbed for an additional 111 hours after which time the crystals were gently bumped off of the vessel walls, filtered, washed with 3 mL portions of water, four times, and air dried to constant weight to give 1.19 g (60 percent yield) of white crystalline solid DOTMP.
Example B: Preparation of DOTMP
A 250 mL three-necked, round-bottomed flask was loaded with 6.96 g (0.04 moles) of 1,4,7, 10- tetraazacyclododecane. To this flask was added 14,5 g (0.177 moles) of phosphorous acid, 30 mL of deionized water and 28 mL of concentrated hydrochloric acid (0.336 moles).
The flask was attached to a reflux condenser and fitted with a stir bar, and a thermometer adapted with a thermowatch controller. A separate solution of 26.0 g (0.32 moles) of aqueous 37 percent formaldehyde solution was added to a 100 mL addition funnel and attached to the flask. The flask was brought to reflux temperature (about 105°C) with vigorous stirring. The formaldehyde solution was added dropwise over a 30-40 minute interval. The solution was heated and stirred for an additional three hours then cooled slowly to ambient temperature.
The reaction solution was transferred to a 500 mL round-bottomed flask and attached to a rotary evaporation apparatus. The solution was taken down to a viscous, amber semi-solid (note - temperature never exceeded 40°C). This semi-solid was treated with- approximately 300 mL of HPLC grade acetone producing a light brown, sticky viscous oil. This oil was dissolved in 22 mL of water and added slowly with vigorous stirring to 1L of acetone. The acetone was decanted and the light colored oil dried under vacuum to give 16.6 g (76 percent yield) of crude DOTMP. To 13.1 g of this crude DOTMP was added 39.3 g of deionized water along
10 with a seed crystal and the solution allowed to stand overnight. The resulting precipitate was vacuum filtered, washed with cold water, and dried under vacuum to give 4.75 g of DOTMP (36 percent yield).
15 A further purification was performed by dissolving 3.0 g (5.47 mmole) of DOTMP from above in 3 mL of water by the addition of 2.2 mL (31.5 mmole) of concentrated ammonium hydroxide. This solution was made
20 acidic by the addition of 2.4 mL (28.8 mmole) of concentrated HC1 at which time a white solid precipitated. This precipitate was vacuum filtered and dried to give 2.42 g (81 percent yield) of purified DOTMP characterized by a singlet at 11.5 ppm (relative 25 to 85. percent H3PO4) in the 31P decoupled NMR spectrum.
Example C: Preparation of Sm-153
Sm-153 can be produced in a reactor such as the University of Missouri Research Reactor. Sm-153 is
^ produced by irradiating 99.06 percent enriched 15 Sm2Q_, in the first row reflector at a neutron flux of 8 x 1013 neutron/cm2.sec. Irradiations were generally carried out for 50 to 60 hours, yielding a Sm-153 specific
,5 activity of 1000-1300 Ci/g. -20-
To irradiate Sro^O for production of Sm-153, the desired amount of target is first weighed into a quartz vial, the vial flame sealed under vacuum and welded into an aluminum can. The can is irradiated for the desired length of time, cooled for several hours and opened remotely in a hot cell. The quartz vial is removed and transferred to a glove box, opened into a glass vial which is then sealed. An appropriate amount of a solution of hydrochloric acid is then added to the vial via syringe in order to dissolve the Srr^O . Once the Sm203 is dissolved, the Samarium solution is diluted to the appropriate volume by addition of water. The solution is removed from the original dissolution vial which contains the chards of the quartz irradiation vial, and transferred via syringe to a clean glass serum vial.
Example D: Preparation of Ho-166
Holmium-166 is prepared by weighing 0.5-1.0 mg of H0 O3 into a quartz vial. The vial is sealed and placed in an aluminum can which is welded shut. The sample is irradiated (usually for about 24-72 hours) in the reactor (first row reflector, neutron flux of 8 x 10^3 neutron/cm2.sec). After irradiation, the vial is opened and the oxide is dissolved using 4N HC1. Heating may be necessary. Water is then used to dilute the sample to an appropriate volume.
Example E: Preparation of Gd-159
Gadolinium-159 is prepared by sealing gadolinium oxide (1.1 mg) in a quartz vial. The vial is welded inside an aluminum can and irradiated for 30 hours in a reactor at a neutron flux of 8 x 10^3 -21-
Figure imgf000023_0001
The contents of the quartz vial is dissolved using HCl. Water is added to obtain a solution of Gd-159 in 0.1N HCl.
Example F: Preparation of Y-90
A non-radioactive Ytteriu (Y) solution was prepared by dissolving 15.1 mg of YCl3'6H20 in 11.24 mL of water. A quantity of 1500 μL of this solution was 0 added to a vial containing 0.5 mL of Y-90 solution (prepared by neutron irradiation of 1 mg of Y2O3 followed by dissolution in 1N HCl to give a final volume of 0.5 mL) .
5 Example G: Preparation of Yb-175 and Lu-177
When the procedure of Examples C, D, E or F are repeated using the appropriate oxide, the radioisotopes of Ytterbium-175 (Yb-175) and Lutetium-177 (Lu-177) are Q prepared.
Preparation of Final Products
Example 1 : Preparation and Biodistribution of
Sm-DOTMP and Sm-153-DOTMP . 5
The ligand of Example A (22 mg) was dissolved in 878 μl of distilled water and 15 μl of 50 percent
NaOH. A volume of 15 μl of this solution was transferred to a vial containing 1.5 mL of Sm solution 0 (0.3 mM Sm in 0.1N HCl spiked with 2 μl of Sm-153 tracer). The pH was adjusted to 7-8 using NaOH and the amount of Sm found as a complex was >99 percent as determined by ion exchange chromatography. This yielded r a solution containing Sm at 0.3 mM with a ligand to metal molar ratio of approximately 1.5. Sprague Dawley rats were allowed to acclimate for five days then injected with 100 μL of the Sm solution described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation and dissected. The amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts were compared to the counts in 100 μL standards in order to determine the percentage of the dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table I. The numbers represent the average of 3 rats per data point.
