WO1991014857A1 - Improved low nox cogeneration process and system - Google Patents

Improved low nox cogeneration process and system Download PDF

Info

Publication number
WO1991014857A1
WO1991014857A1 PCT/US1991/001689 US9101689W WO9114857A1 WO 1991014857 A1 WO1991014857 A1 WO 1991014857A1 US 9101689 W US9101689 W US 9101689W WO 9114857 A1 WO9114857 A1 WO 9114857A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
oxygen
fuel
cooled
catalyst bed
Prior art date
Application number
PCT/US1991/001689
Other languages
French (fr)
Inventor
Ronald D. Bell
Original Assignee
Radian Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Radian Corporation filed Critical Radian Corporation
Priority to DE69123142T priority Critical patent/DE69123142T2/en
Priority to JP91506410A priority patent/JPH05505661A/en
Priority to EP91906472A priority patent/EP0521949B1/en
Priority to CA002079234A priority patent/CA2079234A1/en
Publication of WO1991014857A1 publication Critical patent/WO1991014857A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/26Construction of thermal reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1861Waste heat boilers with supplementary firing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/042Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates generally to cogeneration methods and apparatus, and more specifically relates to a cogeneration process and system which employs an internal combustion engine as the primary power source, while ensuring extremely low N0 X content in the final exhaust gases vented to ambient.
  • Cogeneration may be defined as the simultaneous produc ⁇ tion of both useful thermal energy (usually stea >, and electrical energy, from one source of fuel.
  • one or more power sources such as gas turbines, may be followed by a waste heat boiler using natural gas as fuel for both the turbines and to heat the exhaust gases from the turbines.
  • a common problem arising in cogeneration systems is the level of NO x emissions generated with the combined firing cycle.
  • Cogeneration plants using conventional hydrocarbon-fueled power sources and auxiliary fuel fired heat-recovery boilers to produce electricity and steam are therefore being subjected to stringent N0 X emission standards requiring levels below the 150 ppmv range.
  • Apparatus modifications have also been widely used or proposed as a solution to the aforementioned N0 X emission problem. These include modifications to the burner or firebox to reduce the formation of NO x .
  • a selective catalytic reduction system is presently considered by some to be the best available control technology for the reduction of NO x from the exhaust gas of a cogeneration plant and, as a consequence, is often required equipment.
  • selective cata- lytic reduction systems used for the reduction of NO x employ ammonia injection into the exhaust gas stream for reaction with the NO x in the presence of a catalyst to produce nitrogen and water vapor.
  • Such systems typically have an efficiency of 80-90 percent when the exhaust gas stream is at a temperature within a temperature range of approximately 600°-700°F.
  • the NO x reduction efficiency of the system is significantly less if the temperature is outside the stated temperature range and the catalyst may be damaged at higher temperatures.
  • a further approach to reducing NO x levels from combustion processes is based on combustion staging. Thus a fuel-rich primary stage may be followed by secondary air addition and completion of combustion at a later stage.
  • oxides of nitrogen can be reduced by reaction in a reducing atmosphere at temperatures in excess of 2000°F., for example 2000° to 3000°F.
  • U.S. Patent No. 4,354,821 is also of interest in disclosing a system for combusting a nitrogen-containing fuel in such a manner as to minimize NO x formation.
  • the fuel to be combusted is directed through a series of combustion zones having beds of catalytic materials. Air is added to each of two upstream zones to provide fuel- rich conditions to thereby minimize formation of NO x precursors. In a final zone also having a bed of catalytic material, excess air is provided to complete combustion of the fuel.
  • a gas turbine constitutes the primary power source.
  • the NO x levels ultimately achieved therein is quite low, i.e. below about 50 ppmv for the final gases provided for venting. Since, however, NO x levels in the turbine exhaust are not extremely high to begin with (i.e. about 150 ppmv), the actual reduction is only moderate.
  • NO x levels in the exhaust are an order of magnitude higher than in a gas turbine — a typical N0 X level for such an engine being about 1500 ppmv. In this instance the exhaust stream also carries substantial particulate matter in the form of unburned carbon.
  • a cogeneration system employing an internal combustion engine, wherein N0 X emissions are reduced to a very low level by means which are more economical and more readily controlled than means heretofore employed in the cogeneration art.
  • a cogeneration system is provided wherein fuel and oxygen are provided to an internal combustion engine connected to drive an electric generator, to thereby generate electricity.
  • An exhaust stream is recovered from the engine at a temperature of about 500° to 1000°F. which includes from about 6 to 15 percent oxygen.
  • Sufficient fuel is added to the exhaust stream to create a fuel-rich mixture, the quantity of fuel being sufficient to react with the available oxygen and reduce the NO x in the exhaust stream.
  • the fuel-enriched stream is then provided to a thermal reactor means for reacting the fuel, N0 X and available oxygen, to provide a heated oxygen-depleted stream.
  • the oxygen-depleted stream is cooled in a heat exchanger.
  • conversion oxygen Prior to being passed over a catalyst bed under overall reducing conditions, conversion oxygen is added to the cooled stream.
  • oxygen can be provided directly (i.e. as air), but preferably can be provided by bypassing part of the exhaust stream from the engine.
  • the quantity of conversion oxygen is stoichiometrically in excess of the amount of N0 X but less
  • N0 X content can then be provided for venting.
  • the N0 X content can be reduced to less than 25 ppmv — often below 15 ppmv, while CO levels are also brought to well below 50 ppmv.
  • the Figure is a schematic block diagram illustrating a cogeneration system in accordance with the invention, and embodying an internal combustion engine as the primary power source.
  • a cogeneration system 8 in accordance with the invention is shown.
  • System 8 is designed to produce electrical power, while also providing useful heat output, e.g. in the form of steam or the like.
  • Such a system can be installed at business or educational complexes, such as shopping centers, office parks, universities, hospitals, etc.
  • the reference numeral 10 designates an internal combustion engine which receives a hydrocarbon fuel such as gasoline or preferably, diesel oil, or the like, together with air, and burns the air-fuel mixture to produce a gaseous exhaust or effluent.
  • a hydrocarbon fuel such as gasoline or preferably, diesel oil, or the like
  • Other hydrocarbon fuels such as natural-gas fired butane or propane can also be used.
  • the fuel and air are introduced via lines 12 and 14, respectively, and the engine 10 is coupled to a generator 9 to produce electrical power.
  • the engine exhaust gas leaves through a duct 16 typically at an exhaust temperature of about 500° - 1000°F, more preferably at about 750° - 1000°F.
  • the exhaust typically includes from about 6 to 15% oxygen, more preferably about 6 - 10%; and includes from about 500 to 2,000 ppmv of NO X/ with about 1000 to 1500 ppmv being typical. (All NO x measurement data herein are expressed as parts per million volume [ppmv] on a dry basis.)
  • the NO x is mainly in the form of NO.
  • the exhaust stream includes substantial particulate matter in the form of soot.
  • further amounts of combustibles i.e.
  • the added fuel can be any hydrocarbon fuel such as gasoline, diesel oil, propane, natural gas, naptha, and the like; natural gas is preferred. Only fuel is injected at this point.
  • the amount of fuel added is selected to be sufficient to subsequently react with the available oxygen and reduce the NOx in the exhaust stream. In general from about 1 to 50% stoichiometric excess fuel is used with a preferable excess being from about 5 to 10% stoichiometrically relative to the available oxygen in the exhaust gas from the engine.
  • the exhaust gaseous stream from the engine is treated, i.e., has fuel added to it, to produce a fuel- rich, fuel-air mixture containing 1% to 50% excess of fuel over the oxygen stoichiometrically present.
  • the thus-treated exhaust gas from the engine is then passed to a thermal reactor, i.e., an afterburner 18, wherein it is burned at a temperature of about 1800° to 3200°F. , preferably from about 2000° to 2400°F.
  • a residence time of about .25 to 0.5 seconds is required to ensure that the desired essentially complete burn-out of oxygen in the exhaust and reduction of a portion of the oxides of nitrogen will occur, along with reduction of soot.
  • a greater residence time can be employed, e.g., 1 minute or more, but serves no useful purpose — while increasing the costs of operation.
  • the gaseous effluent from afterburner 18, is typic ⁇ ally at a temperature of 1800-3200°F.
  • Such stream is then passed to and through a heat exchanger, which may comprise a waste-heat boiler 22 wherein the effluent is cooled to a temperature of about 600 - 1050°F. and preferably to the range of from 750° to 900°F.
  • a heat exchanger which may comprise a waste-heat boiler 22 wherein the effluent is cooled to a temperature of about 600 - 1050°F. and preferably to the range of from 750° to 900°F.
  • the heat values in the exhaust stream are thus extracted at boiler 22 to produce steam, which can be removed via line 23 and used for. space heating or the like; while at the same time the exhaust stream has been cooled, which is a central consideration for its subsequent treatment.
  • the fuel-enriched and cooled exhaust gas from boiler 22, prior to being passed to and through a catalyst bed 25, is admixed with a controlled amount of conversion oxygen, added into duct 21 at point 19.
  • a controlled amount of conversion oxygen can be added directly with an air supply 29; but preferably can be provided by bypassing some of the engine exhaust from duct 16, via a line 31.
  • This latter approach serves a secondary purpose by reducing the amount of oxygen entering afterburner 18, thereby reducing fuel requirements to the afterburner.
  • the primary purpose of the conversion oxygen is however realized upon the mixture entering catalyst bed 25.
  • the amount of conversion oxygen added to the cooled stream from boiler 22 is such as to be (stoichiometrically) in excess of the amount of N0 X in such stream, but less (stoichiometrically) then the amount of combustibles (chiefly fuel) in the stream.
  • the amount of oxygen added is about 0.2 to 0.9%.
  • the N0 X in line 21 is chiefly in the form of NO, as the mix enters the front end of the catalyst bed 25, the 0 2 reacts with the NO to predominantly convert same to N0 2 . The latter, being more unstable and reactive than NO, is then readily reduced to innocuous compounds by the excess combustibles as the flow proceeds through the remainder of the bed.
  • the overall reaction in bed 25 is therefore seen to be a reducing one wherein the fuel-rich stream at a temperature of about 600° to about 1050°F. is passed over a reducing catalyst, e.g. platinum-rhodium in the zero- valent state supported on a carrier such as alumina, silica or a metal alloy.
  • a reducing catalyst e.g. platinum-rhodium in the zero- valent state supported on a carrier such as alumina, silica or a metal alloy.
  • catalysts are well known to persons skilled in the art and known noble metal catalysts such as blends of Pd, Pt and Rd can be used, as well as MnO and other metal oxides.
  • noble metal catalysts such as blends of Pd, Pt and Rd can be used, as well as MnO and other metal oxides.
  • Catalyst volumes will vary depending on the particular catalyst used. Ordinarily, the quantity of catalyst and the flow rate are such that the space velocity is typically in the range of 60,000 to 90,000 hr. "1 , typically being about 80,000 hr. "1 .
  • the stream exiting from catalyst bed 25 in conduit 24 is found as a result of the foregoing actions to be remarkably low in NO x , typically including under 15 ppmv of same.
  • the CO content is typically about 500 - 2000 ppmv.
  • Substantially no NO x precursors such as HCN or NH 3 have been formed.
  • Air is now introduced into the stream in conduit 24. , and the resulting gaseous stream is passed to a further catalyst bed 26 wherein the gas stream is passed over an oxidizing catalyst.
  • the amount of air is added in an amount relative to the stream in conduit 24 such that the resulting stream will contain oxygen stoichiometrically in excess of the amount needed to burn any fuel which may be present in the stream, and will preferably be controlled so that the 0 2 content in conduit 27 downstream of bed 26 will be about 1.5 to 3%.
  • the noble metal catalysts e.g., platinum or palladium catalysts
  • a support such as alumina, silica, kiesel-guhr, or a metal alloy, and the like.
  • the metal oxide catalysts are also most suitably the metal oxides supported on supports of this character. Various shapes such as pellets, ribbons or honeycombs can be used. The making of such catalysts is well known to persons skilled in the art. Catalyst volumes will vary depending on the particular catalyst used. Ordinarily, the quantity of catalyst and the flow rate are such that the space velocity is generally in the range of 30,000 to 50,000 hr. -1 —
  • N0 X levels in the conduit 27 are under 15 ppmv, and CO has been reduced to less than 50 ppmv.
  • the oxidized gaseous effluent from the bed 26 is thus shown passing from conduit 27 to an economizer or a low-pressure, waste-heat boiler, or the like, indicated at 28.
  • the heat content of the oxidized gaseous effluent is extracted to the maximum amount economically feasible.
  • the cooled gas at a temperature of about 300 - 400°F. is then discharged through an outlet conduit 30 into a stack 32 and vented to the atmosphere with the assurance that the vented effluent will comply with both N0 X and CO emission standards. It will have a NO x content of less than 15 ppmv and a CO content of less than 50 ppmv.
  • catalyst beds can be any containers adapted for gas passage and containing an appropriate redox catalyst of a type well known in this art. Minimizing the formation of oxides of nitrogen in cogeneration, in accordance with the invention, offers several advantages over the current state of the art.
  • This process does not require that a potentially obnoxious gas, such as ammonia, be injected into the system; the reaction conditions do not require that a narrowly-controlled temperature be maintained for the reduction of oxides of nitrogen to occur; the operating conditions are compatible with conventional cogeneration conditions; and greater NO x and CO reduction efficiencies can be achieved.
  • a potentially obnoxious gas such as ammonia