TABLE I
% INJECTED DOSE IN SEVERAL
TISSIJFS FOR.Sm-nOTMP1
Tissue % Dose
Bone 58.1
Liver 0.06
Kidney 0.27
Spleen 0.004
Muscle 0.15
Blood 0.004
• Ligand to Sm Molar Ratio ot approximately 1.5
Example 2: Preparation and Biodistribution of Ho-DOTMP and Ho-166-DOTMP
The ligand of Example A (22 mg) was dissolved in 878 μL of distilled water and 15 μL of 50 percent NaOH. A volume of 30 μL of this solution was transferred to a vial containing 1.5 mL of Ho solution (0.6 mM Ho in 0.1N HCl spiked with 2 μL of Ho-166 tracer). The pH was adjusted to 7-8 using NaOH and the amount of Ho found as a complex was greater than 99 percent as determined by ion exchange chromatography. This yielded a solution containing 0.6 mM Ho with a ligand to metal molar ratio of approximately 1.5.
Sprague Dawley rats were allowed to acclimate for five days then injected with 100 μL of the Ho solution described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation and dissected. The amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts were compared to the counts in 100 μL standards in order to determine the percentage of the dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table II. The numbers represent the average of 3 rats per data point. -24-
TABLEII
% INJECTEDDOSEINSEVERAL T ciice cnD U/-._Γ.Γ.T DI
Figure imgf000026_0001
approximately 1.5
Example 3: Preparation and Biodistribution of
Sm-DOTMP, Sm-153-D0TMP, Ho-DOTMP and Ho-166-DOTMP
A quantity of 14.5 mg of the ligand of Example B was placed in a vial and dissolved in 760 μL of water and 5 μL of 50 percent NaOH. A volume of 1100 μL of Sm solution (0.3 mM Sm in 0.1N HCl) which was spiked with Sm-153, was placed in a separate vial and 10 μL of the ligand solution was added. The pH of the solution was adjusted to 7-8 using NaOH and the solution was passed through 3 plastic columns containing 1.5 mL of cation exchange resin (Sephadex™ C-25 from Pharmacia). The amount of Sm as a complex was determined to be 99 percent by cation exchange chromatography.
A volume of 1100 μL of Ho solution (0.6 mM Ho in 0.1N HCl) which was spiked with Ho-166, was placed in a separate vial and 20 μL of the above ligand solution was added. The pH of the solution was adjusted to 7-8 using NaOH and the solution was passed through 2 plastic columns containing 1.5 mL of cation exchange resin (Sephadex C-25 from Pharmacia) . The amount of Ho as a -25-
complex was determined to be 99 percent by cation exchange chromatography.
Sprague Dawley rats were allowed to acclimate for five days then injected with 100 μL of the solutions described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation. Tissues were taken, weighed and the amount of radioactivity determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were compared to the counts in 100 μL standards in order to determine the percentage of the dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table III. The numbers represent the average of 3 rats per data point.
Figure imgf000027_0001
-26-
Example 4: Preparation and Biodistribution of Gd-DOTMP and Gd-159-DOTMP
The ligand of Example B (14.5 mg) was placed in a vial and dissolved in 760 μL of water and 5 μL of 50 percent NaOH. A volume of 1000 μL of Gd solution (0.3 mM Gd in 0.1N HCl) which contained tracer quantities of Gd-159, was placed in a separate vial and 15 μL of the ligand solution was added. The pH of the solution was adjusted to 7-8 using NaOH and the amount of Gd as a complex was determined to be >99 percent by cation exchange chromatography.
A Sprague Dawley rat was allowed to acclimate for five days then injected with 175 μL of the solution described above via a tail vein. The rat weighed 155 g at the time of injection. After 2 hours the rat was killed by cervical dislocation and dissected. The amount of radioactivity in each tissue was determined by 0 counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were compared to the counts in 175 μL standards in order to determine the percentage of the dose in each tissue or ,- organ. The percent of the injected dose in several tissues are given in Table IV.
0
5 TABLE IV
% INJECTED DOSE IN SEVERALTISSUES
FOR Gd-D0TMP1
Figure imgf000029_0001
gan to mo ar rat o o approximately 1.5 *counts in the spleen were below background background
Example 5 : Preparat ion and Biodistr ibution of Lu-DOTMP and Lu- 177-D0TMP
The ligand of Example B (15.8 mg) was dissolved in 963 μL of distilled water and 8 μL of 50 percent NaOH. A volume of 15 μL of this solution was transferred to a vial containing 1.5 mL of Lu solution (0.3 mM Lu in 0.1N HCl spiked with 2 μL of Lu-177 tracer). The pH was adjusted to 7-8 using NaOH and the amount of Lu found as a complex was >99 percent by ion exchange chromatography. This yielded a solution containing 0.3 mM Lu with a ligand to metal molar ratio of approximately 1.5.
Sprague Dawley rats were allowed to acclimate for five days then injected with 100 μL of the Lu solutions described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation and dissected. The amount of radioactivity in each tissue was determined by counting in a Nal -28-
scintillation counter coupled to a multichannel analyzer. The counts were compared to the counts in 100 μL standards in order to determine the percentage of the dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table V. The numbers represent the average of 3 rats per data point.
TABLE V
% INJECTED DOSE IN SEVERAL TISSUES
FOR Lu-D0TMP1
Figure imgf000030_0001
gan o u mo ar ra o o approximately 1.5
Example 6 : Preparation and Biodistribution of Y-DOTMP and Y-90-DOTMP