Abstract

A process and system for low NOx cogeneration to produce electricity and useful heat. Fuel (12) and oxygen (14) are provided to an internal combustion engine (10) connected to drive an electric generator (9), to thereby generate electricity. An exhaust stream is recovered from the engine at a temperature of about 500° to 1000 °F which includes from about 6 to 15 percent oxygen. Fuel is added to the exhaust stream to create a fuel-rich mixture, the quantity of fuel being sufficient to react with the oxygen and reduce the NOx in said exhaust stream. The fuel-enriched stream is provided to an afterburner (18), and the fuel, NOx and available oxygen are reacted to provide a heated oxygen-depleted stream (20). The oxygen-depleted stream (20) is cooled in a heat exchanger (22). Conversion oxygen (29) is admixed with the cooled stream which is then passed over a catalyst bed (25) under overall reducing conditions. NO is converted to NO2 at the forward end of the bed, and the NO2 then reacts on the remainder of the bed with excess combustibles. Air is added to the resulting stream from the catalyst bed (25) to produce a cooled stream (24) having a stoichiometric excess of oxygen, and the cooled stream is passed over an oxidizing catalyst bed (26) to oxidize remaining combustibles. The resultant low NOx stream can then be provided for venting.

Description

Description Improved Low Nox Cogeneration Process and System
Field of the Invention This invention relates generally to cogeneration methods and apparatus, and more specifically relates to a cogeneration process and system which employs an internal combustion engine as the primary power source, while ensuring extremely low N0X content in the final exhaust gases vented to ambient.
Background of the Invention
Numerous of the combustion processes incident to power generation, generate as well as an undesired product, effluent gases having an unacceptable NOx content. More specifically, the high temperatures incident to the operation of fuel-driven turbines, internal combustion engines and the like, results in the fixation of some oxides of nitrogen. These compounds are found in the effluent gases mainly as nitric oxide (NO) with lesser amounts of nitrogen dioxide (N02) and only traces of other oxides, since nitric oxide (NO) continues to oxidize to nitrogen dioxide (N02) in the air at ordinary temperatures, there is no way to predict with accuracy the amounts of each separately in vented gases at a given time. Thus, the total amount of nitric oxide (NO) plus nitrogen dioxide (N02) in a sample is determined and referred to as "oxides of nitrogen" (N0X) .
NOx emissions from stack gases, engine exhausts etc., through atmospheric reactions, produce "smog" that stings eyes and may cause or contribute to acid rain. Other deleterious effects both to health and to structures are believed to be caused directly or indirectly by these N0X emissions. For these reasons, the content of oxides of nitrogen present in gases vented to the atmosphere has been subject to increasingly stringent limits via regula¬ tions promulgated by various state and federal agencies. In recent years a mode of power production known as "cogeneration" has expanded rapidly, due in part to the Public Utility Regulatory Policy Act of 1978 (PURPA) . PURPA provided financial incentive to cogenerators that sell excess electrical power and indeed mandated that utilities purchase power from cogenerators. It also allows utilities to own up to 50% of a cogeneration facility and receive the benefits of this status. Cogeneration may be defined as the simultaneous produc¬ tion of both useful thermal energy (usually stea >, and electrical energy, from one source of fuel. In a typical system one or more power sources such as gas turbines, may be followed by a waste heat boiler using natural gas as fuel for both the turbines and to heat the exhaust gases from the turbines. A common problem arising in cogeneration systems is the level of NOx emissions generated with the combined firing cycle. Cogeneration plants using conventional hydrocarbon-fueled power sources and auxiliary fuel fired heat-recovery boilers to produce electricity and steam are therefore being subjected to stringent N0X emission standards requiring levels below the 150 ppmv range.
To meet the regulations for N0X emissions, a number of methods of NOx control have previously been employed or proposed. In one approach water or steam are injected into the combustion zone. This lowers the flame tempera¬ ture and thereby retards the formation of NOx, since the amount of NOx formed generally increases with increasing temperatures. Water or steam injection, however, adversely affects the overall fuel efficiency of the process as energy is absorbed to vaporize the water or heat the injectable steam, which would otherwise go toward heating the power source exhaust and be ultimately converted into usable steam.
It is also known to inject ammonia to selectively reduce N0X. A process involving the injection of ammonia into the products of combustion is shown, for example, in Welty , U.S. 4,164,546. Examples of processes utilizing ammonia injection and a reducing catalyst are disclosed in Sakari et al, U.S. 4,106,286; and Haeflich, U.S. 4,572,110. However, selective reduction methods using ammonia injection are expensive and somewhat difficult to control. Thus, these methods have the inherent problem of requiring that the ammonia injection be carefully controlled so as not to inject too much and create a possible emission problem by emitting excess levels of ammonia. In addition the temperature necessary for the reduction of the oxides of nitrogen must be carefully controlled to yield the required reaction rates.