To the solution of Y and Y-90 prepared in Example F was added 200 μl (0,0266 moles) of DOTMP from Example B in water and the pH of the solution adjusted to 7.5 using 50 percent NaOH and 1N NaOH. The percent of the Y as a complex was determined by cation exchange chromatography to be >99 percent. This yielded a solution with a ligand to metal molar ratio of approximately 1.7. -29-
Sprague Dawley rats were allowed to acclimate for eight days then injected with 150 μL of the Y solutions described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation and dissected. The amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were compared to the counts in 150 μL standards in order to determine the percentage of the injected dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table VI. The numbers represent the average of 5 rats per data point.
TABLE VI
% INJECTED DOSE IN SEVERAL TISSUES
FOR Y-DOTMP1
Figure imgf000031_0001
gan o mo ar ra o o approximately 1.7
Example W (Comparative)
To a vial containing 0.5 mL of Y-90 solution (prepared by the irradiation of 1 mg of Y2O3 followed by dissolution in 1.1N HCl to give a final volume of 0.5 mL) was added 1.5 mL of water to give a 8.86 x 10"**3 molar solution of Y containing tracer Y-90. To 2 mL (1.772 x 10~5 mole) of this solution was added 133 μL (1.676 x 10"^ mole) of 1.26M ethylenediaminetetra- 0 methylenephosphonic acid (EDTMP) solution where upon the solution became turbid. The solution cleared up upon addition of 50 μL of 50 percent NaOH. To this solution was added 40 μL (5.04 x 10"*5 mole) more of 1.26M EDTMP solution. The pH of the resulting solution was 7.5 and
15 the percent of the Y as a complex was determined by cation exchange chromatography to be >99 percent. This yielded a solution with a ligand to metal molar ratio of approximately 123. 0 Sprague Dawley rats were allowed to acclimate for eight days then injected with 150 μL of the Y solutions described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. c. After 2 hours the rats were killed by cervical
_-D dislocation. Tissues were taken, weighed and the amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were 30 compared to the counts in 150 μL standards in order to determine the percentage of the injected dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table W. The numbers represent the average of 5 rats per data point.
35 -31 -
TABLE W
% INJECTED DOSE IN SEVERALTISSUES
FOR Y-EDTMP1
Figure imgf000033_0002
approximately 123
(There are no Examples X and Y.)
Example Z (Comparative)
In a method similar to that previously used, compositions were prepared containing complexes of Sm- 153 with several commercially available phosphonic acids which do not contain the alkylene linkage between the nitrogen and the phosphorus atoms (which linkage is required in the present ligand).
Figure imgf000033_0001
The two hour biolocalization of Sm-153 in rats for these compositions was determined as previously described. The results are given in Table X. The ligands used include methylendiphosphonic acid (MDP) and hydroxyethylidinediphosphonic acid (HEDP) which contain a P-CH2-PO3H2 and a P-C(CH3) (0H)-P03H2 linkage, respectively; pyrophosphate (PYP) which contains a P-O-PO3H2 linkage; and imidodiphosphate (IDP) which contains a N-PO3H2 linkage. Metal complexes of these ligands are known skeletal agents. For example, Tc complexes of MDP, HEDP, and PYP have been used commercially as diagnostic bone agents. However, these ligands were inadequate for selectively delivering Sm-153 to the skeletal system as exemplified by the large fraction of the radioactivity found in the liver and/or blood.
Table Z shows the biolocalization of Sm-153 in rats two hours after injection and the results represent the percent of injected dose in tissue.
TABLE Z
Figure imgf000034_0001
The numbers given in Table Z for Sm-153-MDP, Sm-153-HEDP, Sm-153-PYP and Sm-153-IDP represent the average of the results of five, five, three and three rats, respectively.
Example 7: Preparation of Sm-DOTMP or Ho-DOTMP Kit Using HEPES Buffer
A 0.1M solution of N-2-hydroxyethylpiperazine- N'-2-ethanesulfonic acid (HEPES) (Sigma™ Chemical Co., St. Louis, MO) at a pH of 7.43 was prepared. A 0.0066M solution of DOTMP was prepared by dissolving 68.2 mg (1.084 x 10-4 μmole) of DOTMP in 16.4285 mL of 1N NaOH. Into each of seven 10 mL serum vials was placed 0.600 mL (3.96 mole) of DOTMP solution and 3.00 mL of 0.1M HEPES buffer solution. Each serum vial was then placed in a dry ice/acetone bath until the liquid was frozen and then placed in a Virtis Freeze Dryer Apparatus overnight which gave the aqueous components as a dry white powder in the bottom of the serum vials. The serum vials were then stoppered and sealed by crimping. These kits were formulated to receive 6 mL of either SmCl3 (3 x 10_i* mole) or H0CI3 (6 x 10~4 mole) in 0.1N HCl.
Example 8: Reconstitution of Sm-DOTMP or Ho-DOTMP Kit
Containing HEPES Buffer
A 6.0 mL addition of SmCl3 (3 x 10~^M spiked with Sm-153 in 0.1N HCl) was made to one of the kits described in Example 7. The pH of the resulting reconstituted kit was 7.5 and the percent of Sm that was complexed was determined using cation exchange chromatography to be >99 percent.
Similarly, a 6.0 mL addition of H0CI3 (6 x 10~4M spiked with Ho-166) in 0. IN' HCl was made to one of the kits described in Example 7. The pH of the resulting solution was 7.5 and the percent of Ho that was complexed was determined using cation exchange chromatography to be >97 percent.
Example 9: Reconstitution and Biodistribution of
Sm-HEPES-DOTMP Kits
A kit from Example 8 was treated with 6.0 mL of SmCl3 (3 x 10"4M spiked with Sm-153) in 0.1N HCl. The pH of the resulting solution was 7.5 and the percent of the Sm as a complex was determined using cation exchange chromatography to be >99 percent.