Apparatus modifications have also been widely used or proposed as a solution to the aforementioned N0X emission problem. These include modifications to the burner or firebox to reduce the formation of NOx.
Although these methods can reduce the level of NOx, each has its own drawbacks. Combustion equipment modifications can e.g. affect performance and limit the range of operation. A selective catalytic reduction system is presently considered by some to be the best available control technology for the reduction of NOx from the exhaust gas of a cogeneration plant and, as a consequence, is often required equipment. Currently available selective cata- lytic reduction systems used for the reduction of NOx employ ammonia injection into the exhaust gas stream for reaction with the NOx in the presence of a catalyst to produce nitrogen and water vapor. Such systems typically have an efficiency of 80-90 percent when the exhaust gas stream is at a temperature within a temperature range of approximately 600°-700°F. The NOx reduction efficiency of the system is significantly less if the temperature is outside the stated temperature range and the catalyst may be damaged at higher temperatures. A further approach to reducing NOx levels from combustion processes, is based on combustion staging. Thus a fuel-rich primary stage may be followed by secondary air addition and completion of combustion at a later stage.
Reference may be had in this connection to McGill et al, U.S. Patent No. 4,405,587, for which the present Applicant is a co-patentee. As disclosed therein, oxides of nitrogen can be reduced by reaction in a reducing atmosphere at temperatures in excess of 2000°F., for example 2000° to 3000°F.
U.S. Patent No. 4,354,821 is also of interest in disclosing a system for combusting a nitrogen-containing fuel in such a manner as to minimize NOx formation. The fuel to be combusted is directed through a series of combustion zones having beds of catalytic materials. Air is added to each of two upstream zones to provide fuel- rich conditions to thereby minimize formation of NOx precursors. In a final zone also having a bed of catalytic material, excess air is provided to complete combustion of the fuel.
In my U.S. Patent No. 4,811,555, for which this application is a continuation-in-part, there is disclosed a cogeneration system wherein electrical power is generated by a gas turbine. The gaseous effluent from the turbine, together with sufficient additional fuel to produce a fuel-rich, fuel-air mixture is fed to a boiler to generate steam. Air is added to the gaseous effluent from the boiler to form a lean fuel-air mixture, and this mixture is passed over an oxidizing catalyst, with the resultant gas stream then passing to an economizer or low pressure waste heat boiler for substantial recovery of its remaining heat content. The gas, now meeting NOX emission standards, is then vented to atmosphere.
It will be appreciated that in my said 4,811,555 patent, a gas turbine constitutes the primary power source. The NOx levels ultimately achieved therein is quite low, i.e. below about 50 ppmv for the final gases provided for venting. Since, however, NOx levels in the turbine exhaust are not extremely high to begin with (i.e. about 150 ppmv), the actual reduction is only moderate. Where an internal combustion engine (such as a diesel) constitutes the power source, NOx levels in the exhaust are an order of magnitude higher than in a gas turbine — a typical N0X level for such an engine being about 1500 ppmv. In this instance the exhaust stream also carries substantial particulate matter in the form of unburned carbon. It is found that with such a power source, neither the methods taught in my 4,811,555 patent, or those otherwise known in the prior art are adequate or effective to economically and efficiently achieve fully acceptable NOx reduction. The problem thereby presented is particularly acute, in that the convenience, simplicity of operation, and dependability of internal combustion engines, otherwise renders same an ideal instrumentality for use in cogeneration installations, e.g. for shopping centers, industrial plants, educational facilities, medical complexes, and the like. In accordance with the foregoing, it may be regarded as an object of the present invention, to provide a cogeneration method and system wherein the primary power source is an internal combustion engine, and wherein the quantity of NOx in the fuel emissions to atmosphere is reduced to a completely safe and acceptable level.
It is another object of the invention to provide a cogeneration system of the foregoing character, wherein NOx emissions are controlled without adversely affecting the operation of the power source or fuel efficiency of the system.
It is a further object of the invention, to provide in a cogeneration system employing an internal combustion engine, wherein N0X emissions are reduced to a very low level by means which are more economical and more readily controlled than means heretofore employed in the cogeneration art. Brief Summary of the Invention In accordance with the invention, a cogeneration system is provided wherein fuel and oxygen are provided to an internal combustion engine connected to drive an electric generator, to thereby generate electricity. An exhaust stream is recovered from the engine at a temperature of about 500° to 1000°F. which includes from about 6 to 15 percent oxygen. Sufficient fuel is added to the exhaust stream to create a fuel-rich mixture, the quantity of fuel being sufficient to react with the available oxygen and reduce the NOx in the exhaust stream. The fuel-enriched stream is then provided to a thermal reactor means for reacting the fuel, N0X and available oxygen, to provide a heated oxygen-depleted stream. The oxygen-depleted stream is cooled in a heat exchanger. Prior to being passed over a catalyst bed under overall reducing conditions, conversion oxygen is added to the cooled stream. Such oxygen can be provided directly (i.e. as air), but preferably can be provided by bypassing part of the exhaust stream from the engine. The quantity of conversion oxygen is stoichiometrically in excess of the amount of N0X but less