Sprague Dawley rats were allowed to acclimate for five days then injected with 100 μL of the Sm solutions described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation. Tissues were taken, weighed and the amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were compared to the counts in 100 μL standards in order to determine the percentage of the injected dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table VII. The numbers represent the average of 3 rats per data point. TABLE VII
% INJECTED DOSE IN SEVERALTISSUES
FOR Sm-DOTMP/HEPES BUFFER
Figure imgf000037_0001
Example 10: Preparation of Sm-DOTMP Kits Using Bicarbonate Buffer
A 0.009M solution of DOTMP at pH 6.66 was prepared by adding 141.5 mg (2.25 x 10-4 mole) of DOTMP to 9 mL of 1N NaOH and diluting- to 25 mL final volume. A 0.4M solution of sodium bicarbonate ( aHC03) was prepared by dissolving 8.4 g of NaHCU in 250 mL of water. Kits were prepared by adding 3.0 mL of NaHCU solution and 0.300 mL of DOTMP solution to each of seven 10 mL serum vials and treating them as described in Example 7 to give the final kit containing a white dry solid. These kits were formulated to receive 6.0 mL of S111CI3 (3 x 10_JM) in 0.1N HCl which would give a ligand to metal ratio of 1.5:1.
Example 11: Reconstitution and Biodistribution of Sm-DOTMP Kits Using Bicarbonate Buffer
A kit from Example 10 was treated with 6.0 mL of SmCl3 (3 x 10" M spiked with Sm-153) in 0.1N HCl. -36-
The pH of the resulting solution was 6.55 and was adjusted to 7-27 by the addition of 60 μL of 1N NaOH. The percent of the Sm as a complex was determined using cation exchange chromatography to be >99 percent.
Sprague Dawley rats were allowed to acclimate for five days then injected with 100 μL of the Sm solutions described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation. Tissues were taken, weighed and the amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were compared to the counts in 100 μL standards in order to determine the percentage of the injected dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table VIII. The numbers represent the average of 3 rats per data point.
TABLE VIII
% INJECTED DOSE IN SEVERALTISSUES
FOR Sm-DOTMPVBICARBONATE
Figure imgf000038_0001
approximately 1.5 Example 12: Preparation of DOTMP Kit Using Excess Base
A 0.009M solution of DOTMP was prepared as j. described in Example 10 except more NaOH was added such that the final solution was pH 10.66. Kits were prepared by adding 0.300 mL of DOTMP solution and 0.700 mL of 1.0N NaOH solution to each of five 10 mL serum vials and treating them as described in Example 7 to 10 give the final kit containing a white dry solid. These kits were formulated to receive 6.0 mL of SmCl (3 x 10" ^M) in 0.1N HCl which would give a ligand to metal ratio of 1.5:1.
15 Example 13: Reconstitution and Biodistribution of
DOTMP Kits Using Excess Base and Phosphate Buffer
A kit from Example 12 was treated with 5.4 mL 20 of SmCl (3 x 10" M spiked with Sm-153) in 0.1N HCl and 0.6 mL of SmCl3 (3 x 10" spiked with Sm-153) in 0.1N HCl. The pH of the resulting solution was between 10 and 11. The pH was adjusted to 7-79 by the addition of 0.200 mL of 1.05M phosphate buffer (pH 7.49). The
25 percent of the Sm as a complex was determined using cation exchange chromatography to be >99 percent.
Sprague Dawley rats were allowed to acclimate for five days then injected with 100 μL of the Sm
30 solutions described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. After 2 hours the rats were killed by cervical dislocation. Tissues were taken, weighed and the amount 5 of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a -38-
multichannel analyzer. The counts in each tissue were compared to the counts in 100 μL standards in order to determine the percentage of the injected dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table IX. The numbers represent the average of 5 rats per data point.
TABLE IX
% INJECTED DOSE IN SEVERAL TISSUES
FOR Sm-DOTMPVPHOSPHATE
Figure imgf000040_0001
gan o m mo ar ra o o approximately 1.5
Example 14 : Preparation of 18 mL Ho-DOTMP Kits
A 0.009M solution of DOTMP at pH 6.66 was prepared as described in Example 10 except more NaOH was added such that the final solution was at pH 10.19. Kits were prepared by adding 1,800 mL of DOTMP solution and 2.100 mL of 1N NaOH solution to each of twelve 20 mL serum vials, These vials were then treated as described in Example 7 to give the final kits containing a white, dry solid. These kits were formulated to receive 18.0 mL of H0CI3 (6 x 10~4M) which would give a ligand to metal ratio of 1.5:1. -39-
Example 15: Reconstitution and Biodistribution of 18 mL Ho-DOTMP Kits
A kit from Example 14 was treated with 13.0 mL of H0CI3 (6 x 10"4M spiked with Ho-166) in 0.1N HCl. The solution was then treated with 0.6 mL of 1.05M phosphate buffer (pH 7.49) which brought the pH down to 7.53. The percent of the Sm as a complex was determined using cation exchange chromatography to be >99 percent. 0
Sprague Dawley rats were allowed to acclimate for five days then injected with 100 μL of the Sm solutions described above via a tail vein. The rats weighed between 150 and 200 g at the time of injection. 5 After 2 hours the rats were killed by cervical dislocation. Tissues were taken, weighed and the amount of radioactivity in each tissue was determined by counting in a Nal scintillation counter coupled to a multichannel analyzer. The counts in each tissue were 0 compared to the counts in 100 μL standards in order to determine the percentage of the injected dose in each tissue or organ. The percent of the injected dose in several tissues are given in Table X. The numbers C. represent the average of 5 rats per data point.
0
5 TABLE X
% INJECTED DOSE IN SEVERAL TISSUES
FOR Ho-DOTMPVPHOSPHATE
10
Figure imgf000042_0001
gan to o moar rato o approximately 1.5
15
20
25
30
35