(stoichiometrically) than the amount of combustibles, in consequence of which NO in the stream is oxidized to N02 at the forward end of the bed, after which the N02 is reduced in the remainder of the bed by the excess combustibles. Air is added to the resulting stream from the catalytic bed to produce a cooled stream having a stoichiometric excess of oxygen, and the stream is passed over an oxidizing catalyst bed to oxidize remaining excess combustibles. The resultant stream, vastly reduced in N0X content can then be provided for venting. By means of the invention, the N0X content can be reduced to less than 25 ppmv — often below 15 ppmv, while CO levels are also brought to well below 50 ppmv. Brief Description of the Drawing
The invention is diagrammatically illustrated, by way of the example, in the drawing appended hereto, in which:
The Figure is a schematic block diagram illustrating a cogeneration system in accordance with the invention, and embodying an internal combustion engine as the primary power source.
Detailed Description of Preferred Embodiments
Referring now to the Figure, a cogeneration system 8 in accordance with the invention is shown. System 8 is designed to produce electrical power, while also providing useful heat output, e.g. in the form of steam or the like. Such a system can be installed at business or educational complexes, such as shopping centers, office parks, universities, hospitals, etc. The reference numeral 10 designates an internal combustion engine which receives a hydrocarbon fuel such as gasoline or preferably, diesel oil, or the like, together with air, and burns the air-fuel mixture to produce a gaseous exhaust or effluent. Other hydrocarbon fuels such as natural-gas fired butane or propane can also be used. The fuel and air are introduced via lines 12 and 14, respectively, and the engine 10 is coupled to a generator 9 to produce electrical power. The engine exhaust gas leaves through a duct 16 typically at an exhaust temperature of about 500° - 1000°F, more preferably at about 750° - 1000°F. The exhaust typically includes from about 6 to 15% oxygen, more preferably about 6 - 10%; and includes from about 500 to 2,000 ppmv of NOX/ with about 1000 to 1500 ppmv being typical. (All NOx measurement data herein are expressed as parts per million volume [ppmv] on a dry basis.) The NOx is mainly in the form of NO. The exhaust stream includes substantial particulate matter in the form of soot. In accordance with one aspect of the invention, there is introduced further amounts of combustibles, i.e. fuel into duct 16, to be admixed with the exhaust gas, the amount depending upon the oxygen content in the exhaust gas from the engine. The added fuel can be any hydrocarbon fuel such as gasoline, diesel oil, propane, natural gas, naptha, and the like; natural gas is preferred. Only fuel is injected at this point. The amount of fuel added is selected to be sufficient to subsequently react with the available oxygen and reduce the NOx in the exhaust stream. In general from about 1 to 50% stoichiometric excess fuel is used with a preferable excess being from about 5 to 10% stoichiometrically relative to the available oxygen in the exhaust gas from the engine. Thus, the exhaust gaseous stream from the engine is treated, i.e., has fuel added to it, to produce a fuel- rich, fuel-air mixture containing 1% to 50% excess of fuel over the oxygen stoichiometrically present.
The thus-treated exhaust gas from the engine is then passed to a thermal reactor, i.e., an afterburner 18, wherein it is burned at a temperature of about 1800° to 3200°F. , preferably from about 2000° to 2400°F. A residence time of about .25 to 0.5 seconds is required to ensure that the desired essentially complete burn-out of oxygen in the exhaust and reduction of a portion of the oxides of nitrogen will occur, along with reduction of soot. A greater residence time can be employed, e.g., 1 minute or more, but serves no useful purpose — while increasing the costs of operation. The gaseous effluent from afterburner 18, is typic¬ ally at a temperature of 1800-3200°F. , and includes about 750 ppmv of N0X. Its oxygen content is close to zero. The amount of fuel added at 16 will generally be such as to leave about 0.5 to 2% of CO and H2 in the effluent at 20. Such stream is then passed to and through a heat exchanger, which may comprise a waste-heat boiler 22 wherein the effluent is cooled to a temperature of about 600 - 1050°F. and preferably to the range of from 750° to 900°F. The heat values in the exhaust stream are thus extracted at boiler 22 to produce steam, which can be removed via line 23 and used for. space heating or the like; while at the same time the exhaust stream has been cooled, which is a central consideration for its subsequent treatment.
In accordance with a central aspect of the present invention, the fuel-enriched and cooled exhaust gas from boiler 22, prior to being passed to and through a catalyst bed 25, is admixed with a controlled amount of conversion oxygen, added into duct 21 at point 19. Such oxygen can be added directly with an air supply 29; but preferably can be provided by bypassing some of the engine exhaust from duct 16, via a line 31. This latter approach serves a secondary purpose by reducing the amount of oxygen entering afterburner 18, thereby reducing fuel requirements to the afterburner. The primary purpose of the conversion oxygen is however realized upon the mixture entering catalyst bed 25.
In particular, the amount of conversion oxygen added to the cooled stream from boiler 22 is such as to be (stoichiometrically) in excess of the amount of N0X in such stream, but less (stoichiometrically) then the amount of combustibles (chiefly fuel) in the stream. Typically the amount of oxygen added is about 0.2 to 0.9%. Bearing in mind that the N0X in line 21 is chiefly in the form of NO, as the mix enters the front end of the catalyst bed 25, the 02 reacts with the NO to predominantly convert same to N02. The latter, being more unstable and reactive than NO, is then readily reduced to innocuous compounds by the excess combustibles as the flow proceeds through the remainder of the bed. To be appreciated is that the effective action described is facilitated if not enabled by the fact that the engine exhaust stream has indeed been cooled by boiler 22. Were the gas stream in duct 21 at an elevated temperature, the initial conversion of NO to the more reactive N02 would not proceed to the extent necessary to enable the action just described — i.e. such high temperatures would favor disassociation of N02 back into the more stable form of NO. The overall reaction in bed 25 is therefore seen to be a reducing one wherein the fuel-rich stream at a temperature of about 600° to about 1050°F. is passed over a reducing catalyst, e.g. platinum-rhodium in the zero- valent state supported on a carrier such as alumina, silica or a metal alloy. The making of such catalysts is well known to persons skilled in the art and known noble metal catalysts such as blends of Pd, Pt and Rd can be used, as well as MnO and other metal oxides. There can be in the familiar pellet, ribbon, honeycomb or other forms. Catalyst volumes will vary depending on the particular catalyst used. Ordinarily, the quantity of catalyst and the flow rate are such that the space velocity is typically in the range of 60,000 to 90,000 hr."1, typically being about 80,000 hr."1.
The stream exiting from catalyst bed 25 in conduit 24 is found as a result of the foregoing actions to be remarkably low in NOx, typically including under 15 ppmv of same. However the CO content is typically about 500 - 2000 ppmv. Substantially no NOx precursors such as HCN or NH3 have been formed. Air is now introduced into the stream in conduit 24. , and the resulting gaseous stream is passed to a further catalyst bed 26 wherein the gas stream is passed over an oxidizing catalyst. The amount of air is added in an amount relative to the stream in conduit 24 such that the resulting stream will contain oxygen stoichiometrically in excess of the amount needed to burn any fuel which may be present in the stream, and will preferably be controlled so that the 02 content in conduit 27 downstream of bed 26 will be about 1.5 to 3%. Either noble metal catalysts, such as platinum, palladium, or rhodium; or base metal oxides, such as copper oxide, chrome oxide, or manganese oxide, or the like, may be used for this purpose. The noble metal catalysts, e.g., platinum or palladium catalysts, are most suitably the noble metals deposited in the zero valent state upon a support, such as alumina, silica, kiesel-guhr, or a metal alloy, and the like. The metal oxide catalysts are also most suitably the metal oxides supported on supports of this character. Various shapes such as pellets, ribbons or honeycombs can be used. The making of such catalysts is well known to persons skilled in the art. Catalyst volumes will vary depending on the particular catalyst used. Ordinarily, the quantity of catalyst and the flow rate are such that the space velocity is generally in the range of 30,000 to 50,000 hr.-1
40,000 hr.-1 is a typical value. N0X levels in the conduit 27 are under 15 ppmv, and CO has been reduced to less than 50 ppmv.
While the principle purposes of the invention have been achieved in the gas stream in conduit 27, additional operations may be desired to obtain yet further advantages from the invention. The oxidized gaseous effluent from the bed 26 is thus shown passing from conduit 27 to an economizer or a low-pressure, waste-heat boiler, or the like, indicated at 28. Here the heat content of the oxidized gaseous effluent is extracted to the maximum amount economically feasible. The cooled gas at a temperature of about 300 - 400°F. is then discharged through an outlet conduit 30 into a stack 32 and vented to the atmosphere with the assurance that the vented effluent will comply with both N0X and CO emission standards. It will have a NOx content of less than 15 ppmv and a CO content of less than 50 ppmv.
It will, of course, be understood in the foregoing description, reference to internal combustion engine, afterburner, boiler, waste-heat boiler, economizer, gas treatment unit, and the like, contemplates utilization of standard equipment well known to persons skilled in the art. The catalyst beds, for example, can be any containers adapted for gas passage and containing an appropriate redox catalyst of a type well known in this art. Minimizing the formation of oxides of nitrogen in cogeneration, in accordance with the invention, offers several advantages over the current state of the art. This process does not require that a potentially obnoxious gas, such as ammonia, be injected into the system; the reaction conditions do not require that a narrowly-controlled temperature be maintained for the reduction of oxides of nitrogen to occur; the operating conditions are compatible with conventional cogeneration conditions; and greater NOx and CO reduction efficiencies can be achieved.
It will be understood in view of the foregoing disclosure, that various changes may now be made by those skilled in the art without yet departing from the invention as defined in the appended claims; and it is intended, therefore, that all matter contained in the foregoing description and in the drawing shall be interpreted as illustrative and not in a limiting sense.