Claims

CLAIMS :
1. A composition which comprises a complex having (1) a macrocyclic aminophosphonic acid, containing 1,4,7,10-tetraazacyclododecane as the macrocyclic moiety, or a physiologically acceptable salt thereof, wherein the nitrogen and phosphorous are interconnected by an alkylene or substituted alkylene radical of the formula
Figure imgf000043_0001
wherein: X and Y are independently hydrogen, hydroxyl, carboxyl, phosphonic, or hydrocarbon radicals having from 1-8 carbon atoms and physiologically acceptable salts of the acid radicals; and n is 1-3, with the proviso that when n>1, each X and Y may be the same as or different from the X and Y of any other carbon atom, and (2) at least one radionuclide of Sm-153, Gd-159, Ho-166, Lu-177, Y-90 or Yb-175, and wherein the resulting composition is therapeutically effective.
2. The composition of Claim 1 wherein X and Y are hydrogen and n is 1.
3. The composition of Claim 1 wherein the macrocyclic aminophosphonic acid has the structure
Figure imgf000044_0001
wherein: substituents A, B, C and D are independently hydrogen, hydrocarbon radicals having from 1-8 carbon atoms, or a moiety of the formula
Figure imgf000044_0002
and physiologically acceptable salts of the acid radicals, wherein: X, Y and n are as defined in Claim 1; X' and Y' are independently hydrogen, methyl or ethyl radicals; n' is 2 or 3, with the proviso that at least two of said nitrogen substituents is a phosphorus- containing group.
4. The composition of Claim 3 wherein the c macrocyclic aminophosphonic acid is 1,4,7,10- tetraazacyclododecane-1,4,7,1O-tetramethylenephosphonic acid or a physiologically acceptable salt.
5. The composition of any one of the preceding
10 claims wherein the radionuclide is Gd-159.
6. The composition of Claim 1, 2, 3 or 4 wherein the radionuclide is Sm-153.
7. The composition of Claim 1, 2, 3 or 4
15 wherein the radionuclide is Lu-177.
8. The composition of Claim 1, 2, 3 or 4 wherein the radionuclide is Yb-175.
0 9. The composition of Claim 1, 2, 3 or 4 wherein the radionuclide is Ho-166.
10. The composition of Claim 1, 2, 3 or 4 wherein the radionuclide is Y-90. 5
11. A sterile composition suitable for administration to an animal wherein the composition contains a complex as claimed in any one of the preceding claims and wherein the radionuclide in dosage 0 form is present in an amount containing at least 0.02 mCi per kilogram of body weight of said animal.
12. The composition of Claim 11 wherein the radionuclide in dosage form is present in an amount 5 containing at least 0.2 mCi per kilogram of body weight of said animal.
13. The composition of any one of the preceding t- claims wherein the ligand to radionuclide molar ratio is at least about 1:1.
14. The composition of Claim 13 wherein the ligand to radionuclide molar ratio is from 1:1 to 3:1.
10 15. The composition of Claim 13 wherein the ligand to radionuclide molar ratio is from 1:1 to 1.5:1.
16. A pharmaceutical formulation which comprises the composition as claimed in any one of the
15 preceding claims and a pharmaceutically acceptable carrier.
17. A pharmaceutical formulation of Claim 16 wherein the formulation having the complex and a buffer
20 present are frozen in a kit form, and which frozen formulation is later thawed prior to use.
18. A method for the therapeutic treatment of an animal having one or more calcific tumors which
25 comprises administering to said animal a therapeutically effective amount of at least one pharmaceutical formulation as claimed in Claim 16 or 17 or of at least one composition as claimed in Claims 1 to 15.
30 19. A method for the therapeutic treatment of an animal having bone pain which comprises administering to said animal a therapeutically effective amount of at least one pharmaceutical formulation as claimed in Claim •at- 16 or 17 or of at least one composition as claimed in Claims 1 to 15.
20. The method of Claim 18 or 19 wherein the animal is a human.
21. A process for preparing a composition as c claimed in Claim 1 which comprises reacting a radionuclide of Sm-153, Gd-159, Ho-166, Lu-177, Y-90 or Yb-175 with the macrocyclic aminophosphonic acid as claimed in any one of the preceding claims, in water at a controlled pH.
10
22. The process of Claim 21 for preparing a composition which comprises reacting 1,4,7,10- tetraazacyclododecane-1,4,7, 10-tetramethylenephosphonic acid or a physiologically acceptable salt with Sm-153, 15 in water at a controlled pH.
23. The process of Claim 21 for preparing a composition which comprises reacting 1,4,7,10- tetraazacyclododecane-1,4,7, 10-tetramethylenephosphonic 0 acid or a physiologically acceptable salt with Gd-159, in water at a controlled pH.
24. The process of Claim 21 for preparing a composition which comprises reacting 1,4,7,10- 5 tetraazacyclododecane-1,4,7, 10-tetramethylenephosphonic acid or a physiologically acceptable salt with Ho-166, in water at a controlled pH.
25. The process of Claim 21 for preparing a 0 composition which comprises reacting 1,4,7,10- tetraazacyclododecane-1,4,7, 10-tetramethylenephosphonic acid or a physiologically acceptable salt with Lu-177, in water at a controlled pH.
5 26. The process of Claim 21 for preparing a composition which comprises reacting 1,4,7,10- tetraazacyclododecane-1,4,7, 10-tetramethylenephosphonic acid or a physiologically acceptable salt with Y-90, in water at a controlled pH.
27. The process of Claim 21 for preparing a composition which comprises reacting 1,4,7,10- tetraazacyclododecane-1,4,7,10-tetramethylenephosphonic acid or a physiologically acceptable salt with Yb-175, in water at a controlled pH.
PCT/US1989/005782 1988-12-19 1989-12-15 Macrocyclic aminophosphonic acid complexes, their preparation, formulations and use WO1990006776A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1019900701800A KR0178966B1 (en) 1988-12-19 1989-12-15 Macrocyclic aminophosphonic acid complexes, their preparation, formulation and use
BR898907255A BR8907255A (en) 1988-12-19 1989-12-15 MACROCYCLIC AMINOPHOSPHONIC ACID COMPLEXES, THEIR PREPARATION, FORMULATIONS AND USE
EP90901464A EP0408701B1 (en) 1988-12-19 1989-12-15 Macrocyclic aminophosphonic acid complexes, their preparation, formulations and use
DE68918852T DE68918852T2 (en) 1988-12-19 1989-12-15 MACROCYLIC AMINOPHOSPHONIC ACID COMPLEXES, METHOD FOR THE PRODUCTION AND FORMULATIONS AND USE.
CY190289A CY1902A (en) 1988-12-19 1989-12-15 Macrocyclic aminophosphonic acid complexes their preparation formulations and use
DK199001959A DK175479B1 (en) 1988-12-19 1990-08-16 Macrocyclic aminophosphonic acid complexes and processes for their preparation, pharmaceutical compositions containing the complexes and their use
FI904084A FI101857B1 (en) 1988-12-19 1990-08-17 Process for the preparation of a novel therapeutically useful macrocyclic aminophosphonic acid complex
NO903632A NO180434C (en) 1988-12-19 1990-08-17 A process for preparing a macrocyclic amino phosphonic acid complex or a physiologically acceptable salt thereof
NO964191A NO307056B1 (en) 1988-12-19 1996-10-03 Process for Purification of 1,4,7,10-Tetraazacyclododecane 1,4,7,10-Tetra (Methylene Phosphonic Acid)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/284,876 US5059412A (en) 1984-06-04 1988-12-19 Macrocyclic aminophosphonic acid complexes for the treatment of calcific tumors
US284,876 1988-12-19

Publications (1)

Publication Number Publication Date
WO1990006776A1 true WO1990006776A1 (en) 1990-06-28

Family

ID=23091854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1989/005782 WO1990006776A1 (en) 1988-12-19 1989-12-15 Macrocyclic aminophosphonic acid complexes, their preparation, formulations and use

Country Status (26)

Country Link
US (1) US5059412A (en)
EP (2) EP0408701B1 (en)
JP (1) JP2515929B2 (en)
KR (1) KR0178966B1 (en)
CN (1) CN1025983C (en)
AR (1) AR248140A1 (en)
AT (1) ATE112689T1 (en)
AU (3) AU639899B2 (en)
BR (1) BR8907255A (en)
CA (1) CA2005880C (en)
CY (1) CY1902A (en)
DE (1) DE68918852T2 (en)
DK (1) DK175479B1 (en)
ES (1) ES2061010T3 (en)
FI (1) FI101857B1 (en)
HK (1) HK146795A (en)
HU (1) HU207454B (en)
IE (2) IE66391B1 (en)
IL (1) IL92784A (en)
MX (1) MX18786A (en)
NO (1) NO180434C (en)
NZ (1) NZ231818A (en)
PT (1) PT92619B (en)
SA (1) SA91120234B1 (en)
WO (1) WO1990006776A1 (en)
ZA (1) ZA899734B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762907A (en) * 1990-06-18 1998-06-09 The Dow Chemical Company Frozen radiopharmaceutical formulations
WO2001077102A1 (en) * 2000-04-07 2001-10-18 Bristol-Myers Squibb Pharma Company Macrocyclic chelants for metallopharmaceuticals
WO2002062398A2 (en) * 2001-01-08 2002-08-15 Neorx Corporation Radioactively labelled conjugates of phosphonates
WO2011149844A1 (en) * 2010-05-24 2011-12-01 Iso Therapeutics Group Llc Delivery of high dose therapeutic radioisotopes to bone
US11369700B2 (en) 2015-05-25 2022-06-28 IGL Pharma Inc. DOTMP kit formulations for radioisotopes