Claims

Claims :
1. A process for low N0X cogeneration to produce electricity and useful heat, which comprises: providing fuel and oxygen to an internal combustion engine connected to drive an electric generator, to thereby generate electricity; recovering from said engine an exhaust stream at a temperature of about 500° to 1000°F. which includes from about 6 to 15% oxygen; adding to said exhaust stream sufficient fuel to create a fuel-rich mixture, the quantity of fuel being sufficient to react with the available oxygen and reduce the N0X in said exhaust stream; providing said fuel-enriched exhaust stream to a thermal reactor and reacting therein said fuel, N0X and available oxygen, to provide a heated oxygen-depleted stream; cooling said oxygen-depleted stream by passing same through a heat exchanger; adding conversion oxygen to said cooled stream from said heat exchanger, and passing the cooled oxygen- augmented stream over a first catalyst bed under overall reducing conditions, the quantity of conversion oxygen added being in stoichiometric excess of the amount of N0X, but less than the amount of combustibles; whereby the NO is first oxidized to N02, and then the N02 is reduced by the excess combustibles; adding air to the resulting stream from said first catalyst bed to produce a cooled stream having a stoichiometric excess of oxygen; and passing said stream over an oxidizing catalyst bed to oxidize remaining excess combustible, to thereby provide an effluent stream having environmentally safe characteristics.
2. A method in accordance with claim 1, wherein the oxygen added to said cooled stream from said heat exchanger is provided by bypassing a portion of the exhaust stream from said engine.
3. A method in accordance with claim 1, wherein the resultant stream from said oxidizing catalyst bed is provided for venting.
4. A method in accordance with claim 3, further including recovering heat from the effluent from the oxidizing catalyst prior to said venting.
5. A method in accordance with claim 1, wherein the reaction in said thermal reactor is conducted at a temperature range of from about 1800° to 3200°F.
6. A method in accordance with claim 1, wherein the amount of fuel added to said exhaust stream provides a stoichiometric excess of fuel of up to 150% with respect to available oxygen.
7. A method in accordance with claim 6, wherein the excess fuel is in the range of 105 to 110%.
8. A method in accordance with claim 4, wherein the residence time in said thermal reactor is from about .25 to .5 seconds.
9. A process as defined in claim 1, wherein said oxygen-depleted stream is cooled to a temperature of about 750 to 900°F. by said heat exchanger.
10. A process as defined in claim 9, wherein said heat exchanger is a boiler.
11. A process as defined in claim 1, wherein the space velocity of said resultant stream passing over said oxidizing catalyst is about 30,000 to 50,000 hr. -1.
12. A process as defined in claim 2, wherein the cooled gas vented to the atmosphere is at a temperature of about 350° to 500°F.
13. A process as defined in claim 1, wherein the cooled gas vented to the atmosphere has a N0X content less than 25 ppmv and a CO content of less than 50 ppmv.
14. A system for low N0X cogeneration of electricity and useful heat comprising in combination: an electrical generator; an internal combustion engine connected to drive said electrical generator to produce electricity, said internal combustion engine providing a hot gaseous exhaust stream including elevated N0X levels and unburned oxygen; means for introducing to said internal combustion exhaust stream sufficient fuel to create a fuel-rich mixture; an afterburner connected to receive the fuel- enriched exhaust stream from said engine and burn out substantially all of the said oxygen; a heat exchanger connected to receive the gaseous flow from said afterburner and cool same to provide an output stream having a temperature below 1050°F., while extracting useful heat from the input stream; means for adding controlled quantities of conversion oxygen to the cooled output stream proceeding from said heat exchanger; an overall reducing catalyst bed connected to receive the oxygen-augmented cooled air stream from said heat exchanger and pass said flow through said bed; the conversion oxygen acting upon the gaseous flow at the forward end of said bed to oxidize NO to N02# and the excess fuel present in said stream acting in the remainder of said bed to reduce the N02 to innocuous compounds; means to add excess oxygen to the flow proceed¬ ing from said reducing catalyst bed; and an oxidizer catalyst bed positioned and con¬ nected to receive the oxygen-enriched flow from said reducing catalyst bed and oxidize remaining combustibles therein; said catalyst bed having an outlet for the N0X- reduced and combustibles-reduced gases.
15. A system in accordance with claim 14, further including means passing said gases from the outlet of said oxidizing catalyst bed to further heat exchanging means, and to venting means.
16. A system in accordance with claim 14 wherein said means for introducing conversion oxygen comprises a bypass line connected to the exhaust outlet of said internal combustion engine to pass a portion of the oxygen containing exhaust gases to a connecting point at the downstream side of said heat exchanger means.
17. A system in accordance with claim 14, wherein said heat exchanger comprises a waste heat boiler.
PCT/US1991/001689 1990-03-26 1991-03-13 Improved low nox cogeneration process and system WO1991014857A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69123142T DE69123142T2 (en) 1990-03-26 1991-03-13 METHOD AND SYSTEM FOR SIMULTANEOUS GENERATION OF ELECTRICAL AND THERMAL ENERGY WITH LOW NOx PRODUCTION
JP91506410A JPH05505661A (en) 1990-03-26 1991-03-13 Improved low NOx cogeneration method and system
EP91906472A EP0521949B1 (en) 1990-03-26 1991-03-13 IMPROVED LOW NOx COGENERATION PROCESS AND SYSTEM
CA002079234A CA2079234A1 (en) 1990-03-26 1991-03-13 Low nox cogeneration process and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/499,165 US5022226A (en) 1988-10-03 1990-03-26 Low NOx cogeneration process and system
US499,165 1990-03-26

Publications (1)

Publication Number Publication Date
WO1991014857A1 true WO1991014857A1 (en) 1991-10-03

Family

ID=23984110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1991/001689 WO1991014857A1 (en) 1990-03-26 1991-03-13 Improved low nox cogeneration process and system

Country Status (8)

Country Link
US (1) US5022226A (en)
EP (1) EP0521949B1 (en)
JP (1) JPH05505661A (en)
AT (1) ATE145264T1 (en)
CA (1) CA2079234A1 (en)
DE (1) DE69123142T2 (en)
DK (1) DK0521949T3 (en)
WO (1) WO1991014857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533473B2 (en) 2014-12-22 2020-01-14 Alfa Laval Corporate Ab Exhaust gas treatment system and method, as well as ship comprising, and use of, such a system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280756A (en) * 1992-02-04 1994-01-25 Stone & Webster Engineering Corp. NOx Emissions advisor and automation system
US5178101A (en) * 1992-03-09 1993-01-12 Radian Corporation Low NOx combustion process and system
US5224334A (en) * 1992-03-09 1993-07-06 Radian Corporation Low NOx cogeneration process and system
ES2067406B1 (en) * 1993-04-26 1998-01-01 Martinez Camus Jose Leandro CONGENERATION SYSTEM IN OVEN HEADER AND / OR BOILERS.
US5500194A (en) * 1994-05-04 1996-03-19 Petrocon Technologies, Inc. Hybrid low NOx process for destruction of bound nitrogen compounds
US5582802A (en) * 1994-07-05 1996-12-10 Spokoyny; Felix E. Catalytic sulfur trioxide flue gas conditioning
US6038854A (en) * 1996-08-19 2000-03-21 The Regents Of The University Of California Plasma regenerated particulate trap and NOx reduction system
US6038853A (en) * 1996-08-19 2000-03-21 The Regents Of The University Of California Plasma-assisted catalytic storage reduction system
US5711147A (en) * 1996-08-19 1998-01-27 The Regents Of The University Of California Plasma-assisted catalytic reduction system
EP0962697B1 (en) * 1998-06-05 2003-11-26 Matsushita Electric Industrial Co., Ltd. Combustion control method
US6202407B1 (en) 1999-04-20 2001-03-20 The Regents Of The University Of California Nox reduction system utilizing pulsed hydrocarbon injection
US6119451A (en) * 1999-04-20 2000-09-19 Regents Of The University Of California Nitrogen oxide removal using diesel fuel and a catalyst
US6247315B1 (en) 2000-03-08 2001-06-19 American Air Liquids, Inc. Oxidant control in co-generation installations
WO2009021699A2 (en) * 2007-08-10 2009-02-19 Vdeh-Betriebsforschungsinstitut Gmbh Method for reducing the nitrogen oxides from exhaust air containing nitrogen oxide by means of the use of exhaust air as the combustion air for burners
KR100886190B1 (en) 2007-11-12 2009-02-27 한국에너지기술연구원 The burner for making deoxidizing atmosphere of exhaust gas in engine cogeneration plant with denox process
KR100919290B1 (en) * 2007-11-12 2009-10-01 한국에너지기술연구원 Circulation Water Temperature Control System for Low NOx Engine Cogeneration Plant
KR100891724B1 (en) 2007-11-12 2009-04-03 한국에너지기술연구원 The by-pass apparatus for denox boiler in engine cogeneration plant
US20100269492A1 (en) * 2009-04-27 2010-10-28 Tenneco Automotive Operating Company Inc. Diesel aftertreatment system
US8893666B2 (en) * 2011-03-18 2014-11-25 Robert P. Benz Cogeneration power plant
US11802692B2 (en) * 2020-04-17 2023-10-31 Ut-Battelle, Llc Monolithic gas trap adsorber for high efficiency, cost effective, low-emission condensing furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896616A (en) * 1972-04-21 1975-07-29 Engelhard Min & Chem Process and apparatus
US3908371A (en) * 1971-12-29 1975-09-30 Nissan Motor Apparatus for supplying fuel to a dual-catalyst exhaust treatment system
US3953576A (en) * 1974-02-13 1976-04-27 Standard Oil Company Maximizing conversion of nitrogen oxides in the treatment of combustion exhaust gases
US4106286A (en) * 1975-09-29 1978-08-15 Hitachi, Ltd. Waste heat recovery boiler apparatus
US4811555A (en) * 1987-11-18 1989-03-14 Radian Corporation Low NOX cogeneration process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000707A (en) * 1959-05-29 1961-09-19 Southwest Ind Inc Process for generating inert gas
US4164546A (en) * 1974-12-19 1979-08-14 Exxon Research & Engineering Co. Method of removing nitrogen oxides from gaseous mixtures
US4354821A (en) * 1980-05-27 1982-10-19 The United States Of America As Represented By The United States Environmental Protection Agency Multiple stage catalytic combustion process and system
US4405587A (en) * 1982-02-16 1983-09-20 Mcgill Incorporated Process for reduction of oxides of nitrogen
US4572110A (en) * 1985-03-01 1986-02-25 Energy Services Inc. Combined heat recovery and emission control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908371A (en) * 1971-12-29 1975-09-30 Nissan Motor Apparatus for supplying fuel to a dual-catalyst exhaust treatment system
US3896616A (en) * 1972-04-21 1975-07-29 Engelhard Min & Chem Process and apparatus
US3953576A (en) * 1974-02-13 1976-04-27 Standard Oil Company Maximizing conversion of nitrogen oxides in the treatment of combustion exhaust gases
US4106286A (en) * 1975-09-29 1978-08-15 Hitachi, Ltd. Waste heat recovery boiler apparatus
US4811555A (en) * 1987-11-18 1989-03-14 Radian Corporation Low NOX cogeneration process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533473B2 (en) 2014-12-22 2020-01-14 Alfa Laval Corporate Ab Exhaust gas treatment system and method, as well as ship comprising, and use of, such a system

Also Published As

Publication number Publication date
DK0521949T3 (en) 1997-04-21
ATE145264T1 (en) 1996-11-15
EP0521949B1 (en) 1996-11-13
EP0521949A4 (en) 1995-01-18
US5022226A (en) 1991-06-11
DE69123142D1 (en) 1996-12-19
DE69123142T2 (en) 1997-06-12
JPH05505661A (en) 1993-08-19
EP0521949A1 (en) 1993-01-13
CA2079234A1 (en) 1991-09-27

Similar Documents

Publication Publication Date Title
US5224334A (en) Low NOx cogeneration process and system
US5022226A (en) Low NOx cogeneration process and system
US4811555A (en) Low NOX cogeneration process
US5178101A (en) Low NOx combustion process and system
EP1572327B1 (en) System and method for controlling nox emissions from boilers combusting carbonaceous fuels without using external reagent
US5500194A (en) Hybrid low NOx process for destruction of bound nitrogen compounds
EP0899505B1 (en) Combined power generation plant
US4936088A (en) Low NOX cogeneration process
JPH07502104A (en) Low NO↓x combustion induced by low NO↓x pilot burner
KR101139575B1 (en) The de-nox system and the method for exhaust gas at low temperature
CA2830559C (en) Cogeneration power plant
US4930305A (en) Low NOX cogeneration process
EP0317110B1 (en) Low nox cogeneration process
CN111836997A (en) Heat production method of power device
CN111120980A (en) Cogeneration system and method for realizing efficient waste heat recovery and low nitrogen emission
Campbell et al. Sourcebook, NOx Control Technology Data
KR200199659Y1 (en) Improvement of boiler exhaust gas purifier
JPH0549807B2 (en)
JPH09178146A (en) Waste power generating system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 2079234

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1991906472

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991906472

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991906472

Country of ref document: EP