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059412A (en) * 1984-06-04 1991-10-22 The Dow Chemical Company Macrocyclic aminophosphonic acid complexes for the treatment of calcific tumors
US5645818A (en) * 1989-03-24 1997-07-08 Guerbet S.A. Diagnostic compositions comprising a complex formed by a nitrogenous macrocyclic ligand with metal ions
DE4009119A1 (en) * 1990-03-19 1991-09-26 Schering Ag 1,4,7,10-TETRAAZACYCLODODECANE-BUTYLTRIOLS, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL AGENTS CONTAINING THEM
WO1991016075A1 (en) * 1990-04-20 1991-10-31 Australian Nuclear Science & Technology Organisation Bone marrow treatments
IL98534A0 (en) * 1990-06-18 1992-07-15 Dow Chemical Co The use of macrocyclic aminophosphonic acid complexes as imaging agents
DE4035760A1 (en) * 1990-11-08 1992-05-14 Schering Ag MONO-N-SUBSTITUTED 1,4,7,10-TETRAAZACYCLODODECAN DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL AGENTS CONTAINING THEM
US5320829A (en) * 1991-12-10 1994-06-14 The Dow Chemical Company Oral compositions for inhibiting plaque formation
US5428139A (en) * 1991-12-10 1995-06-27 The Dow Chemical Company Bicyclopolyazamacrocyclophosphonic acid complexes for use as radiopharmaceuticals
US5739294A (en) * 1991-12-10 1998-04-14 The Dow Chemical Company Bicyclopol yazamacrocyclophosphonic acid complexes for use as contrast agents
DE69635460T2 (en) * 1995-06-26 2006-08-10 Chelator Llc, Concord Method for inhibiting the growth of bacteria or fungi with a complexing agent
US5834456A (en) * 1996-02-23 1998-11-10 The Dow Chemical Company Polyazamacrocyclofluoromonoalkylphosphonic acids, and their complexes, for use as contrast agents
US6005083A (en) 1997-03-28 1999-12-21 Neorx Corporation Bridged aromatic substituted amine ligands with donor atoms
AU5871000A (en) * 1999-06-11 2001-01-02 Paul G. Abrams High dose radionuclide complexes for bone marrow suppression
US7094885B2 (en) * 1999-07-11 2006-08-22 Neorx Corporation Skeletal-targeted radiation to treat bone-associated pathologies
WO2002055112A2 (en) * 2001-01-09 2002-07-18 Bristol Myers Squibb Co Polypodal chelants for metallopharmaceuticals
JP2005516933A (en) 2001-12-13 2005-06-09 ダウ グローバル テクノロジーズ インコーポレイティド Treatment of osteomyelitis with radiopharmaceuticals
US20030228256A1 (en) * 2002-06-11 2003-12-11 Inverardi Luca A. Methods of achieving transplantation tolerance through radioablation of hemolymphopoietic cell populations
WO2007008232A2 (en) 2004-09-03 2007-01-18 Board Of Regents, The University Of Texas System Locoregional internal radionuclide ablation of abnormal tissues.
US10172965B2 (en) 2013-10-07 2019-01-08 Igl Pharma, Inc. High purity therapeutic bone agents
EP3302496B1 (en) * 2015-05-25 2021-01-06 IGL Pharma, Inc. Dotmp kit formulations for radioisotopes
DK3519394T3 (en) 2016-09-27 2020-08-17 Bayer Pharma AG METHOD OF PREPARING THE CRYSTALLINIC FORM OF MODIFICATION A OF CALCOBUTROL
EP3579886A4 (en) 2017-02-08 2020-11-25 IGL Pharma, Inc. Method of use for therapeutic bone agents

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965254A (en) * 1973-05-23 1976-06-22 The Procter & Gamble Company Compositions for the treatment of calcific tumors
US4017595A (en) * 1975-08-28 1977-04-12 Research Corporation Bone-seeking indium-113m or indium-111 organic phosphonate complexes
US4187284A (en) * 1976-12-16 1980-02-05 Merck & Co., Inc. Skeletal imaging kit utilizing triethylene tetramine hexa (methylene phosphonic acid)
EP0164843A2 (en) * 1984-06-04 1985-12-18 The Dow Chemical Company Organic amine phosphonic acid complexes for the treatment of calcific tumors
EP0287465A1 (en) * 1987-04-14 1988-10-19 Guerbet S.A. Cyclic ligands containing nitrogen, metal complexes formed by these ligands, diagnostic compositions containing them and process for their preparation
US4853209A (en) * 1987-05-18 1989-08-01 The Dow Chemical Company Bone marrow suppressing agents
US4882142A (en) * 1988-12-19 1989-11-21 The Dow Chemical Company Bone marrow suppressing agents
US4885363A (en) * 1987-04-24 1989-12-05 E. R. Squibb & Sons, Inc. 1-substituted-1,4,7-triscarboxymethyl-1,4,7,10-tetraazacyclododecane and analogs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957939A (en) * 1981-07-24 1990-09-18 Schering Aktiengesellschaft Sterile pharmaceutical compositions of gadolinium chelates useful enhancing NMR imaging
SU1098937A1 (en) * 1983-03-25 1984-06-23 Ордена Ленина институт элементоорганических соединений им.А.Н.Несмеянова 1,4,7,10-tetra(dioxyphosphoryl-methyl)-1,4,7,10-tetraazacyclododecane as chelating substance for binding cations of copper (ii),cobalt (ii),cadmium (ii),lead (ii) and lanthane (iii)
US4898724A (en) * 1984-06-04 1990-02-06 The Dow Chemical Company Organis amine phosphonic acid complexes for the treatment of calcific tumors
US5064633A (en) * 1984-06-04 1991-11-12 The Dow Chemical Company Macrocyclic aminophosphonic acid complexes, their formulations and use
US5059412A (en) * 1984-06-04 1991-10-22 The Dow Chemical Company Macrocyclic aminophosphonic acid complexes for the treatment of calcific tumors
US4976950A (en) * 1988-12-19 1990-12-11 The Dow Chemical Company Bone marrow suppressing agents

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965254A (en) * 1973-05-23 1976-06-22 The Procter & Gamble Company Compositions for the treatment of calcific tumors
US4017595A (en) * 1975-08-28 1977-04-12 Research Corporation Bone-seeking indium-113m or indium-111 organic phosphonate complexes
US4187284A (en) * 1976-12-16 1980-02-05 Merck & Co., Inc. Skeletal imaging kit utilizing triethylene tetramine hexa (methylene phosphonic acid)
EP0164843A2 (en) * 1984-06-04 1985-12-18 The Dow Chemical Company Organic amine phosphonic acid complexes for the treatment of calcific tumors
EP0287465A1 (en) * 1987-04-14 1988-10-19 Guerbet S.A. Cyclic ligands containing nitrogen, metal complexes formed by these ligands, diagnostic compositions containing them and process for their preparation
US4885363A (en) * 1987-04-24 1989-12-05 E. R. Squibb & Sons, Inc. 1-substituted-1,4,7-triscarboxymethyl-1,4,7,10-tetraazacyclododecane and analogs
US4853209A (en) * 1987-05-18 1989-08-01 The Dow Chemical Company Bone marrow suppressing agents
US4882142A (en) * 1988-12-19 1989-11-21 The Dow Chemical Company Bone marrow suppressing agents

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Volume 87, issued 1977 (Columbus, Ohio, USA) G. SUBRAMANIAN et al., "Indium-113m Labeled Polyfunctional Phosphonates as Bone Imaging Agents", Abstract No. 179938H. Nucl.-Med. (Stuttgart) Suppl., 1977, 14, 671-8 (Eng). *
Int. J. Applied Radiation and Isotopes, Volume 14, issued 1963 (Northern Ireland) ROSOFF et al., "Distribution and Excretion of Radioactive Rare-Earth Compounds in Mice", see p. 132, second column Bridging column 3, first column; see page 134, Bottom Half, first column. *
See also references of EP0408701A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762907A (en) * 1990-06-18 1998-06-09 The Dow Chemical Company Frozen radiopharmaceutical formulations
WO2001077102A1 (en) * 2000-04-07 2001-10-18 Bristol-Myers Squibb Pharma Company Macrocyclic chelants for metallopharmaceuticals
US6565828B2 (en) 2000-04-07 2003-05-20 Bristol-Myers Squibb Company Macrocyclic chelants for metallopharmaceuticals
WO2002062398A2 (en) * 2001-01-08 2002-08-15 Neorx Corporation Radioactively labelled conjugates of phosphonates
WO2002062398A3 (en) * 2001-01-08 2003-12-18 Neorx Corp Radioactively labelled conjugates of phosphonates
WO2011149844A1 (en) * 2010-05-24 2011-12-01 Iso Therapeutics Group Llc Delivery of high dose therapeutic radioisotopes to bone
US11369700B2 (en) 2015-05-25 2022-06-28 IGL Pharma Inc. DOTMP kit formulations for radioisotopes

Also Published As

Publication number Publication date
CA2005880C (en) 1999-01-05
AU5068593A (en) 1994-02-24
PT92619B (en) 1995-09-12
AU4700989A (en) 1990-06-21
NO180434B (en) 1997-01-13
CA2005880A1 (en) 1990-06-19
EP0408701B1 (en) 1994-10-12
HK146795A (en) 1995-09-22
HU207454B (en) 1993-04-28
DK195990A (en) 1990-08-16
JP2515929B2 (en) 1996-07-10
MX18786A (en) 1993-12-01
EP0375376A3 (en) 1991-06-12
CN1025983C (en) 1994-09-28
HU901163D0 (en) 1991-03-28
FI101857B (en) 1998-09-15
CY1902A (en) 1989-12-15
FI904084A0 (en) 1990-08-17
DK195990D0 (en) 1990-08-16
ATE112689T1 (en) 1994-10-15
EP0408701A1 (en) 1991-01-23
ZA899734B (en) 1991-08-28
PT92619A (en) 1990-06-29
AU657641B2 (en) 1995-03-16
FI101857B1 (en) 1998-09-15
AU639899B2 (en) 1993-08-12
NZ231818A (en) 1992-05-26
NO903632D0 (en) 1990-08-17
AU4828290A (en) 1990-07-10
IE894063L (en) 1990-06-19
JPH03502936A (en) 1991-07-04
IL92784A (en) 1994-08-26
KR0178966B1 (en) 1999-03-20
BR8907255A (en) 1991-03-12
IL92784A0 (en) 1990-09-17
IE66391B1 (en) 1995-12-27
EP0375376A2 (en) 1990-06-27
ES2061010T3 (en) 1994-12-01
CN1046739A (en) 1990-11-07
DE68918852D1 (en) 1994-11-17
EP0408701A4 (en) 1991-07-31
KR910700073A (en) 1991-03-13
NO903632L (en) 1990-10-17
IE940833L (en) 1990-06-19
DK175479B1 (en) 2004-11-08
DE68918852T2 (en) 1995-05-11
NO180434C (en) 1997-04-23
SA91120234B1 (en) 2004-09-04
AR248140A1 (en) 1995-06-30
US5059412A (en) 1991-10-22
HUT54897A (en) 1991-04-29

Similar Documents

Publication Publication Date Title
EP0408701B1 (en) Macrocyclic aminophosphonic acid complexes, their preparation, formulations and use
US4898724A (en) Organis amine phosphonic acid complexes for the treatment of calcific tumors
US5064633A (en) Macrocyclic aminophosphonic acid complexes, their formulations and use
US4882142A (en) Bone marrow suppressing agents
US4897254A (en) Radioactive compositions for the treatment of calcific tumors
Hassfjell et al. 212Bi-DOTMP: an alpha particle emitting bone-seeking agent for targeted radiotherapy
US4976950A (en) Bone marrow suppressing agents
EP0068584B1 (en) Boron containing polyphosphonates for the treatment of calcific tumors
EP0164843B1 (en) Organic amine phosphonic acid complexes for the treatment of calcific tumors
US5066478A (en) Radio labeled organic amine phosphonic acid complexes for the treatment of calcific tumors
EP0176288B1 (en) Aminocarboxylic acid complexes for the treatment of calcific tumors
EP0225409A1 (en) Organic amine phosphonic acid complexes for the treatment of calcific tumors
AU624283B2 (en) Organic amine phosphonic acid complexes
EP1438076A1 (en) Radiopharmaceutical agent for the treatment of early stage cancer
AU2002353865A1 (en) Radiopharmaceutical agent for the treatment of early stage cancer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR DK FI HU JP KR NO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990901464

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 904084

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1990901464

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990901464

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 904084

Country of ref document: FI